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The discovery of stimulus induced synchronization in the visual cortex suggested

the possibility that the relations among low-level stimulus features are encoded by

the temporal relationship between neuronal discharges. In this framework, temporal

coherence is considered a signature of perceptual grouping. This insight triggered a large

number of experimental studies which sought to investigate the relationship between

temporal coordination and cognitive functions. While some core predictions derived

from the initial hypothesis were confirmed, these studies, also revealed a rich dynamical

landscape beyond simple coherence whose role in signal processing is still poorly

understood. In this paper, a framework is presented which establishes links between

the various manifestations of cortical dynamics by assigning specific coding functions

to low-dimensional dynamic features such as synchronized oscillations and phase shifts

on the one hand and high-dimensional non-linear, non-stationary dynamics on the other.

The data serving as basis for this synthetic approach have been obtained with chronic

multisite recordings from the visual cortex of anesthetized cats and frommonkeys trained

to solve cognitive tasks. It is proposed that the low-dimensional dynamics characterized

by synchronized oscillations and large-scale correlations are substates that represent

the results of computations performed in the high-dimensional state-space provided by

recurrently coupled networks.

Keywords: visual cortex, non-linear dynamics, synchrony and oscillations, plasticity and learning, recurrent

networks

THE EVALUATION AND ENCODING OF PERCEPTUAL RELATIONS

Living systems have to establish models of the world in which they evolve in order to assure
survival and reproduction because these models allow them to recognize and anticipate beneficial
or detrimental constellations of inputs and to program adapted responses.

Establishing a good model of the world requires the detection of relevant and consistent
relations between features of the environment and the efficient storage of these relations (rules).
The simplest solution, found in virtually all neuronal systems, are relation encoding feed-forward
circuits. Neurons tuned to respond to particular features of the environment converge on common
target cells and these respond selectively to particular conjunctions of features if inputs and their
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gain are appropriately adjusted (Barlow, 1972). A particular
relation among features gets encoded in the discharge rate of
a neuron responding selectively to this relation. Because this
neuron encodes always the same relation one talks about a
“labeled line code.” In order to evaluate and encode combinations
of relations (relations of higher order) this process of input
recombination and gain adjustment is iterated across successive
layers. This basic principle for the evaluation, encoding and
classification of relational constructs has been implemented in
numerous versions of artificial neuronal networks (Rosenblatt,
1958; Hopfield, 1987; DiCarlo and Cox, 2007; LeCun et al.,
2015). The highly successful recent developments in the field
of “deep learning” (LeCun et al., 2015), capitalize on the
iteration of this principle in large multilayer architectures. As
far as feed-forward connections are concerned, these artificial
multilayer systems resemble the organization of sensory systems
in the brain (Figure 1A). Marked differences exist, however, with
respect to other essential features. Feed-back or recurrent lateral
connections are missing in feed-forward artificial systems but
are prominent in brains (Figure 1B) and often more abundant
than feed-forward connections (Markov et al., 2014; Bastos
et al., 2015). Moreover, the training mechanism used in technical
systems for the supervised adjustment of the synaptic gain
of feed-forward connections, the so called “back-propagation
algorithm” is biologically implausible and differs radically from
learning mechanisms implemented in brains (Feldman, 2012;
Singer, 2016). While feed-forward architectures are well-suited
to evaluate relations between simultaneously present features
such as spatial relations, they are less apt to handle relations
among temporally segregated events because they lack memory
functions. Moreover, they are costly in terms of hardware
requirements because the number of required units scales
unfavorably with the number of represented relations.

A complementary way to detect and encode relations between
signals is to evaluate temporal contingencies: If A consistently
precedes B, it is likely to be the cause of B, if A and B often
coincide the two events most likely have a common cause and
if A and B are uncorrelated they are most likely unrelated.

The learning rules implemented in nervous systems are
adapted to evaluate such temporal relations and to translate
them into lasting changes of coupling. Both the traditional
Hebbian rules (Hebb, 1949) and the more recently discovered
mechanisms (Stiefel et al., 2005; Holthoff et al., 2006; Carvalho
and Buonomano, 2011; Grienberger et al., 2015) evaluate
temporal relations among converging inputs as well as between
pre- and post-synaptic activity (spike timing dependent plasticity,
STDP; Markram et al., 1997; Bi and Poo, 1998). According
to the more refined STDP rule causal relations are evaluated
and translated in synaptic gain changes. Connections strengthen
between sending and receiving neurons if the former succeed
to elicit post-synaptic spikes and connections weaken if the
sender is active after post-synaptic spikes have been evoked
by other inputs. This has two important implications: First, it
implies that the precise timing of spikes matters in determining
the occurrence and polarity of synaptic gain changes. Second,
the mechanism subserving synaptic modifications not only
evaluates simple covariations between pre- and post-synaptic

firing rates, but also evaluates causal relations. It increases the
gain of excitatory connections whose activity can be causally
related to the activation of the post-synaptic neuron and it
weakens connections whose activity could not have contributed
to the post-synaptic response. Thus, temporal relations reflecting
perceptual relations among events are evaluated by time
sensitive mechanisms and converted into lasting changes of the
coupling strength of interacting neurons. In this way, statistical
contingencies among features of the sensory environment are
translated into the synaptic weight distribution of neuronal
networks.

This time sensitivity of synaptic plasticity mechanisms has
deep implications for signal processing. If the known plasticity
mechanisms were to be used for the storage of relations in
general, these would have to be encoded in the temporal
domain. Thus, for responses that lack temporal structure or are
offset in time, mechanisms are required to endow them with
precise temporal structure. In essence this implies that spatial
relations have to be converted into temporal relations. Otherwise
rather different and still unknown mechanisms of synaptic
plasticity would have to be postulated to evaluate relations among
responses lacking temporal structure.

MECHANISMS FOR THE GENERATION OF
TEMPORALLY STRUCTURED ACTIVITY

Results from an initially completely different line of research
suggest the existence of mechanisms capable of imposing
temporal structure on neuronal activity and of making
perceptually related responses coherent in time. It had been
discovered with multisite recordings from the visual cortex that
cortical circuits have a high propensity to engage in oscillatory
activity and that these intrinsically generated oscillations can
become synchronized, leading to correlated firing of the
synchronously oscillating neurons. Of particular importance
is the fact that this temporal coordination is dynamically
regulated, is context sensitive and reflects meaningful relations
among encoded features (Gray and Singer, 1989; Gray et al.,
1989). These findings triggered a large number of studies
on neuronal dynamics that provided evidence for intrinsic
mechanisms capable of endowing neuronal responses with a
temporal structure and to coordinate the timing of the discharges
of distributed neurons with millisecond precision (for review
see Singer, 1999; Engel et al., 2001; Fries, 2009; Uhlhaas et al.,
2009). When neurons engage in oscillatory firing patterns
in the range of the gamma frequency band their discharges
become synchronized with a precision in the millisecond
range (Figure 1C). This synchronization was observed not only
between neurons located within the same cortical area (Gray
et al., 1989), but also between cells in different cortical areas
(Roelfsema et al., 1997), among cells in corresponding areas of the
two hemispheres (Engel et al., 1991) and even between cortical
and subcortical structures (Castelo-Branco et al., 1998; Brecht
et al., 1999). Initially, the synchronization was seen as a relation
defining mechanism mainly in the context of low-level visual
processes such as feature binding and figure ground segregation.
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FIGURE 1 | Recurrent computation as a model for information processing in the brain. (A) Schematic representation of a hierarchical structure consisting of a

network of recurrent networks of excitatory and inhibitory units. So far, the majority of computational and experimental studies have focused on the feed-forward part

shown in black. (B) Long-range lateral connections of a typical neuron in layer 3. The branches form local clusters in regions with similar functional properties (marked

by arrows). Figure is adapted from McGuire et al. (1991). (C) Oscillations in monkey V1: Cross-correlogram for a pair of cells recorded from electrodes ∼3mm apart

based on responses to grating stimuli (Lima et al., 2010) and natural image and corresponding LFP spectra during free viewing in two monkeys, red and blue (Brunet

et al., 2015). (D) Practical demonstration of liquid computing: water tank with overhead projector, a perceptron was able to correctly map the XOR function based on

interference patterns between waves. More details in Fernando and Sojakka (2003). (E) Fading memory in the primary visual cortex of anesthetized cat. Classifiers

were trained to identify the first image in a sequence of three images (i.e., ABC vs. DBC). Classification performance (solid blue line) and population firing rates (dashed

black line) are shown as a function of time from the presentation of the stimulus. Information about the first image could persist for long intervals of time (from Nikolic

et al., 2009).

The reason was that synchronization probability reflected well
the common Gestalt criteria for perceptual grouping and also
reflected the architecture of the recurrent connections in the
visual cortex that couple preferentially neurons coding for
features which tend to be bound perceptually (Löwel and Singer,
1992). However, it soon turned out that synchronization of
oscillatory activity is not confined to the visual system but a
ubiquitous phenomenon (for review see Buzsáki et al., 2013).
What makes these dynamic phenomena particularly interesting
is the fact that they result from highly dynamic self-organizing
processes that enable rapid reorganization of the temporal

coherence of the responses of widely distributed groups of
neurons. For this reason synchronization of oscillatory activity
is now considered by many to serve a large number of different
functions that have in common the requirement for temporal
coordination of distributed neuronal responses. Examples are
the enhancement of the saliency of responses (Fries et al., 1997;
Biederlack et al., 2006), the dynamic formation of functional
networks (Fries, 2005; Siegel et al., 2015; Deco and Kringelbach,
2016), the selection of responses by attention mechanisms (Fries
et al., 2001a), the matching of top-down signals with sensory
input (Bastos et al., 2015), the parsing of speech signals (Ding
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et al., 2016), and the definition of relations in the context of
learning and memory (Siapas et al., 2005; Fell et al., 2011;
Yamamoto et al., 2014; for review see Singer, 2016).

MECHANISMS SUPPORTING PRECISE
TEMPORAL COORDINATION

Experimental and theoretical studies have clarified why
oscillatory patterning of neuronal activity serves the adjustment
of precise spike timing. Networks of inhibitory interneurons
engage in oscillatory activity and convey periodic inhibition to
excitatory cells that feed-back on the pool of inhibitory neurons
(the PING mechanism, Kopell et al., 2000; Börgers and Kopell,
2003). The effect is that the spikes generated by pyramidal
cells get concentrated around the depolarizing phases of the
oscillations (König et al., 1995; Volgushev et al., 1998; Fries
et al., 2007). During the hyperpolarizing phase of the oscillation
cycle, incoming EPSPs have only a small chance to drive action
potentials in the post-synaptic neuron because of the shunting
and hyperpolarizing effect of the barrage of synchronously
arriving IPSPs. The occurrence of post-synaptic responses can
even be decoupled in time from the incoming EPSPs because of
the special properties of NMDA receptors. Because of their high
affinity to glutamate these bind the transmitter for more than
a 100 ms but the associated ion channel opens only beyond a
certain depolarization level due to the voltage gated magnesium
block. Thus, glutamate released during the hyperpolarized
phase of an oscillation cycle can only trigger AMPA receptor
mediated EPSPs that are unlikely to reach threshold. However,
when the membrane potential depolarizes and the magnesium
block is removed, the NMDA channels open and the large
inward currents usually trigger an action potential. Through
this mechanism, the response to an EPSP arriving during the
hyperpolarizing phase of an oscillation cycle can be delayed
until the next depolarizing peak. In case of beta and gamma
oscillations this delay can amount to up to 20 ms (Volgushev
et al., 1998). Thus, the oscillatory modulation of the membrane
potential concentrates spikes around the depolarizing peak of
the oscillation cycle and causes synchronization of discharges
between cells oscillating in phase. In addition, oscillations
convert the strength of excitatory inputs into phase shifts of
post-synaptic discharges relative to the oscillation cycle. Strong
excitatory inputs elicit spikes earlier during the depolarizing cycle
than weak inputs. Through this mechanism, known as phase
precession (Huxter et al., 2003), rate-coded amplitude values are
converted into a temporal code that is expressed in the timing
of spikes relative to the oscillation cycle. Experimental evidence
indicates that the phase offset of spikes relative to the oscillation
cycle carries information (O’Keefe and Recce, 1993; Vinck et al.,
2010; Womelsdorf et al., 2012). As has been shown in numerous
theoretical studies, such temporal codes are advantageous for
fast processing because information coded in spike timing can
be read out without requiring temporal integration and thus
much more rapidly than information encoded in discharge rates
(for review, see Van Rullen and Thorpe, 2001; Fries et al., 2007).
Once precise spike timing is achieved, transmission delays can

be exploited in addition, in order to convert spatially structured
input into a temporal representation (e.g., Wyss et al., 2003).

The integrative properties of neurons and the architecture
of cortical networks also appear to be well-suited to deal
with precise temporal codes. They are optimized for the
distinction between temporally coherent and dispersed activity.
A prominent feature of cortical connectivity is sparseness and
as proposed by Abeles and confirmed later in simulation
studies (Mainen and Sejnowski, 1995; König et al., 1996;
Diesmann et al., 1999), such networks favor transmission of
synchronized activity over transmission of temporally dispersed
activity. Likewise, both the frequency attenuation of transmitter
release at excitatory synapses between pyramidal cells and the
adaptation of post-synaptic receptors, favor transmission of
singular synchronized events, and decrease the effect of high
frequency discharges. Sensitivity to synchronized (coincident)
inputs is further enhanced by cooperative mechanisms in the
post-synaptic dendrites. The voltage dependent sodium and
calcium channels in the dendrites and their ability to convert
high-amplitude EPSPs into regenerative spikes enhances further
the coincidence sensitivity of cortical neurons because these large
EPSPs are typically induced only by coincident input (Stuart
and Häusser, 2001; Ariav et al., 2003). Finally, the membrane
time constant of cortical neurons and hence the window for
effective temporal integration of EPSP sequences is remarkably
short when the neurons are in the up state, i.e., in their normal
processing mode: this is due to the reduced membrane resistance
caused by the balanced bombardment with EPSPs and IPSPs in
the up state.

Thus, several lines of evidence indicate that cortical networks
impose temporal structure on neuronal activity, relay temporally
structured signals with high precision, and exploit temporal
signatures for the encoding of relations. Thus, it appears that
brains use two complementary strategies to encode and store
relational constructs: One associates signals by having fixed
anatomical connections converge onto conjunction units (labeled
line coding). The other associates signals by rendering them
coherent in time (binding by synchrony or temporal coding).
The two strategies are complementary because timing sensitive
synaptic plasticity can convert temporal codes into labeled line
codes.

COMPLEX DYNAMICS

As more laboratories engaged in multisite recordings, that
permitted the analysis of the correlation structure of cortical
dynamics, it became clear that oscillations with constant
frequency sustained over long time intervals and synchronization
of these oscillations with stable phase relations, occur only under
specific stimulation conditions. Especially the high frequency
oscillations in the beta and gamma frequency range were found
to exhibit a much more complex and variable dynamics than
reported in the early days of their discovery. In the visual cortex,
the frequency of stimulus-induced oscillations increases with the
energy and the complexity of the stimuli and with their motion
speed (Gray et al., 1990; Kayser et al., 2003; Lima et al., 2011;
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Ray and Maunsell, 2015). The amplitude of stimulus-induced
oscillations decreases with the complexity of the inducing stimuli
and increases with attention and expectancy (Fries et al., 2001a;
Lima et al., 2011). Moreover, in awake behaving animals the
oscillations are usually transient, occur as brief bursts (Pipa
and Munk, 2011; Lundqvist et al., 2016) and are often coupled
with the phase of other oscillations that have lower frequency
(cross frequency coupling, Canolty et al., 2010). Accordingly the
pairwise correlations between oscillating cell populations are also
highly variable. They are transient and exhibit phase shifts that
vary over time (for review see Fries et al., 2001b; Maris et al.,
2016).

It has been argued that this high degree of variability of
oscillations and synchrony is incompatible with a functional
role of these dynamic phenomena (Ray and Maunsell, 2015).
This critique concerns both the initial postulate that temporal
coherence serves to encode relations and the formation of
assemblies in distributed coding regimes (Singer, 1999) as well
as the extension of this concept known as the Communication
Through Coherence (CTC) hypothesis (Fries, 2005). However,
others have argued that variability and non-stationarity of the
dynamics are necessary properties for flexible processing in order
to comply with the speed and versatility of cognitive operations
(Roberts et al., 2013) and with the requirement to configure on
the fly functional networks on the fixed backbone of the cortical
connectome (Deco and Kringelbach, 2016).

A UNIFYING CONCEPT

We propose a novel framework for cortical processing that
attributes specific functions to the various manifestations of
cortical dynamics, providing a cohesive interpretation of both
low-dimensional states characterized by sustained frequency-
stable oscillations and high-dimensional states with complex and
rapidly changing correlation structure. The core of this proposal
is that the cortex exploits the high-dimensional state-space
provided by the non-linear dynamics of recurrently coupled
networks in order to perform flexible and efficient computation.
In this framework, emphasis is placed on the characteristic
parameters of self-organizing complex systems with non-linear
dynamics. These parameters include changes in correlation
structure, the entropy and dimensionality of distributed activity,
network oscillations, synchronization phenomena, and phase
shifts. The proposed computational strategy is likely to account
for a number of hitherto poorly understood functions: The
encoding of temporal sequences, the storage of vast amounts
of information about the environment in the networks of
sensory cortices, the ultrafast retrieval of information in
processes requiring comparison between input signals and stored
knowledge, and the fast and effective classification of complex
spatio-temporal input patterns.

Early theories of perception (von Helmholtz, 1867) have
suggested that the brain interprets sparse and impoverished
input signals on the basis of an internal model of the world.
The information provided by this model is based on prior
knowledge from visual experience (a form of memory) and is

used to reduce redundancy, to facilitate segregation of figures
from background, to bind signals evoked by features constituting
a perceptual object, and to enable classification and identification.
The complexity of the visual world is daunting. The store
containing such an elaborate model must have an immense
capacity in order to accommodate the vast number of statistical
contingencies required for the interpretation of ever changing
sensory input patterns. When primates, including humans, scan
their visual environment, they change the direction of their gaze
on average four times a second. Thus, the massive amount of
prior knowledge required for the interpretation of a particular
input pattern needs to be arranged in a configuration that renders
it accessible within fractions of a second. The proposal is that
these conditions can only be met if encoding, storage, and
processing of information take place in the high-dimensional
state-space provided by a complex system with non-linear
dynamics.

THE HYPOTHESIS

Neocortex, especially its supragranular compartment, is ideally
suited to provide such a high-dimensional coding space. It
is a recurrently coupled network, whose nodes are feature
selective and have a high propensity to oscillate. This network,
so the assumption, provides the high-dimensional state-space
required for the storage of statistical priors, the fast integration
with input signals and the representation of the results in a
classifiable format. Statistical priors are supposed to be stored in
the functional architecture of long-range horizontal connections
which are known to dominate this supragranular compartment
(Gilbert and Wiesel, 1989; Stettler et al., 2002). Evidence suggests
that these connections have been carefully crafted to match the
statistical properties of visual scenes during the development of
the visual system (Löwel and Singer, 1992; Smith et al., 2015)
and continue to be plastic in adulthood (Eysel et al., 1998; Gilbert
et al., 2009).

As the brain’s spontaneous activity is constrained only by
the brain’s synaptic structure, this activity should reflect the
dynamics of the structured network harboring the entirety of
latent internal priors and exhibit high-dimensionality (note that
this dynamics is a vast but constrained manifold inside the
universe of all theoretically possible dynamical states). Input
signals are supposed to trigger a cascade of effects: They
drive in a graded way the feature sensitive nodes and thereby
constrain the network dynamics. If the evidence provided by the
input patterns can be easily interpreted by the computational
circuitry, the network dynamics will collapse to a specific
substate, corresponding to a particular perceptual experience.
Such a substate is expected to have a lower dimensionality than
the resting activity, exhibit specific correlation structures and
be metastable due to reverberation among nodes supporting
the respective substate. Because these processes occur within a
very high-dimensional state-space, substates induced by different
input patterns are well-segregated and therefore easy to classify.
They can then either serve as input to the next cortical processing
stage where new high-level interpretations emerge or they can be
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classified by local readout units that directly feed into executive
centers. According to this concept, every cortical area has its own
intrinsic computational circuitry and models visual concepts and
their statistical relationships at that particular processing stage.

ANALOGIES FROM COMPUTATIONAL
STUDIES

In a much simplified version, the non-linear dynamics
characteristic of recurrent networks are exploited for
computation in AI systems, the respective strategies being
addressed as “echo state, reservoir, or liquid computing”
(Buonomano and Maass, 2009; Lukoševičius and Jaeger, 2009;
D’Huys et al., 2012). The following Gedanken experiment
illustrates the principles of reservoir computing. Objects impact
at different intervals and locations in a reservoir of water and
generate propagating waves whose parameters reflect the size,
impact speed, and location of the object. The wave patterns fade
with a time constant determined by the viscosity of the liquid,
interfere with one another and create a complex dynamic state.
This state can be analyzed bymeasuring at several locations in the
reservoir the amplitude, frequency, and phase of the respective
oscillations and from these variables a trained classifier can
subsequently reconstruct the exact sequence and nature of the
impacting “stimuli.” Fernando and Sojakka (2003) put these
ideas in practice using an actual bucket of water and showed that
the interference between waves on the water surface allowed a
simple perceptron to solve the XOR problem (Figure 1D).

In artificial recurrent networks, the “reservoir” consists of
non-linear units with random recurrent coupling that can
maintain a certain level of intrinsic dynamics. In these models:
(i) low-dimensional stimulus events are projected into a high-
dimensional state-space where non-linear separable stimuli
become linearly separable; (ii) The high-dimensionality of the
state-space can allow for the mapping of more complicated
output functions (like the XOR) by simple classifiers; (iii)
Information about sequentially presented stimuli persists for
some time in themedium (fadingmemory). As such, information
about multiple stimuli can be integrated over time, allowing for
the mapping of temporal functions. Together, these properties
make artificial recurrent networks the state of the art models for
complex sequence processing.

Building powerful artificial recurrent circuits is, however, non-
trivial: a proper setting of structural parameters is essential in
determining the complexity of the ensuing network dynamics
and computational abilities. Artificial recurrent networks seem
to function particularly well-near the edge of chaos, where their
dynamics is rich yet predictable (Bertschinger and Natschläger,
2004). However, recurrent models that exhibit coexisting
chaotic and locally stable trajectories are perfectly capable of
keeping track of time on the order of seconds (Laje and
Buonomano, 2013). In these models, recurrent plasticity can
locally suppress chaos and substantially enhance computational
power. Interestingly, more realistic implementations that mimic
the connectivity patterns present in real cortical networks have
computational advantages overmodels with random connections

(Häusler and Maass, 2007). Moreover, recent simulation studies
have shown that the performance of an artificial reservoir
on sequence processing tasks is substantially improved if the
recurrent connections are made adaptive and can “learn” about
the feature contingencies of the processed patterns (Lazar et al.,
2009; Hartmann et al., 2015).

EXPERIMENTAL EVIDENCE

Because the connectivity of neurons in supragranular layers of
the cerebral cortex resembles that of recurrent networks, we
examined whether cortical dynamics exhibited some features
of a “reservoir.” To this end we presented to anesthetized cats
sequences of visual stimuli (letters and numbers), recorded with
matrix electrodes simultaneously from a random sample of up
to 124 neurons in primary visual cortex. We trained a linear
classifier on short segments of activity (20ms) based on a training
set of population responses and then used the same classifier
to identify the nature of the presented stimuli in a test set.
The findings were encouraging (Nikolic et al., 2009). We found
that (i) the information about a particular stimulus persists in
the activity of the network for up to a second after the end of
the stimulus, (ii) the information about sequentially presented
stimuli superimposes so that two subsequent stimuli can be
correctly classified sometime after the end of the second stimulus
(Figure 1E) and (iii) the information about stimulus identity is
distributed across neurons and encoded both in the discharge
rate of the neurons and in the precise timing of the spikes.

Real cortical networks differ considerably from artificial
systems in terms of complexity. Thus, one expects cortical
networks to exhibit a much richer dynamics that provides
additional options for computations. In most implementations
artificial models are oversimplified, the recurrent connections
used for reservoir computing are random and not adaptive.
The nodes are usually simple versions of integrate and fire
neurons and inhibition is often implemented by a single sign
reversing element to prevent run away dynamics. By contrast,
in the cerebral cortex the recurrent connections are highly
specific due to genetic specification and experience-dependent
shaping and have significant and heterogeneous conduction
delays. Their layout reflects certain statistical contingencies of
natural environments (Löwel and Singer, 1992; Smith et al.,
2015). In addition, the nodes (neurons/columns) have complex
integrative properties, are feature selective (Hubel and Wiesel,
1968) and have a strong propensity to oscillate (Gray et al.,
1989). Likewise, the inhibitory interactions are mediated by
a heterogeneous group of very selectively acting interneurons,
whose connections are also susceptible to activity dependent
long-term modifications (Moore et al., 2010). Finally, the
recurrent networks in the supragranular compartment receive
massive reentry loops from other cortical areas that are likely to
bias dynamic states as a function of the higher-level computations
performed in these other areas. Thus, if the cortex were to exploit
principles of reservoir computing these marked differences
would suggest that a “cortical reservoir” is highly structured,
contains an internal and updatable model of the most relevant
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statistical features present in its input and can in addition be
shaped by top-down influences from higher-level “reservoirs.”

PREDICTIONS

Based on available data on the development and layout of
the cortical connectome a number of experimentally testable
predictions can be formulated: (i) The recurrent connections
between neurons store an elaborate internal model which
enhances perception based on prior experience. In vision this
model is adapted to the co-occurrence statistics of visual
features in natural images. (ii) The highly complex dynamics
that evolve on the backbone of these recurrent connections
provide the high-dimensional space for the accommodation
of an immense repertoire of potential states. (iii) In response
to input signals the initially unconstrained, high-dimensional
internal network dynamic collapses into metastable subregions
of the state-space. These regions are stimulus specific and
reproducible across trials. (iv) These selected substates are
distinguished by enhanced coherence (synchrony, covariance)
and reduced variability. (v) The transition toward a stabilized
lower dimensional substate should be optimal for natural stimuli,
while noisy, ambiguous, and “unnatural” stimuli should be
processed with more difficulty (a collapse to a substate may be
slower, weaker, or the substate itself may carry less stimulus
specificity or be more variable across trials). (vi) Importantly, the
response dynamics to any stimulus should reflect the signatures
of recurrent computation: the responses should be dynamic
in time even if the stimulus is static and presented briefly.
Present network activation states should contain a memory of
past events. When multiple stimuli are presented sequentially
an integration process should take place that is consistent with
the underlying internal model: naturally occurring temporal
transitions should be processed optimally. (vii) The collapse
of the state-space into metastable subregions with increased
coherence should promote their long-term stabilization by
Hebbian modifications of recurrent connections and this, in
turn, should facilitate the collapse to “familiar” substates in
future operations and their readout by downstream processes.
(viii) As a consequence, robustly consolidated substates should
manifest themselves also in resting state activity and be detectable
as “replayed” vectors or manifolds. (ix) In case the animal
can predict the presentation of a stimulus, top-down signals
should constrain the dynamic space in anticipation in order
to speed up formation of specific substates. This should
be reflected by anticipatory changes in dimensionality and
correlation structure of network activity. (x) The proposed
principle of information processing should be common to all
cortical areas. Hence general principles of computation should
be similar in different cortical areas but the mapping rules for
the input and the nature of the stored internal model should
differ.

Preliminary evidence is already available for some of
these predictions. Developmental studies support the idea
that the statistics of feature conjunctions in the outer world
gets translated into cortical connectivity (Singer and Tretter,

1976) according to a Hebbian mechanism (Löwel and Singer,
1992; prediction i). In addition, the covariance structure
of resting activity reflects the anisotropic layout of these
connections (Gilbert and Wiesel, 1989; Löwel and Singer,
1992; Bosking et al., 1997; Fries et al., 2001b; Kenet et al.,
2003), is modified by learning (Lewis et al., 2009; Kundu
et al., 2013) and reveals hallmarks of an internal model
of the environment (Berkes et al., 2011; predictions i and
viii).

Ample evidence is also available for the ability of cortical
circuits to engage in oscillatory activity in a wide range of
frequencies and for stimulus dependent changes of correlations
mediated by intracortical connections, both being hallmarks
of recurrently coupled networks (for reviews see Singer, 1999;
Buzsáki et al., 2013; prediction ii).

Much less is known about how the ensuing oscillatory
responses depend on the particular properties of natural stimuli,
both in the spatial and temporal domain (predictions iii–
vi): e.g., how do particular Gestalt principles of grouping
translate into informative neuronal dynamics and how
noise or ambiguity affect the efficiency of this encoding
(prediction v).

There are also indications that both sensory stimulation
and top-down mechanisms related to attention might induce
changes in the dimensionality of states (prediction ix), because
they can enhance synchronized oscillatory activity in distinct
frequency bands (Gray et al., 1989; Fries et al., 2001a; Churchland
et al., 2010; Lima et al., 2011), however no direct analysis
of dimensionality changes were performed in these studies.
In Lima et al. (2011), the monkeys were presented with a
sequence of three identical drifting gratings and were rewarded
for responding if one of the gratings changed its orientation.
A cue indicated to them whether the change was likely to
occur for the second or third grating. The observation was
that the “attended” grating evoked gamma band oscillations
of much higher amplitude than the “non-attended” grating
(Lima et al., 2011). Increased amplitudes of field potential
oscillations indicate that either more neurons get entrained
in the respective rhythm or/and that synchronization is more
precise. Thus, the expectancy of having to respond to a particular
stimulus changed the correlation structure of the activity induced
by this stimulus toward enhanced coherence. In other terms,
anticipatory top-down signals constrained the dynamics of
an early visual area—most likely leading to a reduction of
dimensionality.

Evidence is also available that points toward the fact
that cortical circuits exhibit a fading memory of recent
inputs. In Nikolic et al. (2009) information about a briefly
presented stimulus could persist for up to 1 s and could
superimpose with subsequent stimuli (prediction vi). Finally,
we have preliminary evidence that repeated exposure to a
set of images changes the response properties of populations
of neurons in the primary visual cortex, such that stimulus
classification improves over time: we observe changes in the
dynamics of the network through the state-space that favor
the segregation of responses into stimulus specific substates
(prediction vii).
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CONCLUDING REMARKS

Despite considerable effort there is still no unifying theory
of cortical processing. As a result, numerous experimentally
identified phenomena lack a cohesive theoretical framework.
This is particularly true for the dynamic phenomena reviewed
here because they cannot easily be accommodated in the
prevailing concepts that emphasize serial feed-forward
processing and labeled line codes. However, the cortical
connectome with its preponderance of reciprocal connections
and the rich dynamics resulting from these reciprocal
interactions suggest that additional processing strategies
are implemented. Here, we have proposed a concept that assigns
specific functions to recurrent coupling and to features of
the emerging dynamics. This concept is fully compatible with
the robust evidence for labeled line codes and extends this
notion by the proposal that precise temporal relations among
the discharges of coupled neurons also serve as code for the
definition of relational constructs both in signal processing
and learning. We proposed a computational strategy that
capitalizes on the high-dimensional coding space offered by
reciprocally coupled networks. In this conceptual framework,
information is distributed and encoded both in the discharge
rate of individual nodes (labeled lines) and to a substantial
degree also in the precise temporal relations among the discharge
sequences of distributed nodes. The core of the hypothesis
is that the dynamic interactions within recurrently coupled

oscillator networks (i) endow responses with the temporal
structure required for the encoding of context-sensitive relations,
(ii) exhibit complex, high-dimensional correlation structures
that reflect the signatures of an internal model stored in the
weight distributions of the coupling connections, and (iii)
permit fast convergence toward stimulus specific substates
that are easy to classify because they occupy well-segregated
loci in the high-dimensional state-space. The analysis of the
correlation structure of these high-dimensional response
vectors is still at the very beginning. However, methods
are now available for massive parallel recording from large
numbers of network nodes in behaving animals. It is to be
expected, therefore, that many of the predictions formulated
above will be amenable to experimental testing in the near
future.
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