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Abstract. Above 40K, the magnetic susceptibility of the heavy Fermion spinel LiV2O4 has many features in
common with those of geometrically frustrated magnetic insulators, while its room temperature resistivity
comfortably exceeds the Mott–Regel limit. This suggests that local magnetic moments, and the underlying
geometry of the pyrochlore lattice, play an important role in determining its magnetic properties. We
extend a recently introduced tetragonal mean field theory for insulating pyrochlore antiferromagnets to
the case where individual tetrahedra contain spins of different lengths, and use this as a starting point to
discuss three different scenarios for magnetic and electronic transitions in LiV2O4.

PACS. 71.27.+a Strongly correlated electron systems; heavy fermions – 71.10.-w Theory and models of
many–electron systems – 75.40.Cx Static properties (order parameter, static susceptibility, heat capacities,
critical exponents, etc.

1 Introduction

Geometrically frustrated magnetic insulators continue to
fascinate experimental and theoretical physicist alike. These
systems are intriguing because the physics of a wide range
of materials, with an equally wide range of physical prop-
erties, is underpinned by alluringly simple considerations
of symmetry and entropy. Perversly, the properties of frus-
trated systems which are structurally far more compli-
cated than “textbook” magnetic insulators can therefore
sometimes be understood on the basis of very simple ar-
guments.

Recently, the geometrically frustrated “metal” LiV2O4

has also attracted a great deal of attention as the first ex-
ample of d–electron heavy Fermion system. In this article
we apply simple arguments borrowed from the study of
frustrated magnetic insulators to the magnetic suscepti-
bility of LiV2O4 over the temperature range 30–1000K.
We argue that our simple model provides a good starting
point for understanding the role of local geometric effects
in the physics of LiV2O4, and use it to explore the strength
and weaknesses of three different scenarios for the mag-
netic “transitions” seen in this material.

Our analysis is based on the extension of a recently
introduced tetragonal mean field theory to a system with
a mixture of different magnetic moments. We neglect the
partially itinerant nature of d–electrons in LiV2O4. This
approximation limits the range of temperatures over which
the theory is valid, but can be justified on the basis of
simple physical arguments. This article is therefore di-
vided into two parts. In sections 2 to 4 we review and
extend the mean field theory for a magnetic insulator on

a pyrochlore lattice. In section 5 we apply the generalized
theory to LiV2O4. and discus the remaining puzzles pre-
sented by the magnetic susceptibility of this most unusual
material.

2 Model

2.1 The Heisenberg model on a pyrochlore lattice

The usual starting point for understanding the physics of
magnetic insulators is the Heisenberg Hamiltonian

H =
∑

ij

JijSi.Sj (1)

where Si is the operator for the spin of electrons on site i,
and the matrix element Jij describes the (super–)exchange
interaction between electrons on sites i and j, and may be
positive (antiferromagnetic) or negative (ferromagnetic).
In many cases interaction can be restricted to nearest
neighbour terms J〈ij〉.

We consider the antiferromagnetic (AF) Heisenberg
model with all J〈ij〉 > 0, on the geometrically frustrated
pyrochlore lattice. This is a (sub–)structure common to
many different magnetic insulators and also to a num-
ber of metallic systems, including the magnetically active
V sites of the spinel LiV2O4. Antiferromagnetic nearest
neighbour exchange interactions favour anti–parallel spin
alignments. For a bipartite lattice this presents no prob-
lem, and the classical groundstate of equation (1) is the
Néel State where each sublattice has its maximal spin,
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and the two sublattices are aligned anti–parallel to one
another, so that the system has no net spin, and each
bond between spins has its lowest possible energy. How-
ever the pyrochlore lattice falls into a more general class of
lattices which exhibit an effect known as geometric frus-
tration — it is impossible to construct a classical spin
configuration in which all neighbouring spins are aligned
anti–parallel to one another. Where this is the case, many
different states can become degenerate, and geometrically
frustrated magnets therefore tend to have a high (classi-
cal) ground state degeneracy. The many different degen-
erate classical groundstates are connected by operations
reflecting the underlying symmetry of the lattice, and at
a classical level this leads to the existence of branches of
zero energy excitations in addition to the expected gold-
stone modes of the system.

Quantum and/or thermal fluctuations may enable a
frustrated system to chose its true groundstate by lifting
the degeneracy between different classical spin configura-
tions (equivalently, generating a mass for all unphysical
zero energy excitations). This effect is known as “order
from disorder”, following a classic paper by Villain [1],
but calculations of order from disorder effects in quantum
mechanical spin systems based on large S or large N ex-
pansions must take proper account of zero energy modes,
and are usually very involved (see e. g. [2], or for a recent
example involving itinerant electrons [3]). It is desirable
therefore to find a more economical way of calculating the
properties of such systems. One way to do so is to start in a
basis of states which already reflects the local symmetries
of the lattice.

While the pyrochlore lattice has an overall cubic sym-
metry, in terms of the bonds between magnetically active
sites, it may be thought of as two inter–penetrating sub-
lattices of tetrahedra, with a spin at the corner of each
tetrahedron. Each spin is shared between a tetrahedron
in the A and a tetrahedron in the B sublattice. The bases
of both A and B sublattice tetrahedra lie in planes, and
the bonds within these planes form a Kagomé lattice. If
we consider a given plane, the tetrahedra of one sublattice
will point into that plane, and those of the other sublattice
out of it. Neighbouring planes are joined by pairs of oppos-
ing tetrahedra. An illustration of this structure is shown
in figure 1. Since individual spins are shared between the
A and B sublattices, we may completely specify the state
of the system by specifying the spin configurations of the
tetrahedra on one sublattice. We will call this the A sub-
lattice. Furthermore, if we neglect all bonds belonging to
the B sublattice, the A sublattice reduces to a set of in-
dependent tetrahedra. These independent tetrahedra will
form the basis for our mean field theory.

2.2 An individual tetrahedral subunit

We now consider an individual tetrahedron on the A sub-
lattice, described by

HTET = HEX +Hh (2)

a) b)

1

2

3

4 {

J

Fig. 1. a) Section of pyrochlore lattice showing two sublat-
tice structure in terms of opposing tetrahedra. Solid tetrahe-
dra point out of the plane, unfilled tetrahedra point into the
plane. b) Spins are found at the corners of tetrahedra, and
shared between A and B sublattices.

where HEX the Heisenberg Hamiltonian

HEX =
∑

〈ij〉Tet

JijSi.Sj (3)

and in order to calculate the susceptibility we introduce
an external magnetic field along the z–axis

Hh = h
∑

i

Sz
i (4)

Here the indices i,j denote sites at different corners of the
tetrahedron, and the sum is restricted so as to count each
bond between spins only once.

This subunit is a system of four interacting local mo-
ments, and we consider the case in which the magnetic
ions at each corner of the tetrahedron may take on one of
two possible values of total spin, these being either “large”
(specifically, S = 1 in what follows), or “small” (below,
s = 1/2). The exchange integral Jij will in general vary
with the size of the spins at sites i and j. We use the no-
tation J1 to refer to the exchange interaction between two
small spins, J2 to the exchange interaction between two
large spins, and J3 to the interaction between two spins
of different size, as illustrated in figure (2). We consider
only the case of antiferromagnetic (AF) interaction i. e. all
J > 0.

Since any given tetrahedron may have 0,1,2,3 or 4 large
spin moments (the remainder being of the small spin) we
must consider five different cases. We will not consider the
additional charge degeneracy associated with the different
ways of distributing spins throughout the tetrahedron as,
for an insulator, this has no dynamics.

2.2.1 Excitation spectrum and partition function

Since total spin is conserved for any isolated tetrahedron,
it must be possible to diagonalize the Hamiltonian (3) in
the basis of eigenstates of total spin

Ω = S1 + S2 + S3 + S4 (5)
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Fig. 2. Mixed spin tetrahedra with 1, 2 and 3 spin 1, showing
the different Heisenberg couplings J1,J2 and J3.

and its z–component Ωz . If we further introduce the total
spin of the “small” and “large” spin subsystems

σ =
∑

{i}T et

SiδSi
1

2

Σ =
∑

{i}T et

SiδSi1 (6)

the Hamiltonian (3) can be written

HTet =
1

2

[

JΩΩ
2 + Jσσ

2 + JΣΣ
2
]

+ const. (7)

where JΩ = J3, Jσ = J1 − J3 and JΣ = J2 − J3. The cou-
pling to external magnetic field is now simply Hh = hΩz

and the excitation spectrum of the model in the absence
of a magnetic field can be read directly from the Hamil-
tonian (3)

E(Ω, σ,Σ) =
1

2
[JΩΩ(Ω + 1) + Jσσ(σ + 1)

+JΣΣ(Σ + 1)] (8)

The ground state of the tetrahedron will be a spin–singlet
for all JΩ > 0, but may be degenerate for mixed spin
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S

S = 1

S = 1/2

Fig. 3. Entropy of spin 1/2, spin 1 and mixed spin tetrahedra
as a function of temperature in units where kB = 1. From top
to bottom at RHS plot, tetrahedra with — 4 spin 1 (dotted
line), 3 spin 1 and 1 spin 1/2 (solid line), 2 spin 1 and 2 spin
1/2 (dotted line), 1 spin 1 and 3 spin 1/2 (solid line), 4 spin
1/2 (dotted line). All couplings set equal to J.

systems. Since we anticipate J2 > J3 > J1, in general
Jσ < 0 and the smaller spins tend to be aligned in order
to collectively screen the larger ones.

In order to calculate the partition function of the tetra-
hedron, we also need to know the degeneracy g(Ω, σ,Σ)
of each state. We will not discuss the (tedious) details of
the evaluation of these degeneracy factors, but note that
they can be found using a simple generalization of the
method introduced for systems with a single type of spin
by van Vleck (see Appendix A). Actual degeneracies for
the states of tetrahedra with no, one, two, three and four
spin S = 1 spins are listed in Appendix B.

Given knowledge of E(Ω, σ,Σ) and g(Ω, σ,Σ), the par-
tition function of the tetrahedral subunit in the presence
of a magnetic field h at temperature T can be expressed
as

Z =
∑

ΩσΣ

g(Ω, σ,Σ) exp

(

−
E(Ω, σ,Σ)

T

)

×FΩ

(

hΩ

T

)

(9)

where FΩ(x) is the function

FΩ(x) =
sinh

(

(2Ω+1)x
2Ω

)

sinh
(

x
2Ω

) (10)

2.2.2 Entropy and Specific heat

The entropy of an individual tetrahedral subunit is given
by

S = lnZ +
〈E〉

T
(11)
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Fig. 4. Heat capacity of spin 1/2, spin 1 and mixed spin tetra-
hedra as a function of temperature in units where kB = 1. From
top to bottom at RHS plot, tetrahedra with — 4 spin 1 (dotted
line), 3 spin 1 and 1 spin 1/2 (solid line), 2 spin 1 and 2 spin
1/2 (dotted line), 1 spin 1 and 3 spin 1/2 (solid line), 4 spin
1/2 (dotted line). All couplings set equal to J.

where the average energy of the system 〈E〉 is

〈E〉 =
1

Z

∑

n

Ene
−En

T (12)

The sum over states {n} involved can easily by evaluated
numerically. Results are shown in figure (4) for the five
possible mixed spin tetrahedra. For purposes of compari-
son, all different exchange couplings have been set equal
to the single value J .

The entropy increases from a lower bound set by the
groundstate degeneracy (which is greatest for the tetra-
hedra with an odd number of spin S = 1 moments, for
which the ground state has a net spin of 1/2) to and upper
bound set by the total number of spin degrees of freedom
for each tetrahedron (which is greatest for the tetrahedron
with four spins S = 1). The curves for the entropy of the
different tetrahedra therefore cross. This crossover from
collective ground state to individual spin degrees of free-
dom takes place on a scale of temperatures of order of the
exchange coupling constant J , and the entropy has a point
of inflection for T ∼ J/2. A more realistic parameteriza-
tion of the exchange constants {J1, J2, J3} 6= J modifies
the details of the crossover but does not affect the high or
low temperature limits.

Similarly, we can evaluate the specific heat of the sys-
tem

cV =
〈E2〉 − 〈E〉2

T 2
(13)

in terms of its the mean square energy

〈E2〉 =
1

Z

∑

n

E2
ne

−En

T (14)

Results are shown for the same set of tetrahedra in fig-
ure (2). Once again, for purposes of comparison, all ex-
change constants have been set equal to J .

The heat capacity of the tetrahedra at temperatures
T ≪ J vanishes since the first excitation energy of the
tetrahedron occurs at finite energy E1 ∼ J . The heat ca-
pacity is peaked for T ∼ J/2, where the entropy has its
point of inflection, and tends to zero at high temperatures
as the entropy of the individual spins in the tetrahedron
are saturated. For temperatures T > J , where individual
spins predominate, the heat capacity is greatest for the
tetrahedron with four large spins, since it has the greatest
number of degrees of freedom.

2.2.3 Magnetic susceptibility

The magnetization of the tetrahedron in the presence of
a magnetic field is given by

M =
1

Z

∑

ΩσΣ

g(Ω, σ,Σ) exp

(

−
E(Ω, σ,Σ)

T

)

×ΩFΩ

(

hΩ

T

)

BΩ

(

hΩ

T

)

(15)

where BΩ(x) is the Brillouin function

BΩ (x) =
(2Ω + 1)

2Ω
coth

(

(2Ω + 1)x

2Ω

)

−
1

2Ω
coth

( x

2Ω

)

(16)

We define the susceptibility per site of the tetrahedron by

χT et(T ) =
1

4

∂M

∂h
≈

1

4

M

h
(17)

which in the limit of small h/T , gives

χT et(T ) =
1

12T

1

Z

∑

ΩσΣ

g(Ω, σ,Σ)

×Ω(Ω + 1)(2Ω + 1)

× exp

(

−
E(Ω, σ,Σ)

T

)

(18)

where, to the same level of approximation

Z ≈
∑

ΩσΣ

g(Ω, σ,Σ)(2Ω + 1)

× exp

(

−
E(Ω, σ,Σ)

T

)

(19)

Results for the susceptibility of the five different tetrahe-
dra are shown in figure (5). Further details of two mixed
spin tetrahedra are shown in figures (6) and (7). Once
again, in order to simplify comparisons, all exchange con-
stants have been set equal to J .
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Fig. 5. Magnetic susceptibility of spin 1/2, spin 1 and mixed
spin tetrahedra as a function of temperature. From top to bot-
tom at RHS plot, tetrahedra with — 4 spin 1 (dotted line),
3 spin 1 and 1 spin 1/2 (solid line), 2 spin 1 and 2 spin 1/2
(dotted line), 1 spin 1 and 3 spin 1/2 (solid line), 4 spin 1/2
(dotted line). All couplings set equal to J.

In the limit where T/J → ∞ we must recover a Curie–
Weiss susceptibility

χT et(T → ∞) →
C

T + θ
(20)

where the coefficient C represents the contribution of an
individual spin to the susceptibility and θ is the Curie
temperature associated with interactions between spins
within the same tetrahedron. In practice the crossover to
this high temperature regime occurs for T ∼ 5J .

The value of C is given by CS = S(S+1)/3 only when
the tetrahedral subsystem consists entirely of spin S local
moments. For the mixed spin case, it is an average of the
different CS ’s of the different spins within the tetrahedron.
In general it can be written as

C =
1

12

N1

N0
(21)

where

N0 =
∑

ΩσΣ

g(Ω, σ,Σ)(2Ω + 1) (22)

is the total number of states of the system and

N1 =
∑

ΩσΣ

g(Ω, σ,Σ)(2Ω + 1)Ω(Ω + 1) (23)

is a number determined by the degeneracy g(Ω, σ,Σ) of
the states of the mixed spin tetrahedron.

Similarly, for a tetrahedron with a single size of spin,
the Curie temperature θ associated with interaction be-
tween spins can be written θS = z0JS(S+1) where z0 = 3

0

0.05

0.1

0.15

0.2
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χ
χ
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Fig. 6. Magnetic susceptibility of isolated tetrahedron with
one spin 1 and 3 spin 1/2 showing crossover between different
Curie laws at high and low temperatures (inset).

is the number of neighbouring spins within the same tetra-
hedron. In the mixed spin case, this generalizes to

θ =
JΩ
2

(

N2

N1
−

N1

N0

)

+
Jσ
2

(

Nσ
2

N1
−

Nσ
1

N0

)

+
JΣ
2

(

NΣ
2

N1
−

NΣ
1

N0

)

(24)

where the various numerical factors are given by

Nσ
1 =

∑

ΩσΣ

g(Ω, σ,Σ)(2Ω + 1)σ(σ + 1) (25)

NΣ
1 =

∑

ΩσΣ

g(Ω, σ,Σ)(2Ω + 1)Σ(Σ + 1) (26)

N2 =
∑

ΩσΣ

g(Ω, σ,Σ)(2Ω + 1)Ω2(Ω + 1)2 (27)

Nσ
2 =

∑

ΩσΣ

g(Ω, σ,Σ)(2Ω + 1)Ω(Ω + 1)

×σ(σ + 1) (28)

NΣ
2 =

∑

ΩσΣ

g(Ω, σ,Σ)(2Ω + 1)Ω(Ω + 1)

×Σ(Σ + 1) (29)

Values of the coefficient C and the Curie temperature θ for
different mixed spin tetrahedra are given in table (1). As a
compact notation we refer to a tetrahedron with one spin
one and three spin half moments as (1, 1/2, 1/2, 1/2), etc.
The related numerical coefficients, and degeneracy factors
are listed in an Appendix. Mean field corrections to θ will
be discussed below.

At low temperatures T ≪ J the behaviour of the sus-
ceptibility depends on the spin of the ground state of the
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Table 1. Curie coefficients and temperatures for tetrahedra with different mixtures of spin. Mean field corrections to the Curie
temperature assume zeff = 3.

C θ ∆θMF

( 1
2
, 1

2
, 1

2
, 1

2
) 0.25 0.75J1 0.75Jeff

(1, 1

2
, 1

2
, 1

2
) 0.351 0.159J1 + 0.855J3

(1, 1, 1

2
, 1

2
) 0.458 0.0068J1 + 0.485J2 + 0.727J3 1.374Jeff

(1, 1, 1, 1

2
) 0.558 0.759J2 + 0.923J3

(1, 1, 1, 1) 0.667 2.00J2 2.00Jeff

0

0.02

0.04
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0.08

0.1

0.12

0.14

0 5 10 15 20 25

T/J

χ

S = 1

Mixed Spin

S = 1/2

Fig. 7. Magnetic susceptibility of spin 1/2, spin 1 and mixed
spin tetrahedron with two spin 1 moments as a function of tem-
perature, including mean field interactions between tetrahedra.
All couplings set equal to J.

tetrahedron. The tetrahedra with an even number of spin
S = 1 moments have singlet ground states, with expo-
nentially activated magnetic susceptibility (see figure (7)).
At intermediate temperatures T ∼ J the susceptibility
for these systems is strongly peaked. The tetrahedra with
an odd number of spin S = 1 moments (see figure (6))
have a susceptibility diverging as 1/4 × 3/4T for T → 0.
At intermediate temperatures the susceptibilities of these
tetrahedra cross over smoothly to the high temperature
Curie–Weiss law.

2.3 Mean Field Theory

As suggested by Garciá–Adena and Huber [4], we can con-
struct a mean field theory for the Heisenberg model on a
pyrochlore lattice by considering each spin within a tetra-
hedron on the A sublattice to feel only the average effect
of interactions with spins in other tetrahedra. Where the
groundstate of each tetrahedron is assumed to be a spin
singlet, for example in the three integer total spin cases
considered above, the different tetrahedra interact with
one another only when a magnetic field is applied. In this

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5

χ

T/J

{{J J

{

J

{{2J J/3

{

J

Fig. 8. Magnetic susceptibility of isolated tetrahedron with
two spin 1 and two spin 1/2 (upper pair lines) and mean field
susceptibility of equivalent lattice model (lower pair lines).
Solid lines are for J1 = J2 = J3 = Jeff = J . Dashed lines are
for J3 = J , J1 = J/3, J2=2J, Jeff = 0.680441, chosen so that
the meanfield Curie temperature is the same in each case.

case, the effective field felt by any given spin is reduced
by its AF interaction with the induced magnetization of
neighbouring tetrahedra, and the susceptibility of the sys-
tem is accordingly modified to

χMF (T ) =
χT et(T )

1 + zeffJeffχT et(T )
(30)

where zeff is the number of neighbouring spins in different
tetrahedra, and Jeff is the effective exchange interaction
for the “missing” bonds of the B sublattice. In theory,
for a single spin system with a single type of spin and
only nearest neighbour interactions zeff = z0 = 3 and
Jeff = J . But in practice, even for systems with only one
type of spin, when it comes to comparison with experi-
ment, the product zeffJeff is probably best regarded as
an adjustable parameter [4].

The new mean field Curie temperature is related to
the Curie temperature of an isolated tetrahedron by

θMF = θ + zeffJeffC (31)
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Fig. 9. Mean field theory including different types of mixed
spin tetrahedra. From top to bottom — α=0.3 (dotted line),
α=0.2 (dotted line), α=0.1 (dotted line), α=0.0 (solid line),
where α is defined by equation (32).

The coefficient C of the high temperature susceptibility is
of course independent of interaction and so unchanged.

For simplicity, we have limited our discussion here to
the case of tetrahedra with singlet groundstates, where
the generalization of the theory presented by [4] is most
straightforward. We note, however, that the tetragonal
mean field theory can also be generalized to the tetrahe-
dra with a net spin in the groundstate, by assuming that
tetrahedra on the A and B sublattices order anti–parallel
to one another. This leads to an additional crossover at
low temperatures when the Néel order of the tetrahedra
melts, which will be discussed elsewhere.

Results for the mean field susceptibilities of different
tetrahedra are shown in figure (7). For AF exchange inter-
actions as defined above, the mean field corrections lead
to an overall suppression of the susceptibility, which is re-
flected in the increase of the Curie temperature calculated
above. The tetrahedra with an even number of spin S = 1
moments still show a peak in their susceptibility at T ∼ J ,
but this is now a less pronounced maximum.

In the examples above we have set all the exchange
constants {J1, J2, J3, Jeff} = J . In figure (8) we illus-
trate the effect of relaxing this constraint on the magnetic
susceptibility of an individual tetrahedron with two spin
S = 1 moments, and on the mean field theory for a lat-
tice of such tetrahedra. Lowering the coupling between
the two spin S = 1/2 moments to J1 = J/3 while increas-
ing that between the spin S = 1 moments to J2 = 2J
leads to a sharper peak in the susceptibility at lower tem-
peratures, as more excitations become accessible at low
temperatures.

However, since the high temperature susceptibility is
of Curie law form in either case, these modifications are
pronounced only on a scale of T ∼ J → 2J . From table (1)
we see that while the low energy scale J1 is important for
the low temperature susceptibility, the Curie temperature

of the tetrahedron is extremely insensitive to change in J1.
In the example plotted, the mean field coupling Jeff has
been adjusted so as to compensate for the new values of J1
and J3, giving the same Curie temperature and therefore
the same high temperature susceptibility. In practice the
two models become indistinguishable for T > 5J . This
means that a representative average “J” can be extracted
from knowledge of the high temperature susceptibility of
a system described by this model.

It is also interesting to consider the case of a lattice of
such tetrahedra which is modified by the inclusion of a low
density of “impurity” tetrahedra with greater (or lesser)
total spin. To make this concrete, let us suppose that on
average each tetrahedron contains two spin S = 1 and two
spin S = 1/2 moments, but that in some fraction α/2 of
tetrahedra, there are in fact three spin S = 1 moments,
and in an equal number three spin S = 1/2 moments.
Then the mean field susceptibility is modified to

χT et(α, T ) = αχT et
(11 1

2

1

2
)(T )

+
α

2

[

χT et
(111 1

2
)(T ) + χT et

(1 1

2

1

2

1

2
)(T )

]

(32)

Results are shown for J1 = J2 = J3 = Jeff = J and a
range of values of α in figure (9). At high temperatures
the system must show its “average” character in a well
defined Curie law, and the redistribution of moments be-
tween different tetrahedra is irrelevant. In fact we do not
even need to consider the temperatures T > 5J for which
the Curie law is valid — for temperatures T > J/2 the
increased susceptibility of the tetrahedra with three spin
S = 1 moments exactly cancels the reduced susceptibil-
ity of the tetrahedra with three spin S = 1/2 moments
and all results collapse onto the curve for α = 0. At lower
temperatures the presence of the tetrahedra with a net
groundstate spin leads to an upturn in the susceptibil-
ity. This becomes steadily more pronounced as α → 1,
although the mean field theory cannot be relied upon in
this limit.

Further generalizations of the meanfield theory intro-
duced in [4] for geometrically frustrated magnets with a
single type of spin have been given in [5,6,7].

3 Magnetic susceptibility of LiV2O4

LiV2O4 is the first d–electron system to exhibit true “heavy
Fermion”, i. e. Pauli paramagnetism and (approximately)
linear specific heat at low temperature, both with strongly
enhanced coefficients, but with a Wilson ratio W∼1.7 [8]).
The Fermi energy lies in the vanadium t2g d electron
bands, which are in total half filled, giving an average
of 1.5 d electrons per vanadium lattice site. A presumed
strong Hund’s rule coupling implies that in an atomic ba-
sis, each site possesses either a spin S=1/2 or spin S=1
moment, according to whether one or two d electrons are
found on that site.

At very low temperatures the resistivity of LiV2O4 in-
creases as T 2 [9], and the Nuclear relaxation rate obeys
the Korringa law 1/T1T = const, as would be expected
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of a Fermi liquid with well defined quasi–particles [10].
However this behaviour breaks down at about 4 K, and
LiV2O4 is a poor conductor, with low temperature re-
sistivity intermediate between that of a good metal (Ag,
Cu) and that of an intrinsic semi–conductor (Si,Ga). In
addition, the entropy associated with the low energy elec-
tronic excitations of the system is very large. An estimate
made by integrating the heat capacity (after appropriate
background subtractions for phonon and impurity contri-
butions) gives approximately 0.5kB log 2 per site at 50 K
[9]. This value is much greater than that for any other d–
electron system, and should be compared with the maxi-
mum entropy per site of kB log 2 for a single spin S=1/2
degree of freedom. If we interpret the low temperature
heavy Fermion behaviour of LiV2O4 naively in terms of
an enhanced mass, electronic quasi–particles are approxi-
mately as massive as muons. Bandstructure calculations,
on the other hand, suggest a relatively small mass cor-
rection and underestimate the specific coefficient γ by a
factor of 25 [11,12].

At about 20K, the electronic physics of LiV2O4 under-
goes marked change, visible in measurements of resistivity,
heat capacity, susceptibility and Hall coefficient [9]. This
crossover has sometimes been identified with the coher-
ence temperature for an s–f heavy Fermion system, and a
number of authors have suggested a minimal Kondo lattice
model for LiV2O4 in which two–thirds of the d–electrons
play the role of local moments (a single spin S=1/2 per
site), and the remaining third are itinerant. Various mech-
anisms have been proposed to justify treating subsets of
the vanadium t2g d electrons on a different footing, and
hints of local moment physics for d electrons are even seen
in some band structure calculations [12], but no real sign
of Kondo physics (e. g. logerythmic corrections to resistiv-
ity) are seen immediately above the “transition” at 20 K.

The magnetic susceptibility of LiV2O4 displays a num-
ber of interesting features over a wide range of tempera-
tures. At low temperatures (T < 40 K) it exhibits a weakly
temperature dependent Pauli paramagnetic susceptibility,
but with a massively enhanced value of χ ∼ 5× 10−3 per
mole vanadium. This crosses over smoothly to what has
generally been interpreted as Curie law behaviour, but
with different coefficients in different temperature ranges
100–500 K and 500–1000 K [13,14]. Over the same wide
range of temperatures the resistivity continues to increase
slowly but monotonically, and comfortably exceeds the
Mott–Regel limit [9].

In what follows we will make the approximation of
treating LiV2O4 as an insulating Heisenberg system of
magnetic moments on a pyrochlore lattice. This is not un-
reasonable, as the magnetic susceptibility of LiV2O4 varies
on a scale typical of Heisenberg exchange integrals (10–
100K), and not on the scale of the Hund’s rule coupling
or d–electron bandwidths found from LDA calculations
(both ∼ 104K), and because the naive mean free path
for electrons is of atomic proportions. Furthermore, the
frustrated geometry of the pyrochlore lattice means that
spin coherence lengths will also be small, so the tetrahe-
dral mean field theory developed above can be expected to

provide a reasonable starting point for discussing its mag-
netic susceptibility. In what follows we will consider three
different scenarios for the magnetic physics of LiV2O4,
using our simple model and the experimentally measured
susceptibility to place constraints on each.

The theoretical predictions for magnetic susceptibility
per spin given above can be related to the experimentally
measured susceptibility in emu per mole vanadium (equiv-
alently cm3 [mol V]−1) according to

χexp(T ) = 0.375g2Lχ
theory(T ) (33)

where gL ∼ 2.0 is the Landé g–factor for the coupling
of a magnetic field to the spin of a vanadium ion. We
note that experimental susceptibilities are often quoted
in emu mol−1, i. e. per it mole–formula–unit. One mole of
LiV2O4 contains two vanadium ions.

3.1 First scenario - mixed valent local moments near
to charge order.

The vanadium atoms in LiV2O4 occur in two valence states,
d1 (V4+) and d2 (V3+). Both of these have an incomplete
shell of d–electrons, and vanadium has a strong Hund’s
first rule coupling, so both have a net magnetic moment
— S = 1/2 in the case of V4+, and S = 1 in the case of
V3+.

Another important fact is that LiV2O4 is close to charge
order. This could be anticipated by analogy with other
mixed valent transition metal spinels — for example those
Ferrites which undergo a Verwey (charge ordering) tran-
sition. To explain this, Anderson invoked a “tetrahedron
rule” requiring that charge balance be satisfied within each
tetrahedron, i. e. , that each tetrahedron should have two
of the high, and two of the low ionization states [16]. If all
events violating the tetrahedron rule are neglected, the re-
sulting state is a charge ordered magnetic insulator, with
dynamics determined by the residual (antiferromagnetic)
Heisenberg exchange integrals.

While LDA estimates suggest that the energy asso-
ciated with Coulomb interaction between V3+ and V4+

ions on neighbouring sites is lower than the threshold for
charge order [17], experimentally LiV2O4 does charge or-
der under pressure [18]. It has therefore been suggested by
Fulde et. al. [19] that the application of the tetrahedron
rule to LiV2O4 provides a way of explaining its heavy
Fermion behaviour at low temperatures.

The essential ingredient of this theory is the emer-
gence of one–dimensional correlations between spins as
a result of the tetrahedron rule. Since each tetrahedron
has two spin one and two spin half moments, every vana-
dium atom must be connected to two vanadium atoms
with same moment, one within its tetrahedron, and one
in a neighbouring tetrahedron. This means that the lattice
of tetrahedra can be divided into Heisenberg chains of spin
half or spin one moments. These chains may close to form
rings, with a minimum length of six spins. The remaining
simplification is that the interaction between neighbour-
ing chains is neglected, so that the spin one chains have
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Table 2. Exchange coefficients, exponents, and Landé g–factors found from fits to data.

Kondo et. al. [15] Muhtar et. al. [13] Hayakawa et. al. [14]

First Scenario :

gL 1.6 – –

J 17.8 K – –

Second Scenario - high temperature regime :

gL – 2.04 2.14

J – 119 K 122 K

Second Scenario - low temperature regime :

χ0 0.26× 10−3 emu/mol V 0.18× 10−3 emu/mol V 0.12× 10−3 emu/mol V

J 26 K 25 K 13 K

Third Scenario :

α – 0.74 0.80
T0 – 0.021 0.053

(Haldane–) gapped excitations, while the spin half chains
have low lying fermionic excitations with linear specific
heat. These, and not the dressed electronic quasiparticles
of the more familiar rare earth heavy Fermion compounds,
are the heavy Fermions of Fulde’s theory.

Since this scenario for calculating the low temperature
susceptibility of LiV2O4 is based on the tetrahedron rule,
and treats LiV2O4 as an insulator, it is natural to extend it
to higher temperatures using the tetragonal mean field for
the theory described above. Figure 10 shows a mean field
fit to the experimental susceptibility of LiV2O4 taken from
[15], based on tetrahedra with two spin one and two spin
half moments. The fit is excellent down to temperatures
of order 20–30K, at which one might expect higher order
correlation effects (for example the formation of chains
and rings), and above all the fact that LiV2O4 is not an
insulator, to become important.

Two adjustable parameters have been used for the fit,
the Landé g–factor gL and a single representative Heisen-
berg exchange integral J = J1 = J2 = J3 = Jeff . The
effective correlation number zeff is set equal to three.
The parameters gL and J are then uniquely determined
by the Curie temperature θ = 47K and coefficient C =
0.46Kemu/molV which can be extracted from the Curie
law behaviour of the susceptibility on the range 100–400K.
The fit below 100K then provides an independent test of
the validity of the tetragonal mean field theory. As can
be seen in the inset to Figure 10, the tetragonal mean
field theory appears to be very successful, at least over
the range of temperatures for which it can reasonably be
applied.

It is tempting to identify the temperature T ∼ J ≈
20K at which both the model and experimental suscepti-
biliies have their maximum, and begin to diverge, as the
scale for a crossover to a new low temperature state. It
is almost certainly true that the inclusion of processes
which violated the tetrahedron rule, i. e. the hopping of
electrons between tetrahedra, would prevent the system

from achieving the singlet groundstate which the mean
field theory predicts, and might reasonably lead to the
emergence of a HF state.

However, even above 40K, where the fit is very good,
a number of important experimental facts remain unad-
dressed by this scenario. One is that the Landé g–factor
extracted from the fit is really too low, gL = 1.6, as
compared with the usual value of gL = 2.0 found for
bulk Vanadium. The tetrahedral mean field theory also
has too great an entropy, and therefore too great a heat
capacity as compared with experimental estimates. But
the most challenging observation is that published sus-
ceptibility data for temperatures of order 1000K appear
to show a crossover to a different Curie law regime with
C ≈ 700Kemu/molV and θ ≈ 400K. It is this issue which
we address in the following section.

3.2 Second scenario - two different local moment
regimes.

Figure 11 shows the inverse magnetic susceptibility of
LiV2O4 between 100 and 1100 K, as reported by Muhtar
et. al. [13] and Hayakawa et. al. [14]. Above 600K, and be-
low 400K Curie law behaviour is seen in the sense that the
inverse susceptibility can be approximated by a straight
line with slope 1/C and intercept θ. However the values
of the Curie temperature θ and the the coefficient C are
quite different for the high and low temperature regimes.

In fact the value of the C found at high temperatures
corresponds quite well to that which would be expected
for an equal mixture of spin half and spin one moments
(V4+ and V3+ ions), assuming a Landé factor gL = 2.0,
while the value of C found at low temperatures is much
closer to that which would be expected if each tetrahedral
site had a spin half moment.

This has prompted the suggestion that the full spin
moment of the V atoms is seen only at high tempera-
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Fig. 10. First scenario — fit of mixed–spin tetragonal mean field theory to the experimentally measured magnetic susceptibility
of LiV2O4 over the temperature range 0–400K, taken from [15], using the two adjustable parameters g = 1.6 and J = 17.8 K.
Annotation on the temperature axis shows the type of correlation between spins. Inset — how the fit breaks down at low
temperatures. A possible interpretation of the electronic state of the system in terms of charge order correlations in different
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tures, while at lower temperatures this moment is par-
tially “screened” by correlations between spins in such a
way that only a net spin of one half remains at each V
site (see e. g. [20]). The majority of theoretical attempts
to explain heavy Fermion behaviour in LiV2O4 [20,21,22,
23,24] take as a starting point a tetrahedral lattice of spin
half moments (often identified with the A1g representa-
tion of the V d–electron states), and assign the remain-
ing half an electron per site to an itinerant electron band
(equivalently, Eg states). We will not attempt to review
these theories here, but in the light of these models, it
is clearly worth trying to obtain a “self consistent” fit to
both the high and low temperature magnetic susceptibil-
ities of LiV2O4 within the overall scenario of two local
moment regimes.

Using the tetragonal mean field theory developed above,
we therefore proceed as follows : we first (least squares)
fit the high temperature (600–1000K) susceptibility as-
suming an equal mixture of spin one and spin half mo-
ments, using the two adjustable parameters J and gL, as
described in the previous analysis. We obtain values of
gL = 2.04 and J = 119K for data taken from Muhtar
et. al. [13] with a mean square error per point of σ =
0.0028 emu/mol V, as recorded in Table 2. Similarly, for
data taken from Hayakawa et. al. [14] we obtain gL =
2.14, J = 122K and σ = 0.0024 emu/mol V Then, us-

ing the value of the Landé g–factor gL obtained at high
temperatures, we fit the low temperature susceptibility
(100–400K). We do this assuming that each tetrahedral
site has a localized spin half moment, and that the contri-
bution of the remaining itinerant electrons can be lumped
into a single paramagnetic constant χ0 so that

χ(T ) = χ0 + χMF (T ) (34)

where χMF (T ) is the mean field susceptibility of the lat-
tice of spin half lattice tetrahedra [25]. As fit parameters
we use χ0 and J , the exchange integral between the local
spin half moments. We obtain values χ0 = 0.18emu/molV
and J = 25K with an error σ = 0.030 for data taken from
Muhtar et. al. [13] and χ0 = 0.12 emu/mol V, J = 13K
and σ = 0.047 emu/mol V for data taken from Hayakawa
et. al. [14].

In Figure 11 we plot the data described above, show-
ing the high temperature fit with dashed and the low tem-
perature fit with unbroken lines. Each fit is good, within
its own domain of validity. The values of the fit parame-
ters obtained from data taken from [13] and [14] are not
quite the same, and the apparent variation in values of
the Landé g–factor gL might be a cause for concern. How-
ever, as the fit parameters strongly depend on the how
background contributions were subtracted from the exper-
imental data, it is difficult to draw any strong conclusions
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lines). Inset — low temperature fit to susceptibility taken from [15], assuming a lattice of spin 1/2 moments and Landé g–factor
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about their precise values, and note the absolute values
of susceptibility quoted for the heavy Fermion phase of
LiV2O4 at very low temperatures also vary from group to
group.

In the inset to Figure 11 we show fits to the low tem-
perature susceptibility of LiV2O4 as measured by [15] on
the range 40–400K, using a model susceptibility of the
form Eqn. 34. As no high temperature data was available
for this sample, we use both constrained (solid line) and
unconstrained (dashed line) values of gL. Values of the fit
parameters are shown in Table 2. For the constrained fit
a value of gL = 2.04 was taken from high temperature
data for [13], using which values of χ0 = 0.26 emu/mol V
and J = 26.0 Kwere found, with a mean square error per
point of σ = 0.11 emu/mol V. The better fit was in fact
obtained for the unconstrained (three parameter) fit, for
which χ0 = 0 emu/mol V, J = 33K and gL = 2.3, and
σ = 0.052 emu/mol V.

To summarize, the assumption that LiV2O4 has two
different local moment regimes as a function of tempera-
ture, leads to fits to its magnetic susceptibility which a)
have physically parameters and b) have an error compa-
rable to the uncertainty of the data. However, by splitting
the data into different temperature regimes in this way
we have not only assigned a physical meaning to the ob-
served change in the slope of the inverse susceptibility, but
also diminished what we learn from each fit — almost any

data set could be fitted piecewise, but cutting it into small
enough pieces. Most importantly, our mean field theory
can tell us nothing about how such a crossover between
different local moment regimes takes place, and this re-
mains an important question for microscopic theories of
LiV2O4 to address.

In the section below we consider a radically differ-
ent, and admittedly speculative, way of understanding the
magnetic susceptibility of LiV2O4 over the temperature
range 100–1100K, prompted by experiments on Zn and Li
doped samples.

3.3 Third scenario - powerlaw scaling.

LiV2O4 is by no means the only spinel oxide. Many dif-
ferent systems have been synthesized, and all possess the
same geometric frustration, which leads to a complex in-
terplay of spin, charge and orbital order, which may in
turn be linked to lattice modes [26]. This is evident in the
many different ground states which these systems achieve
— some like ZnCr2O4 stabilizing spin order through a dis-
tortion of the lattice, others, like AlV2O4, achieving charge
order through valence skipping. Crudely speaking, each
material seeks a means of reducing the high entropy asso-
ciated with its frustrated geometry by playing off different
competing forms of order. In LiV2O4 the low temperature
state is a heavy Fermi liquid, and it seems reasonable to
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believe that the system is a poor metal precisely because
no one form of insulating order is achieved.

It is possible to dope LiV2O4 by substituting the Zn
for Li to give Li1−xZnxV2O4 [13], or by substituting Ti
for V to give LiTiyV2−yO4 [14]. Zn is a magnetic impu-
rity, and occupies the octahedral sites in the spinel. The
inclusion of small concentrations of Zn forces LiV2O4 into
a spin glass phase, with a spin glass temperature which
vanishes as the number of Zn impurities tends to zero [9].
The alternative “parent” compound Zn1V2O4 is an AF
Mott insulator. Ti is non–magnetic, and occupies tetrahe-
dral sites in the spinel. Small concentrations of Ti do not
substantially alter the properties of LiV2O4, but at larger
dopings it undergoes a metal insulator transition. LiTi2O4

is a conventional superconductor with Tc = 13.7K. The
Curie coefficient C extracted from the high temperature
susceptibilities of Li1−xZnxV2O4 and LiTiyV2−yO4 does
appear to have the expected dependence on doping.

So LiV2O4 lies at a quantum critical point for a tran-
sition into a spin glass phase on doping, and is close to
charge order on the application of pressure. It is therefore
clear that there is quantum phase transition (probably,
a line of critical points) close to the undoped, ambient
pressure, ground state. What influence, if any, could this
be expected to have ? Quantum phase transitions at zero
temperature can manifest themselves at finite tempera-
ture through the power law scaling of response functions.
Is there any evidence for scaling behaviour in LiV2O4 ?

We make the simple conjecture that the magnetic sus-
ceptibility of LiV2O4 might be described by a simple power
law of the form

χ(T ) = A

(

T

T0

)α

(35)

over a wide range of temperatures.
The magnetic susceptibility of LiV2O4 is shown plot-

ted on a log–log scale in the inset to Figure 12. If the
temperature dependence of the data were a simple power
law, the data would lie on a straight line. In the case of a
Curie law, this straight line would have a gradient of one.

A least squares fit to the susceptibility data reported
by [13] over the full range of temperatures (i.e. 100–1100K)
leads to an exponent α = 0.74, with a mean error per
point of σ = 0.038. In the case of the data reported by
[14], fitting the full data set from 100–1000K, we find an
exponent α = 0.80, and an error per point σ = 0.053.
The errors of these fits are not as good as those for the
fits to Curie law behaviour at high temperatures, but no
worse than those for the self consistent low temperature
fits within the two local moment scenario. The fits are
shown on a linear scale in Figure 12.

Existing evidence therefore does not rule out the possi-
bility that, rather than exhibiting a crossover between two
different local moment regimes, the magnetic susceptibil-
ity of LiV2O4 has a simple power law behaviour over a very
wide range of temperatures. Such powerlaw scaling would
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eventually have to “saturate” in Curie law behaviour at
very high temperatures, when correlations between mo-
ments can legitimately be ignored.

4 Conclusions

The magnetic susceptibility of the heavy Fermion spinel
LiV2O4 is puzzeling, not only in the size of the parama-
gentic contribution found at low temperatures, but in the
way in which this crosses over to local moment behaviour
at high temperatures. We consider geomteric frustration
to play an important role LiV2O4 and have addressed this
issue by extending a recently introduced tetragonal mean
field theory for a Heisenberg model on a pyrochlore lattice
to allow for mixed valance.

Using this theory as a tool to make comparison with
the experimentally measured magnetic susceptibility of
LiV2O4, we have considered a number of different sce-
narios for the crossover from (roughly) temperature in-
dpendant paramagnetism below 40 K to apparent Curie
law behaviour at 1000K. We find that fits based on the
tetragonal mean field thoery work well below 400K, for a
wide range of parameter sets, suggesting that the geome-
try of the lattice plays an important role in determining
the magnetic properties of LiV2O4. However not all of
these fits yield physically reasonable values of the Landé
g–factor and so the low temperature susceptibility alone
cannot uniquely constrain the model used.

Considering the susceptibility from 100-1100K, we find
that fits based on the assumption of two different local mo-
ment regimes, and fits based on the ansatz of power law
scaling, both provide a reasonable account of the data.
This leads us to speculate that instability of LiV2O4 against
a spin glass state (on doping), and a charge ordered state
(under pressure) manifests itself a the non–analytic be-
haviour of the magnetic susceptibility.

Further analysis of theory and experiment is needed to
distinguish between these scenarios.
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A Degeneracy of a state with total spin Ω

The problem of how to find the degeneracy of a state with
total spin Ω ≤ NS of a system of n spins of length S was
solved by Van Vleck [27]. Here we review his derivation,
which may then be generalized easily to a system of mixed
spin.

We first consider the simpler problem of finding gz(M),
the number of states of the system with z–component of

Table 3. Degeneracy g(Ω) for states of spin S = 1/2 tetrahe-
dron with total spin Ω and values of associated coefficients.

Ω = 0 Ω = 1 Ω = 2

S=1/2 2 3 1

N0 16

N1 48

N2 216

total spin Ωz = M . By simple combinatorics, this is given
by the coefficient of xM in the polynomial

(xS + xS−1 + . . .+ x−S)n (36)

The first few terms in this series are easy to calculate and
have obvious physical significance. They also demonstrate
the pattern for finding further terms

xnS → (xS)n → 1 (37)

x(n−1)S → (xS)(n−1).1 → n (38)

x(n−1)S → (xS)(n−2).1.1 + (xS)(n−1).(x−S)(n−1)

→
n!

(n− 2)!2!
+

n!

(n− 1)!1!
(39)

If we consider instead a system of n1 spins of size S1 and
n1 spins of size S2 the polynomial in question becomes

(xS1 + xS1−1 + . . .+ x−S1)n1

×(xS2 + xS2−1 + . . .+ x−S2)n2 (40)

For the purposes of calculating the partition function
of a tetrahedron what we need is g(Ω), the number of pos-
sible states with total spin Ω, and not gz(M), the number
of states with Ωz = M . We find g(Ω) by setting up a
difference equation. The number of possible states gz(M)
with magnetization M > 0 must increase with decreasing
M , since all states with total spin Ω ≥ M contribute to
gz(M). It follows immediately that the required degener-
acy g(Ω) is just the rate of change of gz(M) for M = Ω,
i. e.

g(Ω) = gz(Ω) − gz(Ω + 1) (41)

This generalizes directly to the case of a mixed spin sys-
tem.

B Degeneracies g(Ω, σ,Σ)
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Table 5. Degeneracy g(Ω,σ,Σ) for states of tetrahedron with
two S = 1/2 and two S = 1 spins as function of total spin
Ω = {0, 1, 2, 3}, spin of S = 1/2 subsystem σ = {0, 1} and spin
of S = 1 subsystem Σ = {0, 1, 2}, and values of associated co-
efficients.

Ω = 0 σ = 0 σ = 1

Σ = 0 1 0

Σ = 1 0 1

Σ = 2 0 0

Ω = 1 σ = 0 σ = 1

Σ = 0 0 1

Σ = 1 1 1

Σ = 2 0 1

Ω = 2 σ = 0 σ = 1

Σ = 0 0 0

Σ = 1 0 1

Σ = 2 1 1

Ω = 3 σ = 0 σ = 1

Σ = 0 0 0

Σ = 1 0 0

Σ = 2 0 1

N0 36

N1 198

Nσ
1 54

NΣ
1 144

N2 1596

Nσ
2 324

NΣ
2 984



Nic Shannon: Mixed valence on a pyrochlore lattice — LiV2O4 as a geometrically frustrated magnet. 15

Table 6. Degeneracy g(Ω,Σ) for states of tetrahedron
with one S = 1/2 and three S = 1 spins as function of to-
tal spin Ω = {1/2, 3/2, 5/2, 7/2}, and spin of S = 1 subsystem
Σ = {0, 1, 2, 3}, and values of associated coefficients.

Σ = 0 Σ = 1 Σ = 2 Σ = 3

Ω = 1/2 1 1 1 1

Ω = 3/2 0 1 2 2

Ω = 5/2 0 0 1 2

Ω = 7/2 0 0 0 1

N0 54

N1 362

NΣ
1 468

N2 3645

NΣ
2 3687

Table 7. Degeneracy g(Ω) for states of spin S = 1 tetrahedron
with total spin Ω and values of associated coefficients.

Ω = 0 Ω = 1 Ω = 2 Ω = 3 Ω = 4

S=1 3 6 6 3 1

N0 81

N1 648

N2 776


