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In this work, we illustrate the recently introduced concept of the cavity Born-Oppenheimer approxima-
tion for correlated electron-nuclear-photon problems in detail. We demonstrate how an expansion in terms
of conditional electronic and photon-nuclear wave functions accurately describes eigenstates of strongly
correlated light-matter systems. For a GaAs quantum ring model in resonance with a photon mode we
highlight how the ground-state electronic potential-energy surface changes the usual harmonic potential
of the free photon mode to a dressed mode with a double-well structure. This change is accompanied
by a splitting of the electronic ground-state density. For a model where the photon mode is in resonance
with a vibrational transition, we observe in the excited-state electronic potential-energy surface a splitting
from a single minimum to a double minimum. Furthermore, for a time-dependent setup, we show how
the dynamics in correlated light-matter systems can be understood in terms of population transfer between
potential energy surfaces. This work at the interface of quantum chemistry and quantum optics paves the
way for the full ab-initio description of matter-photon systems.

INTRODUCTION

Recent experimental progress has made it possible to
study light-matter interactions in the regime of strong and
ultra-strong light-matter coupling. Experiments from ex-
citon condensates [1, 2], near-field spectroscopy, plasmon
mediated single molecule strong coupling [3], supercon-
ducting qubit circuits [4], quantum information [5], di-
rect measurements of vacuum fluctuations in solids [6],
and chemistry in optical cavities [7–9] open now the path
to shape the emerging field-fluctuations with the goal to-
wards a new control of material properties. In this new
field that has been driven in particular by experiment, tradi-
tional theoretical methods from either quantum chemistry
or quantum optics loose their applicability. On the one
hand, traditional quantum chemistry concepts such as the
Born-Oppenheimer (BO) approximation [10, 11], or elec-
tronic structure methods such as Hartree-Fock theory [12],
coupled-cluster theory [13], or density-functional theory
(DFT) [14] have been originally designed to treat approxi-
mately correlated electron-nuclear problems but are not ca-
pable to correctly account for the quantum nature of light.
On the other hand, concepts from quantum optics typically
describe the quantum nature of the light field in great de-
tail, but fail in describing more complex dynamics of mat-
ter due to the often employed simplification to a few lev-
els [15, 16]. To fill this gap, in this work, we generalize a
well-established concept from quantum chemistry, namely
the Born-Oppenheimer approximation, to the realm of cor-
related light-matter interactions for systems in optical high-
Q cavities.
First theoretical studies in similar direction, e.g. the modi-
fication of the molecular structure under strong light-matter
coupling [17], the nonadiabatic dynamics of molecules in
optical cavities [18, 19], or the cavity-controlled chem-

istry [20] have already been conducted.
Since the complexity of an exact ab-initio description of
such correlated many-body systems that contain electronic,
nuclear, and photonic (fermionic and bosonic) degrees of
freedom scales exponentially with system size, approxi-
mate descriptions have to be employed for any realistic
system. Recently, the concept of DFT has been general-
ized to electron-photon problems and was termed quantum-
electrodynamical density-functional theory (QEDFT) [21–
24]. This theory maps the complicated many-body prob-
lem into a set of nonlinear equations for the electronic and
photonic degrees of the densities/currents that facilitates
the treatment of such complex systems, similarly as stan-
dard DFT has done over the years to deal with correlated
electronic systems. Still for this theory to be applicable, ac-
curate functionals for combined light-matter systems have
to be developed to calculate approximate effective poten-
tials and observables. In this work, we use an alterna-
tive approach, the cavity Born-Oppenheimer (CBO) [25]
approximation that allows to construct approximate wave
functions to the exact eigenstates for such problems. This
work is structured into three sections: (i) First, the theoret-
ical framework is introduced where we demonstrate how
the concept of the Born-Oppenheimer approximation can
be generalized to matter-photon coupled systems. (ii) We
apply this theoretical framework to study a prototypical
electron-photon system, where the photon couples reso-
nantly to an electronic transition. (iii) The last section is
devoted to a model system of a electron, a nuclei and pho-
tons, where a photon mode couples to a vibrational excita-
tion.
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THEORY

General correlated electron-nuclear-photon systems

In what follows and without loss of generality, we de-
scribe the electron-nuclear-photon problem in Coulomb
gauge, dipole approximation and the Power-Zienau-
Woolley frame [26, 27]. Our system of interest contains
ne electrons, nn nuclei, and np quantized photon modes,
e.g. the matter is located in an optical high-Q cavity.
Strong light-matter coupling is obtained, once the light-
matter coupling is stronger than the dissipation of the sys-
tem due to e.g. cavity losses. For simplicity, we neglect
dissipative channels in the following. The original deriva-
tion of the Born-Oppenheimer approximation is outlined
e.g. in Ref. [11] for the specific case of electrons and
ions and here we extend it to the photon case. In general,
the correlated electron-nuclear-photon Hamiltonian can be
written as follows [22, 25, 28–30]1.

Ĥ = Ĥe + Ĥn + Ĥen + Ĥp + Ĥpe + Ĥpn + Ĥpen

(1)

consisting of the electronic Hamiltonian Ĥe with ne elec-
trons of mass me

Ĥe =
ne∑
i=1

p̂2
i

2me

+
e2

4πε0

ne∑
i>j

1

|ri − rj|
, (2)

the nuclear Hamiltonian Ĥn with nn nuclei each with pos-
sibly different individual masses mi and charges Zi

Ĥn =
nn∑
i=1

p̂2
i

2mi

+
e2

4πε0

nn∑
i>j

ZiZj
|Ri − Rj|

= T̂n + Ŵn,

(3)

where T̂n and Ŵn are the nuclear kinetic energy and nu-
clear interaction, respectively. The electron-nuclear inter-
action Hamiltonian Ĥen is given by

Ĥen = − e2

4πε0

ne∑
i=1

nn∑
j=1

Zj
|ri − Rj|

, (4)

and the cavity photon Hamiltonian Ĥp with np quantized
photon modes of frequency ωα takes the form

Ĥp =
1

2

(
2np∑
α=1

p̂2α + ω2
αq̂

2
α

)
= T̂p + Ŵp. (5)

The displacement field operators q̂α =(
â†α + âα

)
/
√

2ωα/~ consist of the usual photon creation
and annihilation operators and [q̂α, p̂α′ ] = i~δα,α′ .
Furthermore, the q̂α are directly proportional to the

1 Throughout this work, we assume SI units, unless stated otherwise.

electric displacement field operator of the α-th photon
mode [28, 29] at the charge-center of the system by the
connection D̂α = ε0ωαλαq̂α and the p̂α are proportional
to the magnetic field. In Eq. 5, the sum runs from 1 to
2np, to correctly account for the two possible polarization
directions of the electromagnetic field. The last three terms
in Eq. 1 describe the light-matter interaction Hamiltonian.
The first term is the explicit electron-photon interaction in
the dipole approximation

Ĥpe =

2np∑
α=1

ωαq̂α (λα · Xe) , (6)

with the total electronic dipole moment Xe = −∑ne

i=1 eri
and the matter-photon coupling strength λα [22, 29]. The
second term gives the explicit nuclear-photon interaction,
again in the dipole approximation,

Ĥpn =

2np∑
α=1

ωαq̂α (λα · Xn) , (7)

with the total nuclear dipole moment Xn =
∑nn

i=1 ZieRi.
And the last term describes the quadratic dipole-self inter-
action term

Ĥpen =
1

2

2np∑
α=1

(λα · X)
2
, (8)

where X now describes the total dipole moment of the sys-
tem, i.e. X = Xe + Xn. We then introduce the following
abbreviations

r = (r1, ..., rne
)

R = (R1, ...,RnN
)

q = (q1, ..., q2np
).

Under this change of notation, we can rewrite Eq. 1 in the
following form

Ĥ = Ĥ(r,R, q) = Ĥe(r) + Ĥn(R) + Ĥen(r,R)

+ Ĥp(q) + Ĥpe(r, q) + Ĥpn(R, q) + Ĥpen(r,R).
(9)

In general, we are interested in calculating eigenstates
Ψi(r,R, q) and eigenvalues Ei of the particular problem.
These states then give us access to any observable of inter-
est. To calculate these quantities, we have to solve the full
Schrödinger equation of the correlated electron-nuclear-
photon problem that is given by

ĤΨi(r,R, q) = EiΨi(r,R, q), (10)

where the Hamiltonian Ĥ is given by Eq. 1. Obtaining gen-
eral solutions to the Schrödinger equation of Eq. 10 is an
ungrateful task2. In practice, the Schrödinger equation is

2 We note that in free space Eq. 10 has no eigenstates due to its translational
invariance. Hence one either has to go into a co-moving frame, e.g., a
center-of-mass frame, or one has to use a confining potential to localize the
molecule.
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barely solved exactly, but only approximately. One of such
approximate methods is the cavity Born-Oppenheimer ap-
proximation [25] that is capable to partially decouple the
electronic degrees of freedom from the nuclear and pho-
tonic degrees of freedom. In electron-nuclear problems,
such an adiabatic decoupling procedure is commonly as-
sumed [11] and well justified for low lying states, i.e. the
ground state. However, severe limitations are known that
require going beyond the adiabatic treatment by including
nonadiabatic electron-nuclear terms, e.g. at conical inter-
sections [31].
In this work we decouple the electronic degrees of freedom
from the nuclear and photon degrees of freedom. This al-
lows us, on the one hand, to simplify the problem much
more than if we decoupled the nuclear from the electronic
and photonic degrees of freedom, as has been done in
Refs. [17, 32]. In practice, the main problem for the stan-
dard Born-Oppenheimer approximation is to solve the re-
sulting electronic equation, while simple approximations
to the nuclear equation, such as harmonic approximations,
are often sufficient. On the other hand, a decoupling of
the electronic degrees of freedom provides most flexibility
for the applications that we consider, e.g. a single electron
coupled to one mode. From a physical perspective, how-
ever, this decoupling scheme seems counterintuitive on a
first glance. The usual simplified argument for the decou-
pling of the nuclear from the electronic degrees of freedom
is that the nuclei move “slowly” compared to the electrons,
i.e., the kinetic-energy contribution is negligible, and hence
a classical approximation seems reasonable. Photons do
not move “slowly” and hence a similar simple argument
does not make much sense. However, for the photons the
term T̂p describes the square of the magnetic field opera-
tor and is a small perturbation compared to the harmonic
potential that confines the mode. In this sense, a classi-
cal approximation for the photons is reasonable and phys-
ically means that we neglect the magnetic contribution to
the photon-field energy. That this approach can indeed give
highly accurate results will be demonstrated in the follow-
ing.

Cavity Born-Oppenheimer approximation

In this section, we derive the approximate cavity Born-
Oppenheimer states to Eq. 10. This goal is achieved in
three successive steps. First, we solve the electronic part
of the Eq. 10, where we consider explicitly all terms con-
taining an explicit electronic contribution. This electronic
Schrödinger equation has only a parametric (conditional)
dependence on the nuclear and field degrees of freedom, or
alternatively nuclear and field coordinates enter the elec-
tronic equation as c-numbers. In principle, the electronic
Schrödinger equation has to be solved for every possible
combined nuclear and photon-field configuration and the
eigenvalues of the electronic Schrödinger equation then

enter the nuclear and photon-field Schrödinger equation
through the emerging potential-energy surfaces. Having
solved both equations, we can then construct the approxi-
mate cavity Born-Oppenheimer states in a factorized man-
ner. To obtain the approximate cavity Born-Oppenheimer
states, as a first step, we solve the electronic Schrödinger
equation[
Ĥe(r) + Ĥen(r,R) + Ĥpe(r, q) + Ĥpen(r,R)

]
ψj(r,R, q)

= εj(R, q)ψj(r,R, q), (11)
for each fixed set of nuclear coordinates R, and photon dis-
placement coordinates q. For each fixed set of (R, q), the
electronic eigenfunctions of Eq. 11

{
ψj(r,R, q)

}
form a

complete basis in the electron many-particle Hilbert space.
In the electronic Schrödinger equation of Eq. 11, (R, q)
enter the electronic cavity Born-Oppenheimer Hamiltonian
as (classical) parameters, thus the eigenvalues εj also para-
metrically depend on R, q. For each fixed set of (R, q), we
can then expand (also known as the Born-Huang expan-
sion [33]) the exact many-body wave function Ψi(r,R, q)
that is a solution to the full Schrödinger equation of Eq. 10
as

Ψi(r,R, q) =
∞∑
j=1

χij(R, q)ψj(r,R, q). (12)

Here, the exact wave function is decomposed into sums
of product states consisting of an electronic wave function
ψj(r,R, q) and a nuclear-photon wave function χij(R, q).
The latter is obtained by solving the following equation[

Ĥn(R) + Ĥp(q) + Ĥpn(R, q) + εk(R, q)
]
χik(R, q)

+
∞∑
j=1

(∫
drψ∗k(r,R, q)

[
T̂n(R) + T̂p(q)

]
ψj(r,R, q)

)
χij(R, q)

= Eiχik(R, q), (13)

where T̂n(R) and T̂p(q) are given by Eqns. 3 and 5, respec-
tively. The eigenvalues Ei of Eq. 13 are the exact corre-
lated eigenvalues of Eq. 10. The term in the second line of
Eq. 13 describes the nonadiabatic coupling between cavity
Born-Oppenheimer potential energy surfaces (PES). The
cavity Born-Oppenheimer approximation now neglects the
offdiagonal elements in the nonadiabatic coupling terms of
Eq. 13. Then Eq. 13 can be rewritten in a much simpler
form [

T̂n(R) + T̂p(q) + Vk(R, q)
]
χik(R, q)

= Eiχik(R, q), (14)

where the newly generalized cavity PES Vj(R, q) are given
explicitly by

Vj(R, q) = Ŵn(R) + Ŵp(q) + Ĥpn(R, q)

+

∫
dr ψ∗j (r,R, q)

[
T̂n(R) + T̂p(q)

]
ψj(r,R, q)

+ εj(R, q). (15)
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The first two terms are the nuclear and the photon poten-
tials of Eqns. 3 and 5 and all anharmonicity in the PES
can be attributed to the electron-photon, electron-nuclear,
nuclear-nuclear and nuclear-photon interaction contained
in Eq. 1. Furthermore, the eigenvalues Ei of Eq. 14 are an
approximation to the exact correlated eigenvalues and pro-
vide by the variational principle an upper bound. With this
reformulation, we have the advantage that we can solve the
electronic Schrödinger equation of Eq. 11 and the nuclear-
photon Schrödinger Eq. 14 separately. The ground-state
Ψ0 in the cavity Born-Oppenheimer approximation then
becomes

Ψ0,CBO(r,R, q) = χ00(R, q)ψ0(r,R, q), (16)

and accordingly for the excited states. In Born-
Oppenheimer calculations for systems that only con-
tain electrons and nuclei often the harmonic Born-
Oppenheimer approximation is carried out [11] that can be
realized by expanding Vj(R, q) around its minimum value
and in this way even simplifies the problem further. In the
harmonic approximation, we have to solve Eq. 11 not for
all possible values of (R, q), but only at the minimum of
εj(R, q). However, in this work, we do not apply the har-
monic approximation to correctly demonstrate the full ca-
pacity of the cavity Born-Oppenheimer concept.
Before we introduce our the examples, let us comment on
the expectable accuracy of the cavity Born-Oppenheimer
states when decoupling electronic from photonic and nu-
clear degrees of freedom. Our simplified physical argu-
ments for the decoupling scheme so far have been that
the nuclei are “slow” and the magnetic-field contribution
small, such that we can neglect the corresponding kinetic
terms in the equation for the electronic subsystem. How-
ever, the decisive quantities that indicate the quality of this
approach are the nonadiabatic coupling elements of Eq. 13
and the distance between the the potential-energy surfaces.
If these elements are small and the potential-energy sur-
faces are far apart, we can expect a good quality of the
approximate cavity Born-Oppenheimer states. This argu-
ment is similar to standard Born-Oppenheimer treatment
that looses its validity at crossing of eigenvalues, i.e. coni-
cal intersections.

DISCUSSION AND RESULTS

In the following, we now want to illustrate the concept of
the cavity Born-Oppenheimer approximation for two spe-
cific setups. We numerically analyze first a model system
consisting of a single electron coupled resonantly to a pho-
ton mode. This model will allow us to study the decoupling
mechanism introduced for the correlated electron-photon
interaction in detail. In the second example, we then ana-
lyze a model system that contains electron-nuclear-field de-
grees of freedom. Here, potential-energy surfaces emerge
that have nuclear-photon (polaritonic) nature.

Light-Matter coupling via electronic excitation

ωα

cavity frequency

electron-photon
coupling λα

n(t0)

vext

(a)

-40 -20 0 20 40
x (nm)
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y
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m
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(b)
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(c)
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) −40
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40v e

x
t
(x
,y
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eV

)

0
50

100
150
200

FIG. 1. (a) Model for the GaAs quantum ring in an optical cav-
ity. (b) Bare ground-state electron density nλ=0 in the external
potential that is shown in (c).

In this section, we illustrate the concept of the cavity
Born-Oppenheimer approximation for a simple coupled
electron-photon model system. The system of interest is
a model system for a GaAs quantum ring [34] that is lo-
cated in an optical cavity and thus coupled to a single pho-
ton mode [29]. The model features a single electron con-
fined in two-dimensions in real-space (r = rxex + ryey)
interacting with the single photon mode with frequency
~ωα = 1.41 meV and polarization direction eα = (1, 1).
The polarization direction enters via the electron-photon
coupling strength, i.e. λα = λαeα. The photon mode fre-
quency is chosen to be in resonance with the first electronic
transition. We depict the model schematically in Fig. 1
(a). The bare electron ground-state nλ=0(r) has a ring-like
structure shown in Fig. 1 (b) due to the Mexican-hat like
external potential that is given by

vext(r) =
1

2
m0ω

2
0r2 + V0e

−r2/d, (17)

with parameters ~ω0 = 10 meV, V0 = 200 meV, d =
10 nm [34], and shown in Fig. 1 (c). For the single elec-
tron, we employ a two-dimensional grid of N = 127 grid
points in each direction with ∆x = 0.7052 nm. In con-
trast, we include the photons for the exact calculation in
the photon number eigenbasis, where we include up to 41
photons in the photon mode.
For the cavity Born-Oppenheimer calculations, we calcu-
late the photons also on an uniform real-space grid (q-
representation) with N = 41 with ∆q = 6.77

√
aJ fs2

and construct the projector from the uniform real-space
grid to the photon number states basis explicitly. This
projector can be calculated by employing the eigenstates
of the quantum harmonic oscillator in real-space. For a
more detailed discussion of the model system, we refer
the reader to Refs. [29, 34]. Since this model can be



5

solved by exact diagonalization in full Fock space [35],
all exact results shown in the following have been calcu-
lated employing the full correlated electron-photon Hamil-
tonian [22, 25, 28, 29]. For this model, the potential-energy

-40-30-20-10 0 10 20 30 40
qα (aJ1/2fs2)

34

36

38

40

42

44

46

48

50

V
j

(e
V

)

(a)
λα=0.0034

-40-30-20-10 0 10 20 30 40

(b)
λα=0.1342

FIG. 2. Born-Oppenheimer potential energy surfaces Vj for a
correlated electron-photon problem in (a) weak coupling with
λα = 0.0034 meV1/2/nm and (b) strong coupling λα = 0.1342

meV1/2/nm.

surfaces from Eq. 15 can be calculated explicitly as

Vj(qα) =
1

2
ωαq

2
α + εj(qα)

+

∫
dr ψ∗j (r, qα)T̂p(qα)ψj(r, qα). (18)

In Fig. 2 (a), we show the PES surfaces Vj({qα}) for the
weak-coupling regime of λα = 0.0034 meV1/2/nm. We
find that all PES have a strong harmonic nature, due to the
dominant q̂2α term in Eq. 18. The eigenvalues εj and the
integral in the last line of Eq. 18 are the corrections to the
harmonic potential. In this case, both are rather small for
all excited-state surfaces in the weak-coupling regime, i.e.
for the ground-state surface adiabatic term in the last line
of Eq. 18 is around two orders of magnitude smaller than
ε0. In general, a harmonic correction that can be obtained
by calculating the second derivative at the minimum value
will shift the frequency of the photon mode. We define as
harmonic approximation to Eq. 18

Vj,harm(qα) =
1

2
ω̃j,α (qα − qj,0)2 , (19)

where qj,0 is the minimum value of the j-th PES Eq. 18. In
the weak-coupling regime, we find ω̃α ≈ ωj,α. All correc-
tions beyond the second derivative of these terms are then
called the anharmonic corrections.
We find the lowest cavity PES that is the ground-state PES
shown in black, well separated from the first and second
excited cavity PES that are shown in solid red and dotted
blue. The first and second excited cavity PES are close
to being degenerate. This two-fold degeneracy has its ori-
gin in the two-dimensional external potential, similar to

the s/p degeneracy in the hydrogen atom. In Fig. 2 (b),
we show the cavity PES surfaces in the strong-coupling
regime with λα = 0.134 meV1/2/nm. While the second
PES shown in blue and the fourth potential energy surface
shown in yellow keep the harmonic shape, in the lowest
cavity PES shown in black and the third cavity PES shown
in solid red, two new minima with a double-well struc-
ture appear 3. The minima of the cavity PES are strongly
shifted away from the equilibrium position at the origin.
This electron-dressed potential for the photon modes in-
duces a new vacuum state with two maxima. Since the
cavity PES is symmetric, the vacuum state still has a dis-
placement observable of 〈qα〉 = 0, i.e., we have a sta-
ble vacuum with zero field. However, with respect to the
bare vacuum the other observables, e.g., the vacuum fluc-
tuations, will clearly change. Furthermore, we find for the
harmonic approximation in the ground-state cavity PES,
ω̃0,α ≈ 0.8ωα, hence an effective softening of the pho-
ton mode in the ground-state cavity PES with the strong
displacement of q0,0 = 18.85

√
aJ fs2. A similar behavior

has been observed before in the context of polaron physics
in the Holstein Hamiltonian [36, 37]. We further analyze

-40 -30 -20 -10 0 10 20 30 40

qα (aJ1/2fs2)
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37

38

39

40

41

V
j

(e
V

)

(a)

0.0000
0.0168
0.0336
0.0503
0.0671
0.0839
0.1007
0.1174
0.1342

−40

−20

0

20

40

y
(n
m

)

λα =0.0034

(b)

-40 0 40
x (nm)

−40

−20

0

20

40

y
(n
m

)

λα =0.1342

(c)

FIG. 3. Left: (a) Ground-state cavity PES for different cou-
pling strengths show an emerging displacement of the photon
states. Right: electron density in (a) the weak coupling regime
for λα = 0.0034 meV1/2/nm and (b) strong coupling for λα =

0.1342 meV1/2/nm. The dashed-lines in (b) indicate the polar-
ization direction eα of the photon mode and red color refers to
high-density regions, while blue color refers to low-density re-
gions.

this transition in Fig. 3. In Fig. 3 (a), we show how the
ground-state PES depends on the electron-photon coupling
strength λα. We find that for absent and weak coupling,

3 Note that if we would like to express this electron-dressed photon system in
terms of the original creation and annihilation operators, we will need new
combinations of these operators, i.e., photon-interaction terms. Physically
these interaction terms describe the coupling between photons mediated
via the electron.
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the ground-state surface can be well described by a sin-
gle harmonic potential that has the minimum at qα = 0.
If we increase the electron-photon coupling to strong cou-
pling, we find around λα = 0.044 meV1/2/nm the split-
ting of the single-well structure to a double-well struc-
ture. For strong coupling, e.g. λα = 0.1342 meV1/2/nm
this double-well structure becomes strongly pronounced.
In Fig. 3 (b) and (c), we plot the corresponding electron
density nλ(r) =

∫
dqαΨ∗0,λ(r, qα)Ψ0,λ(r, qα) of the exact

correlated ground state Ψ0,λ(r, qα) for different values of
λ. In the weak-coupling regime, shown in Fig. 3 (b), we
find that the electron is only slightly distorted in compar-
ison to the ring-like structure of the bare electron ground
state [29] shown in Fig. 1 (b). In contrast, in the strong
coupling regime, shown in Fig. 3 (c), the electron density
becomes spatially separated and localized in direction of
the polarization direction of the quantized photon mode.
The consequences of the ground-state transition identified
in Fig. 3 become also apparent if we study the difference
of the correlated and bare electron density. Let us de-
fine the bare electron density. Here, we refer to the elec-
tron density that is the ground-state of the external poten-
tial without coupling to the photon mode, or alternatively
λα = 0, thus nλ=0(r). This density is shown in Fig. 1 (b).
Then we define ∆nλ(r) = nλ(r) − nλ=0(r). In Fig. 4,

-40

-20
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20

40

y
(n
m

)

(a) λα =0.0034 (b) λα =0.0268 (c) λα =0.0403
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-40
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20

40
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(d) λα =0.0537

-40 -20 0 20 40
x (nm)

(e) λα =0.0671

-40 -20 0 20 40
x (nm)

(f) λα =0.1342

FIG. 4. The difference of the correlated ground-state electron
density to the bare electron density (∆nλ = nλ−nλ=0) from the
weak- to the strong-coupling limit. Red color refers to surplus
density regions, while blue color refers to regions with reduced
density.

we plot ∆nλ(r) as function of the electron-photon cou-
pling strength λα. In the weak-coupling limit, shown in
Fig. 4 (a) for λα = 0.0034 meV1/2/nm, we find that the
electron density is slightly distorted such that in the cor-
related density more density is accumulated perpendicular
to the polarization direction of the photon mode compared
to the bare electron density. However, once the strong-
coupling regime is approached, we also identify a transi-
tion in ∆nλ(r). In the strong coupling regime, that is en-
tered in Fig. 4 (b)-(d), the ground-state electron density is

reoriented until ultimately in Fig. 4 (e) the electron density
is arranged in direction of the polarization direction of the
photon mode, up to higher strong-coupling regions shown
in Fig. 4 (f).
The additional insights from the ground-state transition can
be obtained by evaluating the exact correlated electron-
photon eigenvalues. In Fig. 5, we plot the exact eigenval-

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
λα (meV1/2/nm)

33.5

34.0

34.5

35.0

35.5

36.0

36.5

37.0

E
0

(e
V

)

(I) (II)

FIG. 5. Exact eigenvalues of the correlated electron-photon
Hamiltonian as function of the electron-photon coupling param-
eter λα. The dashed line indicates the transition of ∆nλ(r) as
discussed in the main text.

ues from the weak- to the strong-coupling regime. The
ground-state energies are plotted by the black line and
are increasing for stronger coupling [25]. For the first
excited state in the case of λα = 0 coupling, we find
a three-fold degeneracy that is split once the electron-
photon coupling is introduced. For strong coupling the
first-excited state (shown in blue) and the ground-state
become close4 leading to the splitting of the electron-
density shown in Fig. 4. Higher-lying states show en-
ergy crossings that are typical for electron-photon prob-
lems and have been previously observed e.g. in the Rabi
model [39–41]. We find allowed level crossings at λα ≈
0.031, 0.067, 0.113 meV1/2/nm, but also an avoided level
crossing at λα ≈ 0.55 meV1/2/nm between the fifth and
sixth eigenvalue surface. In the Rabi model, level crossings
are used to define transition from the weak, strong, ultra-
strong [42] and deep-strong coupling regime [43]. Sim-
ilarly to the Rabi model [39], we find in the strong cou-
pling regime a pairing of states in terms of the energy. Two
states each with different parity become close to degener-
acy. Since in the strong-coupling regime the interaction
terms in the Hamiltonian become dominant and we apply
the interaction in dipole coupling, the eigenstates of the full
Hamiltonian become close to the eigenstates of the dipole

4 We emphasize that this behavior is similar to what is in molecular systems
known as static correlation for e.g. stretched molecules [38].
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state # λα Eexact ECBO (e,n) overlap

1 0.0034 33.8782 33.8795 1,1 99.9539
2 0.0034 35.2293 35.2861 1,2 55.7957
3 0.0034 35.2898 35.2898 2,1 99.9992
4 0.0034 35.3521 35.2979 3,1 55.8438
5 0.0034 36.6153 36.6925 1,3 57.4860

1 0.0302 33.9902 34.0258 1,1 98.7922
2 0.0302 34.8957 35.0935 1,2 84.9288
3 0.0302 35.3734 35.3763 2,1 99.9475
4 0.0302 35.9902 35.8670 3,1 84.4187
5 0.0302 36.0575 36.2793 1,3 86.7428

1 0.0637 34.3433 34.3659 1,1 99.3180
2 0.0637 34.8006 34.9008 1,2 96.1220
3 0.0637 35.6546 35.6613 2,1 99.8841
4 0.0637 35.7142 35.8487 1,3 94.9875
5 0.0637 36.4857 36.7584 1,4 79.8066

1 0.1342 35.3072 35.3114 1,1 99.9413
2 0.1342 35.3307 35.3398 1,2 99.8537
3 0.1342 36.1782 36.1953 1,3 99.6475
4 0.1342 36.4492 36.4860 1,4 99.2544
5 0.1342 36.7302 36.7345 2,1 99.9373

TABLE I. Exact correlated energies Eexact (eV), cavity BO ener-
gies ECBO (eV) and overlap between exact and cavity BO states
depending on the electron-photon coupling strength λα given in
meV1/2/nm. The label (e,n) refers to the cavity BO quantum
number of the state/excitation (electronic state, photon state).
Note that we do not employ the harmonic approximation and that
the cavity BO energies ECBO provide an upper bound to the ex-
act correlated energies Eexact.

operator that are the parity eigenstates. We can expect a dif-
ferent behavior beyond the dipole coupling, e.g. if electric
quadrupole and magnetic dipole coupling, or higher mul-
tipolar coupling terms are also considered. In Fig. 5, we
indicate by the dashed line, the ground-state transition dis-
cussed before. In the coupling region indicated by (I), we
find a single minimum in the PES and ∆n is located per-
pendicular to the polarization direction, while in the cou-
pling regime (II), we find two minima and a double well
structure in the PES and ∆n is located along the direction
of the polarization of the photon mode.

The quality of the cavity Born-Oppenheimer approxima-
tion is shown in Tab. I in terms of overlaps 〈Ψj|Ψj,CBO〉2
between approximate and exact states. If the eigenenergies
shown in Fig. 5, are well separated as in the strong cou-
pling regime for λα = 0.1342 meV1/2/nm, then the cavity
Born-Oppenheimer approximation is well justified. For
states that are close to degeneracy, as e.g. the states #2 and
#4 in the weak-coupling for λα = 0.0034 meV1/2/nm,

we find a lower quality. However, this low quality could
be improved by symmetry considerations. Overall, we
find a very high and sufficient quality of the approximate
energies and states in comparison to its corresponding
exact values.

The remaining part of this section is concerned with
the time-dependent case. Here, we employ the full corre-
lated electron-photon Hamiltonian and choose as initial
state a factorized initial state that consists of the bare elec-
tronic ground state and a bare photon field in a coherent
state with 〈â†â〉 = 4 where λα = 0.0034 meV1/2/nm.
This example is also the first time-dependent example
studied in Ref. [29]. To numerically propagate the system,
we use a Lanczos scheme and propagate the initial state
in 160000 time steps with ∆t = 0.146 fs. In Fig. 6, we
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FIG. 6. Time-dependent calculation with a factorizable initial
state (a) dipole moment of the system, (b) Mandel Q parame-
ter and purity γ and (c) the photon occupation 〈â†â〉 evolving in
time.

briefly analyze this setup by evaluating the dipole moment
〈x̂+ ŷ〉 in Fig. 6 (a), the purity γ = Tr

(
ρ2ph
)

that contains
the reduced photon density matrix ρph and the Mandel Q
parameter [44] that is defined as

Q =
〈â†αâ†αâαâα〉 − 〈â†αâα〉2

〈â†αâα〉
, (20)

in Fig. 6 (b) and the photon occupation 〈â†â〉 in Fig. 6 (c).
In the case of the dipole moment of this example shown
in Fig. 6 (a), we find first regular Rabi-oscillations up to
the maximum at t = 5 ps and around t = 10 ps, we find
the neck-like feature [45] typical for Rabi-oscillations. In
Fig. 6 (b), we show the purity γ in dashed black lines. The
purity γ, which is a measure for the separability of the
many-body wave function into a product of an electronic
and a photon wave function. We find that γ is close to 1
up to t = 5 ps, which means that the many-body wave
function is close to a factorizable state. After t = 5 ps,
γ deviates strongly from 1 and the system is not factoriz-
able anymore. This dynamical build-up of correlation has
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also an effect on the non-classicality of the light-field visi-
ble in the Mandel Q-parameter shown in Fig. 6 (b) in solid
black lines. While initially Q ≈ 0 that indicates the co-
herent statistics of the photon mode, after t = 5 ps also
this observable deviates from 0 and nonclassicality shows
up. From Fig. 6 (c), where we plot the photon number, we
see that until t = 5 ps a photon is absorbed that is later
re-emitted and after t = 15 ps, we again observe photon
absorption processes. In the following, we analyze this dy-

0 2 4 6 8 10 12
Photon State Number

(a) Occupation in first PES

0 2 4 6 8 10 12
Photon State Number

(1.00,0.00)
(0.84,0.16)
(0.42,0.58)
(0.20,0.80)
(0.18,0.82)
(0.39,0.61)
(0.59,0.41)
(0.63,0.37)
(0.63,0.37)
(0.47,0.53)
( P1 , P3 )

0.0ps
2.3ps
4.7ps
7.0ps
9.3ps
11.6ps
14.0ps
16.3ps
18.6ps
21.0ps

(b) In third PES

FIG. 7. Photon population in the first and third PES for the case
discussed in Fig. 6.

namics of the correlated electron-photon problem in terms
of population in the cavity Born-Oppenheimer surfaces cal-
culated in Fig. 2 (a). In Fig. 7, we show the occupation of
the photon number states in the first cavity PES in (a) and
the third cavity PES in (b). The values (P1,P3) give the
population of the first cavity PES and the third cavity PES,
respectively. All other cavity PES have populations which
are an order of magnitude smaller, since P1+P3 is close to
1 for all times. In Fig. 7 (a), we find that at the initial time
t = 0 ps, the first cavity PES is populated with a photon
state, which has a coherent distribution with

〈
â†αâα

〉
= 4,

which is in agreement with our initial condition. During
the time propagation, we observe a transfer of population
from the first cavity PES to the third cavity PES. In the
first cavity PES, we see until t = 9.3 ps a depletion of
population, while in the third cavity PES (Fig. 7 (b)), we
observe an increase of the population. After this time, the
population is again transferred back from the third cavity
PES to the first cavity PES (Rabi oscillation). However, not
only the amplitude of the population is changing, but also
the center of the wave packets. In principle, if the same
photon state would be populated in the two different cav-
ity PES, the system could still be factorizable. For small
times, up to t = 5 ps the center of the wave packet in the
first cavity PES remains close to its initial value. Later it
changes to smaller photon numbers, which indicates pho-
ton absorption. We can conclude that the dynamics of the
many-body system is dominated by the population trans-
fer from the first cavity PES to the third cavity PES and

vice versa. While for this example, a good approximate de-
scription may be a two-surface approximation reminiscent
of the Rabi model [39], we expect a different behavior for
more complex cavity Born-Oppenheimer surfaces e.g. in
many-electron problems, multi-photon modes, or strong-
coupling situations.

Light-Matter coupling via vibrational excitation

The second system that we analyze is the Shin-Metiu
model [46, 47] coupled to cavity photons. Without cou-
pling to photon modes, this system exhibits a conical in-
tersection between Born-Oppenheimer surfaces and has
been analyzed heavily in the context of correlated electron-
nuclear dynamics [48], exact forces in non-adiabatic
charge transfer [49], or nonadiabatic effects in quantum re-
active scattering [50], to mention a few. In our case, we
place the system, consisting of three nuclei and a single
electron into a optical cavity, where it is coupled to a single
mode that is in resonance with the first vibrational excita-
tion. The outer two nuclei are fixed and the free electron
and the nuclei are restricted to one-dimension. The model
is schematically depicted in Fig. 8. The Hamiltonian of

a+

b+

e

c
L

x
R

molecule-photon
interaction

Shin-Metiu model
in optical cavity kz

Ex

By

FIG. 8. Molecule in an optical cavity. The molecule is modeled
by the Shin-Metiu model [46, 47] that consists of three nuclei and
a single electron. Two of the nuclei are frozen at position L/2 and
−L/2, respectively.

such a system is given by [46, 47]

Ĥ = − ~
2M

∂2

∂R2
+ Ĥe + Ĥp + Ĥpe + Ĥpn + Ĥpen,

(21)

where Ĥp, Ĥpe, Ĥpn, and Ĥpen are given by
Eqns. 5, 6, 7, 8, respectively. The electronic Hamiltonian
reads

Ĥe = − ~
2M

∂2

∂r2
+ Vn(R) + Ve(r,R), (22)
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where Vn(R) is the Coulomb interaction of the free nuclei
with the two fixed nuclei, r is the electronic coordinate and
R the nuclear coordinate. Ve(r,R) is given by

Ve(r,R) = Ze2erf ((r −R) /Rc) / (r −R) , (23)
where erf describes the error-function. We fix the nuclear
mass M to the mass of a hydrogen atom and the length
L = 10Å. Furthermore, we use the dipole operators
Xe = −er and Xn = eR. Further Rc can be used to
tune the energy difference ∆ between the ground-state and
the first-excited state potential energy surface. For the cav-
ity Shin-Metiu model, we represent the electron on a grid
of dimension Nr = 140 with ∆r = 0.4233Å, and the
nuclear coordinate on a grid of dimension NR = 280 with
∆R = 0.0265Å, while the photon wave function is ex-
panded in the photon number eigenbasis, where the mode
can host up to 81 photons in the photon mode. To get
first insights on how the light-matter coupling is capable of
changing the chemical landscape of the system, in Fig. 9,
we calculate the ordinary PES surfaces of Eq. 15 for the
case of qα = 0. The solid red line shows the ground-state
energy surface, while the blue line shows the excited state
energy surface for Rc = 1.5Å with ~ωα = 72.5 meV
and Rc = 1.75Å with ~ωα = 69.3 meV. In both exam-
ples, the photon frequencies ωα correspond to the first vi-
brational transition of the exact bare Hamiltonian. Next,
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FIG. 9. Potential energy surfaces in the cavity Born-
Oppenheimer approximation for the Shin-Metiu model. Increas-
ing matter-photon coupling strength opens the gap ∆ between the
ground-state cavity PES and the first-excited cavity PES. Both
plots are using parameters as in Ref. [46] and are evaluated at
qα = 0.

we tune the matter-photon coupling strength λα from the
weak-coupling regime to the strong-coupling regime. The
corresponding cavity PES are shown in grey in Fig. 9.
The inset in the figures shows the energy gap ∆ depend-
ing on the matter-photon coupling strength λα. In the
left figure, we choose the value Rc = 1.5Å and in the
case of λα = 0, we find well separated cavity Born-
Oppenheimer surfaces. The matter-photon coupling (cho-
sen here from λα = 0 to λα = 82.55 eV1/2/nm with a

Rabi-splitting ΩR = (E5 − E3) /~ωα) = 43.81%) opens
the gap significantly, as shown in the inset. Addition-
ally, for Rc = 1.5Å, we find that the double well struc-
ture visible in the first-excited state becomes more pro-
nounced for stronger light-matter coupling. The right fig-
ure shows the results for Rc = 1.75Å, where in the field-
free case a much narrower gap ∆ is found. Introducing
the matter-photon coupling in the system from λα = 0 to
λα = 84.48 eV1/2/nm with ΩR = 64.04%, also opens the
gap significantly and we find a similar qualitative behav-
ior as in the previous example with the notable difference,
that we observe in the present example a similar single-well
to double well transition but now in the first-excited state.
However, since we restricted ourselves to a specific cut in
the full two-dimensional cavity Born-Oppenheimer surface
by choosing qα = 0, Fig. 9 does not show the full picture.
Therefore, in Fig. 10, we show the full two-dimensional
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q α
(a

rb
.u

.)

Ground-state PES First-excited PES
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FIG. 10. Two-dimensional ground-state and first-excited state po-
tential energy surfaces in the cavity Born-Oppenheimer approx-
imation for the Shin-Metiu model in the case of λα = 0 (upper
panel) and strong-coupling λα = 79.20 eV1/2/nm. (lower panel)
with Rc = 1.75Å. High-energy regions are plotted by red color,
while low-energy regions are plotted by blue color. The crosses
denote the minima of the surfaces.

cavity PES for Rc = 1.75Å. In the figure, the x-axis show
the nuclear degree of freedom (R), while the y-axis shows
the photonic degree of freedom qα. In the case of λα = 0,
that is the upper panel in the figure, we find that the pho-
tonic degree of freedom introduces anharmonicity into the
surface. We also indicate the minima in the surfaces by
white crosses. In agreement with Fig. 9, we find a dou-
ble minimum for the ground-state cavity PES and a single
minimum for the excited state cavity PES. In the case of
strong-coupling that is shown in the lower panel of the fig-
ure, we observe new emerging normal modes. These new
normal modes are caused by the entanglement of the mat-
ter and photon degrees of freedom and are manifest in the
displacement of the minima out of the equilibrium posi-
tions. In the first-excited state surface in strong coupling,
we also observe a single-well to double-well transition, as
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observed in the coupling to the electronic excitation and
discussed in the first part of this work. Here, we find that
now two minima appear in the first-excited state surface.
If we adopt an adiabatic picture we can conclude that now
two new reaction pathways are possible from the first ex-
cited state surface to the ground-state surface.
To conclude, we have seen how the photonic degrees of
freedom alter considerably chemical properties in a model
system containing electronic, nuclear and photonic degrees
of freedom. We have identified the change of traditional
Born-Oppenheimer surfaces, gap opening, and transitions
from single well structures to double-well structures in
the first-excited state surface from first principles. The
gap opening can be connected to recent experiments [51],
where a reduction in chemical activity has been observed
for vibrational strong coupling.

SUMMARY AND OUTLOOK

In this paper, we introduced the concept of the cav-
ity Born-Oppenheimer approximation for electron-nuclear-
photon systems. We used the cavity Born-Oppenheimer
approximation to analyze the ground-state transition in the
system that emerges in the strong-coupling limit. During
this transition the ground-state electron density is split and
the ground-state cavity PES obtains a double well struc-
ture featuring finite displacements of the photon coordi-
nate. Furthermore, we illustrated for a time-dependent sit-
uation with a factorizable initial state, how the complex
correlated electron-photon dynamics can be interpreted by
an underlying back-and-forth photon population transfer
from the ground-state cavity PES to an excited-state cav-
ity PES. In the last section, we have demonstrated how this
transition can also appear in case of strong-coupling and
vibrational resonance. Here, we find that the first-excited
state surface can obtain a double well structure leading to
new reaction pathways in an adiabatic picture. In future
studies towards a full ab-initio description for cavity light-
matter systems, where solving the electronic Schrödinger
equation of Eq. 11 by exact diagonalization is not feasi-
ble, the density-functional theory for electron-photon sys-
tems (QEDFT) can be used [22, 23]. The discussed meth-
ods can be still improved, e.g. along the lines of a more
accurate factorization method such as the exact factoriza-
tion [52–54] known for electron-nuclear problems, or tra-
jectory based methods [48, 55] can be applied to simulate
such systems dynamically. This work has direct impli-
cations on more complex correlated matter-photon prob-
lems that can be approximately solved employing the cav-
ity Born-Oppenheimer approximation to better understand
complex correlated light-matter coupled systems.
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