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1. Details about the computational methods 

 

1.1. CHARMM parameters for the acylated serine (SEA) 

 

A new residue was defined during preparation of the acyl-enzyme corresponding to the acylated serine. This 

residue was labeled SEA. The topology for the SEA residue is shown below. CHARMM force field parameters for 

SEA were adopted from serine and methyl acetate. Parameters missing for describing the bond OS-CT2 and the 

angle bending OS-CT2-CT1 were assigned in analogy to the parameters for OSL-CTL2-CTL1 and OSL-CTL2 in 

lipids (par_all27_prot_lipid.prm). 

 

!!!!!!!!!!!!!!!!!!!!!!SEA TOPOLOGY!!!!!!!!!!!!!!!!!!!!!!!!! 

RESI SEA                   0.00 

GROUP    

ATOM   N      NH1   -0.47                     

ATOM   HN   H         0.31     !              |         

ATOM   CA   CT1     0.07     !      HN-N     H21       OE   H11 

ATOM   HA   HB      0.09     !              |        |              ||      | 

GROUP                                 !      HA-CA--C2--OM-CE--C1-H12 

ATOM   C1    CT3    -0.17    !              |        |                      | 

ATOM   CE   CD       0.63    !        O=C      H23                H13 

ATOM   OM  OS      -0.34    !              | 

ATOM   C2    CT2   -0.05                 

ATOM   OE   OB     -0.52      

ATOM   H11  HA     0.09   

ATOM   H12  HA     0.09 

ATOM   H13  HA     0.09 

ATOM   H21  HA     0.09 

ATOM   H23  HA     0.09 

GROUP    

ATOM   C    C          0.51 

ATOM   O    O        -0.51 

BOND   C2 CA   OM C2   N HN   N  CA    

BOND   C  CA   C +N   CA HA   C2 H21    

BOND   C2 H23   OM CE   C1 CE 

BOND   C1 H11   C1 H12   C1 H13 

DOUBLE   O  C   CE  OE       

IMPR   N -C CA HN   C CA +N O   CE C1 OM OE    

CMAP   -C  N  CA  C   N  CA  C  +N 
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DONOR   HN N    

ACCEPTOR   OM    

ACCEPTOR   O C 

ACCEPTOR   OE CE 

 

1.2. MD setup for MD simulation of AcCalB (docking target) 

 

First, the positions of all hydrogen atoms in the acylenzyme were optimized performing 500 steps of a steepest 

descent (SD) energy minimization, keeping all other atom coordinates fixed. In this and all subsequent steps all 

distances involving hydrogen atoms were constrained by SHAKE [1]. Then a sphere of 40 Å radius containing 

4454 toluene molecules cut out from an equilibrated simulation of toluene under periodic boundary conditions was 

superimposed on the enzymatic system, centered at the alpha carbon of the acetylated serine (SEA:CA). All added 

toluene molecules whose non-hydrogen atoms were within 2.8 Å of any existing non-hydrogen atom were deleted. 

This solvent sphere covered the entire enzyme. An active region including all residues within 30 Å of the SEA:CA 

atom was defined. All atoms of protein residues outside this active region were kept fixed during the MD 

simulations. To preserve the shape of the solvent sphere and to prevent evaporation of solvent molecules in the MD 

simulations, toluene molecules and crystal waters were restrained by a quartic spherical boundary potential which 

is zero until 38.5 Å, has a shallow minimum of -0.25 kcal mol-1 at 39.5 Å and increases at larger distances. This 

was done using the parameters FORCE = 0.2, P1 = 2.25, and DROFF = 38.5. Thereafter the toluene molecules 

within the sphere and the crystal waters were geometry-optimized, performing first 250 steps of steepest descent 

(SD) followed by 250 steps of adapted-basis Newton–Raphson (ABNR) minimization, keeping all other atoms 

fixed. We performed two more minimizations of 250 steps each (SD and ABNR), optimizing the active region with 

the water and toluene molecules, adding harmonic position restraints with a force constant k = 30 mol Å-2 on the 

active region. Then a heating molecular dynamics simulation (15000 steps) was performed starting at 50 K and 

ending at 300 K, raising the temperature in steps of 10 K every 100 MD steps. The Verlet algorithm was used with 

a time step of 1 fs. This solvation procedure was repeated 12 times, and in the last two cycles the number of steps 

used in the dynamics was increased to 30000. Resolvation is necessary since volume contraction of the solvent 

results from the enhanced interaction and relaxation of toluene on the enzyme surface. During the solvation 

procedure, harmonic positional restraints were applied to the protein atoms in the active region, which were 

successively lowered in each of the iterations. Finally, all constraints were removed and a production molecular 

dynamics simulation of 2 ns was run to complete the preparation of the acylenzyme. Again, the temperature was 

raised from 50 K to 300 K in steps of 10 K every 100 MD steps. The first 10 ps of the MD simulations were 

regarded as an equilibration phase and the following 1990 ps were analyzed.  

 

Nonbonded interactions in all CHARMM simulations were treated using group-based extended electrostatics [2]. In 

this approach, the electrostatic interactions between particles closer than a cutoff distance (14 Å in our case) are 

treated by the conventional pairwise additive scheme, while the interactions at larger distance are approximated by 

a computationally cheaper multipole approach. 
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Active region: All the residues of the protein were active, only 80 atoms corresponding to some of the surface 

residues of the protein were fixed, crystal waters and all toluene molecules were also active. 

 

1.3. Docking procedure for building TI-2 

 

The protein was treated as a rigid receptor and five water molecules (HOH130, HOH149, HOH238, HOH265, 

HOH285) were removed from the active site to accommodate the substrate. The TI-2 structures were built varying 

the dihedral angles shown in Figure S1, starting from the torsion angles of R- and S-propranolol in the 

corresponding AcCalB-propranolol Michaelis complexes [3]. Moreover, we ensured that steric contacts with the 

residues of the CalB binding pocket were avoided and all essential hydrogen bonds for the catalytic process were 

formed. 

 

 

Figure S1. Torsion angles (ω1-ω9) considered for building TI-2. 

 

1.4. Post-docking optimization of TI-2 

 

Three consecutive energy minimizations were performed: (1) a fixed constraint was applied to the protein backbone 

and all remaining parts of the systems were harmonically restrained (k = 30 mol Å-2) in 100 steps of a 

steepest-descent minimization; (2) the protein backbone was kept fixed, the side chains and crystal waters were 

harmonically restrained and the docked ligand was free to move in 800 steps of a steepest decent minimization 

followed by 550 steps of an ABNR minimization; (3) only the backbone was kept fixed, with the rest of the system 

free to move in two minimizations of 2500 steps each (SD and ABNR). 

 

1.5. MD simulations of TI-2 

 

The same MD setup as for AcCalB (see section 1.2) with some modifications in the resolvation procedure was 

used, treating the docked ligand as part of the active region. Furthermore, different initial velocity distributions 

were used, corresponding to values of the random seed parameter iseed of 314159 and 835. The MD simulations 

carried out using the iseed value 835 are indicated by *. 
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1.6. PES scans along the dihedral angles of R-1-methyl-3-(1-naphthoxy)-2-propanol 

 

The structure of the model compound used for the PES scans along the dihedral angles involved in the naphthoxy 

side chain of propranolol is shown in Figure S2. Relaxed PES scans were performed at the B3LYP/TZVP level 

along the torsion angles ω7-ω9. 

 

 

Figure S2. R-1-methyl-3-(1-naphthoxy)-2-propanol. 
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2. Docking results 

 

The TI-2 structures generated from the docking procedure were named TI-R or TI-S to emphasize whether it is the 

R or S enantiomer, followed by 1, 2, 3, … according to the order in which they were created. A total of 6 structures 

were identified for R- and S-propranolol, four in binding mode I (TI-R1(S1) – TI-R4(S4)) and two in binding 

mode II (TI-R5(S5) – TI-R6(S6)) (see Figures S3-S4). After post-docking optimization, superimposition of the 

protein structure of TI-2 and the CalB crystal structure showed only minor displacements with RMSD values of 

about 0.55 Å (see Table S1). Furthermore, all optimized TI-2 structures contain the essential hydrogen bonds for 

the catalytic process (see Table S2), so they are possible productive binding modes of the substrate. The main 

differences between the TI-2 structures concern the presence of an additional hydrogen bond in the case of 

R-propranolol in binding mode I (between its amino group and the carbonyl oxygen of Thr40; Sub:H-Thr40:O), 

which is only formed in one of the TI-2 structures of S-propranolol (in binding mode I), and the interactions 

between the propranolol side chains and the surrounding protein residues. All these interactions are involved in the 

stabilization of TI-2, so they are partly considered as responsible for the experimentally observed enantioselectivity 

(see below). 

 

Table S1 

RMSD values for all heavy atoms of the protein in the optimized TI-2 structures with respect to the crystal 

structure of CalB. 

R-propranolol  S-propranolol 

TI-2 RMSD (Å)  TI-2 RMSD (Å) 

TI-R1 0.555  TI-S1 0.554 
TI-R2 0.553  TI-S2 0.554 
TI-R3 0.554  TI-S3 0.558 
TI-R4 0.552  TI-S4 0.553 
TI-R5 0.553  TI-S5 0.553 
TI-R6 0.554  TI-S6 0.554 
 

2.1. Analysis of the TI-2 structures of R- and S-propranolol in binding mode I after post-docking 

optimization 

 

In the TI-2 structures of R- and S-propranolol in binding mode I, the naphthyl group of propranolol is positioned in 

the large pocket of CalB in four different orientations, where it is stabilized by the residues Thr138, Leu140, 

Ala141, Leu144, Ile189 and Ile285 through CH-π interactions. This type of interaction is also present between the 

isopropylamine side chain of propranolol and the residue Trp104 in the medium pocket of CalB, involving the 

six-membered ring of this residue, in agreement with its higher propensity to form CH-π interactions compared 

with the five-member ring [4]. As the strength of a CH-π interaction depends on its distance and directionality (the 

stronger the interaction, the stronger the trend to linearity) [5], the stabilization of each TI-2 in binding mode I is 

expected to depend strongly on the orientation of the side chains of propranolol in the binding pocket, especially 

that of its naphthyl group due to its bulky size and its π-donor character. Therefore these CH-π interactions are 
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expected to play an important role in the stabilization of the corresponding transition states (TSs) and thus in the 

enantioselectivity of the reaction. The isopropylamine side chain is also stabilized through hydrophobic interactions 

with the surrounding aliphatic residues of the medium pocket (namely, Leu278 and Ala281). However, these 

interactions are similar in all structures and are not expected to have a major influence on the stabilization of TI-2 

in comparison to the CH-π interactions. 

 

The distances for the CH-π interactions present in the TI-2 structures in binding mode I are shown in Figure S5. 

Comparison of the CH-π interactions in the TI-2 structures of R-propranolol and S-propranolol shows (see the 

orientation of the naphthyl group) that there are major differences for TI-R1 and TI-R2 relative to TI-S1 and TI-S2, 

respectively. In TI-R1 and TI-S1 the naphthyl group of propranolol is pointing toward the entrance of the binding 

pocket, where is strongly stabilized through CH-π interactions with the residues Ile189 and Val154. The side chains 

of these residues (mainly that of Ile189) are partly directed to the center of the naphthyl rings, allowing for more 

linear CH-π interactions in comparison to the other residues at the large pocket. Ile189 stabilizes both naphthyl 

rings while Val154 interacts mainly with the naphthyl ring A (the one which is forming the ether bond in the 

propranolol molecule). Furthermore, the CH-π interactions with Ile189 are in general stronger in TI-R1 than in 

TI-S1, while the CH-π interactions with Val154 are stronger in TI-S1. The strongest CH-π interaction with Ile189 in 

TI-R1 is between the Cγ2 atom of this residue and the center of mass of the naphthyl ring A, with a distance of 

3.77 Å, while in TI-S1 the strongest CH-π interaction with Val154 has a distance of 4.35 Å. On the other hand, the 

CH-π interactions between the isopropyl group of propranolol and Trp104 are slightly stronger in TI-R1. All this 

plus the additional Sub:H-Thr40:O hydrogen bond formed in TI-R1 (see Table S2) suggest a better stabilization of 

the corresponding TSs involved in the transformation of TI-R1 with respect to those of TI-S1, which would favor 

the faster transformation of the former. 

 

In TI-R2 and TI-S2, the naphthyl group of propranolol is pointing toward the residues Ile285, Val154 and Leu144. 

The position of the naphthyl rings in these TI-2 structures allows strong CH-π interactions (trend to linearity) with 

the residues Ala141, Leu144 and Val154. The CH-π interactions between the naphthyl rings and Val154 (through its 

Cγ1 and Cγ2 atoms) are stronger in TI-S2 than in TI-R2, while the CH-π interactions with Leu144 (through its Cδ1 

atom) are stronger in the latter. In contrast, the CH-π interactions with Ala141 are similar in both structures. On the 

other hand, the CH-π interactions between the isopropyl group of propranolol and Trp104 are stronger in TI-R2 

than in TI-S2. All this suggests a better stabilization of the TSs involved in the transformation of TI-R2 with respect 

to those of TI-S2, which would lead to a faster transformation of TI-R2 over TI-S2. The Sub:H-Thr40:O hydrogen 

bond is formed in both TI-R2 and TI-S2, therefore it is not considered to have a specific effect on the 

transformation of TI-R2 relative to TI-S2. 

 

In the other TI-2 structures in binding mode I the CH-π interactions between the naphthyl group of propranolol and 

the surrounding protein residues are similar for both enantiomers. However, the formation of the Sub:H-Thr40:O 

hydrogen bond in TI-R3 and TI-R4 may contribute to a better stabilization of the corresponding TSs involved in the 
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TI-2 transformations, such that they are favored over those of TI-S3 and TI-S4, in which this hydrogen bond is not 

formed. 

 

2.2. Analysis of the TI-2 structures of R- and S-propranolol in binding mode II after post-docking 

optimization 

 

In the TI-2 structures of both propranolol enantiomers in binding mode II the naphthyl group of propranolol is 

positioned in the medium pocket of CalB in two distinct orientations (pointing outward or inward the binding 

pocket), and it is also stabilized by CH-π interactions with the nonpolar residues Trp104, Ile189, Leu278, Ala281, 

Ala282 and Ile285. In contrast to binding mode I, in binding mode II the isopropylamine side chain of propranolol 

is not forming CH-π interactions and is only stabilized by hydrophobic interactions with the surrounding aliphatic 

residues of the large pocket. These interactions are similar in all TI-2 in binding mode II. Thus, as in binding 

mode I, the stabilization of the TI-2 structures in binding mode II is expected to depend mainly on the CH-π 

interactions established between propranolol and the surrounding protein residues. The distances for these CH-π 

interactions are shown in Figure S6. 

 

Following the same scheme of analysis as for the TI-2 structures in binding mode I, the transformation of TI-R5 

is expected to be favored over TI-S5. In these TI-2 structures the naphthyl group of propranolol is pointing toward 

the entrance of the binding pocket, but it is more exposed toward the entrance of the pocket in TI-S5 than in TI-R5. 

This affects the strength of the CH-π interactions established with the residues Leu278, Ala281, Ile189 and Trp104. 

The CH-π interaction between naphthyl ring A and Trp104 is stronger in TI-R5 than in TI-S5. Furthermore, in 

TI-R5 both naphthyl rings of propranolol are strongly stabilized by Leu278 and Ala281, while in TI-S5 the CH-π 

interactions between these residues and the naphthyl ring B are partly lost. In addition, considering the orientation 

of the naphthyl rings in these TI-2 structures, the CH-π interactions with Ala281 and Ile189 (through its Cγ2 atom) 

are stronger (more linear) in TI-R5 than in TI-S5 (see Figures S3-S4). All this suggests a better stabilization of the 

TSs involved in the transformation of TI-R5 with respect to those of TI-S5, which would favor a faster 

transformation of TI-R5. 

 

In TI-R6 and TI-S6 the naphthyl group of propranolol is oriented toward the interior of the binding pocket. This 

leads to the formation of CH-π interactions between the naphthyl ring B and the residues Ala281 and Leu278 which 

are stronger than those with naphthyl ring A (judging from the linearity of the interactions). In addition, the residue 

Trp104 forms a CH-π interaction with this ring. In contrast, the residue Ile189 is interacting mainly with naphthyl 

ring A. The observed distances for these interactions show that TI-R6 is better stabilized than TI-S6, suggesting a 

better stabilization of the TSs involved in the transformation of the former. 
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Figure S3. TI-2 structures of R-propranolol after post-docking optimization. The TI-2 and the catalytic triad are 

shown in licorice with the carbon atoms in green. The residues stabilizing the side chains of propranolol in the 

binding pocket are also shown in licorice, with a unique color indicating the secondary structure to which they 

belong: α-helix (purple), β-conformation (yellow) and loops (cyan). 
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Figure S4. TI-2 structures of S-propranolol after post-docking optimization. The TI-2 and the catalytic triad are 

shown in licorice with the carbon atoms in green. The residues stabilizing the side chains of propranolol in the 

binding pocket are also shown in licorice, with a unique color indicating the secondary structure to which they 

belong: α-helix (purple), β-conformation (yellow) and loops (cyan). 
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Table S2 

Hydrogen bond distances and angles of the TI-2 structures of R- and S-propranolol after optimizationa. 

TI-2 
SEA:O-

Gln106:NH 
SEA:O-

Thr40:NH 
SEA:O-

Thr40:OH 
His224:H-

SEA:Oγ 
His224:H-

Sub:O 

Asp187:OD-

His224:HND 

Sub:H-

Thr40:O 

TI-R1 
1.81 
(164) 

1.70 
(165) 

2.01 
(174) 

2.19 
(125) 

1.74 
(159) 

1.60 
(177) 

1.85 
(149) 

TI-R2 
1.78 
(161) 

1.81 
(164) 

2.11 
(174) 

2.06 
(124) 

1.88 
(150) 

1.64 
(174) 

2.39 
(106) 

TI-R3 
1.84 
(166) 

1.64 
(165) 

2.01 
(172) 

2.03 
(135) 

1.84 
(143) 

1.62 
(166) 

1.92 
(170) 

TI-R4 
1.81 
(162) 

1.77 
(165) 

2.09 
(173) 

2.12 
(124) 

1.87 
(150) 

1.63 
(173) 

2.02 
(128) 

TI-R5 
1.92 
(155) 

1.96 
(168) 

2.07 
(174) 

2.02 
(124) 

1.95 
(134) 

1.67 
(171) 

7.70 

TI-R6 
1.89 
(150) 

2.18 
(169) 

2.36 
(171) 

2.17 
(116) 

2.09 
(123) 

1.71 
(169) 

7.76 

        

TI-S1 
1.89 
(164) 

1.66 
(166) 

1.95 
(173) 

2.09 
(135) 

1.80 
(144) 

1.60 
(168) 

3.94 
 

TI-S2 
1.72 
(160) 

1.74 
(158) 

1.89 
(175) 

1.83 
(139) 

2.22 
(139) 

1.65 
(171) 

2.52 
(113) 

TI-S3 
2.02 
(162) 

1.76 
(173) 

2.12 
(170) 

2.14 
(133) 

1.98 
(128) 

1.64 
(164) 

4.00 
 

TI-S4 
1.93 
(158) 

1.80 
(165) 

1.91 
(175) 

1.92 
(132) 

1.96 
(137) 

1.65 
(171) 

4.72 
 

TI-S5 
1.80 
(166) 

1.67 
(164) 

2.02 
(171) 

2.03 
(129) 

1.79 
(149) 

1.63 
(172) 

3.98 
 

TI-S6 
1.83 
(156) 

1.90 
(164) 

1.99 
(172) 

2.13 
(120) 

1.97 
(144) 

1.67 
(173) 

7.78 

a Distances are given in Å. A maximum distance of 3 Å was chosen as a limit to be considered a hydrogen bond. 

Angles are given in degrees (º) in parentheses. See Figure 4 of the main text for conventions on the atom labels. 
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Figure S5. Distances between the side chains (center of mass of the naphthyl rings and of the carbon atoms of the 

isopropyl methyl groups) of R- and S-propranolol and the surrounding residues of the binding pocket, in the TI-2 

structures in binding mode I after post-docking optimization. Every set of analogous structures (related to the 

orientation of the naphthyl group) is shown separately. * Center of mass of the six-membered ring. 
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Figure S6. Distances between the centers of mass of naphthyl rings of R- and S-propranolol and the surrounding 

residues of the binding pocket, in the TI-2 structures in binding mode II after post-docking optimization. Every set 

of analogous structures (related to the orientation of the naphthyl group) is shown separately. * Center of mass of 

the six-membered ring. 
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3. MD results 

 

CalB does not undergo significant conformational changes during the MD simulations, as shown by the average 

RMSD values (with respect to the CalB crystal structure) for all heavy atoms of the protein backbone 

(see Table S3). The largest average RMSD values observed for the TI-2 structures of R- and S-propranolol are 

1.08 ± 0.17 Å and 1.14 ± 0.22 Å, respectively. Regarding the stability of the essential hydrogen bonds for the 

catalytic process, some differences are observed for R- and S-propranolol depending on the binding mode. 

Furthermore, not all TI-2 are stable throughout the MD simulations. A complete description of the dynamic 

behavior of the TI-2 structures of both propranolol enantiomers is given below. 

 

 

 

Table S3 

Average RMSD (with respect to the CalB crystal structure) for all heavy atoms of the protein backbone in the MD 

simulations of TI-2a. 

TI-2  RMSD RMSD* 

TI-R1  0.95 ± 0.21 0.99 ± 0.15 

TI-R2  0.98 ± 0.16 1.03 ± 0.20 

TI-R3  1.08 ± 0.17 0.83 ± 0.10 

TI-R4  1.00 ± 0.14 0.85 ± 0.12 

TI-R5  0.90 ± 0.12 1.02 ± 0.20 

TI-R6  0.85 ± 0.11 1.02 ± 0.21 

    

TI-S1  1.00 ± 0.21 1.08 ± 0.16 

TI-S2  0.88 ± 0.11 1.10 ± 0.17 

TI-S3  0.92 ± 0.14 1.14 ± 0.22 

TI-S4  1.02 ± 0.17 0.96 ± 0.13 

TI-S5  1.01 ± 0.18 1.08 ± 0.23 

TI-S6  0.94 ± 0.17 0.91 ± 0.17 

a RMSD values are given (in Å) for the two MD simulations with different initial velocity distributions as indicated 

by *. 
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3.1. Analysis of the MD simulations of the TI-2 structures of R-propranolol 

 

3.1.1. Stability of the essential hydrogen bonds for the catalytic process in the MD simulations of the TI-2 structures 

of R-propranolol 

 

The time evolution of the essential hydrogen bonds for the catalytic process in the MD simulations of 

R-propranolol is shown in Figures S7-S12. It can be seen that the hydrogen bond between Asp187 and His224 is 

stable throughout the MD simulations. Furthermore, the average distance of this hydrogen bond is similar in all 

MD simulations (1.71-1.75 Å; see Table S4). The hydrogen bonds between the oxyanion and the residues of the 

oxyanion hole are also stable throughout the MD simulations. However, the average distance of the hydrogen bond 

with Gln106 (SEA:O-Gln106:NH) is different depending on the binding mode of R-propranolol. As shown in 

Table S4, this hydrogen bond is shorter in binding mode II (1.70-1.71 Å) than in binding mode I (1.98-2.01 Å). 

This is correlated with the dynamic behavior of the hydrogen bonds between the protonated His224 and the 

reactive oxygen atoms. In the MD simulations for R-propranolol in binding mode II the alcohol oxygen (Sub:O) is 

displaced toward the oxyanion hole, leading to a stronger hydrogen bond between the oxyanion and Gln106. In 

turn, the hydrogen bond between the protonated His224 and the Sub:O atom (His224:H-Sub:O) is disrupted; this 

interaction has an average distance of 2.09-2.30 Å for the TI-2 structures in binding mode I and 3.21-3.49 Å for 

those in binding mode II (see Table S4 and Figures S7-S12). Meanwhile, the hydrogen bond between the 

protonated His224 and the SEA:Oγ atom becomes stronger; this hydrogen bond has an average distance of 

2.01-2.14 Å for the TI-2 structures in binding mode I and 1.79-1.81 Å for those in binding mode II (see also 

Table S4 and Figures S7-S12). 

 

The disruption of the His224:H-Sub:O hydrogen bond and the displacement of the Sub:O atom toward the 

oxyanion hole in the TI-2 structures in binding mode II indicate that it is difficult for R-propranolol in this binding 

mode to reach an orientation which allows the reaction to proceed [6-8]. 

 

3.1.2. Dynamic behavior of R-propranolol throughout the MD simulations of TI-2 

 

In the MD simulations of R-propranolol in binding mode I two main TI-2 configurations are identified 

(TI-R[number]a and TI-R[number]b), which differ in the orientation of the isopropylamine side chain of 

propranolol in the medium pocket. Configuration a is characterized by the formation of a hydrogen bond between 

the amino group of R-propranolol and Thr40 (Sub:H-Thr40:O), while in configuration b this hydrogen bond is 

absent. Propranolol is flipping between these two configurations throughout the MD simulations by rotation of the 

ω5 dihedral angle (see Figure S1). The Sub:H-Thr40:O hydrogen bond is present more than 50 % of the time in all 

MD simulations, except in the case of TI-R3 with the second initial velocity distribution, in which it is only present 

during 96 ps (see Figure S13). Particularly, this hydrogen bond is quite stable in the MD simulations of TI-R1, in 

which it is found in about 80 % of the simulation time and has an average distance of 2.69 Å (see Table S4). 

Configuration a of TI-R1 is thus most persistent in the MD simulations among all TI-2 structures in binding mode I 
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(see Table S5). Considering only the orientation of the naphthoxy group of propranolol in the large pocket, TI-R1 

and TI-R3 are preferred over TI-R2 and TI-R4. The naphthoxy group preserves its initial orientation throughout the 

MD simulations of TI-R1 and TI-R3, while in the MD simulations of TI-R2 and TI-R4 it adopts the orientation 

observed in TI-R1 (after less than 80 ps) and TI-R3 (after less than 570 ps), respectively (see Table S5). 

Interestingly, in the MD simulations of TI-R1 (and of TI-R2 after 80 ps), the residue Leu140 is reoriented 

establishing a stronger CH-π interaction with the naphthyl group of propranolol (see Figure S14), which remains 

stable throughout the MD simulations and is therefore not dependent on the observed change on the orientation of 

the isopropylamine side chain of propranolol during the simulations. This reorientation of Leu140 is expected to 

contribute to a better stabilization of TI-R1. 

 

The rotation of the ω5 dihedral angle is also observed in the MD simulations of the TI-2 structures of R-propranolol 

in binding mode II. This results in the temporal formation of an intramolecular hydrogen bond between the amino 

and naphthoxy groups of propranolol (Sub:H-Sub:O) in the MD simulations of TI-R5 (see Figure S15). Thus two 

configurations are observed, one in which this hydrogen bond is formed (TI-R5a) and one in which it is absent 

(TI-R5b). However, as shown in Table S5, TI-R5a is present more often (more than 990 ps) than TI-R5b (less than 

500 ps). By contrast, in the MD simulations of TI-R6, distinct configurations are not identified. Considering only 

the orientation of the naphthoxy group of propranolol in the medium pocket, the TI-2 structures identified in the 

MD simulations of TI-R5 and TI-R6 are stable throughout the MD trajectories. However, it is important to note that 

they are different from the starting structures (see Figure S14); during heating and equilibration structural 

rearrangements occur in response to the movement of the Sub:O atom toward the oxyanion hole and the interaction 

of the naphthyl group with the solvent. 

 

Based on the stability of the essential hydrogen bonds for the catalytic process observed in the MD simulations of 

the TI-2 structures of R-propranolol in binding mode I, as well as on the ability of R-propranolol to form the 

Sub:H-Thr40:O hydrogen bond in these TI-2 structures, the transformation of R-propranolol is expected to be 

favored in binding mode I. Particularly, its transformation is expected to be faster when its naphthyl group is 

pointing toward the exterior of the binding pocket and its isopropylamine side chain is oriented such that the 

Sub:H-Thr40:O hydrogen bond is formed (TI-R1a). This assessment is based on the observed temporal stability of 

TI-R1a in the MD simulations of TI-R1 (about 1200 ps), which exceeds that of the other R-propranolol 

configurations that also contain the Sub:H-Thr40:O hydrogen bond (see Table S5) [9]. 
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Table S4 

Hydrogen bond distancesa involving the TI-2 structures of R-propranololb averaged over the 1.5 ns MD 

simulationsc. 

TI-2 
SEA:O-

Gln106:NH 
SEA:O-

Thr40:NH 
SEA:O-

Thr40:OH 
His224:H-

SEA:Oγ 
His224:H-

Sub:Od
 

Asp187:OD-

His224:HND 

Sub:H-

Thr40:O 

TI-R1 1.99 (0.15) 1.81 (0.14) 1.70 (0.14) 2.14 (0.25) 2.10 (0.31) 1.72 (0.11) 2.69 (0.64) 

TI-R1* 1.98 (0.15) 1.82 (0.12) 1.71 (0.12) 2.13 (0.25) 2.14 (0.28) 1.73 (0.11) 2.69 (0.78) 

TI-R2 1.99 (0.15) 1.83 (0.15) 1.70 (0.12) 2.05 (0.23) 2.15 (0.28) 1.73 (0.13) 3.30 (1.05) 

TI-R2* 1.99 (0.15) 1.81 (0.14) 1.72 (0.13) 2.12 (0.25) 2.09 (0.26) 1.72 (0.11) 3.12 (1.01) 

TI-R3 2.01 (0.15) 1.75 (0.11) 1.72 (0.13) 2.03 (0.24) 2.14 (0.33) 1.71 (0.11) 2.81 (0.64) 

TI-R3* 1.99 (0.15) 1.75 (0.11) 1.73 (0.13) 2.09 (0.25) 2.09 (0.31) 1.72 (0.11) 5.08 (0.78) 

TI-R4 1.99 (0.15) 1.79 (0.15) 1.72 (0.13) 2.04 (0.24) 2.18 (0.37) 1.72 (0.11) 2.73 (0.70) 

TI-R4* 1.98 (0.15) 1.81 (0.17) 1.71 (0.13) 2.01 (0.25) 2.30 (0.41) 1.72 (0.11) 3.01 (0.60) 

TI-R5 1.70 (0.09) 1.76 (0.12) 1.65 (0.10) 1.80 (0.11) 3.24 (0.31) 1.72 (0.12) ··· 

TI-R5* 1.70 (0.09) 1.78 (0.13) 1.65 (0.10) 1.79 (0.11) 3.23 (0.32) 1.72 (0.12) ··· 

TI-R6 1.71 (0.09) 1.73 (0.10) 1.66 (0.10) 1.79 (0.10) 3.49 (0.22) 1.75 (0.14) ··· 

TI-R6* 1.70 (0.10) 1.79 (0.13) 1.65 (0.10) 1.81 (0.13) 3.21 (0.37) 1.74 (0.13) ··· 

a Distances are given in Å. Numbers in parentheses correspond to standard deviations from average values. A 

maximum distance of 3 Å was chosen as a limit to be considered a hydrogen bond. 
b See Figure 4 of the main text for conventions on the atom labels. 
c Two MD simulations were carried out using different initial velocity distribution as indicated by *. 
d This hydrogen bond is disrupted when the Sub:O atom moves toward the oxyanion hole. 
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Table S5 

Lifetimea (in ps) of the TI-2 structures of R-propranolol during the 1500 ps MD simulationsb. 

TI-2c
 

 Lifetime Lifetime* 

TI-R1a  1176 1205 

TI-R1b  315 286 

TI-R2ad
 

 71 68 

TI-R2bd
 

 8 10 

TI-R3a  926 96 

TI-R3b  564 1394 

TI-R4ae
 

 148 228 

TI-R4be
 

 170 334 

TI-R5af
 

 1216 995 

TI-R5bf
  275 495 

TI-R6f
 

 1490 1490 

a Lifetime corresponds to the simulation time during which each TI-2 is present. 
b Two MD simulations with different initial velocity distributions were carried out as indicated by *. 
c In all MD simulations of TI-2 (except TI-R6) two distinct configurations (a and b) are observed. Configuration a 

is characterized either by the formation of the Sub:H-Thr40:O hydrogen bond (in TI-2 structures in binding mode I) 

or the Sub:H-Sub:O hydrogen bond (in TI-R5; binding mode II). The total lifetime of the TI-2 structures 

considering only the orientation of the naphthoxy group in the binding pocket is the sum of the lifetimes of the 

corresponding configurations. 
d The naphthoxy group is oriented as in TI-R1 after the first 79 ps and 78 ps of the MD simulations with the first 

and second (*) seed velocity, respectively. 
e The naphthoxy group is oriented as in TI-R3 after the first 318 ps and 562 ps of the MD simulations with the first 

and second (*) seed velocity, respectively. 
f These TI-2 are different from the corresponding starting structures (see section 3.1.2 and Figure S14). 

 

 



19 

 

 

Figure S7. Time evolution of the essential hydrogen bonds for the catalytic activity of CalB in the MD simulations 

of TI-R1. The simulation with a different initial velocity distribution is indicated by *. 
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Figure S8. Time evolution of the essential hydrogen bonds for the catalytic activity of CalB in the MD simulations 

of TI-R2. The simulation with different initial velocity distribution is indicated by *. 
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Figure S9. Time evolution of the essential hydrogen bonds for the catalytic activity of CalB in the MD simulations 

of TI-R3. The simulation with different initial velocity distribution is indicated by *. 
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Figure S10. Time evolution of the essential hydrogen bonds for the catalytic activity of CalB in the MD 

simulations of TI-R4. The simulation with different initial velocity distribution is indicated by *. 
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Figure S11. Time evolution of the essential hydrogen bonds for the catalytic activity of CalB in the MD 

simulations of TI-R5. The simulation with different initial velocity distribution is indicated by *. The movement of 

the Sub:O atom toward the oxyanion hole leads to the disruption of the His224:H-Sub:O hydrogen bond. 
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Figure S12. Time evolution of the essential hydrogen bonds for the catalytic activity of CalB in the MD 

simulations of TI-R6. The simulation with different initial velocity distribution is indicated by *. The movement of 

the Sub:O atom toward the oxyanion hole leads to the disruption of the His224:H-Sub:O hydrogen bond. 
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Figure S13. Time evolution of the Sub:H-Thr40:O hydrogen bond in the MD simulations of the TI-2 structures of 

R-propranolol in binding mode I. The simulation with different initial velocity distribution is indicated by *. The 

Sub:H-Thr40:O hydrogen bond is formed during 1176 ps, 1205 ps, 778 ps, 862 ps, 926 ps, 96 ps, 1113 ps and 750 

ps in the MD simulations of TI-R1, TI-R1*, TI-R2, TI-R2*, TI-R3, TI-R3*, TI-R4 and TI-R4*, respectively. 
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Figure S14. Most dominant structures in the MD simulations of TI-R1, TI-R5 and TI-R6. These structures are 

different from the starting structures. In the MD simulations of TI-R1 the residue Leu140 is reoriented establishing 

a stronger CH-π interaction with the naphthyl ring of propranolol. In the MD simulations of TI-R5 the naphthoxy 

group of propranolol is displaced toward the entrance of the binding pocket. Finally, in the MD simulations of 

TI-R6 this group is displaced toward the interior of the binding pocket. Furthermore, the Sub:O atom is displaced 

toward the oxyanion hole in the MD simulations of TI-R5 and TI-R6. 
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Figure S15. Time evolution of the intramolecular hydrogen bond between the amino and naphthoxy groups of 

propranolol (Sub:H-Sub:O) in the MD simulations of TI-R5. The simulation with different initial velocity 

distribution is indicated by *. This hydrogen bond is formed during 1216 ps and 995 ps in the MD simulations of 

TI-R5 and TI-R5*, respectively. 
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3.2. Analysis of the MD simulations of the TI-2 structures of S-propranolol 

 

3.2.1. Stability of the essential hydrogen bonds for the catalytic process in the MD simulations of the TI-2 structures 

of S-propranolol 

 

The time evolution of the essential hydrogen bonds for the catalytic process in the MD simulations of S-propranolol 

is shown in Figures S16-S21. As observed for R-propranolol, the hydrogen bond between Asp187 and His224 is 

stable throughout the MD simulations of S-propranolol, and has a similar average distance in all MD simulations 

(1.71-1.73 Å; see Table S6). The hydrogen bonds between the oxyanion and the residues of the oxyanion hole are 

also stable throughout the MD simulations. Furthermore, the average distance of the SEA:O-Gln106:NH hydrogen 

bond as well as those of the hydrogen bonds between the protonated His224 and the Sub:O and SEA:Oγ atoms are 

dependent on the movement of the Sub:O atom toward the oxyanion hole. However, in contrast to R-propranolol, 

the Sub:O atom is not displaced toward the oxyanion hole in the MD simulations of S-propranolol in binding 

mode II but in binding mode I (see Table S6 and Figures S16-S21). This shows that in binding mode I 

S-propranolol has difficulties to adopt an orientation which allows the reaction to proceed [6,7]. In addition, in the 

MD simulations of some TI-2 structures in binding mode I (TI-S1 and TI-S3) the displacement of the Sub:O atom 

is observed only after more than 45 ps, and not from the beginning of the production phase (after 10 ps) as 

observed in the MD simulations of R-propranolol in binding mode II. Thus in the MD simulations of TI-S1 and 

TI-S3 two major configurations are clearly visible, one in which the His224:H-Sub:O hydrogen bond is formed 

(configuration i: TI-S[1 or 3]i) and one in which is disrupted due to the displacement of the Sub:O atom toward the 

oxyanion hole (configuration ii: TI-S [1 or 3]ii). In the MD simulations of TI-S3 and of TI-S1 with the second seed 

velocity, the configuration i (TI-S3i and TI-S1i, respectively) is stable during less than 190 ps after which the 

configuration ii (TI-S3ii and TI-S1ii, respectively) is formed. In contrast, in the MD simulation of TI-S1 with the 

first seed velocity, TI-S1i is stable during 1360 ps and then TI-S1ii is formed (see Table S7 and Figures S16 and 

S18). In the MD simulations of TI-S2 and TI-S4 the configuration ii predominates throughout the trajectories 

(see Figures S17 and S19), and it is thus expected that among all TI-2 structures of S-propranolol in binding mode I 

the transformation of TI-S1 will be favored. 

 

3.2.2. Dynamic behavior of S-propranolol throughout the MD simulations of TI-2 

 

As observed for R-propranolol, the orientation of the isopropylamine side chain of S-propranolol is continuously 

changing in the MD simulations by rotation of the ω5 dihedral angle. This leads to the temporal formation of the 

Sub:H-Thr40:O hydrogen bond in the MD simulations of S-propranolol in binding mode I (see Figure S22), 

resulting in two major configurations: configuration a (TI-S[number]a, this hydrogen bond is formed) and 

configuration b (TI-S[number]b, the hydrogen bond is absent). As shown in Table S7, configuration b is more 

persistent than configuration a in almost all MD simulations for S-propranolol in binding mode I, which suggests 

that R-propranolol has a higher ability than S-propranolol to form the Sub:H-Thr40:O hydrogen bond (see also 

Figures S13 and S22). There are only two particular cases in which this is not observed: (1) the MD simulation of 
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TI-S1 with the first initial velocity distribution, in which configuration TI-S1ia (with the His224:H-Sub:O 

hydrogen bond interaction–see the previous section) is present more frequently (1286 ps) than TI-S1ib (74 ps); 

(2) the MD simulation of TI-S4 with the second initial velocity distribution, in which the configuration TI-S4iia is 

found more often (333 ps) than TI-S4iib (257 ps). Considering only the orientation of the naphthoxy group of 

propranolol in the large pocket of CalB, TI-S1 and TI-S3 are preferred over TI-S2. The naphthoxy group preserves 

its initial orientation throughout the MD simulations of TI-S1 and TI-S3, while in the MD simulations of TI-S2 it 

adopts the orientation observed in TI-S1 after less than 90 ps. This group also preserves its initial orientation 

throughout the MD simulation of TI-S4 with the first seed velocity, whereas in the MD simulation with the second 

initial velocity distribution it adopts the orientation observed in TI-S1 after 590 ps (see Table S7). Interestingly, 

when TI-S1 is formed in the MD simulations of TI-S2 and TI-S4, the Sub:O atom remains displaced toward the 

oxyanion hole (configuration ii) throughout the MD simulations (more than 60 % of the time; see Figures S17 and 

S19). This shows that in binding mode I the preferred configuration of the TI-2 structures of S-propranolol is in fact 

configuration ii, even though in the MD simulation of TI-S1 with the first initial velocity distribution 

configuration i is found to be stable during 1360 ps, after which configuration ii is formed (see previous section). 

 

Regarding S-propranolol in binding mode II, rotation of the ω5 dihedral angle results in the temporal formation of 

an intramolecular hydrogen bond between the amino and naphthoxy groups of propranolol (Sub:H-Sub:O) in the 

MD simulations of TI-S5 (see Figure S23), similar to the behavior observed in the MD simulations of TI-R5 

(analogue of TI-S5). Thus two configurations are observed, one in which this hydrogen bond is formed (TI-S5a) 

and one in which is absent (TI-S5b). However, as shown in Table S7, TI-S5b is found more often (more than 

870 ps) than TI-S5a (less than 620 ps). This shows that R-propranolol has a higher ability to form this hydrogen 

bond, as TI-R5a is present more than 900 ps (see Table S5). Meanwhile, in the MD simulations of TI-S6, distinct 

configurations due to rotation of the ω5 dihedral angle are not identified. But interestingly, in the MD simulation of 

TI-S6 with the second seed velocity two configurations are identified due to rotation of the ω9 dihedral angle of 

TI-2 (see Figure S1) after 1293 ps (see Table S7). The most dominant structures in the MD simulations of TI-S5 

and TI-S6 are shown in Figure S24. They differ from the starting structures by the orientation of the naphthoxy 

group in the medium pocket of CalB, since during heating and equilibration a structural rearrangement takes place, 

which is mainly attributed to interactions with the solvent. 

 

Judging from the stability of the essential hydrogen bonds for the catalytic process, the transformation of 

S-propranolol is expected to be favored in binding mode II. Among the complexes with binding mode I, the 

transformation of TI-S1 is expected to be most facile (see section 3.2.1). 
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Table S6 

Hydrogen bond distancesa involving the TI-2 structures of S-propranololb averaged over the 1.5 ns MD 

simulationsc. 

TI-2 
SEA:O-

Gln106:NH 
SEA:O-

Thr40:NH 
SEA:O-

Thr40:OH 
His224:H-

SEA:Oγ 
His224:H-

Sub:Od
 

Asp187:OD-

His224:HND 

Sub:H-

Thr40:O 

TI-S1 2.18 (0.26) 1.94 (0.20) 1.68 (0.11) 1.88 (0.18) 2.48 (0.39) 1.72 (0.12) 2.37 (0.47) 

TI-S1* 1.71 (0.14) 1.74 (0.12) 1.66 (0.10) 1.81 (0.14) 3.27 (0.36) 1.72 (0.12) 4.10 (1.47) 

TI-S2 1.68 (0.09) 1.72 (0.10) 1.67 (0.10) 1.81 (0.12) 3.27 (0.29) 1.73 (0.12) 2.70 (0.66) 

TI-S2* 1.67 (0.08) 1.74 (0.11) 1.66 (0.10) 1.78 (0.10) 3.40 (0.21) 1.71 (0.11) 5.49 (0.42) 

TI-S3 1.67 (0.12) 1.71 (0.10) 1.68 (0.10) 1.77 (0.10) 3.51 (0.30) 1.73 (0.13) 5.61 (0.47) 

TI-S3* 1.72 (0.20) 1.73 (0.12) 1.68 (0.11) 1.80 (0.17) 3.32 (0.54) 1.72 (0.12) 5.49 (0.82) 

TI-S4 1.69 (0.09) 1.74 (0.11) 1.66 (0.10) 1.80 (0.11) 3.50 (0.24) 1.72 (0.11) 3.76 (0.98) 

TI-S4* 1.68 (0.08) 1.72 (0.10) 1.66 (0.10) 1.81 (0.11) 3.39 (0.28) 1.71 (0.11) 2.87 (0.77) 

TI-S5 2.01 (0.16) 1.86 (0.15) 1.71 (0.13) 1.92 (0.19) 2.08 (0.22) 1.72 (0.12) ··· 

TI-S5* 2.01 (0.15) 1.89 (0.15) 1.72 (0.13) 1.92 (0.19) 1.92 (0.20) 1.72 (0.11) ··· 

TI-S6 2.01 (0.15) 1.77 (0.12) 1.72 (0.13) 2.35 (0.31) 2.06 (0.26) 1.71 (0.11) ··· 

TI-S6* 2.03 (0.17) 1.88 (0.17) 1.70 (0.12) 2.39 (0.32) 2.47 (0.37) 1.73 (0.12) ··· 

a Distances are given in Å. Numbers in parentheses correspond to standard deviations from average values. A 

maximum distance of 3 Å was chosen as a limit to be considered a hydrogen bond. 
b See Figure 4 of the main text for conventions on the atom labels. 
c Two MD simulations were carried out using different initial velocity distributions as indicated by *. 
d This hydrogen bond is disrupted when the Sub:O atom moves toward the oxyanion hole. 
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Table S7 

Lifetimea (in ps) of the TI-2 structures of S-propranolol identified during the 1500 ps MD simulationsb. 

TI-2c
 

 Lifetime Lifetime* 

TI-S1ia  1286 1 

TI-S1ib  74 69 

TI-S1iia  61 583 

TI-S1iib  69 837 

TI-S2iiad
 

 1 1 

TI-S2iibd
  76 42 

TI-S3ia  3 21 

TI-S3ib  32 162 

TI-S3iib  1455 1307 

TI-S4iiae
 

 504 333 

TI-S4iibe
  986 257 

TI-S5af
 

 616 492 

TI-S5bf
 

 874 999 

TI-S6if
 

 1490 1283 

TI-S6iif
 

 0 207 

a Lifetime corresponds to the simulation time during which each TI-2 is present. 
b Two MD simulations with different initial velocity distributions were carried out as indicated by *. 
c Different configurations of TI-2 are identified throughout the MD simulations. In the TI-2 structures in binding 

mode I configuration i is characterized by formation of the His224:H-Sub:O hydrogen bond, while in 

configuration ii this hydrogen bond is disrupted as the Sub:O atom is displaced toward the oxyanion hole. 

Moreover, configuration a (ia or iia) is characterized by formation of the Sub:H-Thr40:O hydrogen bond. 

Meanwhile, TI-S5a is characterized by formation of the Sub:H-Sub:O hydrogen bond. The total lifetime of the TI-2 

structures TI-S1 to TI-S5, considering only the orientation of the naphthoxy group of propranolol in the binding 

pocket, is the sum of the lifetimes of the corresponding configurations. On the other hand, configurations i and ii of 

TI-S6 differ in the orientation of the naphthoxy group in the medium pocket. 
d The naphthoxy group is oriented as in TI-S1 after the first 77 ps and 43 ps of the MD simulations with the first 

and second (*) seed velocity, respectively. 
e The naphthoxy group is oriented as in TI-S1 after the first 590 ps of the MD simulation with the second seed 

velocity (*). 
f These TI-2 are different from the corresponding starting structures (see section 3.2.2 and Figure S24). 
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3.3. Concerning the origin of the enantioselectivity of CalB 

 

The MD simulations of TI-2 show that in binding mode II R-propranolol has difficulties to adopt an orientation in 

which the reaction may proceed. The same is observed for S-propranolol in binding mode I. Therefore, the 

competing transformations in CalB are expected to involve mainly R-propranolol in binding mode I and 

S-propranolol in binding mode II. This already suggests an explanation for the enantioselectivity of the reaction: 

the transformation of R-propranolol should be favored as in binding mode I the amino group of R-propranolol is 

able to form a hydrogen bond with the carbonyl oxygen of Thr40 (Sub:H-Thr40:O), which should stabilize the TI-2 

structures and the corresponding TSs. Moreover, while the transformation of S-propranolol seems possible in 

binding mode I via TI-S1, the corresponding reaction of R-propranolol via TI-R1 is favored because of the better 

stabilization by the surrounding protein residues through CH-π interactions (see section 2.1). Furthermore, in the 

MD simulations of TI-R1 the residue Leu140 is reoriented to form a stronger CH-π interaction with the naphthyl 

group of propranolol (see Figure S14), which is not observed in the MD simulations of TI-S1. Thus a faster 

transformation of TI-R1 compared to TI-S1 is expected. All this reinforces our previous conclusion that these CH-π 

interactions are partly responsible for the enantioselectivity of the reaction. Particularly, the residue Ile189 is 

expected to be a key for the enantioselectivity of the reaction, because of the orientation of its side chain with 

respect to the naphthyl ring of propranolol, which facilitates the formation of stronger CH-π interactions. 
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Figure S16. Time evolution of the essential hydrogen bonds for the catalytic activity of CalB in the MD 

simulations of TI-S1. The simulation with different initial velocity distribution is indicated by *. The movement of 

the Sub:O atom toward the oxyanion hole leads to a disruption of the His224:H-Sub:O hydrogen bond. 
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Figure S17. Time evolution of the essential hydrogen bonds for the catalytic activity of CalB in the MD 

simulations of TI-S2. The simulation with different initial velocity distribution is indicated by *. The movement of 

the Sub:O atom toward the oxyanion hole leads to a disruption of the His224:H-Sub:O hydrogen bond. 
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Figure S18. Time evolution of the essential hydrogen bonds for the catalytic activity of CalB in the MD 

simulations of TI-S3. The simulation with different initial velocity distribution is indicated by *. The movement of 

the Sub:O atom toward the oxyanion hole leads to a disruption of the His224:H-Sub:O hydrogen bond. 
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Figure S19. Time evolution of the essential hydrogen bonds for the catalytic activity of CalB in the MD 

simulations of TI-S4. The simulation with different initial velocity distribution is indicated by *. The movement of 

the Sub:O atom toward the oxyanion hole leads to a disruption of the His224:H-Sub:O hydrogen bond. 
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Figure S20. Time evolution of the essential hydrogen bonds for the catalytic activity of CalB in the MD 

simulations of TI-S5. The simulation with different initial velocity distribution is indicated by *. 
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Figure S21. Time evolution of the essential hydrogen bonds for the catalytic activity of CalB in the MD 

simulations of TI-S6. The simulation with different initial velocity distribution is indicated by *. 
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Figure S22. Time evolution of the Sub:H-Thr40:O hydrogen bond in the MD simulations of the TI-2 structures of 

S-propranolol in binding mode I. The simulation with different initial velocity distribution is indicated by *. The 

Sub:H-Thr40:O hydrogen bond is formed during 1347 ps, 584 ps, 1226 ps, 1 ps, 3 ps, 21 ps, 504 ps and 1163 ps in 

the MD simulations of TI-S1, TI-S1*, TI-S2, TI-S2*, TI-S3, TI-S3*, TI-S4 and TI-S4*, respectively. 
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Figure S23. Time evolution of the intramolecular hydrogen bond between the amino and naphthoxy groups of 

propranolol (Sub:H-Sub:O) in the MD simulations of TI-S5. The simulation with different initial velocity 

distribution is indicated by *. This hydrogen bond is formed during 616 ps and 492 ps in the MD simulations of TI-

S5 and TI-S5*, respectively. 
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Figure S24. Most dominant structures in the MD simulations of TI-S5 and TI-S6. These structures differ 

significantly from the starting structures. In the MD simulations of TI-S5 the naphthoxy group of propranolol is 

oriented parallel to the Leu278-Ala287 helix (helix α10). In the MD simulations of TI-S6 two configurations 

differing in the orientation of the naphthoxy group in the medium pocket of CalB are identified (TI-S6i and 

TI-S6 ii). In TI-S6i the naphthoxy group is oriented toward the interior of the pocket. TI-S6ii is generated from 

TI-S6i by rotation of the ω9 dihedral angle. 
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4. QM/MM results 

 

4.1. QM(B3LYP/TZVP)/CHARMM results for the transformation of R-propranolol in binding mode I 

 

Table S8 

QM(B3LYP/TZVP) and MM(CHARMM) energies in kcal/mol (relative to the MCC) for the transformation of 

R-propranolol in binding mode I via the TI-2 configurations ORI and ORIIa. 

Stationary Point 
 ORI 

 
ORII 

 QM energy MM energy QM energy MM energy 

MCC  0  0   0  0  

TS1  9.4 (9.4) -2.3 (-2.3)  7.1 (7.1) -0.6 (-0.6) 

TI-2  3.6  -3.1   2.3  0.9  

TS2  6.8 (3.2) -2.2 (0.9)  6.7 (4.4) -0.5 (-1.4) 

PDC  -1.8  -0.8   0.1  0.8  

a Activation barriers relative to the preceding minima are given in parentheses 

 

 

 

 

Figure S25. RMSD (in Å, with respect to the MCC) of the residues within 5 Å of the substrate at the stationary 

points along the reaction profiles of ORI and ORII: TS1 (red), TI-2 (green), TS2 (violet) and PDC (blue). Only 

heavy atoms were considered. The RMSD for the substrate and the CalB binding site is also shown. The RMSD for 

the binding site was computed considering all residues within 5 Å of the substrate. 
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Figure S26. Stationary points along the energy profile for the conversion of R-propranolol to R-acetyl-propranolol 

via TI-2 ORI. 
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Figure S27. Stationary points along the energy profile for the conversion of R-propranolol to R-acetyl-propranolol 

via TI-2 ORII. 
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Table S9 

Distribution of dihedral angles characterizing TI-2a at the stationary points along the reaction profiles obtained at the B3LYP(TZVP)/CHARMM level for the 

transformation of R-propranolol in binding mode I via the TI-2 configurations ORI and ORII. 

Dihedral (°) 

 ORI 
 

ORII 

MCC TS1 TI-2 TS2 PDC MCC TS1 TI-2 TS2 PDC 

ω1  2 10 15 -20 -26  11 22 32 -3 3 

ω2  30 34 38 6 10  17 24 28 -2 9 

ω3  -148 -150 -151 -122 -114  -117 -124 -128 -102 -110 

ω4  160 159 157 160 154  178 -179 -178 178 177 

ω5  -168 -170 -171 -176 178  94 94 94 95 94 

ω6  63 61 59 61 63  -138 -140 -140 -132 -130 

ω7  120 127 133 136 152  -65 -68 -71 -62 -63 

ω8  -170 -171 -173 -172 -177  172 174 177 168 166 

ω9  -168 -174 -176 -174 -179  -161 -164 -162 -151 -148 

a ω1-ω3 are the dihedral angles directly involved in the formation of TI-2. ω4-ω9 are the dihedral angles involving the propranolol molecule. See Figure S1. 
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Table S10 

Relevant interatomic distances and bond angles corresponding to the stationary points along the reaction profiles obtained at the B3LYP(TZVP)/CHARMM level 

for the transformation of R-propranolol in binding mode I via TI-2 configurations ORI and ORIIa. 

Distance (Å)  

ORI 
 

ORII 

MCC TS1 TI-2 TS2 PDC MCC TS1 TI-2 TS2 PDC 

Asp187:OD-His224:HND  1.74 (169) 1.66 (169) 1.54 (170) 1.57 (174) 1.66 (173)  1.83 (169) 1.75 (168) 1.67 (168) 1.62 (174) 1.69 (175) 

His224:H-SEA:Oγ  - - 2.35(129) 1.37 (170) 1.01  - - 2.40 (123) 1.36 (170) 1.02 

SEA:C1-SEA:Oγ  1.34 1.37 1.47 2.01 2.54  1.33 1.37 1.46 1.96 2.43 

His224:Nε-His224:H  1.83 (164) 1.22 (172) 1.03 1.15 (170) 1.65 (173)  1.71 (168) 1.17 (174) 1.04 1.14 (170) 1.57 (175) 

His224:H-Sub:O  1.00 1.31 1.88 (162) - -  1.00 1.34 1.69 (166) - - 

SEA:C1-Sub:O  2.46 (100) 2.07 (105) 1.53 (114) 1.37 (122) 1.33 (124)  2.49 (98) 2.05 (106) 1.56 (114) 1.37 (122) 1.33 (124) 

SEA:C1-SEA:O  1.23 1.24 1.29 1.25 1.22  1.23 1.24 1.29 1.25 1.23 

SEA:O-Gln106:NH  2.04 (145) 2.00 (154) 1.93 (165) 2.03 (153) 2.35 (141)  2.01 (149) 2.01 (157) 2.00 (166) 2.17 (158) 2.60 (149) 

SEA:O-Thr40:NH  1.90 (167) 1.87 (169) 1.79 (170) 1.94 (165) 2.13 (158)  1.87 (172) 1.80 (174) 1.73 (175) 1.76 (171) 1.84 (164) 

SEA:O-Thr40:OH  1.71 (173) 1.72 (172) 1.71 (175) 1.73 (174) 1.68 (176)  1.74 (170) 1.74 (170) 1.72 (171) 1.74 (170) 1.69 (169) 

Sub:H-Thr40:O  1.93 (167) 1.90 (166) 1.87 (167) 1.89 (161) 1.96 (157)  1.93 (163) 1.85 (168) 1.83 (168) 1.90 (174) 1.94 (172) 

a Distances are given in Å. Angles for the corresponding hydrogen bonds and the nucleophilic attack (Sub:O···SEA:C1=O) are given in degrees (in parentheses). 

See Figure 4 of the main text for conventions on the atom labels. 
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Figure S28. PES scans at the B3LYP/TZVP level along the dihedral angles of R-1-methyl-3-(1-naphthoxy)-2-

propanol. 
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4.2. QM(B3LYP/TZVP)/CHARMM results for the transformation of R-propranolol in binding mode II 

 

Table S11 

QM(B3LYP/TZVP) and MM(CHARMM) energies in kcal/mol (relative to the MCC) for the transformation of 

R-propranolol in binding mode II via the TI-2 configurations ORIII and ORIVa. 

Stationary Point 
 ORIII 

 
ORIV 

 QM energy MM energy QM energy MM energy 

MCC  0  0   0  0  

TS1  13.3 (13.3) -3.3 (-3.3)  17.5 (17.5) -1.3 (-1.3) 

TI-2  0.1  -3.9   16.4  -1.7  

TS2  2.0 (1.9) -3.8 (0.1)  21.6 (5.2) -3.3 (-1.6) 

PDC  -5.7  -3.1   9.7  -1.1  

a Activation barriers relative to the preceding minima are given in parentheses 

 

 

 

 

 

 

Figure S29. RMSD (in Å, with respect to the MCC) of the residues within 5 Å of the substrate at the stationary 

points along the reaction profiles of ORIII and ORIV: TS1 (red), TI-2 (green), TS2 (violet) and PDC (blue). Only 

heavy atoms were considered. The RMSD for the substrate and the CalB binding site is also shown. The RMSD for 

the binding site was computed considering all residues within 5 Å of the substrate. 
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Figure S30. Stationary points along the energy profile for the conversion of R-propranolol to R-acetyl-propranolol 

via ORIII. The formation of TI-2 is accompanied by the displacement of the alcohol oxygen toward the oxyanion 

hole. 
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Figure S31. Stationary points along the energy profile for the conversion of R-propranolol to R-acetyl-propranolol 

via ORIV. 
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Table S12 

Distribution of dihedral angles characterizing TI-2a at the stationary points along the reaction profiles obtained at the B3LYP(TZVP)/CHARMM level for the 

transformation of R-propranolol in binding mode II via the TI-2 configurations ORIII and ORIV. 

Dihedral (°) 

 ORIII 
 

ORIV 

 MCC TS1 TI-2 TS2 PDC MCC TS1 TI-2 TS2 PDC 

ω1  -13 -13 -12 -8 -6  1 14 19 -8 -11 

ω2  105 89 122 137 159  63 52 52 30 22 

ω3  -46 -32 -69 -71 -79  45 58 59 74 80 

ω4  138 139 153 155 154  171 157 154 147 144 

ω5  -81 -83 -83 -84 -82  176 177 177 -175 -171 

ω6  -155 -155 -147 -151 -150  -178 -176 -176 -177 -175 

ω7  171 176 168 164 159  -47 -55 -55 -57 -57 

ω8  177 172 -179 -171 -168  -100 -100 -103 -118 -114 

ω9  163 167 158 155 153  -146 -134 -129 -101 -110 

a ω1-ω3 are the dihedral angles directly involved in the formation of TI-2. ω4-ω9 are the dihedral angles involving the propranolol molecule. See Figure S1. 
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Table S13 

Relevant interatomic distances and bond angles corresponding to the stationary points along the reaction profiles obtained at the B3LYP(TZVP)/CHARMM level 

for the transformation of R-propranolol in binding mode II via the TI-2 configurations ORIII and ORIVa. 

Distance (Å) 
 ORIII 

 
ORIV 

 MCC TS1 TI-2 TS2 PDC MCC TS1 TI-2 TS2 PDC 

Asp187:OD-His224:HND  1.94 (166) 1.82 (166) 1.65 (171) 1.69 (172) 1.76 (174)  1.88 (170) 1.69 (172) 1.63 (172) 1.60 (177) 1.70 (177) 

His224:H-SEA:Oγ  - - 1.64 (173) 1.40 (175) 1.02  - - 2.37 (128) 1.38 (169) 1.01 

SEA:C1-SEA:Oγ  1.34 1.38 1.58 1.97 2.49  1.33 1.40 1.48 1.93 2.66 

His224:Nε-His224:H  1.81 (175) 1.15 (176) 1.05 1.14 (175) 1.58 (176)  1.91 (168) 1.11 (169) 1.05 1.14 (169) 1.66 (171) 

His224:H-Sub:O  1.00 1.43 3.09 (138) - -  0.99 1.47 1.69 (161) - - 

SEA:C1-Sub:O  2.61 (96) 2.07 (106) 1.44 (112) 1.38 (114) 1.34 (117)  2.73 (103) 1.87 (112) 1.55 (116) 1.39 (122) 1.33 (124) 

SEA:C1-SEA:O  1.22 1.24 1.29 1.25 1.22  1.23 1.25 1.28 1.25 1.22 

SEA:O-Gln106:NH  1.98 (146) 1.94 (154) 1.73 (166) 1.77 (160) 1.90 (156)  2.03 (152) 2.18 (163) 2.27 (168) 2.55 (161) 3.19 (152) 

SEA:O-Thr40:NH  1.96 (168) 1.99 (168) 1.83 (168) 1.86 (167) 1.89 (165)  2.04 (161) 1.89 (167) 1.85 (168) 1.93 (163) 2.25 (151) 

SEA:O-Thr40:OH  1.74 (172) 1.73 (172) 1.67 (176) 1.69 (179) 1.72 (174)  1.69 (178) 1.70 (176) 1.69 (175) 1.69 (170) 1.68 (162) 

Sub:H-Sub:O  2.74 (112) 2.64 (113) 2.47 (118) 2.40 (118) 2.47 (116)  4.57 4.48 4.42 4.36 4.47 

Sub:O-Thr40:NH  3.96 (131) 3.93 (144) 3.20 (139) 3.20 (139) 3.22 (137)  4.05 3.86 3.77 3.94 4.24 

Sub:O-Thr40:OH  3.58 (137) 3.57 (140) 2.92 (131) 2.81 (128) 2.75 (122)  4.00 3.77 3.64 3.61 3.77 

a Distances are given in Å. Angles for the corresponding hydrogen bonds and the nucleophilic attack (Sub:O···SEA:C1=O) are given in degrees (in parentheses). 

See Figure 4 of the main text for conventions on the atom labels. 
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4.3. QM(B3LYP/TZVP)/CHARMM results for the transformation of S-propranolol in binding mode I 

 

 

Table S14 

QM(B3LYP/TZVP) and MM(CHARMM) energies in kcal/mol (relative to the MCC) for the transformation of 

S-propranolol in binding mode I via the TI-2 configuration OSIa. 

Stationary point 
 OSI 

 QM energy MM energy 

MCC 

 

0  0  

TS1 13.2 (13.2) -1.6 (-1.6) 

TI-2 -2.1  2.3  

TS2 1.2 (3.3) 1.1 (-1.2) 

PDC -4.0  1.2  

a Activation barriers relative to the preceding minima are given in parentheses 

 

 

 

 

 

 

Figure S32. RMSD (in Å, with respect to the MCC) of the residues within 5 Å of the substrate at the stationary 

points along the reaction profile of OSI: TS1 (red), TI-2 (green), TS2 (violet) and PDC (blue). Only heavy atoms 

were considered. The RMSD for the substrate and the CalB binding site is also shown. The RMSD for the binding 

site was computed considering all residues within 5 Å of the substrate. 
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Figure S33. Stationary points along the energy profile for the conversion of S-propranolol to S-acetyl-propranolol 

via the TI-2 OSI. The formation of TI-2 is accompanied by the displacement of the alcohol oxygen toward the 

oxyanion hole. 
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Table S15 

Distribution of dihedral angles characterizing TI-2a at the stationary points along the reaction profile obtained at the 

B3LYP(TZVP)/CHARMM level for the transformation of S-propranolol in binding mode I via TI-2 OSI. 

Dihedral (°) 

 OSI 

MCC TS1 TI-2 TS2 PDC 

ω1  4 8 9 11 19 

ω2  113 102 153 162 170 

ω3  172 -178 141 143 144 

ω4  62 64 66 67 67 

ω5  -167 -170 177 174 171 

ω6  -65 -62 -79 -79 -79 

ω7  176 176 -180 179 177 

ω8  -88 -89 -116 -113 -108 

ω9  157 159 -172 -172 -173 

a ω1-ω3 are the dihedral angles directly involved in the formation of TI-2. ω4-ω9 are the dihedral angles involving 

the propranolol molecule. See Figure S1. 
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Table S16 

Relevant interatomic distances and bond angles corresponding to the stationary points along the reaction profile 

obtained at the B3LYP(TZVP)/CHARMM level for the transformation of S-propranolol in binding mode I via 

TI-2 OSIa. 

Distance (Å) 

 OSI 

MCC TS1 TI-2 TS2 PDC 

Asp187:OD-His224:HND  1.88 (166) 1.76 (166) 1.61 (172) 1.65 (173) 1.72 (174) 

His224:H-SEA:Oγ  
- - 1.71 (168) 1.39 (171) 1.02  

SEA:C1-SEA:Oγ  
1.33 1.38 1.59 2.03 2.44 

His224:Nε-His224:H  
1.82 (173) 1.10 (169) 1.05 1.14 (171) 1.59 (172) 

His224:H-Sub:O  
1.00 1.57 3.16 (140) - - 

SEA:C1-Sub:O  2.71 (95) 2.04 (106) 1.44 (109) 1.37 (114) 1.33 (116) 

SEA:C1-SEA:O  
1.23 1.24 1.29 1.25 1.23 

SEA:O-Gln106:NH  
1.96 (151) 1.94 (160) 1.71 (170) 1.79 (166) 1.94 (161) 

SEA:O-Thr40:NH  
2.00 (168) 1.93 (168) 1.74 (171) 1.77 (169) 1.83 (167) 

SEA:O-Thr40:OH  
1.72 (171) 1.71 (171) 1.68 (174) 1.71 (174) 1.72 (171) 

Sub:H-Thr40:O  
3.27 (126) 3.31 (117) 2.53 (141) 2.52 (142) 2.53 (141) 

Sub:O-Thr40:NH  3.91 (128) 3.76 (137) 2.92 (131) 2.93 (131) 2.97 (130) 

Sub:O-Thr40:OH  
3.76 (130) 3.61 (140) 2.88 (129) 2.90 (127) 2.95 (124) 

a Distances are given in Å. Angles for the corresponding hydrogen bonds and the nucleophilic attack 

(Sub:O···SEA:C1=O) are given in degrees (in parentheses). See Figure 4 of the main text for conventions on the 

atom labels. 
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4.4. QM(B3LYP/TZVP)/CHARMM results for the transformation of S-propranolol in binding mode II 

 

 

Table S17 

QM(B3LYP/TZVP) and MM(CHARMM) energies in kcal/mol (relative to the MCC) for the transformation of 

S-propranolol in binding mode II via the TI-2 configurations OSII-OSIVa. 

Stationary point 
 OSII  OSIII  OSIV 

 QM energy MM energy  QM energy MM energy  QM energy MM energy 

MCC 

 

0  0   0  0   0  0  

TS1 14.2 (14.2) -3.1 (-3.1)  12.4 (12.4) 2.0 (2.0)  18.0 (18.0) -2.3 (-2.3) 

TI-2 7.9  -2.7   3.1  1.7   12.7  -0.6  

TS2 14.2 (6.3) -1.8 (0.9)  7.2 (4.2) 1.2 (-0.5)  14.2 (1.5) -0.6 (0.0) 

PDC 9.2  0.7   -0.4  2.2   6.0  0.9  
a Activation barriers relative to the preceding minima are given in parentheses 
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Figure S34. RMSD (in Å, with respect to the MCC) of the residues within 5 Å of the substrate at the stationary 

points along the reaction profiles of OSII-IV: TS1 (red), TI-2 (green), TS2 (violet) and PDC (blue). Only heavy 

atoms were considered. The RMSD for the substrate and the CalB binding site is also shown. The RMSD for the 

binding site was computed considering all residues within 5 Å of the substrate. 
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Figure S35. Stationary points along the energy profile for the conversion of S-propranolol to S-acetyl-propranolol 

via TI-2 OSII. 
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Figure S36. Stationary points along the energy profile for the conversion of S-propranolol to S-acetyl-propranolol 

via TI-2 OSIII. 
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Figure S37. Stationary points along the energy profile for the conversion of S-propranolol to S-acetyl-propranolol 

via TI-2 OSIV. 
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Table S18 

Distribution of dihedral angles characterizing TI-2a at the stationary points along the reaction profiles obtained at the B3LYP(TZVP)/CHARMM level for the 

transformation of S-propranolol in binding mode II via the TI-2 configurations OSII-OSIV. 

Dihedral (°) 

 OSII  OSIII 
 

OSIV 

MCC TS1 TI-2 TS2 PDC  MCC TS1 TI-2 TS2 PDC MCC TS1 TI-2 TS2 PDC 

ω1  -3 -3 -21 -20 -34  2 -4 -17 -20 -36  12 21 4 -7 -1 

ω2  59 39 30 34 26  24 27 22 17 13  74 40 17 8 20 

ω3  43 66 73 73 76  72 71 80 85 85  54 89 105 113 106 

ω4  58 48 48 48 47  68 63 64 62 62  -77 -79 -60 -59 -59 

ω5  -169 -163 -158 -156 -153  -166 -172 -173 -166 -157  173 161 164 157 153 

ω6  -86 -87 -82 -83 -88  -163 -167 -166 -166 -165  -177 -177 -172 -170 -167 

ω7  -167 -163 -160 -158 -156  87 94 88 96 103  166 178 -180 -180 179 

ω8  -177 177 -178 -177 -176  -145 -152 -160 -166 -169  91 94 101 98 96 

ω9  -168 -159 -165 -165 -167  176 179 -175 -174 -177  62 60 63 67 70 

a ω1-ω3 are the dihedral angles directly involved in the formation of TI-2. ω4-ω9 are the dihedral angles involving the propranolol molecule. See Figure S1. 
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Table S19 

Relevant interatomic distances and bond angles corresponding to the stationary points along the reaction profiles obtained at the B3LYP(TZVP)/CHARMM level 

for the transformation of S-propranolol in binding mode II via the TI-2 configurations OSII-OSIVa. 

Distance (Å) 
 OSII  OSIII 

 
OSIV 

MCC TS1 TI-2 TS2 PDC  MCC TS1 TI-2 TS2 PDC MCC TS1 TI-2 TS2 PDC 

Asp187:OD-His224:HND 
 1.81 

(170) 
1.62 
(171) 

1.52 
(175) 

1.59 
(176) 

1.66 
(175) 

 1.98 
(168) 

1.75 
(170) 

1.58 
(176) 

1.63 
(177) 

1.70 
(176) 

 1.82 
(168) 

1.68 
(167) 

1.54 
(174) 

1.58 
(175) 

1.66 
(176) 

His224:H-SEA:Oγ 
 

- - 
1.76 
(151) 

1.20 
(167) 

1.02 
 

 - - 
1.67 
(164) 

1.33 
(172) 

1.02  - - 
1.66 
(164) 

1.41 
(171) 

1.02 

SEA:C1-SEA:Oγ 
 

1.33 1.38 1.52 1.96 2.33  1.33 1.36 1.55 1.99 2.52  1.34 1.39 1.57 1.92 2.44 

His224:Nε-His224:H 
 1.77 

(168) 
1.11 
(171) 

1.04 
1.28 
(167) 

1.60 
(168) 

 
2.11 
(147) 

1.13 
(170) 

1.05 
1.17 
(172) 

1.64 
(176) 

 
1.90 
(173) 

1.11 
(176) 

1.05 
1.12 
(171) 

1.59 
(173) 

His224:H-Sub:O 
 

1.00 1.48 
2.34 
(130) 

- -  0.98 1.45 
2.62 
(132) 

- -  0.99 1.49 
2.46 
(128) 

- - 

SEA:C1-Sub:O 
 2.75 

(100) 
2.05 
(109) 

1.49 
(118) 

1.39 
(122) 

1.35 
(124) 

 3.11 
(101) 

2.22 
(107) 

1.48 
(118) 

1.38 
(122) 

1.34 
(124) 

 2.73 
(94) 

1.98 
(108) 

1.47 
(118) 

1.38 
(122) 

1.33 
(124) 

SEA:C1-SEA:O 
 

1.22 1.24 1.28 1.24 1.22  1.23 1.24 1.29 1.24 1.22  1.23 1.25 1.29 1.25 1.23 

SEA:O-Gln106:NH 
 1.92 

(149) 
2.01 
(155) 

2.02 
(160) 

2.15 
(153) 

2.33 
(143) 

 2.07 
(148) 

2.10 
(151) 

2.06 
(160) 

2.20 
(152) 

2.59 
(137) 

 1.86 
(154) 

1.95 
(163) 

2.02 
(167) 

2.14 
(162) 

2.47 
(155) 

SEA:O-Thr40:NH 
 1.80 

(170) 
1.78 
(169) 

1.80 
(168) 

1.88 
(164) 

2.12 
(158) 

 1.95 
(168) 

1.98 
(168) 

1.87 
(170) 

1.99 
(166) 

2.33 
(158) 

 1.90 
(165) 

1.80 
(168) 

1.77 
(168) 

1.83 
(164) 

1.95 
(157) 

SEA:O-Thr40:OH 
 1.72 

(170) 
1.74 
(169) 

1.74 
(170) 

1.76 
(168) 

1.72 
(168) 

 1.73 
(174) 

1.74 
(172) 

1.72 
(175) 

1.72 
(177) 

1.66 
(179) 

 1.70 
(171) 

1.71 
(169) 

1.72 
(171) 

1.73 
(168) 

1.71 
(164) 

Sub:H-Sub:O 
 

3.89 3.89 3.82 3.75 3.72  4.33 4.51 4.43 4.38 4.30  4.19 4.32 4.71 4.70 4.69 

a Distances are given in Å. Angles for the corresponding hydrogen bonds and the nucleophilic attack (Sub:O···SEA:C1=O) are given in degrees (in parentheses). 

See Figure 4 of the main text for conventions on the atom labels. 
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4.5. QM/MM results at different levels of theory 

 

 

            

 

            

 

 

Figure S38. QM/MM energies for the stationary points along the reaction profiles of R-propranolol evaluated with 

different DFT methods in single-point calculations at the B3LYP(TZVP)/CHARMM optimized structures. 
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Figure S39. QM/MM energies for the stationary points along the reaction profiles of S-propranolol evaluated with 

different DFT methods in single-point calculations at the B3LYP(TZVP)/CHARMM optimized structures. 
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