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ABSTRACT: The vast forests and natural areas of the Pacific Northwest
compose one of the most productive ecosystems in the Northern Hemisphere. The
heterogeneous landscape of Oregon poses a particular challenge to ecosystem
models. This study presents a framework using a scaling factor Bayesian inversion
to improve the modeled atmosphere–biosphere exchange of CO2. Observations
from five CO/CO2 towers, eddy covariance towers, and airborne campaigns were
used to constrain the Community Land Model, version 4.5 (CLM4.5), simulated
terrestrial CO2 exchange at a high spatial and temporal resolution (1/248; 3 hourly).
To balance aggregation errors and the degrees of freedom in the inverse modeling
system, the authors applied an unsupervised clustering approach for the spatial
structuring of the model domain. Data from flight campaigns were used to quantify
the uncertainty introduced by the Lagrangian particle dispersion model that was
applied for the inversions. The average annual statewide net ecosystem productivity
(NEP) was increased by 32% to 29.7 TgC yr21 by assimilating the tropospheric
mixing ratio data. The associated uncertainty was decreased by 28.4%–29% on
average over the entire Oregon model domain with the lowest uncertainties of 11%
in western Oregon. The largest differences between posterior and prior CO2 fluxes
were found for the Coast Range ecoregion of Oregon that also exhibits the highest
availability of atmospheric observations and associated footprints. In this area,
covered by highly productive Douglas fir forest, the differences between the prior
and posterior estimate of NEP averaged 3.84 TgC yr21 during the study period
from 2012 through 2014.

KEYWORDS: Atmosphere–land interaction; Fluxes; Land surface model;
Biosphere–atmosphere interaction

1. Introduction
The vertical exchange of CO2 between the terrestrial biosphere and the atmos-

phere constitutes the largest, single-component flux in the global carbon cycle
(e.g., Beer et al. 2010). Spatiotemporal patterns of flux exchange display pro-
nounced variability between regions. The Pacific Northwest (PNW) of the United
States represents one of the strongest carbon sinks in North America (e.g., Law
et al. 2004; Law and Waring 2015). Accurate quantification of the magnitude of
this sink is critically important for understanding current and future carbon cycles
from regional to global scales.

Over the last decade, atmospheric inverse modeling approaches, mostly based on
Bayesian optimization, have been widely applied to constrain terrestrial biosphere
carbon fluxes, covering various temporal scales and from state to regional (Göckede
et al. 2010a; Lauvaux et al. 2012b; Schuh et al. 2013) and continental to global scales
(e.g., Rödenbeck et al. 2003; Bousquet et al. 2011; Carouge et al. 2010; Turner et al.
2013). To constrain rates of surface–atmosphere flux exchange within the target do-
main, the inverse top-down approach generally uses time series of atmospheric mixing
ratios in combination with atmospheric transport models, where a priori flux fields can
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optionally be provided by biospheremodels with different levels of complexity (Enting
2005). Top-down modeling can also serve as an independent validation for spatio-
temporal flux fields produced by biosphere process models. Linking these prior flux
fields to observed spatiotemporally corresponding observations of atmospheric CO2,
inverse modeling can provide an indispensable tool to evaluate the representativeness
of the bottom-up modeling products, many of which still fail to fully capture the
interdependent biosphere and atmospheric processes in every detail needed (Schwalm
et al. 2010; Keenan et al. 2012; Richardson et al. 2012; Lichstein et al. 2014).

Regional assessments of the terrestrial carbon fluxes are especially challenging
since they need to be nested into global scale grids that provide boundary conditions,
which accurately represent processes outside the modeling domain. Assessments need
to be made at scales appropriate for decision-making, which requires representation of
finescale processes that are usually missing from coarse-scale applications.

Our study region is ideal for the development of a modeling framework that could
be applied in other regions with a complex environment. With increased spatial
resolution, more details about the parameterized environment can be resolved by the
modeling framework, allowing one to appropriately represent finescale processes
that are usually missed in larger-scale applications. The PNW is characterized by a
highly heterogeneous landscape with finescale vegetation mosaics and pronounced
climate gradients that make the state of Oregon particularly interesting for high-
resolution modeling efforts to simulate the net ecosystem exchange (NEE) of CO2.
Turner et al. (2011) compared different approaches to estimate annual carbon bud-
gets of Oregon and found generally higher net ecosystem production (NEP) for the
top-down approach compared to a relatively simple bottom-up ecosystem process
model Biome-BGC (Biogeochemical; Thornton et al. 2005). The CO2 budgets from
the two approaches differed by more than 80%, highlighting significant differences
in results between the bottom-up and top-down perspectives.

Both modeling techniques are affected by uncertainties that make direct com-
parisons challenging. Atmospheric inverse modeling uses measurements of at-
mospheric mixing ratios of a trace gas to constrain surface fluxes of the same gas to
match those mixing ratio observations. This is achieved by linking the mixing
ratios to the fluxes through a transport model (Gerbig et al. 2003). While ac-
counting for uncertainties associated with mixing ratio observations, the transport
model, and the uncertainties of the fluxes before the assimilation (prior fluxes), the
inferred flux estimates (posterior fluxes) minimize a cost function that mathe-
matically accounts for differences between the observed and modeled values
(Enting 2005). When applied to larger regions, this method is often influenced by a
limited number of available observations and constraining information about un-
certainties that is needed for every grid cell of a model domain (e.g., Tans et al.
1996; Kasibhatla et al. 2000; Göckede et al. 2010a).

It is especially challenging to comprehensively assign accurate prior uncertainties
because the best estimate, which would allow exact error quantification by com-
parison, is what the inversion process is actually trying to derive by assimilating
observations. Options for estimating prior flux uncertainties are limited because
fluxes from eddy covariance towers are usually only available for a few sites scat-
tered over a large region. In many cases, reference flux data are not available at all for
distinct environmental conditions (vegetation cover, soil properties, and climate).
Hence, prior flux rates as well as their uncertainties need to be based on extrapolation
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of site level data through, for example, geostatistical methods or mechanistic prior
models (e.g., Michalak et al. 2004).

The accuracy of the error estimates significantly affects the outcome of any
variational data assimilation process. Therefore, accurate estimates for both the
prior model error and the error of the constraining measurements are crucial for
atmospheric inversion approaches (Enting 2005; Tarantola 2005). The measure-
ment errors and transport model errors, summarized in the so-called model–data
mismatch error matrix, therefore need to be addressed in a systematic manner.
Reference values for a direct error assessment such as calibration gases or airborne
measurements of boundary layer heights and wind fields can be used to quantify
the measurement errors. The gridded prior model results usually lack such refer-
ence values, at least for the majority of cells of a regional or global grid. More
recently, analyses used data from large research networks such as FLUXNET
(http://www.fluxdata.org and http://fluxnet.ornl.gov). The integration of such da-
tabases provides measured reference values to improve model parameterization
directly and facilitates the derivation of sound estimates of the errors of fluxes from
land models (Williams et al. 2009; Wang and Mo 2015).

Here, we apply a Scaling Factor Bayesian Inversion (SFBI; e.g., Gerbig et al. 2003;
Jeong et al. 2012) in the observation space to optimize NEE and the corresponding
annual NEP in Oregon. For the measurements of CO2 mixing ratios and fluxes, we use
an observation network of five high-precision and accuracy NOAAGlobal Greenhouse
Gas Reference Network CO/CO2 observation towers and three eddy covariance flux
systems that provide direct measurement reference values for NEE. Our prior CO2 flux
estimates were calculated with the Community Land Model, version 4.5 (CLM4.5),
with a 1/248 3 1/248 spatial resolution and 3-hourly temporal resolution. Because of
the substantial influence of the observations on posterior results, we use a combination
of Bayesian inference and geostatistical approaches including experimental semi-
variogram analyses and Kriging to systematically quantify prior model uncertainties.
To find the best compromise between aggregation errors and the degree of freedom in
the inverse system, we developed a machine-learning approach for the spatial struc-
turing of our domain. The unsupervised two-step clustering approach is based on
spatial flux patterns as modeled by CLM4.5 and information about the land surface,
soil properties, and the composition and distribution of the vegetation. Combining
these Bayesian and geostatistical approaches, we present a framework to constrain
statewide NEP with the tower infrastructure available in Oregon. Figure 1 shows the
steps in our inversion framework and how they are connected. The data and analysis
steps are presented in detail in section 2.

2. Data and methods

2.1. Tower network and atmospheric observation data

Oregon is characterized by significant micro- to mesoscale variability in climate
and vegetation characteristics. The crest of the Cascade Mountain Range creates a
pronounced precipitation gradient, roughly splitting the state into the mesic western
part, dominated by highly productive and managed Douglas fir forests, a large valley
intensively used for agriculture, and a semiarid eastern part mainly consisting of open
ponderosa pine forest and juniper–sagebrush–grass communities (Figure 2).

Earth Interactions d Volume 20 (2016) d Paper No. 22 d Page 4

http://www.fluxdata.org
http://fluxnet.ornl.gov


The locations of the observation towers (Table 1) were selected to optimally rep-
resent the distinct environmental conditions found in Oregon along a strong climate
gradient and changes of land cover. From west (wet) to east (dry), the towers are the
Mary’s Peak mountain-top tower in the Coast Range for incoming air (OMP), Douglas
fir in the Coast Range (OWA), Willamette valley crops (OSI), eastern Cascades slopes
(OMT), and the northern basin and range in the High Desert (ONG). The towers are
equipped with profile systems that measure high-precision, well-calibrated CO and
CO2 mixing ratio time series. Meteorological measurements include wind speed, wind
direction, solar radiation (total radiation, diffuse radiation, and photosynthetically active
radiation), air temperature, and relative humidity. Picarro Cavity Ring-Down Spec-
trometer (CRDS, model G2302) analyzers are employed at four of the sites for CO2 and
CO mixing ratios (Crosson 2008) and the Mature Pine site (OMT) is equipped with a
closed-path infrared gas analyzer (IRGA, model LI840). To align all observation data
with WMO standard references, measured mixing ratios are linearly corrected using
CO and CO2 calibration gases that are sampled every 50h. Because of the generally
larger sensor drift of the IRGA (Schmidt et al. 2012; Andrews et al. 2014) compared to
the CRDS analyzer, a sequence of calibration gases including a CO2-free (zero) value is
sampled every 4h at the OMT tower. Schmidt et al. (2014) present further information
about the mixing ratio measurement setup for towers with CRDS devices. Details about
the IRGA-based measurements’ setup at the OMT pine forest tower are provided by
Göckede et al. (2010a). The OMT tower is also equipped with an eddy covariance (EC)
flux system consisting of an open-path IRGA LI7500 and a CSAT3 sonic anemometer
mounted at 34m above ground, which measures fluxes above a vast mature ponderosa
pine (Pinus ponderosa) forest in the eastern Cascade Mountains (Vickers et al. 2012).
Further details on the towers and measurements can be found in appendix A.

Figure 1. Flow diagram of the framework applied in our study with the consecutive
steps needed to provide the input for the Bayesian inversion. Please see
text for details.

Earth Interactions d Volume 20 (2016) d Paper No. 22 d Page 5



Only mixing ratio data from periods with well-mixed atmospheric conditions were
used for the inversion to ensure suitable performance of the transport model. After a
first outlier removal, an additional two-step data filter was applied to avoid biases
during the inversion process that are introduced due to weakly mixed conditions in the
boundary layer. First, only mixing ratio values from 1200 to 1800 local timewere used
in this study. Using only noon and afternoon values has been applied as a basic filter

Figure 2. (a) The locations of the observation towers in the Oregon tower networkwith
the annual precipitation based on PRISM data (Daly et al. 2008) averaged
over the study period from 2012 to 2014, showing the strong climate gra-
dient. (b) The elevationmap indicates that the spatial precipitation regime is
related to orographic features. The black outlined areas mark the bound-
aries of the nine Level III ecoregions in Oregon (Thorson et al. 2003).
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criterion in related studies to ensure well-developed boundary layer conditions (e.g.,
Schuh et al. 2010; Chen et al. 2015; Wu et al. 2016; Henne et al. 2016). As a second
quality criterion, we used the vertical profile mixing ratios available at the OWA, OSI,
and ONG towers. Mixing ratio measurements were used if the difference between the
uppermost and the lowest inlet height for the 3-hourly averages was ,1ppm.

For the inversions, the mixing ratios from the uppermost inlet of each tower were
used to achieve the highest spatial representativeness of the mixing ratios and the
corresponding surface influence strength matrices, hereafter simply referred to as
footprints (Lin et al. 2003).

2.2. The terrestrial biosphere model CLM

The CLM4.5 used to calculate our prior flux estimates is the land component of
NCAR’s Community Earth System Model (CESM). CLM is a fully prognostic bio-
sphere model with respect to all carbon and nitrogen cycles of vegetation, litter, and
soil organic matter (Oleson et al. 2013). CLM was run in stand-alone mode de-
coupled from the climate model component of CESM. The downscaled MIROC5
climate data (Watanabe et al. 2010) from phase 5 of the Coupled Model Intercom-
parison Project (CMIP5; Taylor et al. 2012) were used as input for the CLM cal-
culations. The Multivariate Adaptive Constructed Analogs (MACA) method
(Abatzoglou and Brown 2012; Abatzoglou 2013) was applied to downscale the
climate data from the original horizontal resolution of the global climate models to
our model grid resolution of 1/248 3 1/248 (approximately 4 km3 4 km in Oregon).
Further details about the downscaled climate dataset are given in appendix B.

Distributions of subgrid fractional areas were assigned to individual plant
functional types (PFTs) to allow a high-resolution description of the terrestrial
biosphere in the surface parameter map and associated parameterizations. In ad-
dition to the percentage PFT distribution in each grid cell, the land surface in our
CESM CLM setup is comprehensively parameterized with characteristics includ-
ing soil composition and properties, reflectance for various bands governing the
radiation budget, reflective and thermodynamic properties of buildings and streets,
and topography (Oleson et al. 2013).

Table 1. Observation towers in the Oregon network used for this study. Sites that are
equipped with Picarro CRDS CO2/CO/H2O analyzers are marked with an asterisk (*).
Towers that provide eddy covariance fluxmeasurements aremarkedwith a plus sign
(1), and AmeriFlux towers are marked with an octothorpe (#).

Tower ID

Ecoregion preliminary
represented by
tower footprint

Canopy
height

(m AGL) Latitude Longitude
Elevation
(m ASL)

Measurement
heights
(m AGL)

OMT (US-Me2)1,# Eastern Cascades
slopes and foothills

22 44.4524 2121.5572 1253 1, 6, 10, 18, 33

ONG*,1 Northern basin and range 1.2 43.4712 2119.6909 1398 19, 29, 39
OMP* Coast Range (exposed) 0.5 44.5042 2123.5526 1249 10
OWA* Coast Range 33 44.0664 2123.6292 715 30, 50, 72
OSI*,1 Willamette valley,

western Cascades
1 44.9986 2122.6948 351 31, 51, 121, 269

US-MRf1,# Coast Range 27 44.6465 2123.5514 236 37
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Our PFT parameterization of plant traits was based on Hudiburg et al. (2013a).
Model parameters and plant physiological traits such as the fraction of nitrogen used
by RuBisCo (FLNR) were obtained from our plot data on tree species in the region
(Law and Berner 2015) and AmeriFlux A/Ci curves archived by the LeafWeb project
(Sun et al. 2014). The land-cover data were derived from the NALCMS dataset
(USGS 2013) with a spatial resolution of 250m. Soil data from SSURGO/
STATSGO2 were used to update the soil texture layer of CLM (Soil Survey Staff
2015). Soil colors were derived from Lawrence and Chase (2007). The biogenic
volatile organic compounds model was updated to the Model of Emissions of Gases
and Aerosols from Nature, version 2.1 (MEGAN2.1; Guenther et al. 2012).

The model’s major PFTs in the Oregon domain are needleleaf evergreen tem-
perate trees, broadleaf deciduous temperate trees, broadleaf evergreen temperate
trees, broadleaf evergreen shrubs, nonarctic C3 grass, and C3 crops (Bonan et al.
2002). Evergreen needleleaf species dominate the region, yet they are very dif-
ferent in climate sensitivities, so we used tree species traits from our plot data in the
region (Law and Berner 2015). We separated the physiological model parameter
set of this PFT class into three subclasses of (i) Douglas fir that dominates the
western forests in the Coast Range Mountains and is also abundant in the western
Cascades region and the Blue Mountains in northeastern Oregon, (ii) ponderosa
pine that dominates the eastern Cascade Mountain Range and also has a significant
abundance (9% of vegetation land cover) in the Blue Mountains region, and (iii)
juniper woodlands that cover a transitional zone between the pine forest and the
semiarid grass and shrubland areas in southeastern Oregon, where geographic
characteristics of the northwestern Great Basin dominate the landscape and
vegetation (Figure 2). Southeastern Oregon also exhibits areas with significant
juniper coverage, particularly at the higher elevations of the Steens Mountain
Wilderness area.

As a detailed mechanistic model, CLM4.5 aims to describe the physical and
physiological processes involved in the terrestrial carbon cycle as realistically as
possible. Each PFT is described by a set of 122 specific parameters (CLM release
4.5.1_r119). This complexity comes at a cost: the high number of parameters makes it
increasingly difficult to improve results by refining selected single algorithms or pa-
rameters because many interdependencies exist between the environmental, climato-
logical, and physiological functions simulated in the model. On the other hand, this
complexity makes CLM4.5 a well-suited candidate for coupling with atmospheric top-
down approaches because it covers many details that cannot be constrained through
inversions. At the same time, the top-down inversion imposes bulk scaling factors to
nudge net fluxes and appears to be the best way to improve the large-scale repre-
sentativeness of biosphere fluxes of CO2 as modeled by CLM4.5. In addition to
quantifying the terrestrial carbon budget better by inferring corresponding atmospheric
measurements, posterior results can also be used to discover weaknesses of complex
mechanistic models like CLM and to improve parameterizations or algorithms.

2.3. Atmospheric transport model setup

We used the Stochastic Time-Inverted Lagrangian Transport (STILT) model to
calculate the sensitivity of measured CO2 mixing ratios to the gridded NEE over the
derived tower footprints (Lin et al. 2003; Nehrkorn et al. 2010). The 4Dmeteorological
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fields used in STILT were calculated with the Weather Research and Forecast Model
(WRF) in the Advanced Research WRF (WRF-ARW, version 3.7 (Michalakes et al.
2001). For the WRF boundary conditions, we used the NCEP Final (FNL) operational
global analysis data with 18 horizontal resolution and a 6-hourly temporal resolution,
respectively (Kalnay et al. 1990) for 27 vertical levels. The NCEP FNL is produced
using the Global Data Assimilation System (GDAS), which continuously collects
observational data from various sources. The NCEP FNL data include variables that
are used as boundary conditions for the outer WRF Model domain and STILT me-
teorological drivers (e.g., surface pressure, geopotential height, temperature, sea sur-
face temperature, soil values, ice cover, relative humidity, u and v winds, and vertical
motion). A domain setup with three nested grids (18-, 6-, and 2-km resolution) was
used for the WRF runs, with the highest-resolution grids centered on the towers to
improve representation of the near-field emissions in the footprints.

The WRF output time step was chosen at 10-min resolution to serve as input for
the coupled Lagrangian particle dispersion model. WRF Model physics followed
the settings in Göckede et al. (2010a). The number of particles released at the
receptor points in STILT was set to 500 for the backward trajectory calculations,
and particle trajectories were simulated for 72 h backward in time. The WRF–
STILT trajectories were used to derive the tower footprints and the initial inflow
mixing ratios of CO and CO2 (background). We applied boundary conditions that
were specifically provided by NOAA ESRL for the Pacific coast region (see section
2.5.2.1 and appendix C for more details).

2.4. Bayesian inversion framework

An SFBI procedure was applied to optimize NEE fluxes by minimizing the cost
function as described in Tarantola (2005) or Enting (2005). To account for sub-
seasonal changes in meteorological conditions and corresponding variations in
soil–plant uptake and release of CO2, we calculated monthly scaling factors for 27
distinct zones (see section 2.4.1 for description of spatial aggregation) for the 3-yr
study period using a 3-hourly temporal aggregation interval for the mixing ratios
and fluxes. Findings from an earlier study (Göckede et al. 2010b) guided the se-
lection of a 3-hourly temporal aggregation step. A 3-hourly aggregation interval
provides a high enough resolution to account for strong diurnal changes in fluxes
and mixing ratio signals, while avoiding biases in the inversion results caused by
high-frequency variability in observations that cannot be resolved adequately by
the transport model or the biosphere model. In the Bayesian inversion process, the
CO2 fluxes F are linked to the measured mixing ratios y through the Jacobian
transfer matrix K, as given in the fundamental Equations (1) and (2):

y5Kl1 e, (1)

with

K5HF. (2)

Here,H is the actual footprint matrix, l is the vector containing the scaling factors,
and e is the error vector accounting for uncertainties in the measurements and
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errors unrelated to the actual mixing ratio measurements, particularly transport
model errors (e.g., Gerbig et al. 2003; Enting 2005; Zhao et al. 2009). SFBI is an
observation space–based formulation of a variational data assimilation approach
that minimizes the cost function J [Equation (3)] to find the best agreement be-
tween modeled fluxes and mixing ratio observations considering the assigned
uncertainties of prior fluxes and model–data mismatch:

J(l)5 (y2Kl)TR21(y2Kl)1 (l2lprior)
TQ21(l2lprior). (3)

The measurement vector y contains the observed CO2 mixing ratios after sub-
traction of advected background and fossil fuel emissions. Thus, the mixing ratios
in y give only the portion of CO2 associated with the uptake and release by the
terrestrial biosphere. In Equation (3), the matrix R gives the model–data mismatch
covariance matrix and Q gives the error covariance matrix for the optimized
scaling factors in l. The prior scaling factors lprior are set to 1. The posterior state
vector lpost with the monthly scaling factors is then given by

lpost5 (KTR21K1Q21)21(KTR21y1Q21lprior). (4)

Overall, 918 scaling factors for NEE were optimized (27 aggregated areas 3 34
months of atmospheric observations). Elements of the error covariance matrix Q
were calculated using a combination of EC data comparisons and geostatistical
approaches as described in section 2.5.1.

The posterior error covariance for lpost is given by

Vlpost 5 (KTR21K1Q21)21 (5)

and can be used to quantify the reduction of the uncertainty in l achieved through
the inversion process. The model–data mismatch matrix R was calculated as a
diagonal matrix representing the total variance associated with all error sources as
shown in Gerbig et al. (2003), Göckede et al. (2010b), or Jeong et al. (2012), for
instance.

Partitioning of the domain and aggregation in the inverse framework

Most atmospheric Bayesian inversions are limited by data availability from the
atmospheric mixing ratio monitoring network, that is, the total number of ob-
servations and number of observation sites. As a consequence, the degrees of
freedom in the constrained flux fields need to be reduced to avoid equifinality
effects as well as implausible results for parts of the model grid with low data
availability.

One approach is to apply aggregation to reduce the degrees of freedom (e.g.,
Bocquet et al. 2011). Multiplying the 25 920 grid cells (216 east to west 3 120
north to south) distributed over our entire model domain with the number of time
steps (2920 yr21 at 3-h resolution) results in over 75 million fluxes to be solved by
the inversion. With five available measurement locations for atmospheric CO2

mixing ratios and the diminishing source weight of the tower footprints with in-
creasing distance from the tower, there is not enough information from the
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atmospheric monitoring network to constrain the fluxes sufficiently using a pixel-
based inversion. Accordingly, we use spatial aggregation to arrive at meaningful
inversion results. However, this aggregation should target the best compromise
between retaining crucial details in surface structure while taking into account the
information content from the available tower observations.

When aggregating to larger areas in order to retain sufficiently homogeneous
land surface units, caution is needed to limit averaging and aggregation errors
(Kaminski et al. 2001; Engelen et al. 2002; Göckede et al. 2010a; Turner and
Jacob 2015). One important aspect is the choice of an appropriate spatial ag-
gregation of the fluxes or, as in our case, their respective scaling factors as-
sembled in the state vector that is to be optimized. If the state vector is
aggregated and adjusted over areas that are too large, the finescale heterogeneity
of the fluxes causes averaging errors and the fluxes are not representative for the
vegetation and soil types in the assigned areas. Yet, if the spatial resolution of
the fluxes is too fine, the number of degrees of freedom becomes large and
jeopardizes the ability of the limited observations to sufficiently constrain the
state vector.

Different approaches have been applied in related atmospheric inversion
studies to address and limit the aggregation error that is generally difficult to
quantify exactly (e.g., Kaminski et al. 2001; Engelen et al. 2002; Thompson et al.
2011; Wu et al. 2011). Spatial aggregation areas for the state vector were found
using very different approaches including predefined classifications of surface
types based on, for example, ecoregions and land-cover classes (e.g., Göckede
et al. 2010a) or statistical methods such as principle component analyses or
Gaussian mixture models in combination with radial basis functions (Turner and
Jacob 2015).

Here, we apply a data-driven approach for the spatial structuring of our do-
main that was informed by an unsupervised clustering approach to find the best
compromise between aggregation errors and the degrees of freedom in our in-
verse system. Based on the percentage distribution of the PFTs, soil properties
(amount of organic matter, sand/clay/silt composition), foliar traits, the proba-
bility densities of monthly prior flux estimates in the model domain, and the
spatial assignments of grid cells to the nine Omernik Level III ecoregions in
Oregon (Omernik 1995; Thorson et al. 2003), a self-organizing map neural
network (SOM; Kohonen 2001) with 256 nodes arranged in a 163 16 hexagonal
neuron grid was used to cluster the model grid cells for spatial flux aggregation.
The SOM grid cell groups were further aggregated into the final areas by a
subsequent k-means clustering (e.g., MacQueen 1967; Jain et al. 1999) with
1000 iterations and 50 replicate runs, each using varying initial cluster centroid
positions. In contrast to classical clustering approaches, this two-step approach
not only updates the winning neurons (cluster centroids) during the SOM
learning phase but also their neighbors in a defined range. Its neural inter-
connectivity gives the SOM a better ability to recognize similarities of high
dimensional datasets with smooth boundaries in variable space (e.g., Vesanto
and Alhoniemi 2000; Clare and Cohen 2001; Schmidt et al. 2011). To unam-
biguously distinguish the derived areas from the USGS ecoregion classification,
we hereafter refer to our aggregation areas as ecological feature zones (EFZs).
Each EFZ exhibits strong homogeneity in terms of PFT distribution, soil
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properties, and (prior) CO2 flux patterns. The monthly scaling factors are opti-
mized for each EFZ specifically.

2.5. Error assessment for the inverse framework

2.5.1. Prior error covariance matrix

The primary data source to constrain prior flux errors in this study were time series
of surface–atmosphere exchange fluxes provided by eddy covariance sites within the
target domain. We calculated the prior flux uncertainty for each grid cell, represented
by the diagonal elements of Q, based on the residuals between 3-hourly modeled
values of NEE and EC flux tower data. Long-term data series of continuous and
quality-checked turbulent flux measurements are available at three locations in our
domain and represent the Douglas fir forests in the Coast Range (US-MRf), the
shrubland and grassland areas of the Oregon High Desert region (ONG), and the
eastern Cascade Mountains dominated by ponderosa pine forests (OMT; see also
Table 1). EC measurements were available throughout the study period at the ONG
tower and the OMT tower, but EC measurements at the US-MRf tower were only
available until 2011. Hence, we used residuals for 2010 and 2011 to derive prior
model errors and applied those to our study period. For all three EC tower sites,
maximum differences between measured and modeled NEE fluxes were found for
the main growing season (June to October), whereas minimum differences were
found during fall and winter months (November to May). The standard deviation
of the residuals exhibit values from 2.43 to 4.79mmolm22 s21 at the ONG High
Desert shrubland/grassland tower, 2.12 to 5.78mmolm22 s21 at the OMT tower in
the eastern Cascades pine forest, and 3.20 to 7.61mmolm22 s21 for the US-MRf
tower in the northwestern mesic Douglas fir forest region.

Generally the model underestimates carbon uptake in summer and underesti-
mates respiration (positive NEE) that dominates the average net exchange during
fall and winter. This especially applies to the grass and shrubland areas in the High
Desert region, where the measured respiration exceeds the prior monthly respira-
tion values by about 11% (average of October–January over all 3 years). The
residuals were assigned in quadrature to the diagonals in Q to quantify the error
variance and applied to all cells that exhibit a similar combination of PFTs as those
of the EC sites in the model grid.

Although often used to quantify the model error, measured NEE fluxes are not
necessarily the ‘‘true value’’ sought after, but the direct measurement of NEE offers
the most straightforward estimate to quantify the initial error variance or covari-
ance values, respectively. To account for errors of the EC measurements used to
populate Q, we propagated an average error of 10%, including an instrumental
error component and a random error component for the EC measurements of NEE.
This average error is based on 10 years of flux tower comparisons with a portable
AmeriFlux QA/QC laboratory reference system, covering 84 intercomparisons at a
range of sites and environmental conditions in North America (Schmidt et al.
2012). This increases the prior error variance, shifting the weighting of the pos-
terior state vector further toward the observational data. The error covariance
values in Q for EFZs with no corresponding EC flux data were estimated by
applying the universal Kriging method (Cressie 1993).
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Because direct comparison of EC flux data and model output for error estimation
can only be implemented for the footprint area of three flux sites within the model
domain, an extrapolation procedure needs to be designed to fill the entire Qmatrix
diagonal. Error covariance values for the matrix Q are often estimated based on
available spatial information such as vegetation cover maps in combination with
averaged correlation length, usually assuming an isotropic exponential decay of
error correlations with distance (e.g., Michalak et al. 2004; Lauvaux et al. 2012b).
This approach allows the estimation of flux uncertainties for sections of the model
domain for which no reference values from EC measurements are available.
Kriging interpolation has been applied successfully in the context of terrestrial CO2

concentrations to be used for atmospheric inversions by detecting and utilizing
spatial variance patterns of CO2 (Hammerling et al. 2012). The method assumes
that spatial patterns in NEE correspond to spatial patterns in associated flux errors.
Hence, spatial variance patterns of prior NEE values derived from a semivariogram
were projected on the corresponding error variances to fill the missing diagonal
elements of Q by a subsequent Kriging procedure. This geostatistical approach
allows estimating prior error values for all EFZ classes based on available flux
residuals (measured NEE–prior model NEE).

An experimental semivariogram over the annual prior NEE from 2012 to 2014
was calculated for the high spatial resolution of the 1/248 3 1/248 model grid.
Generally, a semivariogram gives the variance of the residuals between variables
at two locations, thereby quantifying the relation of spatially distinct variables
with distance and, in case of an anisotropic semivariogram, with direction
(Cressie 1993). The maximum correlation distance between prior fluxes at dif-
ferent locations was found to be about 100 km, where the semivariogram func-
tion converges at its sill (Figure 3a). In addition to the isotropic semivariogram,
we also calculated a directional semivariogram. For the directional analysis the
distance-dependent variance was calculated for 158 angular sections separately
(Cressie 1993; Cressie and Wikle 2011). The result shows a maximum difference
of 24% in the gradients of the variance as a function of distance for different
directions (Figure 3b). Therefore, universal Kriging was applied for the geo-
statistical interpolation, as the universal algorithm not only accounts for changes
in variance due to a changing distance between points but also considers changes
as a function of direction. Detailed descriptions of the various Kriging methods
can be found in, for example, Cressie (1993), Stein (1999), or Hengl (2007). To
fit the experimental semivariogram to a theoretical semivariogram, as needed for
the spatial interpolation with Kriging, an exponential variance decay model
(McBratney and Webster 1986) was found to describe the observed semivario-
gram best (Figure 3a).

Based on the theoretical semivariogram calculated from the prior NEE esti-
mates in combination with the error variances known from the available EC
stations, the spatial Kriging interpolation algorithm assigned error variances to
all cells of the model grid. The error variance values were then averaged for each
EFZ to populate the diagonal elements of Q for each month. The off-diagonal
elements of Q were assigned by averaging over grid cells that correspond to a
given combination of EFZs. The final error variances and covariance values of the
prior state vector range between 19% and 54%, depending on the associated EFZ
and month.
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2.5.2. Assessment of observational errors

The elements Ri of the diagonal model–data mismatch matrix R [Equations (3)
and (4)] are composed of several portions that add to the total observation error,
including error values in the form of variances associated with the transport model
[Equation (6)]. Here, we follow the method and notation introduced by Gerbig
et al. (2003), where each element in R is given by the sum of the error variances of
its components:

Ri5 Sveg1 Spart1 Stransp1 Saggr1 Socean 1 Seddy. (6)

The term Sveg represents the error of the CO2 signal associated with the biosphere
and consists of Smeas, which is associated with the mixing ratio measurements at the

Figure 3. Semivariogram results for the NEE values of the 4-km resolution grid
showing the spatial correlation with distance h. (a) The sill at h� 100km is
clearly visible in the isotropic semivariogram (circle markers); the spatial
correlation of the CO2 fluxes is closely approximated by the theoretical
semivariogram (blue line). (b) The directional semivariogram with an
angular tolerance of 158 shows slight directional heterogeneities in the
distribution of spatial variance patterns. The color scale corresponds to
the value on the g axis and only serves a better visibility.
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towers; Sff, which is associated with the fossil fuel emissions; and Sbg, which is
contributed by the background concentration values. The Spart accounts for the
uncertainty introduced by simulating atmospheric transport processes at a certain
tower location with a limited number (500 in our case) of particle trajectories based
on a stochastic model (STILT); Stransp gives the error that is associated with the
transport model, including errors in the height of the planetary boundary layer
(PBL) and errors in the wind field, and determines how well the mixing ratios at the
towers can be linked to the surface fluxes by the transport model; Saggr is the
aggregation error; Socean gives the error from CO2 fluxes over the ocean that are not
captured by the terrestrial land model; and Seddy represents the error from contri-
butions of eddies unresolved in the model. The error components and assessment
methods are described in detail below.

2.5.2.1. Biospheric CO2 signal error Sveg. The first component of Sveg is the error
of the actual CO2 mixing ratio measurements Smeas. This includes the instrument
uncertainty, the uncertainty added for water vapor correction when calculating dry
mixing ratios, the uncertainty of calibration gases used for the linear regression
correction of the raw measurement values, and the uncertainty of the WMO pri-
mary standard gas cylinders provided by the Central Calibration Laboratory at
NOAA, which served as final long-term reference after calibration (Schmidt et al.
2014). More information on the calibration procedure is given in appendix A.
Measurement uncertainties differ slightly between the various measurement sys-
tems with values ranging from 0.16 to 0.21 ppm for the five observation towers.

The second component contributing to Sveg is the uncertainty of the advected
background mixing ratios Sbg that were removed from the tower measurements to
assign observed changes in CO2 solely to the biosphere. Daily background mixing
ratios of atmospheric CO and CO2 are spatially arranged in a curtain covering a
height profile from 500 to 6500m with a latitudinal resolution of 18. The background
mixing ratios also have an error estimate assigned specifically for each time, height,
and latitude. The RMSE values are based on the residuals of the data used to con-
struct the boundary curtains. A description of the methodology used to create the
background product provided by NOAA ESRL can be found in Jeong et al. (2013).

The CO2 background values at the tower locations in Oregon were calculated as
an average of the CO2 background mixing ratios at the latitude that the 500 re-
leased particles crossed at the end of their STILT backward trajectories. Accord-
ingly, the average RMSE values were used to assign the uncertainty error for the
background values calculated at the towers (Table 2). The calculated error
variances Sbg (squared RMSE) for the study period range from 0.49 ppm to
maximum values of 3.67 ppm, depending on date and tower location. More
details about the calculation of the background mixing ratios at each tower are
given in appendix C.

The third component of Sveg is Sff, the uncertainties introduced by anthropogenic
fossil fuel emissions that are not already considered in the large-scale background

Table 2. RMSE ranges for the modeled background mixing ratios.

ONG OMT OMP OSI OWA

RMSEmin (ppm) 0.710 0.698 0.701 0.721 0.702
RMSEmax (ppm) 2.076 1.863 2.024 2.109 2.164
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product but originate from regional and local emissions. In our study domain
anthropogenic emissions are dominated by few isolated, larger urban areas in the
Willamette valley. We developed an approach to sufficiently remove the traffic-
related portion of CO2 as the most important anthropogenic source of CO2 in
Oregon [Oregon Department of Environmental Quality (ODEQ) 2015] using
CO:CO2 emission ratios measured during a mobile campaign in 2012 in combi-
nation with mixing ratios data measured at the OSI tower (Schmidt et al. 2014).

The fossil fuel offsets were removed using the CO:CO2 ratios from road traffic
sources after removing a baseline from the observations. The use of CO as a
combustion tracer and for inverse model studies was successfully demonstrated in
previous studies (e.g., Gerbig et al. 2003; Vardag et al. 2015). In contrast to the four
other observation towers that are located in rural and remote regions, regional and
local anthropogenic emissions of CO2 significantly affect the measured mixing
ratios at the OSI tower that represents the large Willamette valley ecoregion.
Following Schmidt et al. (2014), we used the measured COmixing ratios as a tracer
for the corresponding CO2 emission offset in combination with a weight factor
based on the composition of all fossil fuel–related CO2 emissions in Oregon. This
method was applied at all towers and resulted in an additional uncertainty of
0.86 ppm.

2.5.2.2. Stochastic particle dispersion error Spart. The Spart was statistically
quantified by repeating the STILT runs with unchanged model settings for the five
towers and 1 year (2013) with 3-hourly time steps 50 times. Because of the sto-
chastic nature of the error and the error assessment method, it is assumed that this
error does not change significantly over the years. The RMSE of the modeled CO2

mixing ratios was calculated for all towers and all runs and averaged 0.56% of the
total modeled CO2 concentration, including the background level and anthropo-
genic fossil fuel emission offset leading to values for the Spart-related component of
2.04 to 2.38 ppm.

2.5.2.3. Transport model error Stransp. Flight data were used to calculate the
transport model error components of Stransp, which are a composite error including
errors of the modeled PBL height as well as errors of the modeled wind field. Seven
profile flights at each tower location conducted from spring 2012 through the end
of 2014 were used to compare the height of the planetary boundary layer as
modeled by WRF 3.7 to the values derived from the airborne measurements.
Observations were acquired from a modified Mooney TLS (M20M) aircraft
equipped with a Picarro CRDS and meteorological sensors. The profile flights
spiraled around the tower locations with the radii of the flight routes reaching
distances from 0.2 to 2 km from the towers. Profiles were flown covering heights
from about 200 to 3300m above ground. Flight data during late fall and winter
months (November–February) were not available. The flight routes between towers
provide data for comprehensive sections through the model domain for the com-
parison of measured and modeled PBL height, wind speed, and wind direction. The
airborne mixing ratio measurements show a strong mesoscale spatial variability of
the tropospheric CO2 across the entire horizontal extent of the domain. Never-
theless, clear spatial patterns persisting over longer flight segments were observed
with relatively steady mixing ratios (s2 , 2 ppm) that correspond to vegetation,
topography, and temporally established atmospheric layers (Figure 4).
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The PBL height was derived from the strongest vertical gradients (10th per-
centile of gradients) of three meteorological variables (virtual potential tempera-
ture, relative humidity, and wind direction) and the mixing ratios of CO2 and CH4

measured during the profile flights at the tower stations. An automated routine was
applied to derive the PBL height estimates in a systematic and reproducible manner
(Figure 5) instead of using visual inspection that is more prone to subjective de-
cisions (Shaw et al. 2007; Schmid and Niyogi 2012). If a strong absolute gradient at
a certain height was detected for at least three out of the five variables, we chose
this point as the best PBL height estimate (Figure 5b). In cases where a strong

Figure 4. Flight routes with corresponding longitude (x axis) and latitude (y axis) for
the CO2 and profile flights during (a)–(c) 2012, (d) 2013, and (e),(f) 2014.
Mesoscale spatial patterns that correspond to the land cover, topogra-
phy, and atmospheric layers are noticeable. One flight conducted in April
2013, which was also used for the transport error assessment, covered a
much smaller area within theWillamette valley only and is not shown here.
The black point markers indicate the CO2 observation tower locations
where profile flights were conducted.
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Figure 5. (a) Airborne measurements and (b) the corresponding vertical gradients
used to derive the boundary layer height systematically for the exact and
reproducible calculation of the transport model error components. The
exemplary flight data shown were recorded during a profile flight at the
OSI tower on 9 Apr 2014. The red circles mark the peaks of the gradients of
each variable detected by the automated algorithm. The dashed red
rectangle marks the height where a peak in all gradients was detected
(for details see text).
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vertical gradient was observed at more than one height with the same number of
variables, the lowest of those heights was chosen as the PBL height following the
theoretical definition of the PBL height (e.g., Seidel et al. 2010). The duration of
the profile flight sections was 3 to 6min. This campaign setup provides a localized
average of the PBL, which spatially and temporally represents the corresponding
point in space and time in the nested WRF Model domain (Figure 6).

Because only noon to afternoon mixing ratios were used for the inversion pro-
cess, we only considered measured and modeled PBL heights during well-mixed
conditions at noon to afternoon for the comparison with clearly visible vertical
gradients of the meteorological variables. In particular, we used data with the air
temperature decreasing vertically by 0.3K (100m)21 or more. No systematic
differences of errors among observation sites were observed based on a x2 test and
a 90% significance level. After comparison with the aircraft observations, we found
an RMSE of 98.81m corresponding to an average deviation of 8.1%.

To propagate the error into the sum of variances that build the diagonal elements
of the model–data mismatch matrix R, we calculated the CO2 mixing ratios using
both the CLM (prior) fluxes and the footprints from the transport model incorpo-
rating the perturbations in the PBL heights (Gerbig et al. 2008; Jeong et al. 2012).We
used a random error of 10% as a conservative value taken from the deviations of the
modeled heights to the airborne measurements (Figure 6). The CO2 mixing ratios
that were inversely calculated using the footprints and the original WRF results were

Figure 6. Comparisons of PBL heights during well-mixed conditions derived from
seven profile flights conducted from 2012 through 2014 to the temporal
and spatially corresponding modeled values from WRF 3.7 at the five
tower locations. After using a Kolmogorov–Smirnov test, the differences
(i.e., errors) of the remaining afternoon values were found to be normally
distributed on a 95% confidence level.
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compared with the mixing ratios calculated with the PBL heights randomly changed
by 10% in both directions but leaving all other settings such as the modeled fluxes
and the WRF wind components unchanged. We calculated monthly values for each
tower to derive the transport error component of Stransp associated with the PBL
height. Following this approach, the estimated uncertainties ranged from 0.77 ppm to
a maximum value of 1.7 ppm depending on location and month.

We derived errors for the two wind velocity components u and y as calculated by
WRF and used in STILT by simply decomposing the wind velocities measured during
the flights. To compare measured values with the WRF estimates, we calculated
1-min averages of the airborne wind velocity, direction, and location when the dis-
tance was within a 500-m radius of a 3D grid cell within the 2 km 3 2km nested
WRF domain, and no significant changes of altitude occurred during the averaging
interval. We restricted the values used for the comparison to mean values with
standard deviation equal to or less than 25% of the average of velocity and direction
to further account for the effects of continuously changing measurement locations
during the flights on fluctuations of windmeasurements. This ensures the stability and
representativeness of the measurements that were compared to the corresponding 3D
grid cell values in the WRF domain. This left 224 data records available for the
model–data comparison of the wind field. The stochastic error components of u and y,
respectively, were then propagated through STILT following the procedure as first
described by Lin and Gerbig (2005). This yielded mixing ratio variations of 0.43 to
1.72 ppm caused by the error of the transport wind field, which corresponds to 4.7%
to 19.1% of the vegetation signal of the mixing ratios used for the inversions.

2.5.2.4. Aggregation error Saggr. The aggregation error Saggr originates from
optimizing fluxes of aggregated areas. The aggregated fluxes do not resolve the high
resolution of flux patterns of the original prior flux model and therefore introduce an
additional uncertainty; Saggr was estimated by calculating the RMSE between the
1/248 3 1/248 resolution NEE and the corresponding aggregated NEE values (Gerbig
et al. 2003; Zhao et al. 2009) and applied to the model–data mismatch matrix for
each EFZ and each month leading to a mean aggregation error of 5.9%.

2.5.2.5. The error components Socean and Seddy. The influence of neglected CO2

exchanges over the Pacific Ocean and the corresponding uncertainty contribution
Socean is considered very small because the model domain only covers a small section
of ocean at its western boundary (Figure 7). Moreover, the NOAA background
product provides values specific for the Pacific Ocean coastal region, including large-
scale influences of the ocean on the mixing ratios. Hence, we set Socean to a fixed value
of 0.1 ppm following Göckede et al. (2010b), whose model domain had a similar
extent. We also adopted their corresponding value of 0.5 ppm for the error component
that accounts for eddies that cannot be resolved by the WRF–STILT model (Seddy).

2.5.3. Removing periods with fire emissions from observation data

Temporary yet potentially large biases introduced by CO2 emissions from biomass
burning need to be avoided. Thus, fire events were excluded by combining time and
location of wildfires in the Monitoring Trends in Burn Severity (MTBS) database
with temporally corresponding tower footprints. With 72-h backward trajectories for
the transport model, we assume that all fires that potentially could have affected the
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measurements at the tower were excluded. Offsets associated with large-scale syn-
optic transportation are incorporated in the large-scale background values that were
subtracted. Furthermore, CO mixing ratios that serve as a tracer for emissions from
biomass burning (e.g., Pechony et al. 2013) were used as an additional measure to
ensure that the mixing ratio data were not affected by fire emissions. We applied a
data filter with a 3-day moving window and removed data periods with peak values
of CO . (mean 1 3s) from the data used for the inversions.

The MTBS database provides information about wildfire events, including date,
location, extent, and burn severity (Eidenshink et al. 2007). Most fires that affected
tower observations occurred in the dry eastern Cascades and foothills, the High
Desert region, and the eastern Blue Mountains. Tower measurements were affected
by wildfire events or prescribed fires on 56 days during the study period (Figure 7).
Periods when fire emissions affected the tower footprint areas were excluded from
the inversion calculations, totaling 69 observations during 3-hourly periods.

3. Results and discussion

3.1. Aggregation results for Bayesian framework

Using the results of the machine-learning clustering procedure presented in
section 2.4.1, the optimal number of aggregation areas was obtained by finding the

Figure 7. Map with fire events recorded by MTBS during the study period for which
the mixing ratio data were excluded for the inversion. The black rectangle
marks the boundaries of the Oregon model domain.
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minimum of the Davies–Bouldin validity index IDB (Davies and Bouldin 1979;
Maulik and Bandyopadhyay 2002). The IDB accounts for the within-cluster dis-
tances between each cluster member and the center of the respective cluster as well
as for the distances between the cluster centers, minimizing the first while maxi-
mizing the latter.

A stable minimum was reached for 27 clusters that represent our aggregated
homogeneous areas for optimizing the fluxes. Some of the spatial clusters in-
corporate areas that are close simply in terms of their relative geographical lo-
cations corresponding to the ecoregion classification. Other EFZ clusters,
however, are composed of areas that are not necessarily spatially close but similar
in terms of their physical properties and traits accounted for during the clustering
process.

To account for seasonal effects on the fluxes and mixing ratios, while also
retaining a sufficient number of 3-hourly measurements to be incorporated in the
inversion process, we calculated transient scaling factors for monthly intervals,
resulting in 918 scaling factors (34 months 3 27 EFZs) for modeled NEE. Due to
low data availability, scaling factors for the first two months of 2012 remain 1 for
all EFZs. Accordingly, the uncertainties (Figure 8) represent prior values for those
months. Because NEE is small during winter months, the effect on the annual
budget for 2012 is negligible. The calculated scaling factors lpost ranged from
0.795 to 1.484, depending on EFZ and month. Figure 8 shows the scaling factors

Figure 8. Averaged scaling factors for the study period. The red area represents the
posterior uncertainty (1s). For the first two months the red area corre-
sponds to the prior uncertainty range.

Earth Interactions d Volume 20 (2016) d Paper No. 22 d Page 22



averaged over all 27 EFZ and the corresponding average posterior uncertainty for
each month.

3.2. Posterior fluxes and uncertainties

Posterior uncertainties, as quantified through the assigned posterior error co-
variance matrix [Equation (5)], vary among EFZs and time periods. The distri-
bution scaling factor uncertainty reduction directly reflects the location and amount
of available data. Hence, the greatest reduction of uncertainty from a 34-month
average of 30.4% (prior) to 11% (posterior) was achieved for western Oregon
including the Coast Range and the Willamette valley ecoregions where three
towers (OWA, OSI, and OMP) are located, providing a strong footprint coverage
associated with high measurement data density over time. The posterior uncer-
tainty for all 3 years and EFZs averages 29% (Figure 8) and was reduced by 28.4%
through the inversion process. The overall reliability of our posterior flux estimates
was significantly improved compared to the prior estimates.

After optimizing the CLM4.5 NEE values for each grid cell assigned to its
corresponding EFZ and monthly scaling factor, the statewide NEP averages
29.7 (68.86) TgC yr21 over the 3 years, indicating that the vegetation of the state
acted as a strong carbon sink. The statewide NEP was higher than previous forest
estimates averaged over multiple years from inventory data (15.2 6 1.6 TgC yr21,
1990–2001; Law et al. 2013), Biome-BGC (17.0 6 10 TgC yr21, 1990–2001;
Turner et al. 2007), and CLM4.0 (12.8 TgC yr21, 2001–06; Hudiburg et al. 2013b).
Although our estimates include all land-cover types in the state, forests account for
a majority of the total NEP. Both periods included drier than normal years, and
2001–03 reduced NEP by ;40% (Thomas et al. 2009).

The average difference between the prior and posterior annual estimates from
2012 to 2014 was 7.16 (6 1.55) TgC yr21. This corresponds to a 32% increase in
net uptake of CO2 after the inversion. The results show that the west–east gra-
dient of the CO2 sink strength (positive values for NEP) is more pronounced in
the posterior results compared to the model priors (Figure 9). Changes are
dominated by increased NEP values in the western part of the state, whereas
binned areas with a strong reduction of the annual NEP are limited to small patches
in southeastern Oregon. The 3-yr average NEP was highest in the highly productive
forests of the Coast Range, Cascades, and Klamath Mountains (9.236 1.26, 6.456
1.99, and 4.45 6 1.99 TgCyr21) and moderate in the croplands of the Willamette
valley and semiarid eastern Cascades (2.81 6 1.00 and 2.48 6 1.48 TgCyr21). It
was lowest in the dry grasslands of the Columbia Plateau and the shrublands of the
northern basin and Snake River Plain (0.81 6 0.31, 0.72 6 0.29, and 0.19 6 0.13
TgCyr21), areas that located in the rain shadow of the Cascade Mountains in the
west.

The relative ranking of NEP is more consistent with the observed spatial gra-
dient of net primary production computed from forest inventory and plot data,
which was 25.6, 14.1, 1, and 0.3 TgC yr21 in the Coast Range, western Cascades,
eastern Cascades, and northern basin for a statewide total of 109 TgC yr21

(Hudiburg et al. 2009). The prior land model and the inverse approach using the
mixing ratios and the footprints produced similar interannual patterns of NEP over
the 3-yr period, with 2012 exhibiting the highest and 2013 exhibiting the lowest
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statewide NEP. Annual NEP from 2012 to 2014 was 39.52, 22.31, and 27.28 TgC,
respectively. The temporal pattern strongly corresponds to interannual variation of
precipitation in the most productive regions (Coast Range and western Cascades;
Table 3). PRISM data (Daly et al. 2008) showed regional annual average precip-
itation of 2815, 1418, and 2277mm in the Coast Range and 2304, 1333, and
2142mm in the Cascades, respectively, from 2012 to 2014. Maximum posterior
NEP values of 827 gCm22 yr21 in the mesic western fir forest region underline the
importance of the Coast Range Mountain forests as CO2 sinks in the PNW region.
Thus, an area that corresponds to ’10% of the total area of Oregon accounts for
31% of the statewide NEP. The strong relative increase in NEP for that region
compared to the prior (42%) cannot solely be explained by the relative data and
footprint coverage because the neighboring area of the Willamette valley, with very
similar data and footprint coverage, shows a much smaller relative increase in NEP
after the inversion process (29%). A relative increase with the same order of
magnitude was estimated in the fir and pine forests in the western Cascade Range
Mountains where the average CO2 uptakewas increased by 61.5% (2.48 TgC yr21) after
assimilation of the mixing ratio data.

Figure 9. Annual (left) prior NEP and (right) posterior NEP for the years (top) 2012,
(middle) 2013, and (bottom) 2014. Based on the original resolution of
1/248 3 1/248, the values are binned for visibility. The results show the
strong annual variations and spatial variability of carbon uptake.
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The average annual NEP values for each ecoregion is given in Table 3 to fa-
cilitate better comparison with other studies. The largest changes of average net
CO2 exchange after Bayesian optimization occurred in the western Coast Range
region, where the net CO2 uptake was underestimated by 42% in our CLM4.5 prior
estimates (Figure 10). NEP was increased for most areas except for the grassland
and shrubland area of the northern Great Basin where the small annual uptake was
decreased by 35% on average (Table 3). This decrease has a minor effect overall
because NEE and NEP, respectively, are relatively small in this grassland and
shrubland area with dry summers and cold winters and a short growing season.

Our posterior NEP estimates for the productive forested regions of the western
Cascades and the Coast Range are roughly 2 times higher than previous studies
using bottom-up approaches (Turner et al. 2007, 2011), while the NEP of most
other regions agree fairly well with differences of 25% or less. The statewide mean

Table 3. Average posterior results and standard deviations (2012–14) of net eco-
system production of the ecoregions of Oregon.

NEP
(TgC yr21)

Difference (post2prior)
(TgC yr21)

Coast Range 9.23 (61.26) 3.84 (60.47)
Willamette valley 2.48 (61.48) 0.72 (60.12)
Cascades 6.45 (61.99) 2.48 (60.48)
Eastern Cascades slopes and foothills 2.81 (61.00) 1.59 (60.16)
Columbia Plateau 0.81 (60.31) 0.10 (60.02)
Blue Mountains 2.55 (61.36) 0.74 (60.17)
Snake River Plain 0.19 (60.13) 0.02 (60.01)
Klamath Mountains 4.45 (61.04) 1.04 (60.14)
Northern basin and range 0.72 (60.29) 20.39 (60.07)
Total 29.70 (68.86) 7.16 (61.55)

Figure 10. Average differences between prior and posterior NEP estimates (posterior–
prior) for the 3-yr study period from 2012 to 2014.
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posterior NEP of 29.7 TgC yr21 is about 16% lower than the average posterior
result found in an earlier inversion study for Oregon that was based on a smaller
observational database and used a simpler land model trained with EC flux data
(Göckede et al. 2010b). Nevertheless, given the pronounced differences in the
available database on prior flux structures, with an average difference of 16%, the
posterior results of the two different Bayesian inversion approaches are in better
agreement compared to the bottom-up approaches. Considering that the prior re-
sults of the two studies differ by more than 44% (40.0 vs 22.54 TgC yr21), our
findings demonstrate that the assimilation of atmospheric mixing ratios brings the
posterior results of both studies in close agreement. The Coast Range Mountain
area in western Oregon and the Cascades Mountain area, including the eastern
slopes and foothills (Figure 2), are particularly important because most of the
remaining large and continuous forests are found in those regions, providing the
most significant land-based CO2 sink in Oregon (e.g., Turner et al. 2011).

The optimized CO2 exchange demonstrates the capabilities and limits of our
inversion framework to correct the prior values efficiently. While the NEE fluxes
have been optimized to better match the observations, the performance of the
inversion process is predominantly restricted by the uncertainties associated with
the transport model linking the mixing ratio measurements to the fluxes. Errors of
the transport model are also propagated when calculating the background mixing
ratios at the towers and therefore increase their uncertainties. Furthermore, ac-
counting for local fossil fuel offsets significantly increases the overall measure-
ment uncertainty. Hence, while both portions of the mixing ratio provide important
boundary conditions (e.g., Gourdji et al. 2012), the weight in the assimilation
process of the tower mixing ratios that initially exhibit a high accuracy and
precision (see section 2.5.2.1) is impaired by the added uncertainty of those
components.

In ongoing research CLM is now being parameterized for more forest species
foliar traits and carbon allocation patterns as well as age mapping to improve the
model’s drought sensitivity, which varies with species and age class (Law and
Waring 2015). A previous version of the model (CLM4) performed well in the wet
ecoregions and in older forests when compared with inventory biomass and pro-
ductivity after model modifications (Hudiburg et al. 2013b). The modifications
based on ecoregion-specific observations were stemwood allocation, mortality
rates, and physiological variables (foliar C:N, foliar N in Rubisco, leaf longevity,
fine root C:N, and specific leaf area). The modifications were carried over to our
CLM4.5 setup but were generally applied to major species rather than species
within the ecoregion. For example, the Douglas fir is found in several of the
ecoregions, but the physiological parameters were averaged across ecoregions.
This may have reduced model performance in this study, particularly in the
Coast Range.

In addition to an improved land model and a refined model parameterization, a
denser tower network would remediate the need to aggregate areas in order to
constrain the system sufficiently and account for spatial flux variability for regional
inversions with high spatial resolutions (Göckede et al. 2010a; Lauvaux et al.
2012a).

Optimizing fluxes with no spatial aggregation will make use of the full potential
of land and transport models with high native resolution if larger portions of the
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model domain fall into near-field footprint areas. This would also facilitate a
beneficial change from a PFT or PFT group parameterization system to a finer,
species-specific parameterization, which is needed to address the physiological
processes more realistically in terrestrial vegetation models (Law 2014). This
applies in particular to complex mechanistic models like CLM4.5, which can ac-
count for differences within diverse vegetation using high-resolution land surface
information and a detailed physiological parameterization.

Similar considerations for tower densities are needed in other regions with
complex terrain and strong vegetation–climate gradients when high-resolution,
regional Bayesian inversions are conducted. However, a finer-resolution Bayesian
inversion for a heterogeneous land surface also comes with the problem of accu-
rately defining an error covariance matrix with increased complexity, which must
be addressed in corresponding future studies.

The approach of combining flux and mixing ratio datasets along with land
system modeling and inversions shows promising results even in regions with
strong gradients in vegetation and climate. Diagnostics suggest where we might
need to improve input data (e.g., soils characteristics), parameters, or ecophysio-
logical sensitivity of CLM to nutrients and drought for predicting future responses
to climate. For diagnostic modeling of current conditions, integrated greenhouse
gas measurements and a model framework such as the one described in this study
have the potential to be implemented to meet obligations of international climate
agreements that require transparency and regular assessments (e.g., COP21).
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APPENDIX A

Further Details of Observation Tower Network
The OSI tower is the tallest tower in our network with the uppermost sample

inlet at 269-m height above ground. The mixing ratios measured at the tower
represent the Willamette valley as well as large areas of the Coast Range and the
western Cascades (Figure 2). During certain meteorological conditions, the OSI
measurements are affected by local to regional fossil fuel emissions from the
densely populated Salem area 18 km to the west and from the Portland metro-
politan area about 40 km to the north. In addition, the highway I-5 corridor with
daily traffic of 50 000 to 100 000 vehicles [annual average, depending on the
section of this main north–south traffic route in Oregon; Oregon Department of
Transportation (ODT) 2014] crosses the entire valley at a distance of 22 km west
of the OSI tower. We use CO mixing ratios to effectively remove the influence of
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regional anthropogenic emissions affecting the CO2 measurements at the tall OSI
tower (Schmidt et al. 2014). A technical description of the OWA and OMP towers
is in Schmidt et al. (2014). Both towers are located in the Coast Range (Table 1).

The 40-m-tall ONG tower is located in Oregon’s High Desert region and was
erected in 2012 replacing a 6-m measurement pole setup equipped with a closed-
path IRGA (Göckede et al. 2010b).

The semiarid area is flat sagebrush steppe dominated by bunchgrasses (.25% of
the area, mostly Festuca idahoensis) with an open shrub layer of sagebrush
(Artemisia tridentata). In addition to the CRDS system, the ONG tower is equipped
with an eddy covariance system measuring the vertical, turbulent fluxes of CO2,
water vapor, and energy at a height of 25m above ground using an enclosed-path
LI7200 IRGA (Burba et al. 2012) in combination with a CSAT3 sonic anemometer.

As part of the AmeriFlux network, the US-MRf flux tower (Figure 2) is located
in the Oregon Coast Range, measuring the atmospheric exchange of CO2, water
vapor, and energy above a mature Douglas fir (Pseudotsuga menziesii) forest at
37m above ground. Further information about the EC measurements at the US-
MRf tower and the corresponding flux data processing can be found in Thomas
et al. (2013). Details about the mixing ratio measurements and data processing as
well as a technical description of the OWA and OMP towers, both located in the
Coast Range Mountains (Table 1), are given in Schmidt et al. (2014). Three of the
CO2 observation towers were newly installed or replaced in 2012, so the overall
observation data availability for 2012 is reduced by 14.1% and 24.6% compared to
the years 2013 and 2014.

Linear calibration using standard gases were applied at the towers to derive the
uncertainty of the CO2 mixing ratios. For each 50-hourly calibration cycle, a first-
order polynomial fit is applied with known target mole fractions from the cali-
bration tanks and the mean mole fractions from the corresponding measurements.
The coefficients for the linear regression are calculated by linear interpolation
between the two adjacent calibrations and then applied to the data between two
calibration cycles. The final measurement uncertainty is defined as the difference
between the linearly corrected CO2 mixing ratios and an additional WMO refer-
ence gas that was not used for the actual CO2 correction procedure.

APPENDIX B

The Downscaled Climate Dataset Used for CLM
The source of the climate variables used to create the downscaled climate driver

dataset for the CLM runs are simulations using the global climate model (GCM)
MIROC5 as part of CMIP5 (Taylor et al. 2012). The MIROC5 simulations were
statistically downscaled and bias corrected using MACA (Abatzoglou and Brown
2012). The MACA algorithm samples from a dataset of gridded observations (training
data) using spatial pattern matching for the variable from the GCM and training data.
The daily gridded climate data of the METDATA observational dataset (Abatzoglou
2013) with a horizontal resolution of 1/248 3 1/248 was used as training data.

To disaggregate the downscaled daily data to a 3-hourly resolution, we make use
of the 3-hourly data from the original CMIP5 datasets. The method consists of
rescaling the 3-hourly GCM time series to be consistent with aggregate daily
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values, or maximum and minimum daily values, from MACA. This entails first
converting the variables in the 3-hourly global climate model datasets to dimen-
sionless standardizes values. The downscaled daily data are disaggregated to 3
hourly by multiplying the daily data by the standardized quantities. To apply the
second step, each fine-grained cell in the downscaled dataset is mapped to its
associated coarse-grained cell in the GCM dataset. The strength of this method is
that it maintains the covariance structure of, and therefore the physical consistency
between, all the variables. A potential weakness of the method is that the stan-
dardized time series for a given day is identical across the GCM cell. This means
that a storm, for example, peaks at exactly the same time everywhere within the
GCM cell, though the magnitude would vary across the cell. Because in CLM
lateral exchanges between the cells are not considered, this drawback of the
method is not important for the application in CLM.

APPENDIX C

Calculation of Background Mixing Ratios at the Towers
For the WRF–STILT trajectory calculations 500 particles were released at each

receptor. If the trajectory of a particle did not cross the domain boundary, the
latitude, altitude, and time of the last data record were used and the corresponding
average background curtain mixing ratio assigned. Daily background mixing ratios
of atmospheric CO and CO2 are spatially arranged in a curtain covering a height
profile from 500 to 6500m with a latitudinal resolution of 18. The background
values are provided specifically for the Pacific coast region of the United States by
NOAA ESRL (Jeong et al. 2013). The background values were calculated as an
average of the background mixing ratios at the position that the particles crossed at
the end of the backward trajectory or when leaving the domain.

We compared the modeled background mixing ratios with measured background
values using CO and CO2 observations from the OMP site during conditions with
practically no surface exchange over the last 72 h [surface influence integrated over
footprint ,0.01 ppm (mmolm22 s21)21] and trajectories associated with westerly
wind directions (incoming air from the Pacific Ocean). Because of its exposed po-
sition on top of the highest mountain in the Oregon Coast Range the OMT tower
frequently samples air from above the atmospheric mixing layer during respective
meteorological conditions. Measurements during those periods capture air masses
with mixing ratios that were not altered through land surface exchange and therefore
provide direct measurements of advected background mixing ratios. Observed biases
in the background field mixing ratios were corrected using a second-order Fourier
function (Göckede et al. 2010b) before being subtracted from the tower observation
values. After correction, the measured and modeled background mixing ratio time
series show a high correlation (r2 5 0.88, RMSE 5 0.21 ppm).
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