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Some psychiatric conditions share as a hallmark the loss over behavioral control: for instance, in
substance addiction, individuals continue drug consumption, despite negative consequences.
One prominent hypothesis regarding the psychological processes that give rise to addiction is a
shift from goal-directed towards habitual behavioral control: formerly reinforcing substance
consumption is continued, even though it is at odds with current goals.

In this thesis, this hypothesis was investigated in light of two recently developing research
paradigms: (1) A Dimensional Psychiatry account was employed: First, goal-directed control was
investigated in individuals suffering from alcohol dependence. Second, the research question
was extended towards patients suffering from binge eating disorder, an addiction-like disorder
characterized by the loss of control over eating behavior. Third, it was asked whether
populations at risk for addiction are similarily characterized by a shift from goal-directed
towards habitual control. (2) Adopting a Computational Psychiatry approach, the current work
combined computational modeling of behavior with functional Magnetic Resonance
Tomography and Electroencephalography. Flexible goal-directed control was revealed to be
impaired in both patient groups. By the use of computational modeling, differential behavioral
pathways leading to similar impairments could be dissected: alcohol-dependent patients
displayed a failure to integrate alternative choice options in their decisions after punishment
whereas binge eating patients were characterized by a bias towards explorative choices. Medial
prefrontal cortex learning signals promoting flexible decision-making were found reduced in
both patient groups. This suggests the medial prefrontal cortex as a transdiagnostic convergence
point essential for monitoring behavioral control. Interestingly, in both groups simpler
signatures of decision-making were found to be preserved. Regarding risk factors of addiction,
findings were qualitatively different from observations in populations suffering from addiction.
Whereas none of the risk factors impeded goal-directed control per se, I observed interaction
effects between cognition and impulsivity, as well as acute and chronic stress.

In sum, this thesis constitutes a step towards a mechanistic understanding of psychiatric
conditions characterized by a failure of behavioral control. The findings motivate a combination
of computational approaches to cognitive neuroscience with longitudinal clinical designs. This
could enable definition of biologically informed subgroups and guide new treatment and

prevention developments, independent of the current symptom-based classification schemes.
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[ was out in the city
[ was out in the rain

[ was feeling down hearted
[ was drinking again

[.]

[ was young
[ was foolish
[ was angry
[ was vain
I was charming
[ was lucky
Tell me how have I changed

Now I'm out
Oh out of control
Now I'm out
Oh out of control
Oh help me now

]

(Jagger&Richards, The Rolling Stones, 1998)



1 Introduction

Why do we repeat behaviors we know are bad for us? Imagine, it is new years and you know you
have gone overboard with turkey, Christmas cookies, fudge and their equals. Your jeans have got
significantly too tight and the new-year’s resolution is crystal clear: you should really, really lose
some weight. Why, for heaven’s sake, do you find yourself now sitting in front of the TV,
munching a bag of chips? Obviously, your new goal - losing weight - has failed to override
behaviors that have been reinforced in the past: a couch-and-chips evening has probably proven
to be quite cozy and tasty before.

Conflicts of this kind have sparked great interest in experimental psychology and led to
the reasoning that in situations as described above multiple decision-making systems are
competing for control over behavior. A key division spans from reflexive or habitual towards
reflective or goal-directed control (Balleine & Dickinson, 1998; Dolan & Dayan, 2013). Whereas
habitual control is seen as a retrospective strategy, influenced by rewards achieved in the past,
goal-directed control involves prospective planning and considers potential future outcomes of
the choice options at hand. Decision-making in healthy individuals seems to be driven by a
balance between prospective goals and retrospective habits (Daw et al.,, 2005; Daw et al,, 2011);
in other words: sometimes you spend your evening going for a run, and have a green smoothie
afterwards, sometimes you fall back upon the couch.

A grave pathological variation of the everyday life conflict sketched in the introductory example
is addiction, where maladaptive behaviors are upheld in the face of often devastating
consequences. One influential hypothesis on the psychological processes that give rise to
addiction is a shift from goal-directed towards habitual control. Putatively, this leads to one
dominant habitual mode when making decisions (Robbins & Everitt, 1999; Everitt & Robbins,
2005; Redish et al., 2008; Dayan, 2009a). Formerly reinforcing drug consumption is continued,
even though it is at odds with current goals.

This thesis is centered on the latter hypothesis of addiction as a bias towards habitual behavioral

control. This research question is explored in light of two recently developing paradigms: (1) a



Computational Psychiatry (Maia & Frank, 2011; Montague et al., 2012; Stephan & Mathys, 2014;
Wang & Krystal, 2014) approach is adopted. Computational Psychiatry targets psychopathology
by using formal, quantitative models of cognitive and brain function. In this vein, the current
work combines computational modeling of behavior with neural measurements, aiming to shed
light on “addiction as a computational process gone awry” (Redish, 2004). (2) A Dimensional
Psychiatry account (Buckholtz & Meyer-Lindenberg, 2012; Robbins et al, 2012) is employed.
Dimensional Psychiatry investigates mechanisms of psychiatric conditions independent of
diagnostic boundaries. In this thesis, the dimensional approach is realized in two ways. First, a
transdiagnostic approach is adopted as behavioral control is studied across two different
diagnostic entities. Both share as a clinical feature the loss of control over behavior: alcohol
addiction as a prototypical and highly prevalent form of substance dependence (Kraus &
Augustin, 2001; Grant et al., 2004) and binge eating disorder (i.e., pathological overeating), a
newly defined diagnosis. The latter is sometimes referred to as food addiction (Smith & Robbins,
2013; Robbins & Clark, 2015) but understudied to date. Second, recognized risk populations and
risk factors for addiction are investigated, to explore whether habitual behavioral control not
only is a state marker of mental illness, but also extends as a potential vulnerability factor to
healthy individuals at risk for addiction.

After briefly introducing methods and the general theoretical framework of this thesis, six
empirical studies on behavioral control will be presented. These studies surround the question
of inter-individual differences in behavioral control from a clinically motivated, cognitive
neuroscience perspective enriched by computational modeling techniques. This will be followed
by a more general discussion of results, including limitations, and the attempt to place the

presented studies in a broader picture.



2 Principles of cognitive neuroscience

The first section serves as a primer for those principles of cognitive neuroscience that are
employed in the current thesis. First, I will present an introduction on models and
computational modeling in cognitive science. I will discuss the application of such computational
models in the field of cognitive neuroscience before I continue with a general introduction to
measuring brain functions via (functional) Magnetic Resonance Tomography (fMRI) and

Electroencephalography (EEG).

2.1  Models and computational modeling in cognitive science

The following outlines the approach of cognitive modeling and its implementation in cognitive
science. It follows and summarizes recent comprehensive overviews on the topic, which cover
this important field in a more detailed way (Lewandowsky & Farrell, 2011; Forstmann &
Wagenmakers, 2015).

Models are broadly defined as an abstract structure that itself captures structure in the
data (Luce, 1995). They are at the core of scientific practice of any kind as data are not self-
explanatory, but require a model to be interpreted. In the case of psychology and the cognitive
sciences, this is most commonly realized via verbal models. These are used to describe
psychological phenomena qualitatively, in order to then test predictions of these models
empirically. Computational (or mathematical) modeling accounts are different: predictions are
formalized in a quantitative computational model, which mathematically aims to describe the
relationship between inputs (e.g, a stimulus) and output (e.g. subjects’ behavior). One prime
advantage of quantitative computational models as compared to the commonly used verbal
models is a precise implementation of a theoretical framework: when formulating a
computational model, the scientist is forced to precisely specify all parts of a theory. A rigid
specification of a theory’s components and their interaction with each other enhances the
efficiency a theory can be communicated. For a detailed discussion how this might foster
reproducibility of results, see Farrell and Lewandowsky, 2010. Further, and importantly, this

ensures the testability of predictions, as mathematical models generate quantitative predictions,
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which can be directly linked to empirical data (compare Figure 2-1). Quantitative models thus
render a theory falsifiable (Popper, 1982). In the same vein, computational models advise the
researcher on experimental manipulations which are informative (Myung & Pitt, 2009;
Cavagnaro et al, 2013; Kim et al, 2014). Finally, mathematical models also offer a particularly
stringent and coherent framework for the interpretation of observed data.

Other than purely descriptive or predictive models, many computational models are
constructed to be explanatory, that is, meant to formalize how psychological processes operate
and how the observed data were generated. In this sense, models are constructed as models of
mechanisms that lead to observable behavior. This comes along with the so-called Bonini’s
paradox: to be explanatory, models necessarily have to be less complex than the process they
aim to capture (Norris, 2005). Farell and Lewandowsky summarize this as retaining “the
essential features of the system while discarding unnecessary details” - as the model would not
contribute to understanding if the model itself cannot be fully understood (Farrell &
Lewandowsky, 2015, p. 10). The general principle of cognitive modeling is illustrated in Figure

2-1.

Figure 2-1. General principle of computational

s

Cognitive Process ~—_ ~

modeling in the cognitive sciences. The general

o aim is to mirror a specific cognitive process (e.g,, in
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(@)

&

!

Data Predictions

behavior (the empirical data) reflects the process
of interest as purely as possible (left part of the
figure). Computational modeling aims to describe
the cognitive process of interest via mathematical
models. The core of computational modeling is to
link model predictions with empirically observed
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between observed and predicted data, individual
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parameters can be estimated. Parts of the figure

are inspired by Lewandowsky & Farrell, 2011.
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2.2 Modeling-based cognitive neuroscience!

The relationship between experimental cognitive psychology and cognitive neuroscience has
been ambivalent. Much of the concerns expressed by cognitive psychologists surround the
notion that brain measurements alone are not meaningful in a theoretical sense and that
localizing functions in the brain can be irrelevant for understanding how psychological
processes operate (Coltheart, 2006; Forstmann et al.,, 2011; Coltheart, 2013). Some years ago, it
was stated that “no functional neuroimaging research to date has yielded data that can be used
to distinguish between competing psychological theories” (Coltheart, 2006, p. 423) and
neuroimaging research has been repeatedly accused for being the new phrenology (Kennedy,
2005; Diener, 2010). These critiques warrant attention, particularly because neuroscientific
explanations have been claimed to exert a “seductive allure” (Weisberg et al., 2008, p. 470): for
instance, Weisberg and colleagues showed that the mere mention of neuroscience enhanced the
credibility of a statement.

Modeling-based cognitive neuroscience promises remedies for these critiques, by
leveraging a reciprocal relationship between cognitive modeling and cognitive neuroscience
(Friston, 2009; Forstmann et al, 2011): formal and mechanistically informative models of
cognition are developed and used to amend cognitive neuroscience. Behavioral data are
decomposed by means of computational modeling into multiple latent psychological processes,
which are subsequently related to neural data (Figure 2-2). The goal is to derive more precise
information on the implementation of the specific process in the brain, also in experimental
situations where the manipulation is not process-pure. For instance, in studies of behavioral
adaptation, often neural responses to feedback stimuli are the dependent variable of interest.
Neural responses to feedback could however represent multiple latent variables: among others,
value of feedback, individual sensitivity to feedback, learning or also more unspecific processes
like attention. Thus, analyses or interpretation of these results much depend on the

experimenters’ definitions. Modeling-based analyses on the other hand allow to investigate

1 To describe an analysis of neural data which is informed via computational models, often-times the term
model-based analysis is used. In this thesis, the term modeling-based is used in order to avoid any
confusion with a so-called model-based behavioral control strategy (compare section 3.3).
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neural activation to feedback in light of one specific cognitive sub-process, e.g. prediction error
coding (O'Doherty et al, 2003; O'Doherty et al., 2004). This goes beyond the mere localization of
a psychological process in standard fMRI analyses and promises a paradigm shift from the
somehow limited focus on localization of function (where) to more how type of research
questions by showing how a certain computational process is indeed represented in the brain
(Dolan, 2008). Further, this is a promising route to move from umbrella terms like Cognitive
Control towards a parcellation of the mechanistic bases (Verbruggen et al., 2014). See Forstmann
et al, 2011 as well as Forstmann and Wagenmakers, 2015 for an in-depth discussion of
advantages of the modeling-based approach. Of particular importance for the current work is
that modeling-based approaches enable to account for inter-individual differences by
incorporating these individual differences in the latent cognitive process into the analysis of
neural data (e.g., Forstmann et al, 2008). This is especially valuable for patient studies (e.g.
Schlagenhauf et al., 2014; for a more detailed outline on the use of modeling-based neuroscience
approaches for psychiatry see section 3.6.2). It is noteworthy that not only neuroscience can
benefit from implementing computational models in analyses. Vice versa, neural measurements
can inform computational models (especially for complex phenomena) as they lead to more
dependent measures which help to constrain model testing as compared to behavioral data
alone, where sometimes similar behavioral observations can be predicted by models with

different assumptions (White & Poldrack, 2013; O'Doherty et al, 2007).

2.2.1 Modeling-based analysis of neural data: general approach

This paragraph outlines general steps which are pursued during a modeling-based analysis of
neural data - from finding an appropriate model to fitting the behavioral data to applying the
derived parameters to the neural signal (Figure 2-2 for an overview). In the current framework
of a general introduction, this needs to be kept on a rather superficial level. Please refer to
Lewandowsky and Farrell, 2011 for a thorough introduction on parameter estimation

techniques, model comparison and interpretation of modeling results, and to O'Doherty et al,
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2007; Daw, 2011 and Mars et al, 2012, for a more detailed description of application to neural,
i.e. fMRI and EEG data, specifically in the context of behavioral adaptation.

The first step is to formulate or use a set of quantitative models which describe the
observed psychological phenomenon. Typically, these models include fixed and free (ie.,
estimated to optimize model-fit to the observed data) parameters that represent psychological
constructs or processes. This requires a model describing a hidden state, e.g. a neuronal,
perceptual or a learning process. As this latent process is not directly observable in the
measured data, the modelled hidden state needs to be transformed into the actually measured
response, e.g. choice behavior or reaction times, via another so-called observation model. Next,
a-priori simulations are conducted to verify that the model can recover known parameters of
behavior. Only if this is assured, the model can be applied to actually observed data in a
meaningful way. The models are then fit to the empirical data: free parameters of the models are
estimated to optimize the fit of the model to the empirical data. Model fit, or more specifically,
model misfit, is quantified by a function of the likelihood L of the data under each model m (the
probability that the data is given by the parameters), such as in maximum likelihood estimation
or as part of Bayesian techniques for maximum a posteriori estimation (Heathcote et al, 2015,
See a more thorough description of model fitting in the empirical part of the thesis, chapter 5-
10).

Next, model selection should be used to determine the most parsimonious model which
best explains the data (Pitt & Myung, 2002). Often times, this is done by comparing criteria
which combine the maximized likelihood with a penalty term for the number of parameters
included in the model (to account for the risk of overfitting). One popular example is the

Bayesian Information Criterion (Schwarz, 1978):

(1) =2Lu + kpIn(n)

where n denotes the sample size, L,, is the maximized (log)-likelihood of the model and k,, is
the number of parameters of the model. Essentially, the Bayesian Information Criterion

represents one approximation of the so-called model evidence, which refers to integrating out
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Figure 2-2. The figure illustrates general steps when performing modeling-based analysis of neural
data. First, empirical data (e.g. participants’ choices in a learning task) is collected. Next, formal
models are fit to these data in order to minimize the difference between the predictions of the
model and the empirical measure. Following quality checks regarding how well the model captures
the actually observed data, best-fitting parameters derived from the model are regressed against
physiological data, e.g. the hemodynamic response in fMRI data or event-related potentials in EEG
data. Thus, the neural implementation of mechanistically informed parameters can be tested. The

illustration is inspired by a figure in O'Doherty et al., 2007.

(or marginalizing) the dependency of the likelihood on the number of parameters (e.g. Stephan
et al, 2009). In between-group studies, this is repeated for all experimental groups, to account
for the interesting possibility that the groups differ in which model explains their behavior best.
Subsequently, model-components are regressed against the neural data on a trial-by trial level:
for fMR], trial-by trial time-series are generated on the basis of best-fitting parameters and these
are than convolved with the hemodynamic response (O'Doherty et al, 2004; O'Doherty et al.,

2007). In EEG, trial-by-trial values of the model are regressed against trial-by-trial ERP

15



responses (Mars et al, 2008; Hauser et al., 2014b; Reiter et al, in revision) or trial-by-trial

oscillatory activity (Cavanagh et al,, 2010). The approach is illustrated in Figure 2-2.

2.2.2 Caveats

2.2.2.1 Goodness of fit vs. generalizability of a model

Additional complexity of a model (i.e., adding more parameters to a model) will improve the fit
of the model. The relationship of generalizability and complexity, however, can rather be
described as an inverted U-shaped function: while more parameters will lead to an increase of
generalizability up to a certain point, adding too many parameters will increase the risk of fitting
noise (‘overfitting’), and the generalizability of the model decreases (for a comprehensive
illustration on the basis of a simulation study, refer to Pitt and Myung, 2002). Model selection
thus is key as it aims at identifying the most parsimonious model in the tested model set, which
can be further verified using cross-validation techniques. After identifying the model which best
accounts for the observed data, an experimental psychology approach would include to ask why

this is the case and to derive qualitative interpretations on the captured latent processes.

2.2.2.2  Absolute model fit

Despite the obvious importance of model selection, it is to note that model selection is relative in
nature and will always come up with one best-fitting model (Lewandowsky & Farell, 2011).
Relative model selection however does not guarantee that the preferred model within the tested
set of models actually accounts for the empirically observed data. To ensure that the model
captures the observed behavior is essential for any meaningful analysis based on the modeling-
derived parameters, as well as for its interpretation. Post-hoc simulations on the basis of
individual estimated parameters and a comparison of simulated results to the pattern of
observed results provides evidence whether the model indeed reproduces the data. For binary
choice data, it is possible and important to identify individuals which are not fitted better than
chance by the model as their parameter estimates cannot be validly used for further analyses
(note however that the identification of a group which is not fit better than chance can be

informative in itself, e.g. when this relates to clinical characteristics, Schlagenhauf et al, 2014).
16



For other data, Rz and pseudo R? can be useful as measures of absolute model fit but it is less

easy to define non-arbitrary cut-offs for such measures.

2.3 Methods to study brain function

The following section aims to provide a brief overview over the basic principles of fMRI and EEG.
Please refer to Huettel et al., 2004 and Buxton, 2009 for a thorough introduction to (f)MRI, and
to Kappenman & Luck, 2010 as well as Pizzagalli, 2007 for an introduction into EEG and ERPs.
An introduction into preprocessing and statistical analysis of both measures goes beyond the
scope of this short introduction. A detailed description of these procedures as applied in the
studies conducted is provided in the empirical section (chapter 5-10). For a comprehensive
general overview, please refer to Penny et al, 2011 for (f)MRI and to Nidal and Malik, 2014 for

EEG.

2.3.1 Functional and structural magnetic resonance imaging

2.3.1.1 Basic physics of MRI

MRI makes use of the fact that protons in atom nuclei rotate randomly around themselves, which
in uneven amounts of protons leads to a magnetic moment (Figure 2-3A; Buxton, 2009). In the
absence of an external magnetic field, the spins are oriented in a random fashion, there is no net
magnetization. MRI applies strong static magnetic fields to align spins of hydrogen nuclei of the
biological tissue with the direction of the magnetic field and to cause them to precess around the
field direction (so-called Lamor precession with Lamor frequency, Figure 2-3B). This creates a
net magnetization pointing into the direction of the magnetic field (Figure 2-3C; Buxton, 2009).
MRI manipulates this by employing radio-frequency (RF-) pulses which match the Lamor
frequency: the magnetization vector becomes tilted (Figure 2-3D). MRI measures relaxation
time, i.e., the time spins take to align to the strong external magnetic field again as soon as the
RF-pulse is turned off (Figure 2-3E, Buxton, 2009): T1 relaxation, as the longitudinal relaxation
time, distinguishes tissue types and is thus most commonly employed for structural MRI. T2/T2*
refers to the transverse relaxation time, i.e., the decay of phase coherence between the spins. See

Figure 2-3 for an illustration. T2* relaxation is exploited in functional fMRI (further discussed in
17



the next paragraph). Echotime (TE, read-out time after a pulse) and repetition time (TR, time
between to pulses) are manipulated by the experimenter to gain optimal T1 (short TR and short

TE) and T2 (long TR and long TE) resolutions.

2.3.1.2 fMRI

Mostly in fMRI studies, the so-called blood oxygenation level dependent (BOLD) effect is used to
image the functional organization of the brain. BOLD relies on the different magnetic properties
of oxygenated and deoxygenated hemoglobin (Hb) in the blood (Ogawa et al., 1990): oxygenated
Hb is diamagnetic while deoxygenated Hb is paramagnetic (i.e., has magnetic susceptibility,
Pauling & Coryell, 1936). Paramagnetic deoxygenated Hb influences the static magnetic field
leading to local distortions. This results in an accelerated decay of transverse magnetization, and
a shortened time constant T2* (which is susceptible to field inhomogeneities). This can be
captured via T2*-weighted images.

How is this exploited to measure brain activation? Crucially for fMRI, the working brain needs a
continuous supply of oxygen, such that oxygen metabolism, blood flow and blood volume are
higher in particularly activated brain areas. Thus, in activated areas, the level of deoxygenated
blood first rises due to enhanced consumption of oxygen in these areas. This is then
compensated by an increase in cerebral blood flow (so-called neurovascular coupling) and thus,
the supply with fresh oxygenated hemoglobin. Consequently, the concentration of paramagnetic
deoxygenated Hb decreases, local field inhomogeneities become cancelled out, and the
transverse relaxation time (and thus the T2*-weighted signal) increases. This change in the MR
signal evoked by neuronal activity is referred to as hemodynamic response (see Figure 2-3F).
Peak BOLD activity evolves at 5-10s after stimulus presentation with a post-stimulus undershoot
of up to 20s, thus returns to baseline in 12 to 30s. BOLD signal can be predicted by
neurophysiologically recorded local field potentials and the relationship is nonlinear. BOLD has
been shown to mirror predominantly a neuronal populations’ input and intrinsic processing
rather than output and measures primarily postsynaptic activity (Logothetis et al, 2001;
Logothetis, 2007).
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Figure 2-3. MRI exploits magnetic properties of hydrogen atoms (H) in water molecules (Hz0) of
biological tissue. A) In the absence of a magnetic field, the spins are oriented in a random fashion.
There is no net magnetization. B) As soon as the strong external magnetic field is applied, the
spins of hydrogen nuclei are forced to align with the direction of the magnetic field. C) The net
magnetization evoked by the application of an external magnetic field points into the direction of
the magnetic field. D) By employing a RF-pulse, the magnetization vector becomes tilted. The
pulse at the Lamor frequency causes in-phase precession, which leads to transverse
magnetization. E) As soon as the RF-pulse is turned off, the spins align to the strong external
magnetic field again. These so-called relaxation times are registered by MRI: T1 relaxation
describes the longitudinal relaxation time and T2/T2* refers to the transverse relaxation time,
that is, the decay of phase coherence between the spins. F) Hemodynamic response function of the
BOLD signal. Plotted is the rise to peak after 6 seconds, the undershoot (delay relative to onset 16
seconds) and the return to baseline (total length: 32s). Plotted with the function spm_hrf
contained in spm 8 http://www.fil.ion.ucl.ac.uk/spm/). Parts of the figure are inspired by a figure

in Smittenaar, 2015.

In a nutshell, BOLD fMRI assesses changes in the quantity of deoxygenated Hb in a voxel

(smallest observable element at a certain anatomical location) over time. It builds on the fact

that in so-called activated brain regions, blood flow increases, which reduces the quantity of

deoxygenated Hb in these areas. Hence, BOLD is an indirect measure of neuronal activity.

Research utilizing task-based fMRI exploits this indirect measure by locking changes in BOLD to

internal or external events of the participants.
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2.3.1.3 Advantages and limitations of fMRI

Limitations. The low temporal resolution (several seconds) of fMRI precludes the investigation
of time-sensitive topics. fMRI measurements take place under rather unnatural conditions:
participants are lying in the scanner and noise produced by the scanner is high, which has been
shown to significantly influence behavioral performance (van Maanen et al., 2015) and hampers
external validity. MRI is costly to achieve and maintain, which might restrict the resources to
acquire large sample-sizes. In the same vein, for the participation in an MRI study, several
exclusion criteria hold (e.g., claustrophobia or metal substances in the body), such that it is less
feasible for special populations such as children or psychiatric patients.

Advantages. MRl is a non-invasive technique, operating without radiation (compared to Position
Emissions Tomography [PET] and Computer Tomography). MRI allows imaging of the whole
brain, including cortical and subcortical structures with a relatively high spatial resolution (<
3mm). These advantages have rendered fMRI the predominant technique in cognitive

neuroscience to date (Friston, 2009).

2.3.2  Electroencephalography (EEG) and event-related potentials (ERPs)

2.3.2.1 Basic principle: linking voltage changes to psychological processes

ERPs are defined as voltage changes time-locked to an internal or external event (e.g.,
preparation of a motor response or onset of a stimulus, e.g. in the current work: onset of a
feedback stimulus; Kappenman & Luck, 2010). ERPs, defined as neural activity reflecting a
particular psychological process, are used to unravel the underlying neural mechanisms of this

particular process.

2.3.2.2 Neurophysiological basis of ERP recordings

ERPs are scalp-recorded non-invasively by EEG. These voltage fluctuations are suggested to
mirror the summation of excitatory and inhibitory post-synaptic potentials. Post-synaptic
potentials occur at the cortical pyramidal neurons as a response to opening or closing ion
channels, which are stimulated by neurotransmitter binding at postsynaptic receptors. If such

activity occurs simultaneously in a sufficiently large cluster (i.e., tens of thousands) of spatially
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aligned pyramidal neurons, it forms an equivalent current dipole which can be measured by EEG
(Kappenman & Luck, 2012, but see e.g. Klimesch et al, 2004; Klimesch et al, 2007 for an
alternative account on how ERPs emerge). Dendritic trunks of pyramidal cortical neurons are
coherently oriented, that is, aligned in parallel to each other and perpendicular to the cortex,
which is prerequisite for the summation of the potentials, and thus also for their provability via
EEG. Hence, signals recorded by EEG predominantly reflect cortical activity, although subcortical
contributions are discussed (for an interesting, controversially discussed example in the current
theoretical framework of feedback-related potentials, please refer to Cohen et al., 2011a; Foti et
al,, 2011b; a).

Among ongoing raw EEG activity, ERPs are comparably small. To overcome this issue,
the most common approach - next to appropriate filtering - has been to first identify the
stimulus-dependent amplitude and latency, e.g., of the peak of activation within a predefined
time window on a trial-by-trial basis, and then to average these trial-by-trial measures as a
function of the experimental condition (Grand Averages, Makeig & Onton, 2012). This isolates
stimulus-driven activity, which should rather be similar over trials under the same experimental
condition (but see McGee et al, 2001), from spontaneous EEG activity, unrelated to the time-
locked events of interest (Makeig & Onton, 2012). This Grand Average technique indeed has the
advantage of improving the signal-to-noise ratio, but is suboptimal when it comes to studying
dynamic processes which evolve over time, such as Reinforcement Learning (RL) and behavioral
adaptation: by averaging over several trials, information on the neural implementation of the
psychological process’ trial-by-trial dynamics is lost. Finally, a mean (or an Grand Average)
constitutes one statistical measure of a distribution, which, if reported detached from other
statistics, can be opaque or even misleading, especially when it tries to summarize distinct time
serial activities of several areas characterized by spatial and temporal trial-by-trial variability
(Makeig & Onton, 2012). The current work tries to overcome this by a modeling-based trial-by-

trial analysis of ERPs.
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2.3.2.3 The Feedback-Related Negativity as an ERP correlate of behavioral control processes

An event-related potential which has been frequently linked to reward-based learning and
behavioral control is the Feedback-Related Negativity (FRN). The FRN peaks 200-350ms after
the presentation of an outcome stimulus at fronto-central electrodes (Miltner et al, 1997). In
several previous studies, the anterior cingulate cortex was suggested as its neural generator
(Miltner et al.,, 1997; Gehring & Willoughby, 2002; Hewig et al., 2007). The FRN is evoked by
outcome stimuli as well as stimuli that predict outcome. It has frequently been hypothesized to
encode a reward prediction error (Holroyd & Coles, 2002; Chase et al.,, 2011; Walsh & Anderson,
2012). Importantly, the latter makes it a candidate ERP for studying behavioral control
processes. For a comprehensive review on the FRN, please refer to Holroyd & Coles, 2002 and

Walsh & Anderson, 2012.

2.3.2.4 Advantages and limitations of EEG/ERP

Limitations. In terms of limitations of EEG/ERP, most commonly brought forward is the
restricted spatial resolution of EEG as the electrical field spreads out through the brain and the
high resistance of the skull leads to further smearing of the spatial distribution, which is even
aggravated when measuring signals from deeper brain regions (Luck, 2012). As detailed above,
activity recorded by EEG reliably only measures cortical activity. This constitutes a further
drawback - particularly for the research questions at hand concerning behavioral adaptation,
for which deeper brain structures like striatum play a key role (Kelley, 2004; O'Doherty et al.,
2004; Daw et al., 2005).

Advantages. EEG shows precise temporal resolution, reflecting ongoing activity with very little
delay. This renders EEG an excellent tool for investigating research questions regarding the
timing of psychological processes. Further, and this makes the technique valuable in the context
of patient studies, EEG is a feasible technique as compared to brain imaging methods like fMRI
or PET: procurement costs are comparably low, exclusion criteria are minimal, almost no side

effects are reported and tolerance of the laboratory conditions is comparably high. Newest
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developments promise portability and even more flexibility in various contexts (de Lissa et al.,

2015).
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3 Theoretical framework and development of research questions
3.1 Goal-directed vs. habitual modes of behavioral control

Individuals are constantly faced with a complex and dynamically changing environment, which
requires them to continuously evaluate and select among many decision options and their
potential consequences - and to shift gears towards alternative options as soon as
environmental conditions have changed. It is well accepted that to master this taxing challenge,
more than one strategy is available: the key distinction between two classes of instrumental
behavior, today commonly referred to as goal-directed and habitual, has a long-standing history
- involving controversial discussions during the mid 20t century - in experimental psychology
(for an overview see Dolan & Dayan, 2013). On the one hand, behaviorist stimulus-response
based theories date back to Thorndike’s Law of Effect, which was derived from the observation
that hungry cats in a puzzle box would, following a trial-and-error, stimulus-response (S-R)
principle, repeat rewarded behaviors in the future and give up those that lead to undesired
outcomes (Thorndike, 1911). On the other hand, Tolman, as a counter-proposal to the then-
popular behaviorist theories, promoted the idea of a cognitive map, originally to describe rats’
capability of latent (i.e., without direct reinforcement) spatial learning in mazes (Tolman, 1948;
Jensen, 2006). Over the subsequent decades, in the non-spatial domain, the former control
mechanism which is based on S-R associations, has been reformulated as habitual behavior,
whereas the latter control mechanism has been operationalized as goal-directed behavior
(Dickinson, 1985; Balleine & Dickinson, 1998; Dickinson & Balleine, 2002; Dolan & Dayan,
2013).

Habitual control relies on values stamped-in by past experience during a trial-and-error
process. In situations of a stable environment and where practice is assured, these values map
the actual reward-value in an appropriate manner. However, as it relies on a trial-and-error type
of information accumulation, habitual control is slow in adapting outcome values. In dynamically
changing environments, where rapid changes of reward contingencies frequently happen, these

values can thus be disparate from the current outcome value of a decision. Thus, this automated
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strategy might, curiously enough, lead to an agent choosing an action although it does not desire
this action’s outcome (anymore). This automated type of control however has the advantage of
saving cognitive resources (Balleine & Dickinson, 1998; Rangel et al., 2008; Dayan, 2009b; Dolan
& Dayan, 2013).

In contrast, goal-directed control is driven by knowledge of action-outcome
contingencies, including the associations of multistep action sequences to outcomes. This
enables the agent to evaluate the outcome value of all decision options at hand in a context-
dependent way and to flexibly adapt decisions when environmental contingencies have changed.
Ideally, this flexible strategy should lead to an agent choosing an action that evokes a presently
desired outcome. With respect to cognitive resources, goal-directed control is more costly
(Balleine & Dickinson, 1998; Rangel et al, 2008; Dayan, 2009b; Dolan & Dayan, 2013). Thus,
goal-directed control is efficient in new environmental situations, when behavior needs to be
adapted; as soon as the environment is stable, the agent will ideally employ habitual strategies,
as they are computationally less demanding.

3.2 Devaluation paradigms: behavioral and neural correlates of habitual and goal-directed

control

Traditionally, and firstly in animal models, devaluation paradigms have been a prominent
paradigm to assess goal-directed vs. habitual behavioral control: an animal is trained to press a
lever to receive food. This type of food is subsequently devalued (e.g., by feeding the animal to
satiety). Goal-directed vs. habitual control is assessed in a subsequent extinction phase, without
delivery of feedback. The experimenter makes use of different predictions of the two systems
regarding behavior during extinction: goal-directed control can rely on a representation of the
outcome when pressing the lever (i.e. representation of an action-outcome association) and
would therefore refrain from pressing the lever, as the outcome is no longer desired. In contrast,
habitual control, driven by an automated stimulus-response representation, would continue
pressing the lever as it used to be reinforced - despite a no longer desired outcome. These

studies provided evidence in rodents and humans that actions can indeed be controlled by a

25



goal-directed or a habitual mode (Adams & Dickinson, 1981). The influence of devaluation, and
thus, the degree of control exerted by the goal-directed system, depends on the amount of
training before devaluation (Adams, 1981): the longer the training, the more the animal
becomes insensitive to devaluation. Over the last decade, this paradigm was employed to
unravel the neural correlates of habitual and goal-directed behavior: regarding habit formation,
in lesion studies, rats were found to remain goal-directed after selective lesion to the
dorsolateral striatum, implying its important role for habit formation (Featherstone &
McDonald, 2004; Yin et al., 2004; Balleine & O'Doherty, 2010). Using a devaluation paradigm
combined with fMRI in human participants, overtraining was shown to lead to increased
activation in the lateral striatum (Tricomi et al, 2009). Employing devaluation tasks in
combination with lesion studies in rodents to identify the neural correlates of goal-directed
control, rats’ prelimbic cortex and dorsomedial striatum were implicated in goal-directed
control. The prelimbic cortex was rather deemed responsible for the initial acquisition phase,
whereas the dorsomedial striatum seems to be important for both, acquisition and expression of
goal-directed behavior (Balleine & Dickinson, 1998; Corbit & Balleine, 2003; Ostlund & Balleine,
2005; Yin et al., 2005; Balleine & O'Doherty, 2010). In human participants investigated during a
selective outcome paradigm via fMRI, the ventromedial prefrontal cortex (vmPFC) showed a
response profile consistent with the goal-directed system: activation in the vmPFC towards the
devalued action (compared to the valued action) was reduced when comparing the pre- to post

devaluation phase of the experiment (Valentin et al, 2007).

3.3 Computational formulations: model-free vs. model-based modes of control

Recently, computational accounts, inspired by artificial intelligence and machine learning
(Bellman, 1957; Sutton & Barto, 1998), have amended these theories by formalizing habitual and
goal-directed control with the help of algorithms derived from Reinforcement Learning (RL,
Doya et al.,, 2002; Daw et al.,, 2005). The computational reformulation builds on the same ideas
as sketched in the last paragraph, but uses mathematical models to describe and test these. The

computational approach goes beyond the before-described verbal theory of goal-directed and
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habitual control (Anselme et al, 2013). This thesis builds on these computational re-
formulations, and their principles are summarized in the following. I present the computational
architecture in rather limited mathematical detail, roughly following the description and
notation of Balleine et al., 2008b, Daw and O’'Doherty, 2013 and Huys et al.,, 2014. The interested
reader is referred to this work and the empirical part of this thesis (chapter 5-10) for more
details.

In the computational framework, goal-directed control arises from so-called model-based
computations: at one point in time t, the environment is in a specific state s; and an agent
chooses an action a; in order to get a reward r;. In a psychological experiment, states s, could for
example be a specific set of stimuli and action a: would refer to the agent choosing one of the
stimuli. The combination of s; and a: at one point in time determines the subsequent state

s’ based on a transition function T. T defines the probability distribution over this new state s’:

(2) T(s,a,s") =P(sy+1=5"|s; =s,a; =a)

The transition function gives the probability of s’ given the previous state-action combination. In
an instrumental learning experiment, this would reflect the probability (or contingency) by
which one choice leads to an event like monetary gain. When playing a game, knowing T would
correspond to knowing the rules of the game.

The reward function is the average reward as a function of state

(3) R(s) = E[rylsy = s]

When playing a game, this would reflect the goal of a game. Importantly, a model of the world
consists of the combination of transition function T and reward function R.

Stepping back to the previous section which introduced key characteristics of goal-
directed behavior, it is particularly noteworthy that T formally incorporates response-outcome
associations which is also the key criterion of goal-directed behavior (compare section 3.1)
Considering the devaluation paradigms described above, a model-based agent embodying T and

R would withdraw from choosing the devalued option and thus show goal-directed behavior.
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In real life environments, an agent is often faced with a multitude of actions and states
leading to rewards, which themselves lead again to different states associated with rewards.
How does a model-based agent master such sequential decision processes? Generally speaking,
model-based control would mean to sequentially evaluate all action sequences, according to T
and R. Formally speaking, the agent aims at choosing actions in a way that maximizes future
reward, summed over all possible future states, while accounting for the probabilities of the
state transitions in his computations. This requires evaluating all branches of a decision tree:
mapping potential state trajectories as consequences of potential actions. Thus, the value of
taking action a in state s is evaluated by summing up future rewards R depending on the
sequence of states, s,s;,1,5.+, and averaging these over different trajectories, given the state

transition probability function T. This can be formalized in the state-action-value function:

(4) Q(s,@) = E[ry + 1441 + Tpyp + -+ |5¢ = 5,0, = a]

Where E[‘] is the average expectation of an agent, averaging over the probabilities given by T,
the state transitions. The state-action-value-function thus sums up a particular reward that
follows a particular action given a particular state.

This function is often rewritten to account for the fact that the r, + 1,41 + 14, partition of
the formula above equals the value of the respective successor state Q;_1 / Q; / Q¢+1. Thus, the

long-term value Q can be defined in terms of itself:

(5) Q(s,@) = R(s) + Zs T(s,a,s") maxg [Q(s',a")]

By max,, [Q(s’,a’)], we assume that the agent takes the best (i.e. the one with maximum value),
action available.

In brief, equation 5 provides the key computations the model-based system works out to
come to a decision value. An essential characteristic of model-based control is that it takes into
account both T and R. By building a decision-tree based on the world model of the environment,
model-based control represents all possible actions and simulates all potential outcomes online.

This enables prospective planning and thus flexible behavioral adaptation. It is sometimes
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compared with a chess-player who takes into account a sequence of multiple states (board
positions) and actions (moves and countermoves, Balleine et al, 2008a). From equations 4 and
5, it becomes clear that model-based control, i.e., computing the whole decision tree, is
computationally very laborious.

In contrast, the computational counterpart to habitual control, namely model-free control
substitutes these (costly) computations by prediction errors based on stored or so-called cached
values, e.g. the temporal difference prediction error (Sutton & Barto, 1998), which approximates
current value estimates using previously learnt estimates. One version of model-free learning is

Q-learning (Watkins & Dayan, 1992). Here, the new value is updated based on the old one:

(6) Q(sts1,at41) = Q(spap) + ady

where §; is the reward prediction error in trial ¢, defined as follows:

(7) 6¢ = 1p + amaxg, [Q(Ser1,a) — Q(Se,ar) |

6 indicates the discrepancy between the old prediction and the new outcome (i.e. the temporal
difference, TD). Note that this algorithm does not represent the world model (like above defined
as the combination of the transition function T with the reward function R). It becomes clear
that this is computationally less demanding as, e.g., solving equation (5). However, a drawback
of this strategy is that new values can only be acquired via direct new experience; the model-free
learner only knows that a hot stove should not be touched after he has actually tried it out,
experienced pain as a form of punishment, and updated the value accordingly. Hence, estimates
are retrospective as derived from past utilities and might not appropriately map on the value of
the actual outcome.

The trade-off between the two systems can thus be seen as a trade-off between
computational and statistical efficiency (Dayan, 2009b; Simon & Daw, 2011; Dolan & Dayan,
2013; Gershman et al,, 2014): while predictions of the model-based system are more flexible and
more precise, a computational device like the brain is restricted in resources and will not

possibly be able to scour the entire decision-tree at any point in time. For this thesis, the trade-

29



off is interesting: it is conceivable that inter-individual differences exist in how individuals arrive
at the compromise between statistical and computational efficiency.

The computational formulation of the longstanding psychological ideas of behavioral
control enables us to investigate behavioral control with all benefits of a modeling-based
analysis as sketched in the General Principles section (section 2.1 and 2.2). This includes the
development of experimental paradigms specifically tailored to measure the dichotomy between
model-free and model-based control. Further, it opens the doors to testing inter-individual
differences on mechanistically informed parameters and their implementation in the brain. In
the next two sections, | will give an overview on how this has stimulated recent cognitive
neuroscientific investigations (section 3.4), and finally, first attempts to translate this to clinical
populations (section 3.5). Regarding terminology, whenever a specific analysis is influenced by
the computational approach, the terms model-free for habitual control and model-based for goal-

directed control will be used. See Figure 3-1 for an illustration of the two control systems.

3.4 Behavioral and neural correlates of model-free and model-based control

3.4.1 Paradigms to test model-free and model-based control

The reformulation of habitual and goal-directed modes as the computationally informed
concepts of model-free and model-based control came along with the development of several
elegant experimental and computational approaches to test both modes of control in a
computational modeling framework and to gain insight in their neural implementation. These
approaches can be roughly divided into two types of instrumental learning paradigms:
counterfactual serial reversal learning and sequential decision-making (Doll et al., 2012).
Counterfactual learning tasks implement an implicit or explicit counterfactual task structure
(Hampton et al, 2006; Bromberg-Martin et al, 2010; Wunderlich et al, 2011; Wimmer et al.,
2012). An agent can derive hypothetical information from abstract inference on this task
structure, i.e. infer what might have happened if it had taken another course of action - although

it has not actually experienced the outcome. Probabilistic Reversal Learning tasks with anti-

30



Eat
carrot

]

is is ; high-
F a'Fﬁ?éj Y| [healthy| ~ [yummi a caloric -
might will lose will feel will gain
r rot W weight i nice | weight
will look

Chocolate cake =
yummi!
Eat chocolate cake!

Figure 3-1. Model-Based and Model-Free Decision-Making in the context of deciding what to eat.
Model-based computation (left bubble) uses a forward model of the environmental conditions.
This model involves characteristics of the environment, including different transitions (e.g., high-
caloric > gain weight) and different outcomes (e.g., look great, feel nice, gain weight). Model-based
control searches the mental map to estimate the long-run value of each action (eating cake vs.
carrot vs. any other type of food vs. eating nothing...) at the current state with respect to the
expected reward. The action with the highest overall reward is then chosen. Model-free control
(right bubble) does not search through such a model. Instead, model-free control draws on cached
values, values which store past experience. Experience might have shown that eating a chocolate
cake is an extremely rewarding action. Under the influence of model-free control, the agent will
thus decide to eat the cake, even though this action might be at odds with current goals, e.g., losing
weight (Dayan & Niv, 2008).
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correlated reward distributions (i.e, whenever one stimulus is good, the other one is bad) are
frequently used to operationalize counterfactual learning (Doll et al., 2012). Sequential decision-
making describes types of tasks in which the agent can make use of a transition structure in
order to solve multi-step decisions (e.g. situations in which decision options at a start lead to a
specific subsequent state, which requires the next decision from which a reward can be
obtained, Glascher et al, 2010; van der Meer et al.,, 2010; Daw et al.,, 2011; Simon & Daw, 2011).
As these are the experimental paradigms which are applied in the empirical studies of
the current thesis, exemplary previous results on behavioral control and its neural substrates
derived from these types of tasks will be reviewed in the following section. For detailed
description of tasks and computational modeling, including algorithms, please refer to the

methods section in the chapters reporting the empirical studies (chapters 5-10).

3.4.2 Previous cognitive neuroscience findings in healthy individuals

The first influential human computational imaging studies that used RL-algorithms exclusively
concentrated on model-free TD prediction errors and their representation in the brain
(O'Doherty et al,, 2003; O'Doherty et al.,, 2004; Dolan & Dayan, 2013), without dissociating these
from model-based learning signals. These studies (and a wealth of replications) have shown
coding of model-free prediction errors in striatal BOLD activity (Balleine & O'Doherty, 2010).
This activation has for long been theoretically linked to phasic releases of dopamine carrying a
model-free prediction error (Schultz et al, 1997; Schultz, 2013). In line with the earlier animal
studies touched upon before, there is evidence that it is rather the putamen, and not the caudate,
that is involved with model-free predictions (Wunderlich et al., 2012a; Lee et al., 2014).

In recent years, attention has also shifted towards model-based learning signatures in
the brain. Using modeling-based fMRI combined with a counterfactual reversal learning task as
introduced above, Hampton and colleagues revealed that BOLD activity in the ventromedial
prefrontal cortex was consistent with a model incorporating an abstract model of the
counterfactual task-structure than by model-free RL, suggesting the vmPFC as a key region for

model-based evaluation (Hampton et al.,, 2006). Sequential decision-making tasks were applied
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to dissociate neural signatures of model-free vs. model-based prediction errors. In an echo of the
latent learning paradigm used by Tolman (Tolman, 1948), Glascher and colleagues investigated
the acquisition of a mental model as a key characteristic of model-based control using fMRI In a
latent learning period (i.e., without delivery of reward), participants acquired the transition
structure of a two-step sequential decision problem, showing model-based state prediction
errors in lateral prefrontal cortex, whereas model-free prediction-errors were observed again in
ventral striatum (Glascher et al,, 2010). In a subsequent phase of the experiment where rewards
were delivered, subjects used the latently acquired model of the task to gain these rewards. In a
recent study using sequential decision-making, Doll and colleagues have tested another key
aspect of model-based control: the forward-planning nature, or prospective evaluation, of
model-based decision-making. The authors indeed could show that BOLD-activation in brain
regions that represented prospectively chosen categories correlated with the degree of model-
based behavior and to other neural signatures of model-based choice in the dorsomedial
prefrontal cortex and the fronto-polar cortex (Doll et al, 2015). To summarize, up to this point, a
clear picture seems to emerge: model-free, habitual learning, across species, is best explained by
signaling in striatum, most specifically putamen (or in rodents the dorsolateral, but not the
dorsomedial striatum), whereas model-based, goal-directed learning can be localized in
prefrontal regions, namely medial and lateral prefrontal cortex.

In an attempt to probe this putatively clear-cut anatomical distinction, Daw and
colleagues used a sequential decision making variant designed to explicitly dissociate the two
systems (Daw et al, 2011). This task makes qualitatively different predictions for a model-free
vs. model-based behavior which are not necessarily mutually exclusive. This enabled to measure
a balance between model-free and model-based control. An interesting (and up to now several
times replicated, see Wunderlich et al,, 2012b; Eppinger et al, 2013; Smittenaar et al.,, 2013;
Deserno et al., 2015b), finding was that individuals use a hybrid model: their behavior showed
evidence for elements of both, model-free and model-based systems. It came as a surprise that

TD-prediction errors modified by the model-based system correlated with (until then)
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supposedly model-free BOLD activation in the ventral striatum (Daw et al, 2011; for a
replication see Deserno et al, 2015b). This brain-behavior correlation was associated with
subjects’ degree of model-based behavior (Daw et al, 2011). Similarly, both model-free and
model-based contributions could be detected in the medial prefrontal cortex. These findings led
other authors to conclude a “ubiquity of model based reinforcement-learning” (Doll et al, 2012,
p. 1075), rather than a clear-cut distinction of both systems. Thus, the coherent computational
framework allows testing the hypothesis that both types of control represent two ends of a
continuum, rather than two distinct modes of control. It is from this strand of work that we now
can build on accumulating evidence for a continuous spectrum of control with decision-making
in healthy individuals being influenced by both systems (Daw et al, 2011; Doll et al, 2012).
Some authors have argued that both control systems compete for behavioral control (Lee et al,
2014). On the other hand, some recent evidence suggests that both systems of behavioral control
work together in a cooperative way (e.g., with the model-based system teaching the model-free
system) to manage behavioral control challenges in multiple environmental situations
(Keramati et al., 2011; Gershman et al., 2014).

The proposal of a continuum has interesting implications for an inter-individual
perspective as adopted in this thesis. Important open questions arise: can the balance between
model-free and model-based control be shifted towards one end of the continuum? What are
situational or trait factors associated with a bias towards one or the other pole? Are some
individuals more located towards one or the other end of the continuum? Can certain psychiatric
disorders be characterized as extreme examples for an imbalance of the two systems?

3.5 Shifting the balance: previous research on inter-individual differences in behavioral
control

3.5.1 Behavioral control going awry - previous findings in addictive disorders

Not only in clinical psychology and in cognitive neuroscience, also amongst the general public,

addiction has for a long time been conceptualized as an inability to learn from one’s errors, or

stigmatized as failure of the will (Heinz & Batra, 2003). Indeed, the inability to stop substance
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consume in the face of negative consequences is at the core of current diagnostic criteria for
substance addiction (American Psychiatric Association, 2013) and also for related disorders like
binge eating disorder.

In resonance with these clinical observations, an earlier strand of research in cognitive
neuroscience has demonstrated blunted neural responses to performance errors and reduced
error awareness in addiction (Garavan & Stout, 2005; Paulus et al., 2008; Goldstein et al., 2009).
Further, deficits in cognitive flexibility and associated neural correlates in addiction have been
frequently reported in animal (Jentsch et al, 2002; Schoenbaum & Shaham, 2008) as well as
human studies (Bechara & Damasio, 2002; Ersche et al.,, 2008; Park et al,, 2010; Ersche et al.,
2011; Deserno et al,, 2015a). The hypothesis of a shift from goal-directed towards habitual
behavior in addiction has become particularly prominent over the last decade (Everitt &
Robbins, 2005; Dayan, 2009a; Lucantonio et al, 2012). Considering the clinical picture, this
hypothesis indeed seems tantalizing: addicted patients in fact make very poor choices; instead of
striving for reasonable goals like maintaining their job or a social network, they habitually
continue substance consumption, even though it might not even be pleasant anymore, just
because it used to be rewarding sometime in the past. This hypothesis has received first
empirical confirmation using devaluation tasks in rodents (Schoenbaum & Setlow, 2005) and
variations of such in human beings (Sjoerds et al, 2013). On the theoretical level, addiction has
however also for long been described from a computational perspective (Redish, 2004; Redish et
al., 2008; Dayan, 2009a), offering mechanistic hypotheses. Addiction was conceptualized as a
“computational process gone awry” (Redish, 2004, p. 1944) resulting in a bias towards the
model-free system. Until very recently, empirical computational neuroscience investigations to
test these hypotheses in addictive disorders have been surprisingly scarce. Regarding model-
free prediction errors, Park and colleagues could not find evidence for altered neural prediction
error coding in alcohol-dependent patients - despite a clearly observed behavioral learning
deficit (Park et al, 2010, but also note Tanabe et al, 2013, who found reduced prediction error

coding in substance-dependent participants). This discrepancy might, in light of the previously
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discussed continuum hypothesis of behavioral control, invite speculations about a deficit in the
model-based system in alcohol dependence (which was not investigated in the latter study)
while the model-free system is preserved. In an overlapping sample with Park and colleagues,
Deserno and colleagues reported that ventral striatal coding of model-free prediction errors
correlated inversely with craving in patients (Deserno et al, 2015a), confirming the clinical
relevance of model-free prediction error coding. Only very recently, two behavioral studies have
explored addiction-related alterations in the balance between the model-free and the model-
based system in humans. Applying a sequential decision-making task in alcohol-dependent
patients, Sebold and colleagues found group differences in model-based behavioral control,
specifically after negative feedback, which were attenuated when adjusting for cognitive
functioning (Sebold et al, 2014). Using sequential decision making combined with
computational modeling in a transdiagnostic study, Voon and colleagues did not observe group
differences in model-based decision-making between healthy controls and alcohol-dependent
patients who had remained abstinent for 17 weeks on average (Voon et al, 2015). However, a
correlation of model-based control and duration of abstinence was observed. This finding could
point towards the role of model-based control in successful abstinence. Interestingly, the same
study showed changes in the model-based system for other diseases within the addictive
spectrum: stimulants dependence was associated with a reduced degree of model-based control.
Further, binge eating disorder was related to less model-based behavior. Thus, it appears as an
interesting question whether different diagnostic entities, which share as a common ground a
loss of control over certain behaviors, are reduced in model-based control or biased towards
model-free control. The underlying common and differential cognitive and neural mechanisms
have however as yet not been investigated.

To this end, in the empirical part, I present a study on behavioral adaptation in alcohol-
addicted patients as a prototypical substance addiction. In a further study, I adopted the same
study design to a group of binge eating patients. Binge eating disorder is a newly defined

disorder, first described in DSM-5. The clinical picture is characterized by recurrent episodes of
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overeating. During these binge eating episodes, patients have the feeling that they cannot stop
eating, in the face of negative consequences like feelings of guilt and shame and the high risk for
obesity. According to DSM-5, it is classified as an eating disorder. It however shares with
substance addiction as a common clinical feature the experienced loss of control over behavior
despite negative consequences and is by some authors referred to as food addiction (Smith &
Robbins, 2013; Robbins & Clark, 2015). Compared to alcohol addiction, binge eating disorder
involves loss of control regarding a natural reinforcer (food) which lacks neurotoxic effects. The

latter is advantageous when it comes to measuring neural correlates.

3.5.2 Failure of abstract inference on alternative choices in addictive disorders

What exactly is impaired about model-based control in addiction? On the theoretical level,
disturbed mechanisms of inference in addiction have been discussed (Huys et al,, 2015b). The
rationale is that inference on higher-order environmental structure, e.g, on the
interdependencies of values is important when constructing and thus also using a model of the
world. In fact, generalizing from explicitly experienced reward relationships to those that were
never directly learned has been demonstrated to be a feature of model-based decision-making
(Wunderlich et al, 2011; Doll et al, 2015). If these mechanisms are impaired, this should result
in less accurate models of the environment and consequently to reduced goal-directed behavior.
In line with this view, recent evidence from animal models for addictive behaviors points toward
a deficit to mentally simulate outcomes of one’s behavior which are not directly experienced
(Lucantonio et al., 2014). Deficits in using fictive (i.e., not directly experienced) learning signals
which code ‘what might have happened’ have also been described in human smokers before

(Chiu et al,, 2008).

3.5.3 Risk factors for addiction: habitual behavior as a vulnerability marker for addiction?

A shift from model-based to model-free behavior has not only been proposed for addiction itself,
but mostly on the theoretical level also as a vulnerability factor for addictive behaviors (Huys et
al.,, 2014). In the following, I discuss findings in the field of behavioral control in selected risk

factors for addictive disorders (Merikangas et al., 1998; Sinha, 2008; Verdejo-Garcia et al., 2008;
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Robbins et al., 2012). Risk factors investigated in this thesis are 1) impulsivity 2) positive family
history 3) cognitive functioning 4) acute and chronic stress. Although it is conceivable that
combinations of and interactions between these factors contribute to vulnerability for addiction,

the subsequent passage mainly follows an isolated description of risk factors.

3.5.3.1 Impulsivity

From a personality psychology perspective, impulsivity has for long been discussed as closely
associated with addictive behavior (Verdejo-Garcia et al, 2008) and has indeed been termed an
endophenotype of addiction (Ersche et al.,, 2010; Robbins et al., 2012). Within the pathogenesis
of addiction, impulsivity has also been associated with habitual behavior: based on animal work,
it is suggested that impaired inhibitory control - by definition a hallmark of high impulsivity -
increases the risk of initial voluntary substance use, but also speeds up the transition into
habitual drug consumption (Everitt et al., 2008). In human beings, Ersche and colleagues found
higher impulsivity levels in addicted individuals and intermediate impulsivity levels in their 1st
degree relatives (Ersche et al, 2012a). Low ventral striatal activation towards anticipation of
rewards was shown to be associated with increased impulsivity in alcohol-dependent patients
(Beck et al, 2009). Regarding behavioral control, first support for the hypothesis of an
overreliance on the habitual system in high-impulsiveness comes from devaluation paradigms,
demonstrating reduced goal-directed control in high-impulsive smokers (Hogarth et al.,, 2012b).
However, to the best of my knowledge, no previous studies involving a neuro-computational
approach to tackle the association of impulsivity with model-free vs. model-based control in

non-addicted, healthy, but high-impulsive individuals have been reported.

3.5.3.2 Positive family history of addiction

Addiction runs in families, such that relatives of individuals suffering from substance addiction
have an eight-fold increased risk of substance abuse disorder, rendering it as one of the most
prominent risk factors for substance-related disorders (Merikangas et al, 1998). Studying
relatives of drug-dependent individuals enables to identify well-defined cognitive or behavioral

processes as (familial) vulnerability factors, i.e. stemming from genetic or shared environmental
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causes: if such alterations in a certain cognitive or behavioral process can not only be found in
patients themselves, but also in unaffected siblings, it seems reasonable that they constitute a
risk factor of the disease rather than a consequence. These cognitive or behavioral alterations
have been termed endophenotype or intermediate phenotype (Gottesman & Shields, 1973; Ersche
et al, 2010; Robbins et al, 2012). In the case of alcohol-addiction, where the abused drug has
strong neurotoxic effects, the endophenotype approach enables to disentangle cognitive,
behavioral and neural factors related to addictive behavior per se from more general deficits,
emerging as a consequence of drug consumption, e.g. due to grey matter loss (Beck et al.,, 2012;
Ersche et al.,, 2012a) or drug-induced cognitive impairment (Beveridge et al, 2008). However, to
date, behavioral control as defined in this thesis has not been studied in unaffected relatives of

psychiatric patients.

3.5.3.3 Low cognitive function

In studies involving individuals suffering from addiction and their siblings, low cognitive
function has been claimed a further endophenotype for addiction. Low cognitive function,
specifically executive function, was not only found impaired in drug users but also in their
relatives (Ersche et al, 2012b). On the other hand, neuro-computational investigations of the
balance between model-free vs. model-based control have provided evidence for the
theoretically well-accepted fact that the model-based system strongly relies on cognitive
capacities (Otto et al, 2013a; Otto et al., 2013b; Schad et al, 2014; Otto et al, 2015). This
complicates the interpretation of studies in addicted individuals as observed differences in
behavioral control might be attributed either to a disease-specific mechanism or to a general
cognitive decline (Sebold et al, 2014). As described above, studies in at-risk populations are a
promising venue to assess the association of cognitive capacities and behavioral control as

vulnerability for the development of addiction beyond general cognitive decline.

3.5.34 Stress
Stress is a well-established risk factor for addiction development and addiction relapse, as

evidenced by rodent as well as human epidemiological studies (Sinha, 2008). Specifically, the
39



role of chronic stress for addiction onset is emphasized Interestingly, for acute stress there is
also evidence derived from self-control (Maier et al., 2015) or devaluation paradigms (Schwabe
& Wolf, 2009; 2011; 2013) that stress impairs goal-directed behavior or biases behavioral
control towards habitual decision-making. Adopting a computational approach, a recent study
has however not found between-group differences in acutely stressed vs. control participants
regarding the balance of model-free vs. model-based behavior during sequential decision-
making (Otto et al.,, 2013b), but an association with individual physiological stress responsivity.
Noteworthy, stress influences cognitive processes differently, depending on the timing and
duration of exposure to stress (Lupien et al, 2009). Thus, it seems surprising that effects of
chronic stress on behavioral control have scarcely been investigated in human beings; in a
rodent model, Dias-Ferreira et al. (2009) combined a devaluation procedure with chronic stress
exposure. They could show that chronic stress triggered rats to become insensitive to changes in
outcome value and thus more habitual. The interaction of chronic and acute stress on habitual
vs. goal-directed control in humans has, to my knowledge, not been assessed in previous studies.
This might however be an important influence factor for onset of and relapse to substance

abuse.

3.6  Current challenges in psychiatric research and emerging paradigms

Progress in psychiatric research has been deemed “disappointing” (Stephan & Mathys, 2014, p.
86) or as “a field in crisis” (Wiecki et al, 2015, p. 378; Hyman, 2012; Montague et al, 2012). At
the core of critique is an “explanatory gap” (Kapur et al.,, 2012; Montague et al., 2012, p.73). This
terms the lack of an intermediate level connecting explanations, e.g. on the molecular level
(where in fact psychopharmacology exerts its impact) or other possible causes to clinical
phenotypes. Due to this gap, psychiatry mainly relies on oversimplified explanations (Maia,
2015) - schizophrenia arises from dopamine, depression involves serotonin etc., although,
arguably, psychiatric disorders affect an extremely complex and dynamic biological system - the
brain. Further, the lack of any mechanistically informed explanations for individual disease

processes leads the field to cling to a purely symptom-based description of psychiatric states, as
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operationalized in the current classification systems. These classifications rather rely on clinical
plausibility and utility than on scientifically justified criteria and seem far removed from
biological plausibility (Buckholtz & Meyer-Lindenberg, 2012). Critically, interrater-reliability of
classifications based on the Diagnostic Statistical Manual (DSM), which had originally been the
cause for its development, has been disparaged: the newly developed DSM-5 shows moderate to
low reliability estimates for the majority of diseases (Freedman et al, 2013). One major problem
contributing to deficient current classification is heterogeneity: patients can get the same
diagnoses, even if their symptoms are widely disparate (as in the case of schizophrenia), or even
opposite in nature (compare psychomotor retardation and agitation, which are both criteria for
depression). On the other hand, similar symptoms are present in different diagnostic entities,
e.g. compare loss of control over certain behaviors in substance addiction as well as eating
disorders like binge eating or bulimia nervosa (Robbins et al, 2012; Wiecki et al, 2015). A
related problem is comorbidity, or so-called artificial comorbidity, which means that currently
separate diagnoses are given for symptoms that could have a common cause or pathogenetic
pathway - thus belong together for treatment or outcome prediction (Buckholtz & Meyer-
Lindenberg, 2012; Wiecki et al., 2015). As a consequence, current psychiatric practice is accused
of treatment on a trial-and error-basis (Wiecki et al., 2015). To overcome these issues, over the
recent years, the field has pinned its hopes on two emerging paradigms, namely Dimensional
Psychiatry and Computational Psychiatry that complement each other rather than being mutually

exclusive.

3.6.1 Dimensional Psychiatry

It has been criticized that the categorical definition according to DSM leads to the classifications
being treated as if they were “natural kinds - inherently meaningful, ontologically (biologically)
valid taxons.” (Buckholtz & Meyer-Lindenberg, 2012, p. 993). Consequently, the focus of
psychiatric research is shifted towards unique and entity-specific pathogenetic processes. This
seems off-target: on the clinical level, as outlined above, symptoms overlap, there is frequent

crossover from one disorder to another, and comorbidity is pervasive. In addition, current

41



treatment does not follow these categorical boundaries, as similar psychopharmacological
agents are used to treat different diagnostic entities (Stahl, 2008). Likewise, similar or non-
specific psychotherapeutic factors are effective across diagnoses (Grawe, 2005). Furthermore,
current biological accounts of mental illness, e.g. genetic or neurobiological explanations, rather
speak in favor of a continuous and dimensional model of mental illness (Heinz, 2002; Buckholtz
& Meyer-Lindenberg, 2012). From a dimensional perspective, different symptoms of multiple
domains are seen as more or less expressed in the population, which can fall within the range of
normal behavior, but in the case of extreme hypo- or hyper-expression manifests itself in
psychopathology. Expression of one or the other symptom can also be common to a variety of

diagnoses rather than specific for one categorical disorder. Figure 3-2 illustrates this conception.

frequency in the population

expression of model-based control

Figure 3-2. Hypothesis of expression of model-based behavior in the population according to a
Dimensional Psychiatry approach. Marked in red would be the putative expression in the disease
group, marked in orange would be the putative expression in the risk group. Note that the other
end of the continuum is not marked in red, which mirrors the current research focus that
particularly a reduction in model-based control leads to harmful decisions. However, hypotheses on
too much model-based control begin to arise, with speculations that an overdominance might be

related to psychotic phenomena (Dolan & Dayan, 2013).
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Dimensional Psychiatry builds on this notion and aims at investigating psychiatric disorders
from this transdiagnostic perspective, across nosological boundaries. In an influential article,
Robbins and colleagues suggested neurocognitive (endo-)phenotyping of multiple symptom
dimensions (e.g. compulsivity and impulsivity) across disorders (e.g. substance abuse, eating
disorders, Obsessive Compulsive Disorder), but also independent of diagnosis, in healthy but at-
risk populations, e.g. in first-degree relatives (Robbins et al, 2012). The approach relies on
behavioral tasks combined with neural measures to find alternative ways of classifying. In line
with this, a recent initiative by the United States’ National Institute of Mental Health, the
Research Domain Criteria project, aims at a new description of mental disorders, agnostic to
DSM-criteria, by combining information of genetics, neuroimaging, behavior and self-report
(Insel et al., 2010).

This new way of classification is aimed to be quantitatively measurable, putatively closer
to the underlying neural mechanism. Further, it acknowledges heterogeneity in the general
population (Wiecki et al, 2015). However, the suggested phenotypes might again constitute
umbrella terms composed of multiple poorly defined underlying basic mechanisms. This
reformulates behavioral impairments in patients but might still leave the how question

unanswered (Verbruggen et al., 2014).

3.6.2 Computational Psychiatry

The nascent field of Computational Psychiatry is concerned with translating the modeling-based
cognitive neuroscience approach outlined in section 2.2 and concepts of theoretical
computational neuroscience in general, to the field of psychiatric research. Hence, much as
described in the General Principles section, Computational Psychiatry uses quantitative
mathematical models to unravel behavioral alterations, neural characteristics and brain-
behavior relations in psychiatric disorders and symptoms. Building on this, Computational
Psychiatry targets at answering specific questions concerned with a mechanistic explanation of
psychiatric disorders and developing improved theories of mental illness, and works out

custom-made techniques for data analysis to achieve this. Specific goals include (Maia, 2015):
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classifying patients, e.g. based on neuroimaging or EEG data (Kloppel et al, 2012), clustering
clinically relevant subgroups based on modeling techniques agnostic to standard diagnostic
criteria (Brodersen et al., 2014), and, investigating group differences (e.g. patients vs. control
group, patients with different diagnoses, subgroups of patients) regarding models or model
parameters which best fit behavioral or physiological data (e.g. fMRI, EEG, Maia & Frank, 2011).
The latter goal is pursued in this thesis. It involves questions such as: do patients follow the
same model to solve an experimental task as controls or as patients with another diagnosis? Do
groups differ in model parameters that represent specific neural or cognitive processes? Is the
latter related to clinical measures, like symptom severity or treatment outcome? In sum, the
overarching aim of Computational Psychiatry relates back to shrinking the explanatory gap
between cause and phenotype by tracing a causal pathway from a change in one variable to the
effect onto another variable (Maia, 2015) with the final goal to predict outcome and to guide

treatment.
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4 Research questions and study design

Building on the previous chapters, the next paragraph amalgamates the methodological and
theoretical aspects introduced to develop the rationale and hypotheses underlying the current
empirical investigation. Figure 4-1 and 4-2 are designed to illustrate the current framework.
Adopting a dimensional psychiatry approach (see Figure 4-1), the empirical section of the thesis
focusses on RL-mechanisms of behavioral control in different psychiatric patient groups and
associated risk factors in a series of six studies. To this end, I employed two different
experimental paradigms, sequential decision-making and counterfactual decision-making, both
designed to measure flexible behavioral adaptation. Following the Computational Psychiatry
approach, all studies applied computational RL-models to the measured behavioral data. In
studies 1, 2 and 4, this is combined with a modeling-informed fMRI analysis. In study 3, this is
combined with a modeling-based ERP analysis. Study 5 and 6 are behavioral studies (see Figure
4-2).

The empirical studies revolve around the following general research questions:

1) Is substance addiction characterized by impaired mechanisms of flexible goal-directed
behavioral adaptation? Can this deficit be explained by reduced abstract inference on un-
chosen choice options (“what might have happened”)? What are neural correlates of this
deficit? (study 1)

2) Do potential impairments of this kind transdiagnostically extend to binge eating
disorder, a nosologically distinct diagnosis, which shares clinical features with substance
addiction? What are shared and differential behavioral mechanisms and neural
correlates? (study 2)

3) Does a shift from model-based to model-free behavioral control extend to recognized
risk factors of addiction and might thus be seen as a vulnerability factor for addiction?

(studies 4-6)
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Impaired
Behavioral
Control
Addiction-
like

Figure 4-1. Research questions and design. This thesis was motivated by the question of
mechanisms underlying impaired behavioral control in substance addiction (alcohol addiction,
study 1). Adopting a dimensional psychiatry approach, I aimed to investigate whether and how
impaired mechanisms of behavioral adaptation extend to so-called addiction-like disorders (here
using the example of binge eating disorder, study 2), and several risk factors of addiction (study 4:

impulsivity, study 5: positive family history, study 6: acute and chronic stress).

Computational

Modeling of
Choice
Behavior

Figure 4-2. Methods. Behavioral computational modeling was applied in all studies to analyze
choice behavior in reward-based decision-making tasks. In studies 1, 2 and 4, parameters derived
from the computational model were combined with neural signals measured via BOLD-fMRI. Study

3 aimed to identify modeling-derived signals in the EEG.
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According to research question 1, mechanisms of abstract inference on unchosen alternative
options were investigated in alcohol-dependent patients by using counterfactual decision-
making during fMRI (study 1). Inspired by the transdiagnostic framework, I extended the same
study design to binge eating disorder. Study 2 was thus inspired by research question 2 whether
aspects of altered behavioral control found in substance addiction translate to a nosologically
different disorder which shares as a common clinical feature the loss over behavioral control.

Study 3 extended the study design of the fMRI studies 1 and 2 towards EEG - due to
enhanced feasibility, this might enable studying research questions as in study 1 and 2 also in a
broader range of patient populations. I ask whether, using a modeling-based approach combined
with EEG, we can define electrophysiological correlates of abstract inference during flexible
behavioral adaptation.

Studies 4-6 use sequential decision-making, all designed to tackle research question 3.
They build on previous findings as reviewed above which indicate reduced model-based
behavior in addiction. In the sense of a dimensional approach, sequential decision-making was
applied to the following risk factors of addiction: impulsivity (study 4) positive family history of

addiction, impulsivity and cognitive function (study 5) and acute and chronic stress (study 6).
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5 Study 1: Neglecting what might have happened - disturbed
inference on alternative choices in alcohol-dependent patients?

5.1 Introduction

A key characteristic of addictive disorders is the fact that addicted individuals continue
substance use despite evident harmful consequences. Addicted individuals regularly report
having no choice but to consume. This suggests an impairment of integrating different choice
options and their potential consequences. Thus, neglecting ‘what might have happened’ may
rigidly bias decision-making towards choice options that have been proven to be rewarding in
the past (Chiu et al, 2008; Dayan, 2009a). Computational Psychiatry accounts (Montague et al.,
2012) have theoretically linked these maladaptive decision-making processes to disturbed
mechanisms of inference (Huys et al., 2015b), e.g., difficulties to use statistical regularities of the
environmental structure to guide decisions, and in the same vein, to the dichotomy of habitual
and goal-directed behavioral control (Dickinson & Balleine, 2002; Dolan & Dayan, 2013).
Habitual control arises from retrospective ‘model-free’ learning via past rewards and neglects
environmental structure with regard to alternative choice options. In contrast, goal-directed
control enables rapid behavioral adaptation due to planning action-outcome contingencies
involving a mental model of the environment. When inferring such a mental model, an individual
must rely on environmental statistics, e.g., on how different decision options relate to each other.
Thus, concurrent tracking of multiple decision possibilities, including the incorporation of
abstract inference about ‘what might have happened’, promotes a mental map of the
environment and advances flexible and goal-directed adaptation in dynamic environments
(Hampton et al., 2006; Li & Daw, 2011). Neural signatures of habitual and goal-directed control
have been demonstrated by fMRI in prefrontal cortex and striatum (Balleine & O'Doherty, 2010;

Daw et al, 2011). Thus, intact decision-making relies on the integration of both aspects of

2 This chapter corresponds to the following article: Reiter, A.M.F., Deserno, L., Kallert, T., Heinze,
H.J., Heinz, A. & Schlagenhauf, F. (under review). Neglecting what might have happened - reduced

inference on alternative choices in alcohol-dependent patients.

48



behavioral control (Daw et al, 2005) with specific involvement of lateral and medial prefrontal
regions in an integration process between both systems (Lee et al,, 2014).

Addiction has been theorized as one prime example for a breakdown of behavioral
control in favor of model-free control (Everitt & Robbins, 2005; Dayan, 2009a; Lucantonio et al.,
2012) with support from first behavioral studies (Sebold et al, 2014; Voon et al, 2015). A
common factor underlying observed impairments in behavioral adaptation might be a deficit in
abstract inference on higher-order environmental structure, e.g, on the interdependencies of
values, which might hamper the addicted individual in constructing and using a model of the
environment. Interestingly, on the neural level, intact model-free learning signals have been
demonstrated in alcohol addiction (Park et al.,, 2010). Here, we probe if the modification of basic
model-free neural learning signals by goal-directed inference regarding the environmental
structure is disturbed in alcohol addiction and whether this relates to the clinical feature of
obsessive drinking.

To address this, we employed functional Magnetic Resonance Imaging (fMRI) during
decision-making in a dynamic environment to examine flexible behavioral adaptation.
Importantly, reward contingencies of different options were anti-correlated: whenever one
stimulus was a good choice, the other one would be the worse choice and vice versa. When
confronted with options as in this task, individuals make choices based on decision values
computed for the options at hand (e.g. Rangel et al,, 2008). These values can either be deduced
by action-reward pairings or abstract inference on the task structure, i.e. the anti-correlated
reward probabilities (Hampton et al, 2006; Bromberg-Martin et al, 2010). This allows to test
whether an agent infers the correct structure of the task and learns accordingly. We
hypothesized that alcohol-dependent patients fail to integrate this abstract inference, ‘what
might have happened’, into the value of chosen options. To this end, we compared computational
models of learning that differ in the degree of updating alternative choice options. As a neural
substrate, we predicted prefrontal signatures reflecting abstract inference on alternative options

to be reduced in alcohol-dependent patients.
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5.2 Materials and methods

Participants. 43 alcohol-dependent patients and 35 healthy participants were included. fMRI
data were available of 35 healthy participants and 34 patients. Patients had abstained from
alcohol for at least 8 days (range: 8-56 days, m=28.80, SD=11.85) and were diagnosed as alcohol-
dependent (DSM-V and ICD-10). See supplementary information (SI-1) and S-Table 1-1 for
demographic, neuropsychological and clinical characteristics and for details on the recruitment
strategy, diagnostics and exclusion. The local Ethics committee approved the study. Participants
gave written informed consent and were reimbursed for participation.

Task. Participants performed counterfactual decision-making in a dynamic environment that
requires flexible behavioral adaptation (Figure 5-2A for illustration). Importantly, the task
incorporated a simple higher-order structure: task-structure was counterfactual by a perfect
anti-correlation of the reward probabilities associated with the two choice options; whenever
stimulus A was a good choice, stimulus B would be the worse choice and vice versa. Even though
the outcome for the alternative option is never shown, the agent can infer from the anti-
correlation of the options ‘what might have happened’ if he had taken the other stimulus (Figure
5-1). Reward contingencies remained stable for the first 55 trials (first, ‘pre-reversal’ phase) and
also for the last 35 trials (last, ‘post-reversal’ phase). During the second, 'reversal’, phase, reward
contingencies changed (four changes in total, after 15 or 20 trials, see Figure 5-2B). This
required participants to flexibly adapt their behavior. For details on timing, training and
instruction see SI-1.

Analysis of choice behavior. Behavioral performance was quantified as percentage of correct
choices (choices of the stimulus with 80% reward probability), and was analyzed using
repeated-measures ANOVA including the between-subject factor group (patients vs. controls)
and the within-subject factor phase (pre-reversal: first 35 trials, reversal: intermediate 90 trials,
post-reversal: last 35 trials). We investigated the effect of previous feedback on subsequent
decisions, i.e. repeating choices after reward, ‘win-staying’, and shifting responses after losses,

‘lose-shifting’ (den Ouden et al., 2013).
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Figure 5-1. Schematic: parallel double-updating of chosen and unchosen choice values. A) At time t,
an agent in state St passes to a new state St+; by the action a, observing the outcome R which leads to
the reward prediction error 8§ as the difference between expected and actually gained reward.
Accordingly, the agent updates the chosen value for the next trial, Qu1. Although not explicitly
observed, the agent can conclude from the counterfactual task-structure what might have happened
(RY) if it had chosen an alternative action a‘, resulting in a fictive prediction error &§. Thus, by
abstract inference on the counterfactual task-structure and parallel to updating chosen values, the
agent additionally double-updates unchosen values Q‘w1. Individuals might differ in their degree of
abstract inference on the environmental structure. The individual degree of double-updating is
therefore weighted by the parameter k. B) Effect of abstract inference, double-updating, on chosen
values. For one exemplary participant, values of the respective chosen value are plotted per trial, as
a function of the two alternative control strategies: pure single-updating (k=0, neglecting ‘what
might have happened’, red) versus pure double-updating (k=1, full abstract inference on the task-
structure, blue). Hence, the difference of both (here, highlighted in gray) represents an estimate of
the degree of abstract inference on the counterfactual task-structure. In our analysis of functional
imaging data, we probe how this difference in choice values with respect to abstract inference

modulates the coding of the core teaching signal, the reward prediction error § for chosen values.

We furthermore quantified how often participants repeated a choice despite two consecutive

losses for the same choice in the preceding two trials, relative to all loss trials.

Computational Modeling: Different reinforcement learning (RL-) models were fitted to the data.

All models learn values of choice options via reward prediction errors (RPEs), a teaching signal

that compares received rewards and expected values. In essence, the first three RL-models differ

in the degree of updating both, the chosen and alternative, decision options.
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)] A model-free learner who only updates values for the chosen stimulus and
therefore neglects the counterfactual task-structure. We refer to this as the
single-update (SU) model;

1) A learner who updates values of chosen and unchosen stimuli equally using
abstract inference on the task-structure. We refer to this as the double-update
(DU) model;

I11) A hybrid model connecting the models described above by individually
weighting the degree of double-update learning, accounting for individual
variability regarding this type of abstract inference. This is given by the
weighting parameter «.

Figure 5-1 provides a schematic of abstract inference on the task-structure with respect to
unchosen choice values (“double-updating”). In the task at hand, as double-updating depends on
abstract inference derived from actually experienced feedback, updating of the unchosen
stimulus always relies on learning from feedback for the chosen stimulus, i.e. is rather unlikely
to be a process independent from updating the chosen stimulus; compare Li et al., 2011 for an
identical implementation. In all three models, we let free parameters differ for reward and
punishment arew, @pun and Srew, fpun as we had verified that they outperform models without this
distinction (see SI-1).

As suggested by our reviewers, we additionally included a model with an adaptive
learning rate (Sutton-K1), in which the learning rate is dynamically updated as a function of the
change in prediction errors encountered (Sutton, 1992). It was previously discussed and used as
a non-hierarchical approximation of a dynamic learning rate (Chumbley et al, 2012; Kepecs &
Mainen, 2012; Landy et al, 2012; Iglesias et al, 2013). By including this model, we tested
whether a model with a dynamic learning rate captures the observed behavior better than
algorithms with a fixed learning rate. In SI-1, we describe each model accompanied by equations

and provide details on simulations, model-fitting and model selection.
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Analysis of fMRI data. See SI-1 for functional and structural MRI data acquisition and
preprocessing. The aim of the statistical analysis was to elucidate neural signatures of RPEs for
chosen values as a function of SU- versus DU-learning and potential group-differences. Onsets of
feedback delivery were modulated parametrically by two trial-by-trial regressors from
computational modeling: first, individual RPEs for chosen values were computed on basis of the
SU-Model with k = 0 (RPEsy). Second, individual RPEs for chosen values were computed based
on the DU-Model with k = 1 (RPEpy). We computed the difference of RPEpy minus RPEsy. This
reflects the difference in chosen values from the DU- and SU-algorithms, which, in the hybrid
model, is provided by the estimate of k (illustrated in Figure 5-1B). Thus, throughout the
manuscript, the second parametric modulator, the difference regressor, is referred to as RPEpy.
This procedure accounts for co-linearity between the regressors (Daw et al, 2011). At the
second level, contrast images for RPEsy and RPEpy were taken to a random-effects analysis. A
full-factorial ANOVA contained the type of RPEs (RPEsy /RPEpy) as within-subject factor and
group as between-subject factor. For details on the statistical analysis and Voxel-Based-

Morphometry (VBM), see SI-1

5.3 Results

Correct choices. An ANOVA revealed a significant effect of phase (F(2, 75)=21.76, p<.001), group
(F(1,76)=19.97, p<.001) and a significant group x phase interaction (F(2,75)=3.27, p=.04, Figure
5-2C).

Win-staying and lose-shifting. We further explored patients’ deficit in correct choices by
analyzing how often participants repeated choices after reward, ‘win-staying’, and shifted after
losses, ‘lose-shifting’. A between-group difference was found on win-staying (t(76)=2.23, p=.03)
with patients showing less stay behavior after wins (Mcontrois=.93, SDcontrois=-06; Mpatients=-87,
SDpatients=-14). There was no difference in lose-shifting (¢(76)=.25, p=.80).

Repeating choices despite recurrent negative consequences. We found a significant between-group

difference (¢£(76)=2.63, p=.01) in repetition behavior after two successive losses (Mcontrois=.11,
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SDcontrots=-08; Mpatients=.18, SDpatients=.14); patients reiterated disadvantageous choices more often,
despite negative consequences in preceding trials.

Computational modeling: model comparison. Using Bayesian Model Selection (Stephan et al.,
2009), we identified a best-fitting model in controls and patients. Exceedance probabilities XP
show which model most likely accounts for behavior in each population. Across both groups, this
revealed that the hybrid model outperformed the other models (XPhybriq,=.89, XPpy =.00, XPsy=.11,
XPsuttonx1 =.00). Groups differed regarding the model which explained their behavior best,

indicating different control strategies to solve the task (Figure 5-3A): controls were best
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Figure 5-2. Counterfactual decision-making task. A) Exemplary trial sequence. In a total of 160
trials, participants were instructed to select between two cards each showing a different geometric
stimulus, the card which they believed to be associated with reward. After the participant had
chosen one stimulus by button press (left vs. right button) the selected stimulus was highlighted.
Subsequently, feedback was shown: outcome stimuli were a 10 Eurocent coin (in the case of a win)
and a crossed 10 Eurocent coin (in the case of a loss). B) One of the stimuli was assigned with a
reward probability of 80% and a punishment probability of 20% (vice versa for the other stimulus).
Reward contingencies remained stable for the first 55 trials (pre-reversal block) and also for the
last 35 trials (post-reversal block). In between, reward contingencies changed four times (reversal
block). C) Raw Data Results. Correct choices differed significantly as a function of phase (pre-
reversal, reversal, post-reversal, F(2,75)=21.78 p<.001). We observed a main effect group and a
significant interaction of phase by group (F(2,75)=3.27, p=.04). Between-group post-hoc t-tests
revealed that group differences were present in the reversal phase (t(76)=3.48, p=.001) and in the
post-reversal phase (t(76)=3.36, p=.001) but not in the initial stable pre-reversal phase
(t(76)=1.69, p=.10).
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explained by the hybrid model which includes abstract inference on the task-structure by
considering individual variability given by the parameter k, an individual weight of the degree of
DU-learning models (XPhybrig,=.99, XPpu =.00, XPsy=.003, XPsuttonk1 =.00). Patients were best
explained by the model-free SU-Model which neglects an update of the alternative choice option
(XPhybria,=.06, XPpy =.00, XPsy=.93, XPsutton-k1 =.01). Model selection results were robust against the
exclusion of participants who were not fitted better than chance by any model (n=7, for details
see SI-1). Measures of absolute model fit indicated that the best-fitting model captured behavior
well (adjusted Mc Fadden’s pseudo R? =.60, see SI-1 and S-Figure 1-3 for details).

Table 5-1. Descriptives of best-fitting parameters (hybrid model). The multiplication of k with the

learning rate a corresponds to the double-update learning rate for the unchosen stimulus.

Breward Bpunish Olreward Olpunish K*Olreward K*U-punish

M=428 M=199 M=056 M=048 M=010 M=0.09
Healthy controls
SD=116 SD=145 SD=0.23 SD=0.25 SD=0.11 SD=0.12

M=414 M=141 M =0.49 M =0.45 M=0.08 M =0.04
Alcohol-Dependent
Patients SD=096 SD=121 SD=032 SD=031 SD=0.12 SD=0.05

Computational Modeling: model parameters. We tested for between-group differences by
subjecting the inferred parameters of the hybrid model, the best-fitting model across both
groups (Table 5-1), to a multivariate ANOVA (MANOVA) with group as between-subject factor
(patients vs. controls). This MANOVA contained the following parameters each separately for
reward and punishment: stochasticity parameters (Srew, Bpun), learning rates for the update of
chosen (@rew ¢ pun_c), and unchosen values (@rew ycr Xpun_uc, Products of the weighting factor
K With &p¢y, ¢ and @,y o). This revealed a significant effect of the between-subject factor group
(F(7,70)=2.92, p=.01) due to a significantly lower DU-weighted learning rate after having
received punishment apyy 4 (F(1,76)=6.35, p=.01, Figure 5-3B), whereas none of the other
parameters differed between groups (group differences regarding learning rates of the simpler
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model-free SU algorithm, all p>.66). Results were robust against the exclusion of participants
who were not fitted better than chance by any model (n=7, see SI-1). Using these inferred
parameters to simulate choices (S-Figure 1-2), and testing between-group effects on simulated
choice data in the same manner as in the empirical data, all group differences on choice behavior
were recaptured except for the group by phase interaction (see SI-1). Taken together, this
indicates a specific learning impairment in the alcohol-dependent group affecting abstract

inference on alternative choice options after punishment.
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Figure 5-3. Computational Modeling Results. A) Bayesian Model Selection revealed that healthy
controls were best explained by the hybrid model, including a factor which weights the individual
degree of abstract inference (‘double-updating’), whereas for alcohol-dependent patients, model
evidence was maximal in favor of the model-free Single-Update Model. B) Between-group
comparisons on the inferred parameters revealed that alcohol-dependent patients specifically
differed in the DU-learning rate for punishments compared to healthy controls (¢(76)=2.52, p=.01),
whereas there was neither a group difference in the reward learning rate nor in any of the other

inferred parameters of the model.

Neural signatures. To explore neural signatures of this behavioral deficit, we analyzed encoding
of two types of RPEs for the chosen option, i.e. RPEs derived from the SU-Model (RPEsy) versus
RPEs derived from the DU-Model (RPEpy). Main effects for both types of learning signatures for

both groups taken together are illustrated in Figure 5-4 and Table 5-2. To investigate between-
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group differences, we tested for a type of RPE (RPEsy/RPEpy) x group (patients/controls)
interaction. For between-group comparisons, the conjunction of both RPEs across the entire
sample (thresholded at p-FWE<.05 for the whole brain, Figure 5-4, Table 5-2) was used to
correct for multiple comparisons (at p-FWE<.05 based on this search volume). The RPE type x
group interaction reached significance in medial prefrontal cortex (mPFC, X=-10, Y=62, Z=12,
t=3.98, FWE-corrected for the conjunction p=.01) and posterior cingulate cortex (X=0, Y=-40,
7Z=32, t=3.72, FWE-corrected for the conjunction p=.03). As post-hoc contrast, we compared

RPEsy and RPEpy between groups.

Table 5-2. fMRI whole-brain results for the conjunction of single-update and double-update
learning signals across both groups. Only clusters k>15 are depicted. FWE-cor: family-wise-error

corrected, MNI: Montreal Neurological Institute, K: cluster size.

P
(FWE-cor) p
MNI Cluster (FWE-cor)
Region Coordinate K Level t-value Peak-Level

Conjunction: single-update and double-update learning signals

Superior Medial Gyrus -10 64 12 6 0.001
79 <0.001
Middle Orbital Gyrus -6 54 2 5.85 0.002
Middle Orbital Gyrus 6 42 -8 7.46 <0.001
<0.001
174
Middle Orbital Gyrus 8 60 4 6.18 <0.001
Middle Orbital Gyrus -24 32-16 19 0.001 5.55 0.006
Ventral Striatum -8 8-10 43 <0.001 7.39 <0.001
Ventral Striatum 10 12 -8 66 <0.001 7.01 <0.001
Posterior  Cingulate o 3 34 56 <0.001 6.30 <0.001
Gyrus
Precuneus -4 -50 16 25 <0.001 5.55 0.006
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Figure 5-4. Neural coding of single-update vs. double-update signals across the entire sample.
Across all participants (patients and controls), we observed model-free RPEsy in bilateral ventral
striatum, and medial and lateral prefrontal cortex (FWE-corrected for the whole brain p<.05, S-
Table 1-5). For the difference regressor RPEpuy, we found effects in overlapping regions (bilateral
ventral striatum, medial and lateral prefrontal cortex) and additionally in hippocampus and insula
(FWE-corrected for the whole brain p<.05, S-Table 1-6). The conjunction of both contrasts revealed
overlapping effects of RPEsy and RPEpy, in bilateral ventral striatum, medial and lateral prefrontal
cortex, and posterior cingulate cortex (FWE-corrected for the whole brain p<.05, Table 5.2). The
latter was used as a search volume for small-volume-correction of group differences. Effects are
reported using a significance level of p<.05 FWE-corrected for the whole brain. Activations are
shown superimposed on an averaged gray-matter mask of the entire sample. For display purposes,

threshold is set at t>5.

This confirmed significantly reduced coding of RPEpy signatures in patients in the mPFC (X=-8,
Y=62, Z=12, t=4.36, FWE-corrected for the conjunction p=.003; X=-6, Y=56, Z=12, t=3.68, FWE-
corrected for the conjunction p=.02, Figure 5-5) and posterior cingulate cortex (X=-2, Y=-42,
7Z=32, t=3.72, FWE-corrected for the conjunction p=.03) but no significant between-group
differences in activation elicited by model-free RPEsy. Modeling-based fMRI results were robust
against the exclusion of participants not fitted better than chance by any model (n=7, see SI-1).
Further, we explored an association of the behavioral deficit in DU-punishment learning and the
observed reduced neural representation of RPEpy in mPFC. Mean parameter estimates at the
peak of the between-group difference (X=-8, Y=62, Z=12, surrounded with an 8mm sphere) were
extracted and, for both groups separately, correlated with the DU-punishment learning rate

@pun_uc- In patients, this revealed a positive association indicating that an attenuated mPFC
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double-update learning signature was related to lower DU-punishment learning rates

(r(33)=.36, p=.04, Figure 5-5C). No significant correlation was found in controls (r(34)=.002,

p=.99). This confirms an association of the observed behavioral deficit in updating alternative

options after punishment and the reported reduction of DU-signatures in mPFC in patients

Analyses of covariance. To adjust for possible confounding influences, the following variables

were included as covariates in all behavioral and fMRI analyses reported: smoking status,

depression score (BDI), composite measure of neurocognitive functioning as well as gray matter

density (VBM). All reported results remained significant when adjusting for these possible

Figure 5-5. Group differences in the neural coding of single-update vs. double-update signals. A)
Reduced abstract inference signatures were found in the medial prefrontal cortex (mPFC) in
alcohol-dependent patients compared to healthy controls (X=-8, Y=62, Z=12, t=4.36, FWE-corrected
for the conjunction p=.003, X=-6, Y=56, Z=12, t=3.68, FWE-corrected for the conjunction p=.02) and
posterior cingulate cortex (X=-2, Y=-42, Z=32, FWE-corrected for the conjunction p=.03, t=3.72). No
group difference regarding model-free signatures was found. For display purposes, thresholded at
t>3. B) Plot of parameter estimates at the peaks of the group difference in the mPFC. C) In patients,
parameter estimates from an 8mm-sphere around the peak coordinate (X=-8, Y=62, Z=12) of the
group difference correlated with the behavioral deficit in double-update learning after punishments
(left panel, r(33)=.36, p=.04), and were negatively associated with the sum score of the obsessive
compulsive drinking scale (OCDS, beta=-.64 t=2.64, p=.014, right panel). We plot studentized

residuals of the OCDS with respect to other disease severity measures.
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confounders (see SI-1) suggesting that the behavioral and neural between-group differences are
more than epiphenomena of well-known general impairments.

Relationship with symptom severity. We tested for an association of the reported behavioral and
neural alterations with symptom severity in alcohol-dependent patients. We performed a linear
regression analysis with mean parameter estimates of the global maximum of the observed
group-difference in mPFC (at the peak-voxel with an 8mm sphere) as dependent variable and
the applied self-rating measurements of addiction severity (S-Table 1-1) as predictor variables:
(1) Units of alcohol consumed within 4 weeks before treatment commenced (TLFB), (2)
Obsessive Compulsive Drinking score (OCDS), (3) Craving score (ACQ), (4) Alcohol Use Disorder
score (AUDIT). This revealed the OCDS-Score as having a significant negative association with
the neural DU-learning signature (beta=-.64, t=2.64, p=.01; Figure 5-5C). Patients reporting a
higher level of obsessive-compulsive drinking habits showed, on the neural level, lower coding

of abstract inference components.

5.4 Discussion

We provide novel insight into mechanisms of maladaptive decision-making and behavioral
adaptation in alcohol-dependent patients and its underlying neural substrates. Our results
support the view of a predominance of model-free control in addiction associated with disturbed
mechanisms of inference on environmental structure: choice behavior in patients was best
explained by a model-free RL-algorithm, which neglects updating of alternative choice options.
This was due to a specific reduction of abstract inference after punishments. On the neural level,
representation of abstract inference in patients’ mPFC was reduced and correlated with the
observed behavioral deficit in updating alternative choices as well as obsessive-compulsive
drinking habits.

Disrupted behavioral adaptation in addiction. Deficits in cognitive flexibility are known in
patients suffering from addiction (Bechara & Damasio, 2002; Garavan & Stout, 2005; Ersche et
al, 2011; Goldstein & Volkow, 2011). In line, we demonstrate that alcohol-dependent patients

show diminished behavioral adaptation in a dynamic environment. Crucially, by using
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computational modeling, we provide a mechanistic account for this deficit: alcohol-dependent
patients are specifically impaired in the capacity to integrate alternative choice options and their
fictive outcomes - ‘what might have happened’ - in the decision-making process after having
received punishment. To put this differently, patients show less consideration of ‘what might
have been good instead’: formally, after patients had received punishment for the chosen option
they did not increase the values of the alternative option as would have been appropriate
according to the anti-correlated task-structure, which was captured by a significantly lower
double-update punishment learning rate in patients. This specific finding derived from
computational modeling can account for the overall impairment in correct decisions, reduced
win-staying and the repetition of choices despite successive punishment as suggested by our
simulation analysis. Our observation suggests that simpler, model-free single-update learning is
intact in addiction (such that updating of chosen values after rewards and punishments remains
relatively unaffected) but that updating of alternative, un-chosen values is abolished after
punishment. Abstract inference on ‘what might have happened’ goes awry when values need
adjustment after negative feedback and thus potentially advantageous alternative choice options
are neglected when making decisions. This provides translational evidence for recent animal
models of addiction suggesting a specific deficit in mentally simulating outcomes not directly
experienced and a disturbed integration of multiple predictions (Lucantonio et al, 2014).
Intriguingly, this behavioral deficit resonates well with clinical observations and diagnostic
criteria of addiction describing the maintenance of disadvantageous behaviors despite negative
consequences. Importantly, our finding goes beyond previous studies on behavioral adaptation
linking addiction to blunted neural responses to performance errors and reduced error
awareness (Paulus et al.,, 2008; Goldstein et al., 2009): a disturbed capacity to integrate abstract
inference constitutes one plausible explanation for these deficits.

Abstract inference in decision-making has been previously linked to a goal-directed or
model-based control system (Hampton et al, 2006; Bromberg-Martin et al, 2010). An

alternative explanation includes that abstract double-update inference does not arise from a full
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model-based system but rather reflects temporal-difference learning about the relationship of
choice values (Shohamy & Wagner, 2008; Wimmer et al, 2012; Doll et al, 2015). In this
framework, our results could be interpreted as an impairment in generalizing from one stimulus
to another. Either way, the capacity to simultaneously update multiple decision values including
those of unobserved outcomes might be regarded as sine qua non for building and using an
internal model of the environment, which is important for goal-directed or model-based control.
Using sequential decision-making, reduced model-based behavioral control was observed in
alcohol-dependent patients (Sebold et al.,, 2014), although this impairment was attenuated when
adjusting for cognitive deficits. In the present study, the impairment in abstract inference
remained significant when adjusting for cognitive capacities suggesting a specific characteristic
for alcohol dependence rather than an epiphenomenon of a global impairment. Thus, our finding
of reduced inferential capacities appends prominent theories proposing a shift from goal-
directed to habitual behavioral control in addiction (Everitt & Robbins, 2005; Dayan, 2009a;
Lucantonio et al, 2012).

Blunted abstract inference mPFC signatures in alcohol-dependent patients. Patients were
characterized by reduced coding of double-update RPE signals in mPFC. Reduced representation
of these abstract inference signatures in patients’ mPFC was related to the observed behavioral
deficit and to obsessive-compulsive drinking habits. In line with our findings, alcohol-dependent
patients showed hypo-activation in a similar region for a contrast assessing goal-directed
learning during a different instrumental learning task (Sjoerds et al, 2013). In healthy
individuals, the medial prefrontal and orbitofrontal cortex is known to encode model-based
values computed ‘on the fly’, which allows behavioral flexibility (Haber & Behrens, 2014). In
consonance, the mPFC has been identified as a key region for flexible behavioral adaptation and
model-based evaluation (Hampton et al,, 2006; Daw et al, 2011). Specifically, this region has
been linked to the integration of computations from habitual and goal-directed systems (Lee et
al, 2014): interestingly Lee et al. identified computational signals for the reliability of both

systems in the mPFC. Reliability signals are likely used by an arbitration mechanism in order to
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allocate the degree of control exerted by one of the two systems at a given point in time. Our
observation of reduced abstract inference signatures at nearby coordinates may support a view
on behavioral control in addiction that Lee et al. invite in their discussion: a failure of the
arbitration process, i.e., the ability to appropriately parse behavioral control between different
modes. Remarkably, reduced coding of abstract inference components in mPFC of alcohol-
dependent patients remained significant when adjusting for reductions in gray matter density
supporting the view of a specific neural signature of abolished abstract inference. This
interpretation is strengthened by correlations of mPFC signatures with reduced double-update
learning rates after punishment and obsessive drinking habits in patients. Taken together,
reduced coding of abstract inference regarding alternative options in alcohol-dependent
patients’ mPFC may indeed account for their decreased behavioral flexibility and constitute one
piece in the puzzle of obsessive alcohol consumption despite negative consequences.

Neurochemical considerations. Blunted presynaptic dopamine function was found in alcohol-
addicted patients (Martinez et al, 2005) and lower levels of ventral striatal presynaptic
dopamine were demonstrated to be associated with a lower degree of model-based behavioral
control and diminished coding of model-based prefrontal signatures during sequential decision
making (Deserno et al., 2015b). Thus, low levels of presynaptic dopamine could hypothetically
explain the reported findings to some extent. Further, reduced dopamine D2 receptor
availability is among the best-established findings in addiction (Volkow et al,, 1990; Heinz et al.,
2004). Low levels of D2 receptors were linked to an impairment of re-evaluating decisions via
the prefrontal cortex after negative feedback (Frank et al, 2004; Goto & Grace, 2005). Recent
evidence from an animal model indicates that chronic alcohol-induced malfunction of
specifically mPFC D2 /D4 receptors disrupts flexible behavioral adaptation (Trantham-Davidson
et al, 2014), which fits neatly to the presented findings. Interestingly, a behavioral study in
humans showed that genetic variability in dopaminergic neurotransmission relates to

perseveration during reversal learning (den Ouden et al,, 2013) also supporting the view that
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dopamine could at least partially account for the behavior observed in alcohol-dependent
patients.

Limitations. Whether diminished use of abstract inference arises as a consequence of chronic
alcohol consumption or reflects a predisposition factor for the development of addictive
behavior cannot be elucidated by a cross-sectional design. Groups differed in terms of general
cognition, smoking status and grey matter density, even though our results were robust when
adjusting for these variables. Cross-sectional studies in at-risk-populations (Ersche et al, 2010)
and longitudinal designs are warranted to track the balance of behavioral control systems across
different stages in the development of addiction. It is to be noted that our model was not able to
capture one specific aspect of the observed choice behavior; whereas we observed a group by
phase interaction effect on actual correct choices, model simulations did not show this effect.
Remarkably, however, apart from this aspect, all choice data effects could be replicated on the
simulated data and measures of absolute model fit indicated that the models applied in this
study provided a good account for the observed behavior.

Summary. In conclusion, alcohol-dependent patients showed a deficit to integrate abstract
inference regarding alternative choice options after punishment in their decisions. Our data
provide first neuroimaging support for reduced coding of abstract inference in the mPFC - a key
region for flexible behavioral control - underlying this deficit. The same mPFC signatures were
negatively related to obsessive-compulsive drinking habits. The computational psychiatry
account applied here improves our understanding of the perplexing question of why addicted

individuals continue drug consumption despite negative consequences.
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6 Study 2: Impaired flexible reward-based decision-making in
binge eating disorder: evidence from computational modeling
and functional neuroimaging?

6.1 Introduction

A hallmark of binge eating disorder (BED), recently recognized in DSM-5 (American Psychiatric
Association, 2013), is a lack of behavioral control during recurrent binge eating episodes, i.e., the
feeling that one cannot stop eating. As propounded by the diagnostic criteria, excessive food
intake takes place despite psychological and physical consequences such as feelings of guilt,
shame or remorse, and high risk for obesity and associated maladies. To put it differently,
patients suffering from BED make disadvantageous decisions and fail to adapt their behavior in
the face of negative consequences. The first few behavioral studies are in accordance with the
idea of decision-making impairments in BED (Davis et al., 2010; Svaldi et al., 2010; Danner et al.,
2012; Voon et al,, 2015).

Healthy individuals guide their decisions by prediction errors generated from observed
outcomes, indicating that this outcome is better or worse than expected. These prediction errors
were defined as “model-free” because they neglect the structure of the environment and simply
lead to a repetition of previously reinforced actions, but render adaptation in dynamic
environments slow (Dayan & Daw, 2008). When decisions made in the past have indeed turned
out to be rewarding, individuals can exploit this experience for maximal gain. As is in everyday
life, environmental conditions are frequently probabilistic and dynamic, challenging the
individual to explore new alternatives at the right time (Daw et al., 2006; Cohen et al,, 2007;
Frank et al, 2009; Hare, 2014). Interestingly, prediction error signals do not only exist for
options actually chosen, but can also process information on alternative choice options: this

results in more complex prediction errors incorporating “what might have been”. That is,

3 This chapter corresponds to the following article: Reiter, AAM.F., Heinze, H.J., Schlagenhauf, F. &
Deserno, L. (under review). Impaired flexible reward-based decision-making in Binge Eating

Disorder: evidence from computational modeling and functional neuroimaging.
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inference about unchosen options and their fictive outcomes (Lohrenz et al.,, 2007; Boorman et
al,, 2009). Thus, concurrent tracking of chosen and unchosen decision options helps to balance
exploration and enables flexible goal-directed behavior.

Recent important studies indeed linked BED to impairments in making goal-directed
decisions based on an internal mental model of the environment and to biases towards
exploratory behavior (Morris et al, 2015; Voon et al, 2015). However, neural learning
signatures of impaired flexible behavioral control in BED remain to be elucidated. A key brain
region for flexible goal-directed behavior is the medial prefrontal cortex (mPFC). Studies in
healthy participants have emphasized its important role in selecting reward goals and
monitoring the value of actions (for review see Rushworth et al,, 2011). The mPFC is deemed
responsible for on-the-fly valuation processes, which rely on the incorporation of environmental
structure (Hampton et al, 2006; Glascher et al, 2009; Wunderlich et al, 2012a). To our
knowledge, this is the first task-based functional Magnetic Resonance Imaging (fMRI) study
investigating neural learning signatures of impaired flexible decision-making in BED.

Therefore, we adopted a Computational Psychiatry (Montague et al., 2012; Stephan &
Mathys, 2014) approach to investigate mechanisms of behavioral adaptation and associated
neural signatures in BED by combining computational modeling with fMRI during a dynamic
counterfactual choice task. We aimed to elucidate the hypothesized impairment in flexible
behavioral adaption of BED patients via the application of reinforcement learning (RL-) models.
Regarding fMRI data, we first studied neural correlates of model-free prediction errors. Second,
we investigated flexible behavioral adaptation via neural signatures incorporating inference
about unchosen options and expected these signals, as well as between-group differences, to be
coded in mPFC. In addition, we tested neural correlates of exploratory choices inspired by the

behavioral finding in BED.

6.2 Materials and methods
Participants. Twenty-two BED patients and 22 healthy control subjects (HC) were recruited. For
recruitment, exclusion criteria and neuropsychological testing see SI-2. Group characteristics are
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summarized in S-Tables 2-1 and 2-2. Participants provided written informed consent and were
paid on an hourly basis. The local Ethics committee approved the study.

Task. During fMRI, participants performed 160 trials of a counterfactual decision-making task
designed to examine flexible behavioral adaptation. Participants decided between two cards
distinguishable by two different abstract stimuli (Figure 6-1A). One of the cards had a reward
probability of 80% and a punishment probability of 20% (vice versa for the other card). In this
way, the task implied a simple higher-order structure: task structure was counterfactual as
reward probabilities of the two decision options were anti-correlated. Whenever card A was a
good choice, card B would be a bad choice and vice versa. Even though the outcome for the
unchosen option was never shown, from the experienced value of one stimulus the hypothetical
value of the other stimulus (“what might have happened”) could be deduced by abstract
inference on the anti-correlated task-structure. The task required flexible behavioral adaptation
as reward contingencies remained stable for the initial 55 trials (initial block, pre-reversal),
then, changed four times after 15 or 20 trials (middle block, reversal) and became stable again
for the last 35 trials (last block, post-reversal). Contingency reversals were independent of
participants’ choices (Figure 6-1B). For details on timing, see SI-2.

Behavioral raw data analysis. First, correct choices were defined as choosing the stimulus with
80% reward probability and analyzed using repeated-measures analysis of variance (rm-
ANOVA: within-subjects factor phase [pre-reversal, reversal, post-reversal phase], between-
subjects factor group [BED vs. HC]). Second, switching behavior as a function of the outcome in
the preceding trial was analyzed using rm-ANOVA (within-subject factor outcome [win vs. loss],
between-subjects factor group). Third, we analyzed perseveration, defined as how often
participants repeated choices for one stimulus despite two consecutive losses after having
chosen this stimulus in the two preceding trials relative to all loss trials. Data analyses were

performed using MATLAB R2012, IBM SPSS Statistics for Windows, Version 22 and R.
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Figure 6-1. Counterfactual decision-making task. A) Exemplary trial sequence. Binary choice task:
participants were instructed to choose the card that they thought would lead to a monetary reward.
After the participant had selected one stimulus this card was highlighted and feedback was
displayed outcome stimuli were a 10 Eurocent coin (in the case of a win) and a crossed 10 Eurocent
coin (in the case of a loss). B) One of the stimuli had a reward probability of 80% and a punishment
probability of 20% (vice versa for the other stimulus). Reward contingencies were stable for the
first 55 trials (pre-reversal block) and also for the last 35 trials (post-reversal block). In the

intermediate block, reward contingencies changed four times (reversal block).

Computational Modeling. We used computational modeling to analyze choices and to examine
group differences in decision-making. The tested model space included four variations of RL-
models. These models update expectations via reward prediction errors (RPEs), which quantify
the mismatch between actual outcome and prediction. Model-free RPEs are only computed for
chosen stimuli, although RPEs can also be computed for the unchosen stimulus (Lohrenz et al.,
2007; Boorman et al., 2009). In line, the first three RL-models applied here differ in the degree of
updating values for chosen and unchosen stimuli: I) a model-free learner updating values for the
chosen stimulus. This neglects the counterfactual task-structure. We refer to this model as the
single-update (SU) model; II) a learner updating values of chosen and unchosen stimuli to the
same extent, thus, using abstract inference of the task structure. We refer to this model as the
full double-update (DU) model; III) a model that individually weights the degree of double-

update learning thereby accounting for inter-individual variability regarding this type of
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abstract inference via the parameter x. We name this the individually weighted double-update
(iDU) model. In previous studies, it was suggested that behavior in probabilistic reversal
learning tasks might be explained by a RL-model with a dynamic learning rate (estimating
learning rates on a trial-by-trial basis, e.g. Krugel et al., 2009; Hauser et al,, 2014a). To test this,
we additionally included the Sutton-K1 model (Sutton, 1992), which updates the learning rate
dynamically as a function of the change in prediction errors.

For all four RL-models, we translate values into actions using a Softmax rule including the
parameter 8, which estimates how tightly decisions are influenced by the contrast of values
between the alternatives. Higher f values indicate that decisions are influenced more by relative
value (exploitative), whereas with lower f estimates, decisions are more stochastic, thus
explorative (Daw et al., 2006; Cohen et al., 2007). In total, seven models were compared: SU, DU,
iDU, each with one learning rate or separate learning rates for rewards and punishments and the
Sutton-K1 model. For equations and model fitting, see SI-2 and S-Table 2-3, 2-4, 2-5 and 2-6.
Model selection. The aim of model selection is to define a model that accounts best for the
behavior in each group. Log-evidences (see SI-2) for each model and participant were subjected
to random-effects  Bayesian = Model  Selection (BMS, spm_BMS in  SPMS,
www.filion.ucl.ac.uk/spm/ Stephan et al, 2009) to determine Expected Posterior Probability
(PP) and Exceedance Probability (XP) for each model. XPs describe the probability that PPs of
one model exceed that of another model in the comparison set. BMS was run for all subjects
together and for each group separately to account for the possibility that the groups differ in
best-fitting models.

Statistical analysis of fMRI data. See SI-2 for fMRI acquisition and preprocessing. We applied the
general linear model approach (SPM8) for an event-related analysis. At the first level, onsets of
feedback were entered into the model and modulated parametrically by two trial-by-trial
regressors, which were constructed by using each individual’s set of best-fitting parameters. The
following regressors were computed: 1) model-free RPEsy: RPEs for chosen values as computed

on basis of the SU-Model with k = 0; 2) more complex RPEpy: RPEs for chosen values were
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computed based on the DU-Model with k = 1. We computed the difference of RPEpy minus RPEsy
accounting for co-linearity between the regressors; also see Daw et al, 2011 for such an
implementation. This difference in chosen values from the DU- and SU-algorithms is given by k
in the iDU-algorithm. Thus, this regressor incorporates inference about alternative choices in
RPEs. Throughout the manuscript, this second parametric modulator—the difference
regressor—is referred to as RPEpy. Building on the behavioral finding of elevated stochastic
behavior in BED, each individual’s trial-by-trial choice-probabilities from the decision-model
were classified according to whether the actual choice was indeed the one predicted by the
model to have the highest choice probability (exploitative), or the one with a lower choice
probability (exploratory). Next, we added the onsets of cues to the first-level model of fMRI data
described above with trial-type (binary: exploitative vs. exploratory) as first and choice
probabilities as second parametric modulators. Compare Daw et al, 2006 for the same
implementation of an analysis regarding explorative versus exploitative trials. Onset of
outcomes with RPEsy and RPEpy remained in the model to partial out their influence. Missing
trials were modeled separately. The six realignment parameters, the first temporal derivative of
the translational realignment parameters and a further regressor censoring scan-to-scan
movement >1mm were included in the analysis to account for residual effects of motion.

At the second level, the contrast images of RPEsy and RPEpy were entered to a full-
factorial ANOVA with the type of RPEs (RPEsy/RPEpy) as within-subject factor and group as
between-subject factor. For contrast images regarding exploration, an independent-sample t-
test (exploratory vs. exploitative trial type) was calculated. Results are accepted as significant at
p<.05 using Family-Wise-Error (FWE) correction for the whole brain for task effects across all
participants; for between-group comparisons, the peak voxel of the conjunction of both types of
RPE (RPEsy /RPEpy) across the entire sample, surrounded by a 15mm sphere, was used to
correct for multiple comparisons (significance threshold of p-FWE<.05 based on this search

volume, S-Figure 2-1A). A similar search-volume was constructed for the neural analysis of
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exploration by surrounding whole-brain peak voxels across all participants in bilateral insulae

each with 15mm spheres in one volume (S-Figure 2-1B).

6.3 Results

Choice behavior. Rm-ANOVA on correct choices, including the within-subject factor phase (pre-
reversal, reversal, post-reversal) and the between-subject factor group (BED vs. HC) showed
main effects of phase (F(2,42)=34.64, p<.001) and of group (F(1,43)=5.72, p=.02, Figure 6-2A)
but no significant interaction (F(2,42)=.17, p=.79). Switching behavior as a function of the
outcome in the preceding trial was analyzed using rm-ANOVA (within factor outcome (win vs.
loss), between-subject factor group (BED vs. HC). This revealed a main effect of outcome
(F(2,42)=288.93, p<.001), and a main effect of group (F(1,43)=8.75, p=.005, Figure 6-2B), but no
interaction (F(2,42)=.11, p=.74). Irrespective of the outcome in the previous trial, BED patients
switched choices more frequently. Further, an independent t-test did not indicate any difference
between groups in repeating choices for one stimulus despite two consecutive losses after
having chosen this stimulus in the two preceding trials (meanggp=0.11+.07, meanyc=0.10+.07,
£(43)=0.18, p=0.86).

Computational Modeling: model selection. BMS across all participants revealed that iDU-models
provided the best account for observed choices peaking for iDU with one learning rate (iDU
XP=.60, iDU-WL XP=.30, Table 6-1). In all subsequent analyses, we thus use parameters derived
from this model. When running BMS for both groups separately, iDU models were clearly
winning in the control group, whereas results were more ambiguous in the BED group (Table 6-
1) indicating pronounced heterogeneity in the BED group.

Computational Modeling: parameter comparison. Independent sample t-tests with Bonferroni-
correction (adjusted p=.017) to compare three modeling-derived parameters between groups
(decision parameter S, learning rates for chosen values a., and learning rates for unchosen
values a,,., as product of k¥ with a.) revealed a significant group difference for the decision

parameter 8 (t(43)=2.51, p=.016, Figure 6-2C), but not for any other parameter (ts<.81, ps>.42).
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Table 6-1 Model Selection. Exceedance Probabilities (XP) for all models. SU: single-update, DU:

double-update, iDU: inidividually-weighted double-update, WL indicates that the model had

separate learning rates for wins and losses. For expected posterior probabilities and XP compare S-

Table 2-4.

SU SU-WL DU DU-WL  iDU iDU-WL  Sutton K-1
Overall o, 404 <001 039 601 303 <001
(n=44)
HC

035 .005 003 112 321 522 <001
(n=22)
BED 210 057 030 033 426 150 094
(n=22)

A lower decision parameter f indicates a higher degree of stochastic choices unrelated to the

current choice value, i.e.,, lower values in BED indicate exploratory rather than exploitative

choices. Importantly, when excluding two patients who were not fit better than chance by the

model (for definition, see SI-2), the difference remained significant (t(43)=2.14, p=.039). Thus,

the significantly lower decision parameter § did not result from simply poor fit per se in the

patient group.
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Figure 6-2. Behavioral Results. A) Raw Data Results. Correct choices differed significantly between

groups (t(43)=3.48, p=.001, left panel). B) BED patients showed enhanced switching behavior

between the two stimuli. C) Comparison of modeling parameters revealed that BED patients had a

lower decision parameter 8. Lower values of f indicate a higher degree of stochastic choices

unrelated to the current choice values. Hence, lower values in BED indicate enhanced exploratory

choices.

72



Neural RPE processing: entire sample. We aimed to explore neural signatures of simple and more
complex (including abstract inference components) RPE processing in BED versus HC. Thus, we
analyzed encoding of RPEs for chosen values as a function of SU- versus DU-learning, that is,
RPEs derived from the SU-Model (RPEsy) versus RPEs derived from the DU-Model (RPEpy). See
S-Table 2-7 and Figure 6-3A for results.

We observed whole-brain correctable activation for model-free RPEgy in, e.g., bilateral ventral
striatum as well as orbitofrontal/medial prefrontal cortex, amygdala, right hippocampus, right
putamen, and posterior cingulum (p-FWEuwholebrain<.05). RPEpy elicited activation in similar
regions, including bilateral ventral striatum and mPFC (p-FWEuwhelebrain<.05). The conjunction of
RPEsy and RPEpy reached significance peaking in the mPFC (X=-6, Y=52, Z=-12, t=5.27, p-
FWEuhotebrain =.03).

Neural RPE processing: group comparison. Regarding model-free RPEsy processing, we did not
observe significant between-group differences in the processing of RPEsy based on the mPFC
search-volume (peak-coordinates: X=-10, Y=60, Z=-10, tpeak=2.17 ppeat= 0.74). There was no
significant group difference in other regions at a liberal threshold (cluster level k=10, p<.001
uncorrected). To investigate between-group differences in coding of complex abstract inference
RPE signatures, we tested for a type of RPE (RPEsy/RPEpy) x group interaction. This interaction
was significant in mPFC (X=-12, Y=40, Z=-6, t=4.00, FWE-corrected for mPFC p=.03). As post-hoc
contrast, we compared RPEsy and RPEpy between groups. We observed significantly reduced
coding of RPEpy signatures in BED in the mPFC (X= -12, Y=40, Z=-6, t=4.06, FWE-corrected for
mPFC p=.02, Figure 6-3B and Figure 6-3C).

Next, we tested for an association of neural coding of RPEpy and choice behavior:
parameter estimates at the peak-coordinate of the group difference in mPFC (X= -12, Y=40, Z=-
6) for RPEpy were extracted and, for both groups separately, correlated with behavioral
performance (percentage of correct choices, percentage of switching). One outlier (z-value of
parameter estimates<-2.8) in the BED group was removed beforehand. We found a significant

positive association between the neural RPEpy signature and correct choices in BED (r(19)=.60,
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p=.005) as well as in HC (r(20)=.53, p=.02). Indeed, with group as a covariate, the correlation
between RPEpy and correct choices was significant (r(2,39)=.55, p<.001). The association of the
RPEpy signature and switching was significantly negative in HC (r(20)=-.47, p=.03), but non-
significant in BED (r(19)=-.24, p=.32). Across both groups, when controlling for group, the
negative correlation between RPEpy and switching was significant (r(2,39)=-.35, p=.03). No
moderation effect of group on the association of neural signature and behavioral performance

was found (t<1.41, p>.17, R* change due to moderator<.03).
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Figure 6-3. Neural correlates of Single-Update and Double-Update Prediction Error Processing. A)
Across both groups, peak conjunct activity elicited by RPESU and RPEDU was observed in the
medial prefrontal cortex (mPFC, X=-6 Y=52 Z=-12, t=4.86, p-FWE for the whole brain = .03, see S-
Table 2-7) B) and C) Comparing RPEsy and RPEpu between groups revealed significantly reduced
coding of RPEDU signatures in BED in the medial prefrontal cortex (X= -12, Y=40, Z=-6, t=4.06,
FWE-corrected for mPFC p=.02). For display purposes, threshold is set at p<.001, cluster level k=10.
D) Parameter estimates at the peak coordinate of the group difference was positively correlated
with correct choices in the decision-making task and negatively related to switching behavior in the

decision-making task, independent of group.
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These findings suggest that neural coding of RPEpy is related to better behavioral performance
and less switching, in both healthy individuals and BED (see Figure 6-3D for an illustration).

Neural correlates of the exploration-exploitation trade-off. Building on the observation of
enhanced exploration in BEDs’ choices, we compared activity elicited in exploratory vs.
exploitative trials using an F contrast. This revealed peak activation in bilateral anterior
insula/ventro-lateral prefrontal cortex (al/vIPFC, thresholded at p-FWEunolebrain<.05, Figure 6-
4A, S-Table 2-8), due to higher activation for exploratory vs. exploitative trials. A between-group
effect was revealed in the right al/vIPFC. BED showed significantly lower activation for
explorative trials compared to HC (X=44, Y=22, 7Z=-12, t=4.42, FWE-corrected for al/vIPFC,
p=.04, Figure 6-4B and Figure 6-4C). We did not find a significant association of al/vIPFC

activation with behavioral performance (For details, SI-2).
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Figure 6-4. Neural correlates of the exploration-exploitation trade-off. A) Across both groups,
explorative trials vs. exploitative trials were associated with bilateral activation of anterior
insula/ventro-lateral prefrontal cortex (see also S-Table 2-8). B) and C) Comparing activation in
explorative vs. exploitative trials between groups demonstrated that BED patients show
significantly diminished activity in the al/vIPFC during explorative trials (X=44, Y=22, Z=-12,
t=4.42, FWE-corrected for al/vIPFC, p=.04). For display purposes, threshold is set at p<.001, cluster
level k=10.
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6.4 Discussion

This fMRI study combined with computational modeling provides novel insight into the neural
learning signatures of maladaptive decision-making in BED, thereby helping to refine a
neurocognitive phenotype of the newly classified disorder. Firstly, whereas we found compelling
evidence that healthy controls used inference on alternative choices to guide decision-making,
this was ambiguous for BED. Relatedly, patients showed reduced encoding of learning signatures
incorporating alternative choice options in the mPFC. Secondly, we found decision-making in
BED to be characterized by enhanced switching between choices, thus, a bias towards
explorative decisions during behavioral adaptation in a dynamic environment. Parallel to this
behavioral observation, BED was characterized by less al/vIPFC activation during exploratory
decisions.

Reduced incorporation of abstract inference learning signals. According to BMS, HCs convincingly
integrated abstract inference on alternative choices into decision-making, to use “what might
have happened” when making choices, whereas this was ambiguous for BED patients. In
consonance, coding of RPEs incorporating abstract inference on alternative options was reduced
in mPFC of BED patients. In healthy individuals, concurrent tracking of multiple decision
possibilities and their potential consequences contributes to a mental map of the environment
and thus promotes flexible goal-directed behavior in dynamic environments (Hampton et al,
2006; Lohrenz et al., 2007; Abe & Lee, 2011; Takahashi et al., 2013). In the present study, mPFC
learning signatures incorporating inference on alternative options were indeed associated with
successful choices and less explorative switching behavior. Thus, the specific reduction in mPFC
signaling could be one explanation for the shift from goal-directed towards habitual behavior in
BED as reported previously (Voon et al, 2015). Corresponding to this conclusion, the latter
study also found an association of reduced goal-directed behavior with reduced gray matter at
nearby coordinates in BED (Voon et al, 2015).

Disadvantageous bias towards explorative choices in BED. While clinical characteristics and

diagnostic criteria suggest impaired mechanisms of flexible behavioral adaptation as crucial for
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BED, systematic investigations of this impairment are scarce. Our findings suggest that BED is
not characterized by learning deficits per se, suggested by absent differences between learning
rates and intact model-free neural learning signals. Rather, patients suffering from BED did not
exploit a relatively good option as consistently as controls but show pronounced exploratory
switching behavior as also confirmed by the computational modeling analysis (lower decision
parameter f). Although it is obviously advantageous for an individual to explore alternatives in a
changing environment, appropriate value tracking would result in choosing, and staying with,
the most valuable option, when appropriate. In BED, this type of behavior was accompanied by
less correct choices confirming that the amount of exploration was indeed suboptimal.
Correspondingly, our observation is consistent with a very recent study, which found obese
people with BED to be characterized by enhanced exploration in comparison to obesity not
accompanied by BED (Diener, 2010).

In patients, the behavioral tendency to switch was paralleled by reduced activation during such
exploratory choices in anterior al/vIPFC, key regions implicated in reversing behavior (Cools et
al,, 2002; Menon & Uddin, 2010). Thus, less activation in this region might hinder the individual
to get back on the right track after an exploratory try that has not resulted in positive benefits.
Complimentary, enhanced anterior al/vIPFC activation in explorative trials as observed in
healthy controls could reflect a potential uncertainty or warning signal for these trials. In line
with this idea, prior imaging studies have also reported al/vIPFC activation during uncertainty
prediction and when making a risky compared to a safe decision (Paulus et al,, 2003; Preuschoff
et al,, 2008; Singer et al, 2009). In this framework, al/vIPFC activation could guide choices in
moments of uncertainty. Therefore, the reduction of such signaling during exploratory decisions
reduces awareness of the uncertain (or disadvantageous) character of these decisions. This
might bias the individual towards more and suboptimal exploratory decisions instead of
selecting a relatively good option based on accumulated experience.

Relevance to theories of addiction. A hallmark of BED, the maintenance of maladaptive behaviors

despite negative consequences, closely resembles key criteria of substance addiction and a
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current debate relates to the classification of BED as an addiction spectrum disorder (Smith &
Robbins, 2013; Volkow et al, 2013). However, a noteworthy albeit controversially discussed
review (Ziauddeen et al, 2012), issues caveats against a premature adoption of the food
addiction model: the article deems functional imaging attempts to profile BED as insufficient to
date and calls for task-dependent measurements based on cognitive-neuroscience models in
order to relate behavioral and cognitive phenotypes to neuroimaging findings. The study at hand
is one step in this direction. The adopted Computational Psychiatry approach enables estimation
of specific parameters that provide mechanistic accounts of functioning in one or another
cognitive domain (Wiecki et al, 2015) and informs the modeling-based fMRI analysis of neural
learning signatures (Stephan & Mathys, 2014).

Limitations. The cross-sectional design precludes any conclusions on causality. The study a
priori focused on the mPFC. However, the finding of between-group differences in mPFC and
ai/VIPFC associated with different decision signatures asks whether it is one of the two regions
or their interaction that mediates the observed behavioral changes. Interestingly, mPFC signals
were clearly associated with behavioral performance. Lesion studies in animals and translation
to humans, e.g. via brain stimulation techniques, could elucidate this question.

Conclusions. Taken together, this study provides insight into specific impairments in reward-
guided decision-making in BED. That is, a disadvantageous behavioral bias towards explorative
decisions accompanied by less coding of explorative trials in the al/vIPFC as well as diminished
representation of more complex RPEs in mPFC. By adopting a Computational Psychiatry
approach combined with modeling-informed fMRI analysis, this study contributes to refining the
neurocognitive phenotype of BED in addition to clinical observations and new diagnostic criteria

in DSM-5.

78



7 Study 3: The Feedback-Related Negativity codes components
of abstract inference during reward-based decision-making*

7.1  Introduction
A core function of human decision-making is to evaluate the motivational significance of ongoing
events in order to weigh up different decision options and to guide future decisions accordingly.
There is a growing consensus that individuals make decisions by computing decision values of
potential options which are then compared in order to make a choice (Rangel & Hare, 2010;
Rushworth et al, 2011; Sokol-Hessner et al, 2012). It is thereby indispensable for an agent to
keep track of choice values of options that were actually taken. This is achieved via updating
chosen values by reward prediction errors (RPE), which result from comparing the observed
outcome to what has been expected. However, the idea that an agent also learns from ‘what
might have happened’, that is, abstract counterfactual inference regarding unchosen options and
their fictive outcomes, has recently sparked considerable interest (Boorman et al, 2009;
Boorman et al, 2011; Fischer & Ullsperger, 2013). Concurrent coding of multiple actions and
their outcomes is suggested to enhance the efficiency of reinforcement learning (Abe & Lee,
2011; Boorman et al., 2011; Takahashi et al,, 2013) and disturbed abstract inference on ‘what
might have happened’ has been implied in psychopathological states, e.g. in animal models of
addiction (Lucantonio et al., 2012; Lucantonio et al, 2014) . In the present study, we employ a
probabilistic decision-making task and focus on simultaneous updating of chosen and unchosen
decision values: In this task, decision values were anti-correlated such that the drop of one value
directly implied the rise of the other. Thus, decision values for the options at hand can be
inferred by action-reward pairings but also by abstract inference based on the anti-correlated
task structure (Bromberg-Martin et al., 2010).

The standard reinforcement learning account only updates the value of a chosen

stimulus via a RPE. This is referred to as a ‘model-free’ RPE because it neglects the structure of

4 This chapter corresponds to the following article: Reiter, A.M.F., Koch, S.P., Schréger, E., Hinrichs,
H. Heinze, H.J., Deserno, L. & Schlagenhauf, F. (in revision). The Feedback-Related Negativity codes
components of abstract inference during reward-based decision-making.
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the environment, here, the anti-correlation of the two values. Even though no outcome is
delivered for the unchosen option, via abstract counterfactual inference on the reward statistics
of the experimental environment, the agent could make use of the task structure and
concurrently ‘double-update’ the values of chosen and unchosen options. The ‘model-free’ RPE is
thereby modified by an abstract inference component. Double-updating optimizes learning even
in simple, but dynamic binary choice environments (Hampton et al., 2006; Li & Daw, 2011;
Dolan & Dayan, 2013; Schlagenhauf et al., 2013).

In the current study, we aimed to define electrophysiological signatures of incorporating
such abstract counterfactual inference on the task structure into the decision-making process. In
a pioneering theory, Holroyd and Coles proposed that model-free RPEs linearly scale with the
so-called Feedback-Related Negativity (FRN, Holroyd & Coles, 2002). The FRN is an event-
related potential peaking at frontocentral electrodes about 200-300ms after the delivery of
feedback. While a wealth of studies has tackled the relationship between FRN and feedback
learning (for a review see Walsh & Anderson, 2012), most studies relied on cross-trial averages
in order to mirror learning processes on an electrophysiological level. As learning is a dynamic
process over time, a trial-by-trial approach seems well suited to capture these dynamics. So far,
only few EEG studies have adopted such a parametric design by linking modeling-derived trial-
by-trial learning signatures to single-trial amplitudes of event-related potentials (ERP;
Philiastides et al, 2010; Chase et al, 2011; Fischer & Ullsperger, 2013; Hauser et al, 2014).
Chase et al. (2011) reported a correlation of the FRN with model-free RPEs derived from a
reinforcement learning model that only updates values of the chosen stimuli (‘single-update
model’). A recent study by Hauser et al. (2014) used a modified algorithm that simultaneously
updates values of chosen and unchosen stimuli (‘double-update model’) and replicated the
correlation of RPEs and the single-trial FRN. Additionally, the authors studied the influence of
unsigned PEs, a value-unspecific signal reflecting the unexpectedness of events and found that
unsigned PEs better accounted for their data. Hauser et al. (2014) concluded that the FRN codes

surprise rather than a signed learning signal. Notably, both studies have not systematically
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separated uniquely explained variance by single-update versus double-update algorithms in the
FRN.

Thus, the goal of the present study was to identify correlates of abstract inference on the
anti-correlated task structure in the FRN. In order to address this question, we recorded EEG
from 21 healthy participants while they performed counterfactual decision-making in a
dynamically changing environment with anti-correlated reward probabilities. We evaluated the
relation between single-trial FRN responses to feedback and RPEs, respectively. The following
hypotheses were probed: (1) The FRN signals a model-free RPE as suggested by prior studies.
(2) The FRN additionally signals values estimated through abstract inference on the anti-
correlated task structure as derived from the difference between value estimates of double-

update and single-update algorithms.

7.2 Materials and methods

Participants. Twenty-one healthy participants (age: 26.20 +/- 3.49 years, range 22-34 years, 11
females) were recruited from the Max Planck Institute’s subject database. Participants received
remuneration for participation in addition to the money won in the experimental task. The study
was approved by the ethics committee of the University of Leipzig. All subjects gave written
informed consent to participate prior to the study. One dataset had to be excluded due to
technical problems during EEG recording.

Task. During EEG acquisition, subjects performed a probabilistic decision-making task in a
dynamic environment with anti-correlated reward probabilities (Figure 7-1A) that requires
flexible behavioral adaptation. In a total of 160 trials, participants decided between two cards
both showing an abstract geometric stimulus (maximum response time: 1500ms). After the
participant had chosen one stimulus using either the left or the right button, the selected
stimulus was highlighted and depicted for another 500ms plus reaction time. Following an inter-
stimulus interval of 1500ms (presentation of a fixation cross), one of two feedback stimuli was
presented for 500ms, indicating either a win (a 10 cent coin) or loss (a crossed 10 cent coin) of

money. During the intertrial interval, a fixation cross was shown for a variable duration with a
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mean of ~2500ms. Total trial duration was 6500ms on average. The location (right vs. left side
of the screen) where each of the stimuli was presented was randomized over trials. Crucially,
reward contingencies were perfectly anti-correlated, that is, one of the stimuli was assigned with
a reward probability of 80% and a punishment probability of 20%; and vice versa for the other
stimulus. This anti-correlation is essential because, if exploited by the agent, it enables the
learner to draw inference on the value of the unchosen stimulus even though no outcome is
delivered for the unchosen option.

Reward contingencies remained stable for the first 55 trials and also for the last 35 trials. In
between, reward contingencies changed four times, after 15 or 20 trials, respectively. This
required participants to flexibly adapt their behavior and ensured constant learning (Figure 7-
1B). Note that contingency reversals were predefined by the stimulation protocol and did not
depend on subjects’ performance in the task. Prior to the experiment, participants were
instructed that depending on their choice they could either win 0.10€ or lose 0.10€ per trial and
that the total amount of money gained would be paid out at the end of the experiment.
Additionally, participants were informed that one of the two cards had a superior chance of
winning money but that this might change during the task. Participants became familiar with the
task prior to the experiment by performing 20 training trials with different stimuli and without
any reversal of reward contingencies. Distance between participant and computer screen was
kept constant across all subjects.

Implemented models. The focus of the present study was to examine trial-by-trial signatures of
each individual’s learning process in the electrophysiological recordings. Thus, the actually
observed behavioral responses were analyzed in a computational modeling framework. Three
different types of learning models were fitted to the data: 1) a single-update model which
updates values only for the chosen stimulus, 2) a double-update model which updates values of
chosen and unchosen stimuli with equal weight and 3) a hybrid model which individually

weights the degree of double-update learning.
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Figure 7-1. A) Trial sequence of the serial reversal task. Participants were instructed to find the
card with the superior chance of winning. One of the stimuli was assigned with a reward
probability of 80% and a punishment probability of 20% (vice versa for the other stimulus).
Outcome stimuli were a 10ct coin (in the case of a win) and a crossed 10ct coin (in the case of a
loss). B) Reward contingencies over the course of the experiment. Reward contingencies remained
stable for the first 55 trials and also for the last 35 trials. In between, reward contingencies changed

four times.

Single-update model. The single-update model updates a decision value Q. for the chosen
stimulus via the RPE 6Qa,t’ which is defined as the difference between the received reward R,

and the expected reward for the chosen stimulus Qg ;:
(8) 5Qa,t =R — Qa,t
This teaching signal is then used to iteratively update chosen decision values trial-by-trial:
(9) Qa1 = Qqe + aﬁqu,t

Here, a represents a learning rate, which weights the influence of reward RPEs on the updated
values. This free parameter of the model has natural boundaries between 0 and 1. Note that this
model neglects the anti-correlated structure of the task by simply updating decision values for

chosen stimulus only while the value of the unchosen stimulus Q,,, ;remains unchanged:
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(10) Quat+1 = Quae
Double-update model. In a next step, we extended this model to more closely match the
experimental environment by using abstract inference. In this task, an update of both decision
values in each trial is advantageous because it takes into account the anti-correlated structure of
the task. This double-update learning has previously been demonstrated to result in improved
behavioral adaption to changing reward contingencies (Hampton et al,, 2006; Li & Daw, 2011;
Schlagenhauf et al, 2013). In order to mirror this strategy in our computational modeling
approach, the unchosen decision values are updated using a different error signal. The

prediction error for the double-update model is:
(11) BQWM = —R;— Qua,t
The same learning rate ¢ is used for updating the unchosen value:
(12) Quat+1 = Quar T @bg,,,

We refer to this model as the double-update model as it takes into account the values of the
chosen and unchosen stimuli and thereby implements abstract inference on the anti-correlated
task structure.

Hybrid model. Note that equation 5 gives the same weight to the update of unchosen decision
values as to the chosen decision values. However, it is conceivable that the unchosen option is
updated with a reduced rate if change compared to the update of chosen values. Moreover, the
degree of abstract inference may differ across individuals, as this is computationally more
expensive and consequently may be limited depending on the specific situation that challenges
the individual. This notion has been emphasized in healthy individuals (Daw et al, 2011;
Wunderlich et al., 2012b; Eppinger et al., 2013; Otto et al., 2013b; Smittenaar et al., 2013) and
recently also in psychiatric disorders (Sebold et al.,, 2014; Voon et al,, 2015). To account for this
potential variability in employing abstract inference, we additionally tested a hybrid model by
inferring the individual degree of double-update learning. Therefore, the weighting parameter x

is introduced:
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(13J Qua,t+1 = Qua,t + KaéQua,t

Note that equations 1 to 5 refer to the special cases k¥ = 0 or k = 1, respectively.
Observation model. Finally, for all models, we transform decisions into action probabilities by
applying a softmax equation including the parameter 8, which determines the stochasticity of

the choices:

— _exp(BQ@)_
(14) P@b = Tep@aan

The sum of this probability p,q over all trials (and subjects, eventually) is the so-called negative
log-likelihood which is the probability of observing the data given the parameters of a model.

A priori model simulation. We simulated choice behavior 1000 times per model (Single-Update
Model k=0, Hybrid Model k=0.5, Double-Update Model k=1) by fixing all other free parameters
to the mean estimate of an independent sample (n=35) performing the same task. The highest
simulated mean of correct choices over the whole course of the experiment was observed for the
hybrid model with k=0.5 (mean simulated correct choices (%): single-update model=0.81,
hybrid model=0.82, double-update model=0.79). The advantage of the hybrid model, brought
about by implementing abstract inference on the task structure (‘double-updating’) becomes
particularly prominent in trials with frequent reversals of reward contingencies (trials 56-125,
compare Figure 7-1B) which require flexible behavioral adaptation (mean simulated correct
choices (%): single-update model=0.71, hybrid model=0.77, double-update model=0.77).

Model fitting and model selection. Free parameters that have natural boundaries were fitted after
transformation to a logistic (a) or exponential (f8) distribution to render normally distributed
parameter estimates. A maximum-a-posteriori estimate of each parameter for each subject was
found by setting the prior distribution to the maximum-likelihood given the data of all
participants and then Expectation-Maximization was used. For an in-depth description please
compare Huys et al, 2011; Huys et al, 2012. All modeling analyses were performed using
MATLAB R2013a (The MathWorks, Inc., Natick, Massachusetts, United States). For all three
models, we first report the negative log-likelihood and the Bayesian Information Criterion (BIC,
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Schwarz, 1978) based on the negative log-likelihood (Table 7-1). Note that the BIC includes a
penalty term for the number of parameters in the model to account for the risk of overfitting.
Second, the model evidence was approximated by integrating out the free parameters. The
integral was approximated by sampling from the prior distribution and we therefore add the
subscript ‘int’ to the BIC (Table 7-1; see Huys et al., 2011; Huys et al., 2012).

Table 7-1. Model Selection. -LL: negative log-likelihood, BIC:Bayesian Information Criterion, BICint:

Bayesian Information Criterion after integrating out the free parameters via sampling from the

prior distribution, XP: Exceedance Probabilities after random-effects Bayesian model selection.

-LL BIC BICint XP
Full hybrid model 849 751 808 0.9872
(x as a free parameter)
A-LL hybrid A BIC hybrid A hybrid BICint
Single-update model .34 26 12 0.0127
(x=0)
]()]:"_*bll)f"update model -69 57 55 0.0001

Third and reported in the results section, we subjected this integrated likelihood to a random-
effects Bayesian model selection procedure, spm_BMS contained in SPMS,
http://www.filion.ucl.ac.uk/spm/ (Stephan et al, 2009). After having identified the best-fitting
model, we also verified that best-fitting parameters reproduce the observed behavior well.

Modeling-derived EEG analysis. In line with previous reports, we regressed single-update RPEs
against single-trial EEG data (Chase et al, 2011). To specifically address the question if the
coding of RPEs in the FRN contains additional effects of abstract inference on the task structure
as expressed in the double-update model, we computed a difference regressor (Daw et al,,

2011), which was defined as the difference between the two error signals:

(15) 5

aldifference 5a-tduuble—update - (Sa:fsingle—update

Note that this regressor reflects differences of chosen decision values estimated by the single-

update versus double-update algorithm.
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Electrophysiological recording and ERP extraction. Electrophysiological activity was recorded
from 60 scalp positions according to the 10-20 EEG system (BrainAmp MR plus, Brainproducts,
Gilching, Germany).

Four additional ocular electrodes (vertical and horizontal electrooculogram; EOG) were
attached to monitor eye movements and blinks. EEG and EOG, referenced against the linked
mastoids, were sampled at 2500 Hz (1-sec low cut-off, 250-Hz high cut-off, Notch off). Electrode
impedances were kept below 10 kOhm.

EEG data were preprocessed using EEGLAB 4.515 (Delorme & Makeig, 2004) and
MATLAB R2013a. EEG data were down-sampled to 250 Hz and bandpass filtered between 0.5
and 46 Hz (butterworth filter, 3r4 order). Trials were segmented from -2 to 6 sec relative to the
onset of the outcome stimulus. An independent component analysis (ICA; logistic Infomax ICA,
Delorme & Makeig, 2004) was applied to decompose the multivariate EEG signal into
statistically independent components. By two independent assessors, movement related ICA
sources and frontal sources with ocular artifacts such as blinks and eye movements were
visually identified by inspecting the scalp maps, time courses and power spectra in all
components and were removed before back-projection of the remaining components onto the
EEG channels. All EEG epochs were visually inspected before and after ICA. Thereafter, data
were re-referenced to the average (Lehmann & Skrandies, 1980).

For the analysis of the feedback-related electrophysiological responses, we identified the
peak negativity at an a priori site of interest (Cz, according to Holroyd & Coles, 2002, Figure 7-
2A) and in a predefined time window of 200-300ms after feedback onset (Hauser et al., 2014b).
We aimed to account for inter-individual differences in ERP latencies by determining individual
peak latencies. The individualized latency of the evoked components was derived from the
individual subject’s average FRN latency. This individualized time point was then used to extract
single-trial amplitudes in all 160 trials. Figure 7-2B shows the averaged waveform at the
electrode Cz and the topological distribution of the deflections at the time point of the average

peak FRN across subjects.
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7.3 Results

7.3.1 Behavioral analyses

Task performance. Subjects chose the correct stimulus, i.e. the stimulus with the higher reward
probability, on average in 81% (SD=6) of all trials, indicating that participants understood and
mastered the task appropriately. A mean of 0.25 (§D=0.72) trials per subject had to be excluded
for the computational modeling and single-trial EEG analysis due to missing responses.
Computational modeling. Three different computational models were implemented to describe
different ways of updating decision values during the learning process. First, a single-update
model, which updates chosen values only, and second, a double-update model, which
additionally updates unchosen decision values. Compared to the second model, the third model
quantified the degree of double-updating individually via the double-update weighting
parameter x Bayesian model selection demonstrated that the hybrid model, a combination of
both strategies quantified by the free parameter x explained the data best at the group level
(Table 7-1). This suggests considerable inter-individual variability in the extent to which
individuals use double-updating regarding the unchosen option. Importantly, choice behavior of
all participants was explained better than chance by the best-fitting model (mean explained
choices: 78%, SD: .093) considering the negative log-likelihood. Choices explained are in a
similar range as in prior studies (Daw et al, 2011) and suggest that the winning model
accounted well for the observed choice data. A simulation based on each individual’s inferred
parameters additionally showed that our model captured behavior well. The distribution of the

best fitting parameters and the negative log-likelihood is shown in Table 7-2.

Table 7-2. Distribution of best-fitting parameters (hybrid model)

B Initial o K -LL

Q
25t percentile 1.96 -.36 .53 .07 -54
Median 2.80 -24 .57 .10 -33
75t percentile 3.80 -.07 .60 17 -27
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7.3.2 Correlation of FRN and learning signatures

Coding of model-free RPEs in the FRN. In line with previous findings, we evaluated whether FRN
amplitudes correlate with model-free RPEs. The relationship between the FRN amplitude and
the magnitude of the model-free, single-update RPE was evaluated on a trial-by-trial basis using
linear regression analysis. We found a significantly positive correlation between this RPE and
FRN amplitudes (mean slope of regression=.086, SD=0.116, t(19)=3.31, p=.01). In line with
previous findings, this indicates that RPEs scale linearly with FRN amplitude, i.e. that the FRN
codes model-free RPEs

Coding of abstract double-update inference in the FRN. In the next step, we directly aimed to
determine the coding of single-update versus double-update components on the FRN-
amplitudes. Therefore, in addition to the model-free, single-update RPE regressor, we also
entered a difference regressor between single-update and double-update RPEs into the multiple
regression analysis. Note that the difference regressor as described in equation (15) describes
differences of decision values estimated by double-update minus the single-update algorithm
and thus represents the change in values uniquely associated with abstract double-update
inference. We found a significant effect for both the single-update RPE regressor (t(19)=2.32,
p=.032) and this difference regressor (mean slope of regression: -.085, $D=.110), t(19)=-2.30,
p=.033). Note, that the correlation with the model-free, single-update RPE is positive, indicating
that RPEs scale with FRN amplitudes (see Figure 7-3B) whereas the correlation of FRN with the
difference regressor is negative. The latter negative correlation reflects two key characteristics
of abstract double-update inference:

1) By concurrently updating the unchosen choice option, double-updating maps the anti-
correlated environment more precisely. This leads to differences in the size of RPEs from the
double-update (RPEpy) vs. the single-update model (RPEsy), as for the double-update learner, in
certain cases, feedback is more predictable than for the single-update learner. This leads to a

relatively attenuated RPEpy in trials where RPEsy has high absolute values. More detailed, in the
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Figure 7-2. A) Grand average waveform of the FRN, revealing the FRN with its maximal amplitude

261ms after feedback onset at the electrode CZ (here indicated by the arrow. B) Topological
distribution of the deflections at the time point of the average peak FRN.

case of unexpected punishments (defined by large negative RPEs), the RPE from the double-
update model is less negative than the RPE from the single-update model, thus the difference
regressor is positive. Contrary, in cases of relatively unexpected rewards (defined by large
positive RPEs) - often after an agent has switched to the alternative option - the RPE from the
double-update model is less positive than the RPE from the single-update model; consequently,
the difference regressor becomes negative.
2) Double-update learning is smoother as recent events do not impact choices
values as strongly as in single-update learning. Thus, after relatively expected punishments (e.g.,
after a series of punishments, indicative of the necessity to switch to the alternative option),
RPEsy approaches zero faster and RPEpy is more negative than RPEgy. This results in a negative
difference regressor. Contrary, in a rewarded trial, which has already been preceded by a series
of rewards (e.g., after having learnt to stay with the better stimulus at one point in time), RPEpy
is numerically higher than RPEgy. Thus, the difference regressor is positive in these cases. Figure
7-3 illustrates this description by plotting mean RPEsy and RPEpy as well as difference regressor
and mean FRN amplitudes as a function of expectedness and valence of the feedback in the trial.
Our observations suggest that in addition to the model-free, single-update RPE, also the
difference regressor, which reflects the degree of abstract double-update inference, uniquely

explains variance in the FRN amplitudes. These data indicate that in addition to coding model-
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free, single-update RPEs, the FRN also signals values estimated through abstract inference on
the anti-correlated task structure.
Influence of signed versus unsigned RPEs. It had been suggested that, rather than a reinforcement
learning RPE signal, the FRN might reflect a surprise signal. Unsigned model-derived prediction
errors (|PEs|) have been claimed to encode such a surprise signal. For the sake of replication, we
repeated the analyses reported by Hauser and colleagues (2014b), and entered signed
prediction errors (PEs) derived from the double-update model as well as their unsigned values
|PEs| in a multiple regression analysis. The resulting two beta weights were then analyzed in a t-
test (Holmes & Friston, 1998). Note that, although signed and unsigned PE values are correlated,
this analysis only accounts for uniquely explained variance and betas derived from this analysis
are not pseudoeffects of the correlated measure. We found a significant effect of the signed RPEs
on the single-trial amplitude (mean slope of regression .082, SD=.114, t(19)=3.418,
p=.023), whereas there was a trend for the unsigned RPEs (mean slope of regression=.019,
S$D=.090, t(19)=1.877, p=0.076. Similar findings were obtained when binning small RPEs and
large RPEs for wins and losses separately by identifying the 25t and 75t percentile of each
individual’s range of RPEs, and testing the effect of RPE size and feedback valence on FRN
amplitudes using a repeated measures ANOVA. We found a significant interaction effect of
valence and RPE size (F(2,18)=10.68, p=.004, see Figure 7-3C), whereas no significant main
effect of size and valence was observed (all ps >.10, all Fs < 2.81). We infer that signed double-
update RPEs uniquely explain variance in the FRN trial-by-
trial amplitudes. Thus, we argue that the FRN codes learning signals rather than reflecting mere

surprise (Hauser et al., 2014b).
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Figure 7-3. A) Mean Reward Prediction Errors,
derived from the Single-Update and Double-Update
Model, as a function of valence and expectedness. We
plot mean RPEs of the 25th and 75th percentile of
each individual’s range of RPEs. B) Mean difference of
chosen decision values estimated by the Double-
Update and the Single-Update Model (equation 15),
that is, estimates of abstract ‘double-update’
inference components in decision-making. Trial-by-
trial differences were used as regressors to predict
the electrophysiological signal. C) Mean FRN
amplitudes, plotted as a function of valence and
expectedness of the feedback in the trial. FRN
amplitudes were influenced by the interaction of
valence and expectedness and showed a positive
association with reward prediction errors. FRN
amplitudes were furthermore negatively correlated
with the difference regressor, indicating that the FRN
codes abstract ‘double-update’ inference components
- the influence of ‘what might have happened’ - in

reward-guided decision-making.

While it is essential for an agent to learn from observed outcomes emerging as a consequence of

actual choice hypothetical inference on ‘what might have happened’ is thought to additionally

guide decision-making and improve behavioral adaptation. In this study, we could identify

separate contributions of single-update versus double-update learning, the latter reflecting

abstract inference on the task structure, by focusing on unique variances explained by the

difference between their value estimates in the FRN. Thereby, we demonstrate that the FRN

codes the influence of both, a model-free, single-update RPE and additional components related

to abstract inference on the anti-correlated task structure.
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Revisiting the role of the FRN in reinforcement learning. For the investigation of
electrophysiological signatures of reinforcement learning, a candidate deflection is the FRN. An
influential theory suggests that the FRN is a neural signature of model-free, single-update RPE
processing (Holroyd & Coles, 2002). Studies using cross-trial averages, and recently also
parametric analyses based on computational modeling, have partially confirmed these
theoretical claims (for a review see Walsh & Anderson, 2012). Our findings are in line with and
extend Holroyd and Coles’ seminal theory: We argue that the FRN in fact mirrors model-free
learning signals but additionally codes influences of inferred stimulus values deduced via
abstract inference on the task structure.

Learning from experiential, observed outcomes versus inferred outcomes based on
abstract inference, has been previously related to the distinction between model-free and
model-based control of behavior (Bromberg-Martin et al., 2010; Lucantonio et al., 2012): model-
free control is driven by rewards achieved in the past and therefore retrospective and reflexive.
By contrast, model-based behavior as the deliberative, prospective mode of control relies on an
internal representation of the environment and allows forward planning of future actions based
on their potential outcomes. Consequently, model-based control is computationally more
expensive but enables individuals to rapidly adapt their behavior in a dynamically changing
environment (Daw et al.,, 2005; Dolan & Dayan, 2013). In the present study, the double-update
model modifies model-free learning signals by incorporation of the anti-correlated task
structure which leads to more successful behavioral adaptation in a dynamic environment. It is
therefore conceivable that abstract double-update inference is associated with the model-based
system, as the model-free system is by definition blind towards the environmental structure.
Our result that the FRN codes both, model-free single-update RPEs and additional components
reflecting abstract inference on the anti-correlated task structure fits neatly to the notion of a
common architecture for the human control systems over decision-making with ubiquitous
higher-order model-based influences in neural reward processors (Doll et al.,, 2012). In line with

previous studies, this cuts against dual systems accounts of isolated model-free vs. model-based
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control. However, an alternative explanation might include that the abstract double-update
inference as observed in the present study does not arise from a full model-based system but
rather temporal-difference learning about the relationship of the choice options (Shohamy &
Wagner, 2008; Doll et al., 2012; Wimmer et al, 2012). While there is no unique formulation of
model-free and model-based control (Dolan & Dayan, 2013) and tasks may differ in which
aspects of the system they capture, another approach of dissociating model-based versus model-
free decision-making is to use sequential decision tasks (Glascher et al.,, 2010; Daw et al., 2011).
In sequential decision-making, the model-based learner acquires knowledge about the task-
immanent transition structure and uses this to evaluate decision options. This task differs from
the experiment used here by capturing a more complex learning environment and thereby offers
the possibility to investigate one important feature of model-based control, namely, inferring
action values by a learnt cognitive sequential model of the consequences of one’s actions (Doll et
al,, 2012). Our findings motivate further electrophysiological investigations of different aspects
of behavioral control, e.g,, in more complex environments via the application of sequential
learning tasks.

Potential generators of the FRN and neural correlates of behavioral control. Compared to methods
such as fMRI, EEG is limited in tracking signals from deep subcortical structures that have been
postulated to play key roles in reinforcement learning, such as the striatum. However, it has
been claimed plausible that local field potentials are modulated by afferent midbrain prediction
error signals (Talmi et al, 2012). Possible generator regions of the FRN are a matter of debate.
Notably, the FRN is measured over the medial frontal cortex (MFC), a region that has been
implicated in the coding of model-free as well as model-based RPE signals (Daw et al.,, 2011).
Interestingly, studies using EEG source localization discuss the origin of the FRN in the striatum
(Foti et al.,, 2011a), a brain structure that has also been shown to be involved in the processing of
both model-free and model-based learning signals (Daw et al., 2011). Recently, a combined EEG-
fMRI study likewise adopted a single-trial approach in order to track coupling of feedback

signals in hemodynamic and electrophysiological responses (Becker et al., 2014). Their data
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imply contributions of multiple frontal midline generators to the FRN signal. Notably,
hemodynamic activity in the medial prefrontal cortex (mPFC) and the striatum was also coupled
to the magnitude of electrophysiological FRN responses.

FRN and signed versus unsigned RPEs. Whether the FRN codes signed or unsigned RPEs is a
matter of ongoing debate (Alexander & Brown, 2011; Talmi et al, 2013; Cavanagh & Frank,
2014; Hauser et al., 2014b; Ullsperger et al., 2014). A previous modeling-based study has found a
correlation of the FRN with unsigned RPEs. The authors conclude that the FRN rather reflects
salience coding than learning (Hauser et al., 2014b). Our findings contribute to this discussion by
showing that the FRN is explained by signed RPEs and also reflects abstract higher-order
components. This points towards a role for the FRN in learning beyond coding of expectedness
or salience only. However, albeit on a trend level only, we also found a correlation between the
FRN and unsigned PEs. Our findings are in line with a recent interpretation which discusses
contributions of signed versus unsigned RPE to the FRN (Ullsperger et al., 2014): the authors
argue that the presence of both signed and unsigned RPEs in the FRN is plausible because
unsigned RPEs may, beyond signed RPEs, play a particular role in learning and behavioral
adaptation. The authors suggest that surprise signals can be used to modify a weighting factor
(such as learning rate or volatility of the environment) of signed RPEs. While our findings
corroborate this unifying notion, we moreover suggest a closely related interpretation of the
association of unsigned PEs with the FRN. The absolute value of the model-free RPE signal has
been claimed to function as information on the reliability of the model-free system (Roesch et al.,
2012; Lee et al, 2014). Such reliability signals are thought to be used by an arbitration
mechanism which allocates the degree of control exerted by one of the systems at a given point
in time. Based on the findings by Hauser et al. (2014b) and also the trendwise correlation
observed in our data, we suggest that components of the FRN additionally code the reliability of
the model-free system and may thereby also reflect an electrophysiological signature of this
arbitration process. Specific modeling strategies are warranted to address this question (Li et al.,

2011; Roesch et al, 2012; Lee et al.,, 2014).
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Limitations. It has been argued that limitations inherent to the ERP methodology render
conclusions about the role of the FRN in reinforcement learning opaque (Cavanagh et al., 2010;
Cohen et al,, 2011b). Our findings suggest that by adopting a modelling-derived parametric
approach, FRN accounts can contribute to a more profound understanding of
electrophysiological correlates of human decision-making processes. Building on that, we
believe that for future electrophysiological studies in the framework of behavioral control, it
seems promising to additionally take dynamic changes in systems-level oscillatory
synchronization into account (Cavanagh et al,, 2010; Cohen et al., 2011b; Cavanagh & Frank,
2013).

In conclusion, our findings provide an electrophysiological correlate of
incorporating abstract inference into the decision-making process. Reduced neural tracking of
prediction errors (Tanabe et al.,, 2013; Parvaz et al, 2015), disturbed mechanisms of inference
(Lucantonio et al., 2012; Lucantonio et al, 2014; Huys et al, 2015b) and altered behavioral
control, e.g. an imbalance between model-based and model-free control are suggested to have
psychopathological implications (Deserno et al., 2013; Huys et al., 2014). For instance, patients
suffering from disorders characterized by failure in behavioral adaptation, e.g., addiction or
obsessive compulsive disorder, have been reported to show a bias towards model-free as
compared to model-based learning (Sebold et al., 2014; Voon et al., 2015). As EEG, in comparison
to fMRI, is advantageous with regard to feasibility, we offer new means of studying these

processes in patient populations characterized by aberrant reinforcement learning mechanisms.
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8 Study 4: Lateral prefrontal model-based signatures are
reduced in healthy individuals with high trait impulsivity>

8.1 Introduction

Impulsivity can be defined as a tendency for premature choices without foresight but despite
adverse consequences (Dalley et al, 2011; Robbins et al, 2012). Impulsivity, a multifaceted
construct, has been established as a vulnerability factor for addiction (Verdejo-Garcia et al.,
2008). Recent studies support the view of self-report trait impulsivity as an endophenotype for
addiction disorders (Ersche et al, 2010; Ersche et al,, 2013): non-addicted, albeit cognitively
impaired and at-risk, first-degree family members showed intermediate levels of trait
impulsivity when compared to addicted siblings and unrelated controls (Ersche et al,, 2010;
Ersche et al, 2013). This endophenotype research characterized unaffected siblings by
intermediate brain alterations, most prominently by means of structural measures of fronto-
striatal circuits (Ersche et al, 2012a). Interestingly, fronto-striatal structural measures were
shown to correlate with the expression of the dominant mode of behavioral control (de Wit et
al, 2012b; Voon et al.,, 2015). An important proposal linked the personality trait impulsivity to
an overreliance on habitual behavioral control (Everitt et al, 2008; Hogarth et al, 2013).
Empirical evidence for this hypothesis mainly stems from animal models of drug addiction
showing that high-impulsive rats are predisposed for escalation of repeated drug self-
administration and early relapse after abstinence (Dalley et al.,, 2007).

Behavioral control is postulated to be parsed between competing habitual and goal-
directed systems (Dickinson, 1985; Dolan & Dayan, 2013). This dual system theory was
formalized through the use of computational models (Daw et al., 2005): habitual control can be
described by ‘model-free’ temporal-difference algorithms, which retrospectively update

expectations by reward prediction errors. Dominance of model-free control is accompanied by

5 This chapter corresponds to the following article: Deserno, L., Wilbertz, T. Reiter, AM.F,,
Horstmann, A, Neumann, ], Villringer, A, Heinze, HJ. & Schlagenhauf, F. (in press). Lateral
prefrontal model-based signals are reduced in healthy individuals with high trait impulsivity.
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reduced immediate sensitivity to outcome devaluation because new outcome experiences are
required to gradually adapt outcome expectations (Dayan, 2009a). In marked contrast, goal-
directed control relies on the prospective consideration of possible actions and their potential
future outcomes (Balleine & Dickinson, 1998). This can be described by ‘model-based’
algorithms, which capture a task as a map in a forward-planning manner and therefore model-
based control enables flexible behavioral adaptation in dynamic environments (Doll et al,, 2012).
Using sequential decision-making and computational modeling, it was demonstrated that
healthy individuals use a mixture of both control strategies meanwhile prefrontal cortex and
ventral striatum code signatures of both model-free and also model-based control (Daw et al,
2011; Deserno et al., 2015b). Strikingly, when using the same task, a balance of behavioral
control shifted towards model-free was reported across several psychiatric conditions
characterized by high levels of trait impulsivity, including addiction (Sebold et al, 2014; Voon et
al,, 2015).

Adopting such a Computational Psychiatry approach (Montague et al, 2012; Stephan &
Mathys, 2014; Wang & Krystal, 2014), it has yet not been studied whether a shift towards model-
free control also extends to the vulnerability factor impulsivity. One study could show that high-
impulsive smokers showed reduced goal-directed control in a devaluation paradigm when
compared to low-impulsive smokers (Hogarth et al,, 2012b). However, the latter study could not
rule out potential effects of smoking addiction and did not include functional or structural brain
measures. To fill this gap, we utilized sequential decision-making, as in previous studies (Daw et
al, 2011; Sebold et al.,, 2014; Deserno et al, 2015b; Voon et al, 2015), in healthy low- and high-
impulsive individuals taken from a larger sample. Finally, 50 participants underwent task-based
fMRI to examine neural correlates of model-free and model-based control based on
computational modeling of the observed behavior. First, we explored whether high-impulsive
individuals show reduced model-based control similar to patients (Sebold et al, 2014; Voon et
al,, 2015). Dimensional approaches to psychiatry suggest that impairments in behavioral control,

as observed in drug addiction, could lie at the end of a continuum including healthy high-
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impulsive individuals (Robbins et al, 2012). Therefore, it appears conceivable that healthy
individuals with levels of impulsivity comparable to patients show intermediate alterations in
behavioral control. Second, on the neural level, we tested whether high-impulsive individuals
show elevated model-free prediction errors or reduced model-based signatures. Such effects
were expected in ventral striatum or prefrontal cortex as these regions were previously
indicated in coding model-free prediction errors and additional model-based signatures (Daw et
al,, 2011; Deserno et al., 2015b). Structural MRI was analyzed by means of gray matter density to

assess its co-variation with the behavioral and functional imaging effects.

8.2 Materials and methods

Participants and instruments. A total of 452 participants completed the Barratt Impulsiveness
Scale-11, a self-report measurement of trait impulsivity with high retest reliability in clinical and
non-clinical populations (Patton et al., 1995). Among these, 52 right-handed individuals were
selected from the upper and lower ends. Sample size for this study was determined in
accordance to previous between-group studies with the same task (Sebold et al., 2014; Voon et
al,, 2015). According to the literature (Stanford et al.,, 2009), mean total BIS-scores of each group
met criteria for high and low impulsiveness (Table 8-1). Both groups were matched for age and
gender and screened for axis-I psychiatric disorders using the SCID-IV interview (First et al.,
2001). Based on this screening, one participant was excluded because of a recent episode of
major depression and another participant fell asleep during task-based fMRI. The final sample
consisted of 50 participants (24 high-impulsive and 26 low-impulsive participants (Sobell,
1992). Intelligence was examined based on a German vocabulary test (Schmidt & Metzler, 1992)
as well as working memory using the backward digit span test and processing speed using the
digit symbol substitution test (Wechsler, 1955). For detailed group description see Table 8-1.
The local ethics committee (University of Leipzig) approved the study. All participants gave
written informed consent and received monetary compensation on an hourly basis in addition to

their monetary gain during the task.
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Table 8-1. Sample Characteristics. Group means with standard deviations and range in brackets
are reported; for group comparisons two-sample t-test were used. Drinking was assessed with the
time line follow back interview, verbal intelligence with a German vocabulary test and working

memory with a backward digit span test.

with high trait with low trait
impulsivity impulsivity
Healthy participants (n=24) (n=26) Sig.
27.29 +3.67 27.58+3.74
Age (years) (24/26) (22-33) (20-33) .78
12 female 13 female
Gender (24/26) 12 male 13 male
BIS total (24/26) 74(22_’59 3;’7 50&1_*5 %78 <001
Smoking (24/26) 1 smoker 1 smoker
A 2348 +21.28 17.48 + 14.84
Drinking (g) (24/25) (0-74) (0-63) .26
. 109.88 £ 7.60 113.08 £5.93
Verbal Intelligence (24/25) (97-129) (104-122) 11
Working memory (24/25) 80(311;)10 81(225)97 .82
Processing speed 88.26 £+ 11.29 82.71+11.45 09
(4-12) (4-12) ’

Sequential decision-making task. A two-step sequential decision task was implemented as in
previous studies (Daw et al.,, 2011; Wunderlich et al., 2012b; Voon et al., 2015). Participants had
to make two sequential choices between pairs of stimuli to receive a monetary reward after the
second choice. Within each trial, participants had to decide between two gray boxes at the first
stage or two colored boxes at the second stage (Figure 8-1A). Crucially, each first-stage choice
was associated with a different pair of colored boxes at the second-stage via a fixed transition
probability of 70%, which did not change during the experiment (Figure 8-1B). Thus, choice of
each first-stage stimulus was commonly (70%) associated with a certain second-stage pair of
stimuli and this is labeled a ‘common state’. In reverse, choice of each first-stage stimulus rarely
resulted (30%) in the other second-stage pair of stimuli and this is labeled a ‘rare state’. Model-
free control neglects this transition probability and staying with the same first-stage action that
lead to a reward after a second-stage choice is most likely (a main effect of reward). In contrast,

model-based control takes into account the transition probabilities. Thus, staying at the first-
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stage decreases after having received a reward in a rare state but increases after having received
no reward in a rare state (reward x state interaction).

All stimuli were randomly assigned to the left and right position on the screen. At the
first stage, the chosen gray stimulus was surrounded with a red frame, moved to the top of the
screen after completion of a 2-s decision phase and remained there for 1.5s. Subsequently,
participants entered the second stage (a common or rare state depending on the type of
transition) and decided between two colored boxes. After a second-stage choice, feedback
(reward or no reward) was delivered according to slowly and independently changing Gaussian
random walks. These random walks were identical to Daw et al. (2011) as it was shown that less
distinct random walks for reward delivery reduce the degree of model-based behavior
(Eppinger et al., 2013). Slowly changing reward probabilities at the second stage challenge the
subject with ongoing learning and thus maximize the dissociation of the two control strategies at
the first stage. Thus, non-stationary reward probabilities at the second-stage induce ongoing
model-based evaluation while stationary reward probabilities would favor a dominance of
model-free control at some point in time. The task consisted of a total of 201 trials with two
choice stages within each trial. Trials were separated by an exponentially distributed inter-trial
interval (ITI) with a mean of 2s. Prior to the experiment and similar to Daw et al. (2011),
participants were explicitly informed that the transition structure from the first to the second
stage would remain constant throughout the task. Information was provided about the
independence of reward probabilities and their change over time. Before MRI scanning,
participants performed a 55-trial version of the task with different stimuli and reward
probabilities and were instructed to maximize reward in the main experiment, which they
received as monetary payout after completion of the task.

First-stage stay-switch behavior was analyzed as a function of reward (reward/no reward) and
state (common/rare) in the previous trial. Each individual’s first-stage stay probabilities were
subjected to repeated-measures analysis of variance (ANOVA, using anovan in MATLAB) with

reward and state as within-subject factors and impulsivity (high/low) as between-subject
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factors. A main effect of reward shows an influence of model-free control while the interaction of
reward and state reveals influences of model-based control. Previously, healthy individuals
showed a mixture of both control strategies (Daw et al, 2011; Wunderlich et al., 2012b;
Smittenaar et al., 2013; Sebold et al.,, 2014; Deserno et al., 2015b; Voon et al., 2015) expressed by
a significant main effect of reward and a significant interaction of reward and state. In the
following, we describe a more fine-grained dissociation of the two control strategies via
computational modeling, which also provides individual trial-by-trial signatures for the analysis
of neural measurements. All behavioral analyses were performed using MATLAB 2010b.

Computational model. As in previous studies (Daw et al,, 2011; Wunderlich et al.,, 2012b; Deserno
et al,, 2015b; Voon et al,, 2015), we adopted a computational modeling approach to disentangle
influences of model-free and model-based control on participant’s choice behavior. To this end
three types of models were applied. (1) A model-free algorithm capturing only a main effect of
reward in first-stage stay-switch behavior. This algorithm was the temporal-difference model
SARSA(A) which learns decision values retrospectively after prediction errors occur (Sutton &
Barto, 1998). (2) A model-based algorithm, which only gives an interaction of rewards and state
but no main effect of reward. To this end, first-stage values were computed prospectively by
multiplying maximum values at the second stage with explicitly instructed transition
probabilities (Daw et al,, 2011). (3) A combination of both algorithms, a so-called hybrid model
which can reproduce a main effect of reward and an interaction of reward and state (Daw et al.,
2011). Values from all three models were transformed into choice probabilities using a softmax
rule with three parameters accounting for stochasticity separately at the first and second stage
(B1&2) and a repetition parameter (p) accounting for perseverance of first-stage choices.

Leaving out parameters of the softmax, the model-free algorithm SARSA(A) has 3
parameters: first- and second-stage learning rates (ai/az), which describe how quickly values
change with respect to first-stage and second-stage prediction errors; stage-skipping update A
(another learning rate), which connects the two stages via an influence of reward prediction

errors at the second-stage on first-stage values. Importantly, A describes how quickly first-stage
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values change with respect to second-stage reward prediction errors and thus accounts for the
main effect of reward in first-stage stay behavior but not for an interaction of reward and state.
Thus, a high value of A signifies a stronger influence of reward prediction errors at the second
stage on first-stage values. The model-based algorithm shares one parameter with the model-
free algorithm (o) because both algorithms converge at the second stage. In line with previous
work (Daw et al, 2011; Deserno et al, 2015b), we also show that including the parameter A
improves the fit to the data (see S-Table 3-1). To give an interaction of reward and state no
further parameter is required as the interaction results from multiplying maximum values of
second-stage stimuli with explicitly instructed transition probabilities (Daw et al,, 2011). The
hybrid algorithm has a total of 4 parameters: three parameters from SARSA(A) and a fourth
parameter (w) that weights the influence of model-free and model-based values and is therefore
of most interest because it represents a relative balance of the two control strategies. Please see
supplementary information for equations and model fitting.

Model comparison. The aim of model comparison is to identify one best-fitting algorithm. In
other words, a control strategy that is most likely in groups of high- and low-impulsive
individuals. To compare the three models for their relative goodness of fit, we subjected the
model evidence (approximated via sampling from the empirical prior distribution) to a random-
effects Bayesian model selection procedure (Stephan et al., 2009). The resulting exceedance
probabilities show which model is most likely in a population (Stephan et al, 2009). In the
supplementary information, we show that other measurements of relative model fit proved
consistent with this approach (S-Table 3-1) and show that best-fitting parameters reproduce the
observed behavior (S-Figure 3-1).

Group comparison of model parameters. The predictions of the two control strategies differ at the
first-stage of the task. In accordance with raw data analysis, parameters that explain variance in
first-stage decision values are of main interest here. In the hybrid model, the winning model in
both groups, a weighting parameter (w) determines to which extent overall first-stage decision

values are influenced by model-free and model-based values. Two further parameters, originally
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from the model-free algorithm, also directly influence the update of first-stage values: first-stage
learning rate (al), which determines how quickly first-stage values change with respect to
prediction errors at the onset of the second stage; and a stage-skipping update (A), which
determines to what extent first-stage values change with respect to reward prediction errors
and accounts for the main effect of reward. Finally, there is also a second-stage learning rate
(a2), which determines how quickly second-stage values change with respect to reward
prediction errors but do not directly influence first-stage values; we subjected all four
parameters of the hybrid model (w, al, a2, A) to a one-way multivariate analysis of variance
(MANOVA, using manoval in MATLAB) with the between-subject factor impulsivity (high/low).
Magnetic Resonance Imaging. Functional imaging was performed using a 3 Tesla Siemens Trio
scanner to acquire gradient echo T2*-weighted echo-planar images with blood oxygenation level
dependent contrast. Covering the whole brain, 36 slices were acquired in oblique orientation at
20° to AC-PC line in ascending order with 2.5-mm thickness, 3x3mm? in-plane voxel resolution,
0.5-mm gap between slices, TR=2s, TE=22ms and a flip angle a=90°. Prior to functional scanning,
a field map was collected to account for individual homogeneity differences of the magnetic field.
T1-weighted structural images were also acquired (TR=1300ms, TE=3.46ms, flip=10°,
matrix=240x256, voxel size: 1x1x1mm, slices=170).

Analysis of fMRI data. Two participants had to be excluded due to artifacts in ventral sections of
the brain. Thus, functional imaging results are reported for a sample of 48 participants (23 high-
impulsive and 25 low-impulsive participants). FMRI data were analyzed using SPM8
(http://www. filion.ucl.ac.uk/spm/software/spm8/). For preprocessing, images were corrected
for delay of slice time acquisition. Voxel-displacement maps were estimated based on field maps.
All images were realigned to correct for motion and were also corrected for distortion and the
interaction of distortion and motion. The images were spatially normalized into the Montreal
Neurological Institute (MNI) space using the normalization parameters generated during the
segmentation of each subject’s anatomical T1 scan (Ashburner & Friston, 2005); spatial

smoothing was applied with an isotropic Gaussian kernel of 6mm full width at half maximum.
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Prior to statistical analysis, data were high-pass filtered with a cutoff of 128s. An event-
related analysis was applied to the images on two levels using the general linear model approach
(GLM) as implemented in SPM8. As in the original paper by Daw et al. (2011), the analysis
focused on the two time points within each trial when prediction errors arise: at onsets of the
second stage and at onsets of reward delivery. Prediction errors at second-stage onsets compare
values of first- and second-stage stimuli and therefore vary with respect to the weighting
parameter (w), which gives the balance of the two control strategies. At the first level, both time
points were entered into the model as one regressor, which was parametrically modulated 1) by
model-free prediction errors and 2) by the difference of model-based and model-free prediction
errors, which reflects the difference between model-based and model-free values (the partial
derivative of the value function with respect to w). Note, that this difference regressor equals
zero at reward delivery, because both algorithms converge at this time point. To avoid any
confound of the neural results due to activity differences between these two time points per se,
the difference regressor was mean-centered within each subject and the time-point of reward
delivery was additionally included as a separate regressor. As in Daw et al. (2011), the design
also included first-stage onsets with two parametric modulators, the softmax probability for
choosing one of the two first-stage probabilities as well as its partial derivative with respect to
w, but these onsets were not in the focus of the present analysis. Individual (random-effects)
model parameters were used to generate modeling-derived regressors. Invalid trials (no choice
within response window) were modeled separately. All regressors were convolved with the
canonical hemodynamic response function as provided by SPM8 and its temporal derivative. The
six movement parameters from the realignment were included in the model as regressors of no
interest as well as the first derivative of translational movement with respect to time. An
additional regressor was included censoring scan-to-scan movement >1 mm.

At the second level, contrast images of model-free prediction errors and the difference of
model-based and model-free prediction errors were taken to a second-level random effects

model. For correction of multiple comparisons, family-wise error (FWE) p<.05 at the cluster

105



level was applied to statistical maps displayed at p<.001 uncorrected with a cluster extent k=20.
Previous research revealed an important role of prefrontal cortex and ventral striatum in coding
signatures of both systems (Glascher et al.,, 2010; Daw et al,, 2011; Lee et al., 2014; Deserno et al.,
2015b). Thus, mean parameter estimates for clusters of ventral striatum and prefrontal cortex
were extracted and then tested between groups using three repeated-measurers ANOVAs with
control mode (model-free/model-based) as within-subject factor and impulsivity (high/low) as
between-subject factor. Subsequently, a one-way MANOVA with the between-subject factor
impulsivity was used to assess regional specificity by comparing the difference between both
effects (model-free prediction errors and the difference of model-based and model-free
prediction errors) in all three regions of interest.

Voxel-based morphometry. For segmentation of each subject’s anatomical T1 the unified
segmentation approach was applied as implemented in SPM8 (Ashburner & Friston, 2005).
Subsequently, each individual’s modulated image of gray matter density was smoothed with an
isotropic Gaussian kernel of 6mm full width at half maximum. The smoothed images were then
subjected to a random-effects model containing total intracranial volume as a covariate.

Using fMRI clusters named above, gray matter density was extracted for medial and lateral PFC
as well as ventral striatum and included as covariates in between-group comparisons of
behavioral and functional imaging data. We also tested for between-group effects. Independent
of impulsivity, we examined a co-variation of the parameter w with gray matter density as
reported previously for medial prefrontal and orbitofrontal cortex (Voon et al,, 2015). Given
these results by (Voon et al., 2015) but also studies that implicate lateral prefrontal cortex in
model-based control (Smittenaar et al., 2013), we constructed a bilateral search volume (taken
from the AAL Atlas, Tzourio-Mazoyer et al.,, 2002) of medial prefrontal and orbitofrontal cortex
(superior medial frontal gyrus, medial orbitofrontal gyrus and anterior cingulate cortex) and

lateral prefrontal cortex (middle frontal gyrus and inferior frontal gyrus).
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8.3 Results

Sample characteristics. As BIS was selection criterion, groups differed significantly (Table 8-1).
Notably, mean BIS of high-impulsive individuals (74.76 * 4.96) lay in a similar range as for drug
users and their siblings (Ersche et al., 2010). As shown in Table 8-1, groups were matched for
age and gender and did not differ regarding measures of drinking and smoking or
neurocognitive measures.

Behavioral raw data. First-stage choice behavior of all participants showed a significant main
effect of reward and an interaction of reward and state (reward F(1,48)=75.30, p<.001, reward x
state F(1,48)=64.30, p<.001, Figure 8-1C) indicating that across all participants aspects of
model-free and model-based control were present. These effects were also present when
looking at both groups separately.

Individuals with high trait impulsivity did not show a reduction of model-based control
tested by a three-way interaction (reward x state x impulsivity F(1,48)=.73, p=.40, Figure 8-1C)
but there was a trend towards a significant reward x impulsivity interaction (F(1,48)=3.50,
p=.07, Figure 8-1C). Close inspection of Figure 8-1C suggest that this reward x impulsivity
interaction results from slightly lower stay probabilities in high-impulsive compared to low-
impulsive individuals after unrewarded (particularly unrewarded-rare trials) but not rewarded
trials. Thus, the main effect of reward appeared slightly stronger in high-impulsive individuals.
To confirm this, a one-tailed between-group t-test (high > low) was performed on the main
effect of reward (the difference between staying after rewards and staying after non-rewards).
Indeed, this difference between staying after rewards and staying after non-rewards was
significantly higher in high-impulsive individuals (¢(48)=1.94, p=.04 Figure 8-1D) indicating a
subtle accentuation of model-free control in high-impulsive individuals. Although the repeated-
measures ANOVA did not reveal any interaction of impulsivity with state or reward and state,
following a reviewer’s suggestion, we further unpacked the reward x impulsivity interaction for

rare and common trials separately. This one-tailed post-hoc test revealed that the observed

107



effect was mainly driven by the difference between rewarded and unrewarded trials in rare

transitions (t(48)=1.6, p=.06) but not in common transitions (t(48)=.26, p=.40).
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Figure 8-1. Task and behavioral raw data. A) Exemplary trial sequence of the task. B. State-
transition probabilities. C) Stay-switch behavior at the first-stage was analyzed as function of
reward and state in the previous trial. These stay probabilities were subjected to repeated-
measures ANOVA with reward and state as within-subject factors and group as between-subject
factors. This revealed a significant main effect of reward (F(1,48)=75.30, p<.001) and reward x
state interaction (F(1,48)=64.30, p<.001); no significant main effect of state (F(1,48)=1.32, p=.26)
and no significant state x group (F(1,48)=.07, p=.80) or reward x state x group (F(1,48)=.73, p=.40)
interactions. There was a trend towards a significant reward x group interaction (F(1,48)=3.50,
p=.07). D) In a one-tailed post-hoc t-test, the difference between staying after rewards and staying
after non-rewards was significantly increased in the high- compared to the low-impulsive group

(t(48)=1.94, p=.04). Error bars represent standard error.
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Computational modeling. Model selection revealed the hybrid model as best-fitting in both
groups  (high-impulsive  exceedance  probability=9974, low-impulsive exceedance
probability=.9997, S-Table 3-1). This underlines that a mixture of both control modes, provided
by this hybrid model, is the most likely control mechanisms in low- and high-impulsive groups.

All four parameters of the hybrid model (w, al, a2, A, for their distribution see S-Table 3-2)
weresubjected to a MANOVA with the between-subject factor impulsivity. This revealed a
significant effect of impulsivity F(4,45)=2.72, p=.041). Post-hoc univariate tests (Figure 8-2)
showed no difference for the balance of control w (high-impulsive .6076 +.1114, low-impulsive
.5943 £.1080, F(1,48)=.19, p=.64, Figure 8-2A), for first-stage learning rates a1 (high-impulsive
.5272 £ .2077, low-impulsive .4330 * .1928, F(1,48)=2.8, p=.10, Figure 8-2B), nor for second-
stage learning rates a2 (high-impulsive .5803 £.1706, low-impulsive .6006 +.1328, F(1,48)=.22,
p=.64, Figure 8-2C), but significantly higher stage-skipping update A (high-impulsive .6854 +
.0756, low-impulsive .6202 + .0965, F(1,48)=7.00, p=.01, Figure 8-2D). In addition, to
demonstrate that the effect of impulsivity on A was not due to fitting w simultaneously, we also
tested whether A was significantly different between groups when comparing parameters of the
model-free algorithm with w=0. This was indeed the case (high-impulsive .69+.07, low-
impulsive .64£.07, t(48)=2.96, p=.005). The parameter A signifies a stronger influence of reward
prediction errors at the second stage on first-stage decision values and accounts for the main
effect of reward observed in first-stage stay behavior. In line with raw data analysis, this speaks
for a subtle, albeit significant, elevation of model-free control in high-impulsive individuals. This
result remained significant when including neurocognitive measures, amount of alcohol intake
or gray matter density as covariates. Explorative comparison of parameters of the softmax
observation model (81, B2, p) and the negative log-likelihood showed no significant differences
(t(48)<=1.61, p>=.11). See S-Table 3-2, for distribution of all parameters and the negative log-

likelihood.

109



1.0 B 10 C.1o D10
=] = <
0.9 < 09 @ 09 £09
% o o 2
> 0.8 = 0.8 2 0.8 508
§ n.s. 2 ns. =] ns. = *
= 3 0.7 @ 0.7 g 0.7 _g 0.7 4
s° = ] 2
506 > 0.6 206 506
] = 2 2
E g 05 =05 505 205
ST s 8 =
o 0.4 £ 04 @ 0.4 < 0.4
23 i - 5
= 203 200.3 =03 203
] — e
el = E= =]
| 0.2 =02 = 0.2 0.2
S 5]
3 o1 01 Boa £01
S 0 T
high  low high low s high  low < high  low
[0 high-impulsive [l] low-impulsive

Figure 8-2. Hybrid model parameters. Four parameters of the hybrid model (w, a1, a2, A, S-Table
3-3) were subjected to a multivariate analysis with the between-subject factor impulsivity. This
revealed a significant effect of impulsivity (F(4,45)=2.72, p=.04). Post-hoc univariate tests showed
no difference for A) the balance of model-free and model-based control (w), B) first-stage learning
rates (a1), nor C) for second-stage learning rates (a2), but D) significantly higher stage-skipping

update (A). Error bars represent standard errors.

Functional MRI. As a replication of previous work (Daw et al,, 2011; Deserno et al,, 2015b), the
conjunction of model-free prediction errors and the difference of model-based and model-free
prediction errors across both groups reached significance (whole-brain p-FWE<.05 at the cluster
level) in right and left ventral striatum, medial prefrontal cortex and right ventro-lateral
prefrontal/orbitofrontal cortex (S-Table 3-3, Figure 8-3). Thus, for between group-comparison,
parameter estimates of the clusters for bilateral ventral striatum, medial and right ventro-lateral
prefrontal cortex were tested between groups using three repeated-measures ANOVA with
control (model-free/model-based) as within-subject factor and impulsivity (high/low) as
between-subject factor. As depicted in Figure 8-3, no main effect of impulsivity (F(1,46)<=.28,
p>=.60) nor an impulsivity x control interaction was observed (F(1,46)<=1.79, p>=.19) in ventral
striatum and medial prefrontal cortex. In right lateral PFC, we observed no main effect of
impulsivity (F(1,46)<.01, p=.99, Figure 8-3B) but a significant impulsivity x learning interaction

(F(1,46)=4.80, p=.03, Figure 8-3B).
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To assess regional specificity, a MANOVA with the between-subject factor impulsivity was used
to compare the difference between two effects of interest (model-free prediction errors and the
difference of model-based and model-free prediction errors) in all three regions of interest,
which indeed reached significance (4ry=.28, F(44)=4.09, p=.01). All between-group fMRI
findings remained significant when adding neurocognitive measures, amount of alcohol intake
or gray matter density as covariates.

Structural MRI. First, no differences were observed between low- and high-impulsive groups at a
whole-brain level nor when looking at anatomical or fMRI-derived regions of interest. Second, a
significant positive correlation between dorsolateral prefrontal gray matter density and
parameter w (a higher w indicates more model-based choices) was observed (MNI x=-42, y=22,
z=50, t=5.04, p-FWE=.05 for bilateral medial and lateral PFC, r=.59, R?=.35, 95% confidence

interval [.37,.75], Figure 8-4).
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Figure 8-3. fMRI results across the entire
sample. A) Across both groups a significant
(whole-brain p-FWE<.05 at the cluster level)
conjunction of model-free reward prediction
errors and the difference of model-based and
model-free prediction errors was observed in
right and left ventral striatum, medial
prefrontal  cortex, right ventro-lateral
prefrontal/orbitofrontal cortex, right and left
parietal cortex and posterior cingulate cortex.
For display purposes, maps are thresholded at
p<.001 uncorrected and a cluster extent of
k=20. B) mean parameter estimates of the
cluster for bilateral ventral striatum, medial
and right ventro-lateral prefrontal cortex
tested between groups using three repeated-
measures analysis. No main effect of
impulsivity (F(1,46)<=.28, p>=.60) nor an
impulsivity x control interaction was
observed (F(1,46)<=1.79, p>=.19) in ventral
striatum and medial prefrontal cortex (B,
middle and lower panel). In right lateral PFC
(B, upper panel), we observed no main effect
of impulsivity (F(1,46)<.01, p=.99) but a
significant impulsivity x learning interaction

(F(1,46)=4.80, p=.03).

Figure 8-4 Gray matter density and the
balance of behavioral control. A positive
correlation between gray matter density
in dorsolateral prefrontal cortex (MIN
x=-42, y=22, z=50, t=5.04, p-FWE=.05
for bilateral medial and lateral PFC) and
the balance of model-free and model-
based control (w) was observed. For
display purposes, maps are thresholded
at p<.001 uncorrected and a cluster

extent of k=20.



8.4 Discussion

The present study shows high trait impulsivity in healthy individuals to be accompanied by
behavioral and neural signatures in favor of a model-free system of behavioral control. While we
did not observe a shift in a balance of behavioral control towards model-free control in high
impulsive individuals, two main findings support this notion: first, in line with behavioral raw
data analysis, computational modeling revealed a subtle but significant accentuation of model-
free control in high-impulsive individuals; second, lateral prefrontal model-based signals were
reduced in high-impulsive individuals.

Trait impulsivity, behavioral control and addiction. High-impulsive individuals showed an
accentuation of a model-free control system, namely the impact of reward prediction errors on
first-stage decision values was elevated. In contrast to addicted and other psychiatric patient
samples (Sebold et al., 2014; Voon et al,, 2015), we did not find evidence for an impairment of
model-based behavioral control in our sample of high impulsive individuals. Utilizing the same
sequential decision task, it was recently demonstrated that patients with addictive disorders and
other conditions from the impulsivity-compulsivity spectrum show a shift of behavioral control
from model-based towards model-free control (Sebold et al, 2014; Voon et al., 2015). In both
patient studies (Sebold et al., 2014; Voon et al, 2015), model-based control was reduced
(reward x state x group interaction or lower parameter ®) but patients did not differ from
controls regarding measures of the model-free system alone (reward x group interaction or
higher parameter A). So far, the origin of behavioral findings in patients remain unclear: they
could result from an antecedent accentuation in a model-free system ultimately reducing model-
based control although this is not supported by hitherto existing studies; they could be linked to
an arbitration or integration problem between two systems or they could be tied to impairments
of a model-based system alone. Studies suggest that inter-individual variability in cognitive
capacities relate to a model-based system (Otto et al., 2013a; Otto et al., 2013b; Smittenaar et al,,
2013; Schad et al., 2014). Interestingly, Sebold et al. showed in alcohol-dependent patients that

reduced model-based control was at least abolished when correcting for cognitive capacities
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(Sebold et al., 2014) and similar control analyses were not reported in Voon et al., 2015. Here,
we show that the risk factor impulsivity results in an accentuation within a model-free control
system alone although - unlike in addiction and other patients groups - an overall balance of
control was not altered. Importantly, general cognition is very unlikely to account for the
findings in the present study. Nonetheless, it remains an intriguing question why some healthy
individuals perform this task in a model-free way. One line of reasoning includes that ongoing
model-based evaluation during the main experiment challenges limited computational resources
(Daw et al., 2005). Studies in healthy individuals support this view by showing that inter-
individual differences in cognitive capacities, in particular working memory (Otto et al., 2013a;
Otto et al, 2013b; Schad et al, 2014), relate to the balance of model-free and model-based
control in this task. Further associations were shown for acute stress reactivity and chronic
stress levels (Otto et al.,, 2013b; Radenbach et al,, 2015) as well as striatal presynaptic dopamine
levels (Deserno et al,, 2015b). Another idea involves that such individuals could have a ‘false’
model or a ‘false’ belief about the state transition, e.g. a subjective illusion of control.
Interestingly, a recent study reported that healthy adults with a subjective belief of control over
reward delivery, which was objectively not given, showed increased ventral striatal and lateral
prefrontal activation during reward anticipation (Lorenz et al., 2015). However, this idea cannot
be adequately tested with task applied in the present and instead requires experimental designs
specifically tailored to address this. Together, these factors most likely also play an important
role in explaining the emergence of a dominance of model-free control in psychopathological
groups performing this task (Sebold et al.,, 2014; Voon et al,, 2015). With respect to addictive
behaviors, it is conceivable that longitudinal interactions with acute drug abuse (Hogarth et al,,
2012a), chronic drug consumption (Deserno et al., 2015a) or acute and chronic stress (Otto et
al,, 2013b; Radenbach et al., 2015) may finally prompt a pattern of reduced model-based control
and leave model-free control as the only available mode of control in patients.

Reduced lateral prefrontal model-based signatures in high-impulsive individuals. High-impulsive

individuals exhibited reduced model-based signatures in a sector of the lateral PFC. In previous
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research, measures of impulsivity were linked to inferior parts of lateral PFC (Farr et al., 2012;
Wilbertz et al., 2014), which is an important region exhibiting top-down control (Koechlin et al.,
2003) also during sequential decision-making (Lee et al., 2014). Indeed, it was proposed that
altered behavioral control in addiction and impulsivity is associated or even results from
reduced prefrontal top-down control exerted over striatal regions (Dalley et al, 2011). In the
present study, reduced model-based signatures in lateral PFC of high-impulsive individuals
could indicate such deficient top-down control. In line, Daw et al. suggested that a covariation of
ventral striatal activation with model-free but most strikingly also model-based signatures could
result from a top-down, prefrontal to striatal, information flow between the two control systems
(Daw et al.,, 2011). However, it remains an important question what precisely determines the
degree of control exerted over striatal regions given that ventral striatal model-based signatures
remained unaffected in high-impulsive individuals. One potential explanation for unaffected
ventral striatal signals, and also intact model-based behavioral control, is that medial PFC
model-based signatures did not differ between high- and low-impulsive groups. Given a likely
role of medial PFC in integrating decision values from both systems (Wunderlich et al, 2012a;
Lee et al.,, 2014), intact model-based coding in mPFC may preserve neural top-down control and
thus behavioral model-based control. A failure of this mPFC function may ultimately result in an
overall shift of behavioral control as observed behaviorally in patients (Sebold et al., 2014; Voon
etal, 2015).

Dopamine was also suggested to play an important role in modulating top-down control
in fronto-striatal circuits (Braver & Cohen, 1999; Seamans & Yang, 2004; Cools, 2011). While
blunted (ventral) striatal dopamine function was reported in addicted patients both pre- and
postsynaptically (Volkow et al, 1996; Heinz et al.,, 2004; Martinez et al., 2005; Martinez et al.,
2007; Martinez et al., 2012), animal research has shown that PET measures of ventral striatal
dopamine D2 receptor availability are lower in high-impulsive, stimulant-naive rats and predict
escalated levels of stimulant self-administration (Dalley et al., 2007). Interestingly, in human

PET studies higher levels of impulsivity were shown to be mediated by lower levels of

115



presynaptic dopamine function (Buckholtz et al, 2010; Schluter et al., 2013). Using the same
task and analytic strategy as in the present study, pharmacological elevation of presynaptic
dopamine induced a bias towards model-based choices (Wunderlich et al., 2012b). This positive
association between model-based control and dopamine was confirmed in a human PET-fMRI
study with respect to presynaptic dopamine levels in ventral striatum (Deserno et al, 2015b).
Interestingly, in the latter study ventral striatal presynaptic dopamine levels were also shown to
be positively correlated with model-based signatures in lateral PFC (Deserno et al, 2015b) at
nearby coordinates where model-based signatures were found to be reduced in high-impulsive
individuals in the present study. Although low dopamine levels appear to be associated with
reduced model-based control, impulsivity and vulnerability to addiction, the exact interplay of
these variables still remains to be elucidated in future translational and longitudinal studies.

One may further speculate that a lateral PFC dysfunction characterizes the impulsive
spectrum. Indeed, the observed reduction of model-based signals in lateral PFC nicely matches
endophenotype studies that revealed lateral PFC (in particular inferior frontal gyrus) as a
vulnerability nexus in siblings of stimulant-dependent patients with regard to white matter
integrity and gray matter density (Ersche et al, 2012a). Reduced structural PFC integrity was
not observed in our sample of high-impulsive individuals, which may be due to differences in
sample characteristics. In particular, high-impulsive siblings of addicted patients also show
cognitive impairments (Ersche et al, 2012a). To isolate effects of impulsivity, we explicitly
choose to study high-impulsive healthy individuals who did not show differences in cognitive
measures when compared to low-impulsive individuals. Notably, all behavioral and fMRI results
associated with high impulsivity were independent of individual variability in these cognitive
measures or gray matter density. Irrespectively of impulsivity, dorsolateral prefrontal gray
matter density was positively related to a balance of model-free and model-based control. This
confirms previous findings linking prefrontal gray matter density to a balance of control, albeit

in a different prefrontal area (Voon et al,, 2015). Thus and taken together so far, it is likely that

116



multiple ‘hits’ on the functional and structural level multiplex to a vulnerability pattern for
addiction (Heinz et al, 2011).

Limitations. The presented behavioral and neural results warrant replication and their
predictive relevance remains an important target for future longitudinal studies. Thus, future
studies should follow up healthy participants from extreme ends of personality traits, at-risk
samples and patients to examine whether alterations in behavioral control predict future
development of drug intake as suggested by animal models (Dalley et al, 2007). Regarding
decision-making tasks that aim to assess model-free habitual and model-based goal-directed
behavior, construct validity remains an important issue. Work from our group has studied
construct validity by testing the applied version of sequential decision-making and a selective
devaluation task in the same participants (Friedel et al, 2014). Indeed, although in a limited
sample size, a positive correlation between the main outcome measures of both tasks was found
(Friedel et al.,, 2014). A similar observation has recently been confirmed in a larger sample and a
different design incorporating devaluation into the sequential decision task (Gillan et al, 2015).
Although more indirectly, the by now repeatedly reported association between model-based
control and general cognitive capacities (Otto et al, 2013a; Otto et al, 2013b; Schad et al., 2014;
Otto et al, 2015) also supports construct validity of the applied task in terms of the
computational costs, and thus higher cognitive demands, of model-based control.

Conclusion. We present first evidence for the idea that high impulsivity in healthy individuals is
accompanied by behavioral and neural signatures in favor of model-free behavioral control. The
behavioral results in healthy high-impulsive individuals were qualitatively different to findings
in patients with the same task. Effects of smoking, alcohol intake, general cognition or structural
brain measures did not account for the findings. Adopting a Computational Psychiatry approach,
we show that these techniques represent feasible and mechanistically informative tools that

may enrich future longitudinal studies (Montague et al., 2012; Brodersen et al., 2014a).
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9 Study 5: Risk factors for addiction and their association with
model-based behavioral control®

9.1 Introduction

Drug addiction tends to run in families and relatives of drug-dependent individuals have an
eightfold increased risk of developing addictive disorders compared with the general population
(Merikangas et al, 1998). Endophenotype accounts of addiction postulate that unaffected
relatives share alterations in behavioral or cognitive processes similar or intermediate to those
observed in addicted individuals (Robbins et al., 2012).

Inspired by a rich body of work in cognitive neuroscience, recent developments in addiction
research highlight a shift from goal-directed toward habitual instrumental control systems as
biasing addicted individuals to repeatedly choose certain maladaptive behaviors even in the face
of negative consequences (Everitt & Robbins, 2005; Dayan, 2009a; Sebold et al, 2014; Voon et
al., 2015). This view on addiction builds upon the prominent notion that instrumental control in
healthy decision-making arises from contributions of both a deliberative, goal-directed and a
reflexive, habitual system (Balleine & Dickinson, 1998; Dolan & Dayan, 2013). Computational
formulations have amended this theory (Daw et al, 2005): on the one hand goal-directed
behavior uses a mental model of the environment; future actions and potential outcomes are
planned in a forward manner and these costly computations enable flexible behavioral
adaptation. On the other hand, habitual behavior is retrospective and rigid, but computationally
efficient. It relies on ‘stamped-in’ past rewards and neglects environmental structure.

A shift from goal-directed toward habitual behavior has not only been suggested for addiction
itself, but also for recognized risk factors for addiction like acute and chronic stress (Otto et al.,
2013b; Radenbach et al, 2015) or impulsivity (Everitt et al, 2008; Hogarth et al, 2012b;

Deserno et al, in press). Studies in healthy at-risk populations are of particular importance as

6 This chapter corresponds to the following article: Reiter, A.M.F.*, Deserno, L.*, Wilbertz, T., Heinze,
H.J., & Schlagenhauf, F. (under review). Risk factors for addiction and their association with model-
based behavioral control.

*authors contributed equally
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they help to elucidate whether a shift toward model-free instrumental control precedes the
development of addiction or is a consequence of addictive behavior. Further, they help to rule
out potential confounders like neurotoxic effects on brain structure and globally impaired
cognitive functioning. In particular, inter-individual differences in cognitive functioning were
shown to be associated with the degree of model-based control in healthy individuals (Otto et al,
2013a; Otto et al, 2013b; Schad et al., 2014) but also with impairments in patients (Sebold et al.,
2014).

Adopting a dimensional computational psychiatry approach, we asked whether healthy
individuals with a positive family history of alcohol-dependence show a bias toward model-free
control as it had been observed in addicted individuals (Sebold et al, 2014). Building on
previous evidence pointing toward an important role of impulsivity and cognitive capacity in
instrumental control within populations at risk for or suffering from addiction (Ersche et al,
2012b; Sebold et al, 2014), the study was also designed to assess these factors as additional

moderators of behavioral control.

9.2 Materials and methods

Participants. 20 healthy participants with positive family history of alcohol dependence were
recruited based on the CAST-6 (Children of Alcoholics Screening Test (Hodgins et al.,, 1993). Only
individuals with a score >= 5 were included (usually a score of score of >= 2 is considered as a
positive family history, Hodgins et al, 1993). In the lab, participants were additionally
interviewed on parental alcohol consumption, confirming their fathers’ fulfillment of DSM-IV
criteria of addiction. To exclude any influence of potential prenatal alcohol exposure, only
individuals with a father suffering from alcohol dependence were included. 17 healthy
participants without positive family history of alcohol use disorders (CAST-6 score of zero and
no indication of any substance abuse for 1st - 3rd degree relatives in a personal interview) were
included as a control group. Both groups did not differ in age or gender distribution and were
screened for axis-1 psychiatric disorders using the SCID-IV interview (First, 1997). None of the
participants fulfilled criteria of an axis-1 disorder at the time of the study.
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To further characterize the sample, all participants underwent neuropsychological assessment
containing 4 tests: the Digit Symbol Substitution Test (DSST, Wechsler, 1955) and the Reitan
Trailmaking Test (TMT, Reitan, 1955), part A for processing speed, TMT part B for complex
attention/executive function and Backward Digit Span Test (DS, Wechsler, 1955) for working
memory. All test scores were z-transformed and z-transformed scores of all four tests were
averaged for a composite measurement of cognitive capacities (compare Schlagenhauf et al,
2013). Crystalline intelligence was examined based on a German vocabulary test (Schmidt &
Metzler, 1992). In addition, participants completed the BIS-11 (Patton et al, 1995; Stanford et
al,, 2009), a well-established measurement to assess trait impulsivity. Participants also indicated
alcohol consumption in the preceding 4 weeks using the Time Line Follow Back questionnaire
(Sobell, 1992). For a detailed group description, please see Table 9-1. The study was approved
by the local ethics committee and written informed consent was obtained from all volunteers.

Participants were reimbursed on an hourly basis.

Table 9-1. Sample characteristics of the original sample. Group means with standard deviations
and range in brackets are reported; for group comparisons two-tailed two-sample t-test or Chi-
Square Tests were used. DSST: Digit Symbol Substitution Test, TMT: Trail Making Test, BIS: Barrat
Impulsiveness Scale, CAST 6: Children of Alcoholics Screening Test, TLFB: Time Line Follow Back

Questionnaire.

positive family history of
alcohol-dependence (n=20)

negative family history of Sig.
alcohol-dependence (n=17)

Age (years) 28.65 £ 5.76 (19-42) 29.24 £ 5.47 (21-41) 76
Gender 10 female /10 male 8 female / 9 male 86
DSST (19/16) 83.89 + 10.55 (70-105) 86.75 * 16.76 (57-120) 54
TMT A (19/16) 26.62 * 8.55 (12-45) 20.46 £ 6.13 (9-31) 02
TMT B (19/16) 54.33 + 26.92 (30-95) 51.06 +19.73 (16-88) .61
Digit span (19/16) 7.95 + 2.48 (4-13) 8.06 £ 2.77 (4-14) 90
Z-fluid IQ (19/16) 0.14£0.66 (-1.33-0.91) 0.1620.89 (-1.61-1.83) 28
Verbal IQ (19/16) 109.79  9.31 (92-129) 112.38 £ 9.14 (97-133) 42
BIS total (18/16) 60 £ 7.76 (49-73) 59.63 £ 7.51 (45-74) 89
CAST-6 5.70+.47 (5-6) 0 <.001
TLFB (18/17) 19.39 £ 17.97 (1-70) 20.32+24.81 (0-98) 90

120



Sequential decision-making task. A two-step choice task was implemented as in previous studies
(e.g., Daw et al, 2011; Deserno et al., 2015b). The task consisted of 201 trials, each trial involved
two choice stages. At each stage, subjects were required to give a forced choice (maximum
decision time 2s) between two stimuli presented; stimuli were two gray boxes at the first stage
and two pairs of differently colored boxes at the second stage (Figure 9-1A). Position of the
screen where stimuli were presented (left vs. right) was randomized over trials. After a choice
the respective stimulus was framed in red, moved to the top of the screen and remained there
for 1.5s. Rewards were delivered only after the second-stage choice. Reward probabilities of
second-stage stimuli were identical to (Daw et al,, 2011). First and second stage choices were
connected via a fixed transition probability: each first-stage choice was associated with one pair
of the second-stage stimuli via a fixed probability of 70% (Figure 9-1B). Each trial was ended by
an exponentially distributed inter-trial interval (ITI) with a mean of 2s.

During an instruction session prior to the experiment, participants were explicitly
informed that the transition structure would not change throughout the task. Participants were
also told about the independence of reward probabilities and their dynamic change over the
course of the experiment. Participants were instructed to win as much money as possible and
informed that the balance of their account would be paid out in addition to the reimbursement
for study participation. After detailed instruction including teach-back, participants trained on a
shortened version of the task (50 trials) with different reward probabilities and stimuli.
Behavioral data analysis. Data were analyzed using MATLAB R2012 and Statistics Toolbox
Release 2012b (The MathWorks, Inc., Natick, Massachusetts, United States), IBM SPSS Statistics
for Windows, Version 22 (IBM Corp., Armonk, NY) and R (R Foundation for Statistical
Computing, Vienna, Austria, http://www.R-project.org/). Stay-switch behavior on the first step
was analyzed as a function of reward (reward or no reward) and state (common or rare) on the
previous trial. Individual stay probabilities were subjected to a repeated-measures ANOVA with

reward and state as within-subject factors and group as between-subject factors.
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Computational modeling. The aim of model-free and model-based algorithms is to learn values
for each of the stimuli, which appear in the task as three pairs (sA, sB, sC). sA refers to the first-
stage stimuli where values derived from model-free and model-based algorithms differ. sB and
sC refer to the two pairs of second-stage stimuli. a refers to the chosen stimuli. The index i
denotes the two stages of the task (i=1 for SA at the first stage and i=2 for SB or SC at the second
stage) and the index t denotes the trial.

First, the model-free algorithm was SARSA(A)(Sutton & Barto, 1998):

(16) QMF(Si,t+1v ai,t+1) = QMF(Si,trai,t) + ;6

(17) 8ie = Tie + Qur(Si+1e Giere) — Qur(Sies aie)

Notably, 1, = 0, because no reward is delivered after a first-stage choice. Further, we allow for
an additional stage-skipping update of first-stage values by introducing the parameter A, which
connects the two stages and allows the reward prediction error at the second stage to influence

first-stage values:

(18) QMF(Sl,tr al,t) = QMF(Sl,tral,t) + 148,

A additionally accounts for the main effect of reward as observed in the analysis of first-stage
stay-switch behavior but does not reflect the interaction of reward and state. Instead, the
influence of learning values for the transition matrix accounts for the interaction of reward x
state.

Second, the model-based algorithm learns values in a forward-planning way and computes first-
stage values by multiplying maximum values at the second stage (model-free algorithm) with

transition probabilities:
(19) Qus (SA»aj) = QMB(SBlsA' aj) max Qur(Sp, a) + Qug (SC|SA' aj) max Qur (¢, a)

Note that this approach simplifies transition learning because transition probabilities are not

learned explicitly. This approach is in line with the task instructions. Daw and colleagues report
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a simulation that verified that this approach outperforms incremental learning of the transition
matrix (Daw et al, 2011).
Third, the hybrid algorithm connects model-free and model-based learning via the weighting

factor w:

(20) Q(SAraj) = wQup (SA: aj) +(1- w)QMF(SA: aj)

Importantly, w reflects the relative influence of model-free and model-based values and is
therefore the parameter of most interest, representing the balance of the two decision-making
systems.

Finally, we transform values into action probabilities using a softmax for Q:

- . ailimeptd)
(21) Place = alsie) = 506G oGr vatprrep@D

Here, Bi controls the stochasticity of the choices and stochasticity is assumed to be different
between the two stages. The additional parameter p captures first-stage choice perseveration
and rep is an indicator function that equals 1 if the previous first-stage choice was the same.

In summary, the algorithm totals 7 parameters. It can be reduced to its special cases w = 1 (4
parameters) and w = 0 (5 parameters).

Model fitting. We fit bounded parameters by transforming them to a logistic (a, A, w) or
exponential (B) distribution to render normally distributed parameter estimates. To infer the
maximum-a-posteriori estimate MAP of parameters 0, we use a Gaussian prior with mean p and

variance c:
(22) MAP; = argmaxlogp(Y | 0) p(6lu, o)

where Y represents the data in terms of actions A; per subject i. We set priors empirically to the

maximum likelihood estimates ML of p and o given the data by all subjects:

(23) ML; = argmaxlogp(Y | 0)
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and achieve this by using Expectation-Maximization. For an in-depth description please compare
Huys et al., 2011; Huys et al, 2012. All 7 parameters of the best-fitting model (Table 9-2) were
subjected to a multivariate ANOVA with group (family history: positive/negative) as between-
subject factor.

Model selection. To compare models for their relative goodness of fit, we compute the model
evidence by integrating out free parameters. This integral was approximated by sampling from
the empirical prior distribution (Huys et al, 2011; Huys et al, 2012). The integrated likelihood
was subjected to the spm_BMS function contained in SPM8 (http://www.fil.ion.ucl.ac.uk/spm/)
to compute expected posterior probabilities and their exceedance probabilities (Stephan et al,
2009).

Regression models and moderator analyses. To test the potential influence of impulsivity and
cognitive capacities on the balance of model-based and model-free behavioral control, we built a
linear regression model with w as dependent variable and family history (positive vs. negative),
impulsivity (BIS-11 total score), as well as the sum score across cognitive capacities as predictor
variables. In all models, we additionally included age as nuisance variable as it is known to
impact model-based behavior (Eppinger et al,, 2013). Further, the negative log-likelihood of the
hybrid model was included as independent variable to control for unspecific effects of individual
variability in model fit. To test potentially interacting effects of the risk factors on w, we applied

moderator analyses (Hayes & Matthes, 2009).

9.3 Results

Behavioral raw data. As in previous studies with the same task (e.g. Daw et al.,, 2011; Deserno et
al,, 2015b), analysis of stay-switch behavior at the first-stage as a function of reward and state in
the previous trial revealed a main effect of reward (F(1,35) =23.657, p<.001) and a reward x
state interaction effect on first-stage decisions F(1,35)=43.826, p<.001, Figure 9-1C). In
individuals with a positive family history of alcohol dependence neither evidence for a reduction
of model-based choices (reward x state x family history interaction F(1,35)=.570, p=.461, Figure
9-1C) nor for a shift toward model-free control (reward x family history interaction F(1,35)=
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Figure 9-1. Task and Raw Data Results. A) Exemplary trial sequence. At each stage, subjects made a
choice (maximum decision time 2s) between two stimuli presented: two gray boxes at the first
stage and two pairs of differently colored boxes at the second stage. After this choice the respective
stimulus was framed in red, moved to the top of the screen and remained there for 1.5s. before the
subject entered the second stage, where another choice had to be made. Reward was delivered after
the second-stage choice. B) First and second stage choices were linked via a fixed transition
probability: each first-stage choice led one pair of the second-stage stimuli with probability of 70%
C) Stay-switch behavior at the first-stage of the task was analyzed as function of reward and state in
the previous trial. These stay probabilities were subjected to repeated-measures ANOVAs with
reward and state as within-subject factors and group as between-subject factors. We observed
significant main effect of reward (F=23.66, p<.001) and reward x state interaction (F=43.83,
p<.001); no significant main effect of state (F=.95, p=.34) and no significant reward x group (F=.38,
p=.54), state x group (F=1.85, p=.18) or reward x state x group (F=.57, p=.46) interactions.
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Table 9-2 Distribution of best-fitting parameters (hybrid model). Min: minimum, 1st / 3rd Qu: first

and third quartile, Max: maximum

Min 1st Qu. Median Mean 3rd Qu. Max
B1 2.56 5.09 6.47 7.02 8.23 14.11
B2 1.38 2.64 3.15 3.63 4.19 7.96
o1 .07 .36 .50 .51 .67 .83
o2 .04 41 .53 .50 .66 91
A .23 49 .65 .62 .78 93
[0} .34 .55 .66 .63 .73 .83
p .02 .09 .15 .16 21 .32
-LL -280.60  -217.70  -188.80  -183.90 -156.80 -88.43

.379, p=.542, Figure 9-1C), nor a main effect of group on stay/switch behavior (F(1,35)=.029,
p=.864) was observed.

Computational modeling. We compared three computational models: a model-based algorithm
(w=1), a model-free algorithm (w=0) and a hybrid model with w as a free parameter. Confirming
previous studies with the same task and modeling analysis, model selection across all
participants revealed that the hybrid model explained the observed choice behavior best
(XPmodel-based=-029, XPmodel-free=-006, XPhybrid modei=-965). With respect to family history of alcohol
dependence, we tested for between group differences by subjecting all 7 parameters of the
hybrid model to a multivariate ANOVA with family history (positive/negative) as between-
subject factor. There was no significant effect of group (F(7,29)=.760, p=.280).

Next, we aimed to probe whether the effect of cognitive capacities on model-based control is
moderated by the two risk factors family history and impulsivity, respectively. See Figure 9-2 for
the distribution of impulsivity scores in this sample and the subsequently described replication
sample. In the respective moderator analyses, the interaction between positive family and
cognitive capacities did not show a significant effect (R?-change due to interaction=.002, F=.056,
p=.814), whereas the interaction effect between impulsivity (BIS score) and cognitive capacities
on w was significant (R?-change due to interaction=.134, F=5.394, p=.028, Figure 9-3A). We also
explored the included neurocognitive subdomains by subsequently entering the four different
test scores (TMT A, TMT B, DS, DSST) as independent variable in separate moderator analyses

(dependent variable w, moderator variable impulsivity). This revealed a positive effect
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Figure 9-2. Density function of BIS-11 values in the original sample and the replication sample. The
different distributions are due to differences in recruitment strategy: in the replication sample,

participants were specifically chosen based on particularly low vs. high values on the BIS-11.

on the association of impulsivity and model-based behavior, whereas the other cognitive
subdomains failed to contribute significantly to an interaction effect (TMT A p=.119, DS p=.0763,
DSST p=.100). We explored this interaction effect in a post-hoc fashion by using the median of
the BIS score to split our sample in a subgroup with higher vs. lower trait impulsivity scores. The
regression analysis was then repeated for those groups separately. We observed that the
interaction effect between impulsivity and executive control was driven by a significant effect of
executive control on w in the lower impulsive subgroup (beta=.591, t=2.574, p=.024). Contrary,
there was no association of executive control and w in the higher impulsive subgroup (beta>-
.110, t<.341, p>.738). See Figure 9-4A for an illustration.

Cognitive capacities, impulsivity and model-based choices: replication analysis in an independent

sample.

Using the same task and computational modeling analysis, we previously investigated the
association between high vs. low trait impulsivity (defined according to BIS-11) and the balance
between model-based and model-free decision-making (Deserno et al., in press). For a detailed
description of recruitment strategy, sample characteristics and results, please compare Deserno
et al, in press. In short, no evidence for an influence of high vs. low trait impulsivity on the
parameter w was found. Given the above reported findings, we now reanalyzed these data with
respect to an interaction effect of impulsivity and cognitive capacity on w, an analysis that had
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not been performed in the original investigation. All datasets included in the previous
investigation (n=50, 24 high-impulsive and 26 low-impulsive participants) were reanalyzed for
replication. It is important to note that in the original study, participants were selected from the
upper and lower ends of the BIS-11 range in a larger sample (n=453) according to their
particularly high vs. low values in the BIS-11. According to the previous literature (Stanford et
al,, 2009), mean total BIS-scores of each group met the criteria for high or low impulsiveness,
respectively. This difference in study design results in a different distribution of total BIS scores
in the replication sample from Deserno et al,, in press as compared to the original sample of
participants with and without positive family history of alcohol-dependence. Specifically, the
respective high vs. low impulsive subgroups of both samples were significantly different from
each other (comparing lower impulsive groups of the original and replication sample using an
independent samples t-test: meanoriginal sample=53.625, SD=4.674, meanreplication_sample=50.308,
S§D=3.782, t(26.900)=2.397, p=.024; comparing higher impulsive groups of the original and
replication sample: meanoriginal_sample=65.333, SD=4.703, meanreplication_sample=74.792, SD=5.065,
t(38.000)=6.214, p<.001). See Figure 9-2 for a plot of the distribution of BIS values in the two
samples.

We repeated the identical analyses as described above in the replication sample: a moderator
analysis with w as dependent variable, independent variable sum score cognitive capacities,
moderator variable impulsivity (high vs. low), as well as age and negative log-likelihood of the
hybrid model as nuisance variables was conducted. Replicating the findings in the original
sample, we again found a significant interaction effect of impulsivity and cognitive capacities on
w (R? increase due to interaction=.081, F=4.669, p=.036, Figure 9-3B). Next, we again tested for
the role of the included cognitive subdomains and thus entered the four different test scores
(TMT A, TMT B, DS, DSST) as independent variables in separate moderator analyses (dependent
variable w, moderator variable impulsivity). This revealed a significant effect of the interaction
“cognitive speed (DSST) by impulsivity” (R? increase due to interaction=.112, F=6.906, p=.012),

and of the interaction “attention (TMT A) by impulsivity” (R? increase due to interaction=.082,
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F=64.594, p=.038) on w. Executive control (TMT B, R? increase due to interaction=.048, F=2.685,
p=.109) and working memory (Digit Span, R? increase due to interaction=<.001, F=.043, p=.836)
did not significantly interact with impulsivity in their effect on w. Post-hoc regression analyses
for both groups (high vs. low impulsive individuals) separately revealed that this effect was
driven by a significant relation of cognitive speed (DSST) on w in the high-impulsive group
(beta=.503, t=2.683, p=.014); this was absent in the low-impulsive group (beta=-.126, t=.629,
p=.536, Figure 9-4B). Post-hoc analyses for TMT-A did not indicate a significant effect of TMT-A

in any of the groups (beta <.309, t<1.649, p>.11).

9.4 Discussion

In the present study, we did not observe evidence for altered model-free and model-based
instrumental control in adult participants with an alcohol-dependent father. Independent of
family history, our findings however suggest that an interaction of impulsivity and cognitive
capacities influences the degree of model-based decision-making. The latter effect could be
replicated in an independent sample of high and low impulsive individuals (Deserno et al, in
press).

Family history of addiction and model-based control. The present work does not provide evidence
in favor of a shift from model-based to model-free control in healthy participants with family
history of alcohol-dependence. At first glance, this seems in contrast to findings with the same
sequential decision task in addicted and other psychiatric patient samples characterized by loss
over behavioral control (Sebold et al, 2014; Voon et al,, 2014): in these two studies, patients
suffering from addictive and other compulsive disorders showed reduced model-based control.
It is interesting that, specifically for alcohol-addiction, after a closer look, a more complex
picture arises: Voon and colleagues found no reduction of model-based control in alcohol-
dependent subjects per se but a correlation of model-based control with duration of abstinence
(Voon et al, 2015). In the study by Sebold and colleagues, reduced model-based control was
found in alcohol-dependent patients overall but effects were attenuated when adjusting for

general cognitive functioning (Sebold et al., 2014). Based on the presented null finding in
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Figure 9-3. Association of model-based behavior (as given by the parameter omega) with cognitive
capacity (Z-score of fluid intelligence) in the lower, but not in the higher impulsive group of the
original sample. In the replication sample, a positive association of omega with cognitive capacity
was found. In the original sample, high and low impulsive groups were defined based on a median
split. In the replication sample, groups were defined by sampling from the upper and lower ends of
the BIS-11 range in a larger sample (n=453) according to their particularly high vs. low values in

the BIS-11 (Deserno et al,, in press), see study 4.
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Figure 9-4. Post hoc tests with cognitive subdomains: In the original sample, omega correlates
positively with TMT B in the low impulsivity group. In the replication sample, omega correlates
positively with DSST scores in the high impulsivity group. In the original sample, high and low
impulsive groups were defined based on a median split. In the replication sample, groups were
defined by sampling from the upper and lower ends of the BIS-11 range in a larger sample (n=453)
according to their particularly high vs. low values in the BIS-11 (Deserno et al,, in press), see study

4. We plot z-transformed scores of the cognitive test scores.
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relatives, one might speculate that a bias toward model-free control arises as a consequence of
chronic alcohol-consumption rather than preceding it as a vulnerability factor.An additional
explanation takes into account our cross-sectional design and the inclusion criteria of unaffected
adult participants without any indication of alcohol abuse or other addictive behavior and
within an age-range that exceeds the typical onset of addictive disorders. Given this sample
selection strategy, participants included in this study might be those who were particularly
resilient not to develop an addictive disorder - and thus show no alteration in behavioral control.
In line, Volkow and colleagues have found putatively protective traits in terms of dopaminergic
neurotransmission in a similar sample of unaffected adult relatives of addicted patients (Volkow
et al, 2006) and follow the same line of reasoning. To tackle this important question
appropriately, longitudinal designs are required to map instrumental control across the
developmental process from risk to addiction in adolescence to abstinence and potential relapse
in adulthood.

Further, it is to be noted that our study comprised a rather small sample-size albeit in a similar
range as the previous between-group patient studies (Sebold et al, 2014). Thus, the null finding
of an absent association between family-history of addiction requires replication in a larger
population, ideally including 1st degree relatives not only of alcohol-dependent subjects, but also
of other substance addictions and other psychiatric states characterized by loss of behavioral
control like obsessive-compulsive disorder or binge eating.

Addiction, cognitive capacities and instrumental control. Studies suggest that inter-individual
variability in cognitive capacities relates to a model-based system (Otto et al, 2013a; Otto et al,,
2013b; Schad et al, 2014) which was indeed shown to moderate group differences in studies
involving patients characterized by cognitive impairment (Sebold et al, 2014). These and our
findings suggest that, when observing differences on instrumental control between groups
which differ systematically in cognitive factors, one ought to tread carefully when interpreting
these; differences might be an epiphenomenon of a more general impairment rather than a

specific characteristic for alcohol-dependence. This is also in line with a study using instructed
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devaluation tasks in alcohol-dependent patients, which revealed a global impairment in learning
per se (Sjoerds et al, 2013). Here, we replicate the previously reported correlation between
cognitive function and model-based control per se and find evidence for interaction effects of
between cognitive function and impulsivity, a recognized risk factor for addiction, on model-
based control.

Impulsivity, Cognitive Capacities and Instrumental Control. Interestingly, cognitive dysfunction
itself (more specifically, executive functioning), as well as the combination of deficits in cognitive
function and impulsivity have been suggested as endophenotypes for drug dependence (Ersche
et al, 2012b). Thus, our finding of an interaction of cognitive functioning and impulsivity on
model-based behavior in two independent samples amend previous studies reporting on an
influence of impulsivity on reduced goal-directed control in a devaluation task (Hogarth et al.,
2012b) or on accentuated model-free control together with intact model-based control (Deserno
et al, in press). Our finding and its replication in an independent sample suggest that the
interaction of cognitive capacities and impulsivity plays an important role. Interestingly, in the
sample at hand, for which impulsivity measures were not the selection criterion, a positive
correlation of cognitive capacity and model-based behavioral control was found in the relatively
lower impulsive group. To interpret this finding, one might speculate that relatively, but not
extremely low impulsiveness in addition to relatively high cognitive capacities provides an
optimal ground for model-based control in this task. In the replication sample, which was
specifically recruited to consist of a low vs. a high impulsive group from the extreme ends of the
impulsivity measures, impulsivity scores at the higher end matched those of addicted patients.
Interestingly, in this sample the correlation of cognitive speed with model-based behavior was
driven by the high-impulsive group, suggesting it as a potential compensatory factor in high-
impulsive individuals, which were initially assumed to be impaired in goal-directed, model-
based behavioral control (Hogarth et al.,, 2012b; Deserno et al, in press).

Conclusion. In sum, we did not find evidence for an influence of the risk factors positive family

history or impulsivity on model-based control per se. Our findings could speak in favor of a

132



multiple hits account with different risk conditions playing together to impair or protect model-
based behavioral control. Longitudinal designs might help to disentangle these rather
complicated interaction effects on model-based control and eventually, on the potential

development of addiction.

133



10 Study 6: The interaction of acute and chronic stress impairs
model-based behavior’

10.1 Introduction

Making effective decisions is particularly relevant in stressful situations and may depend on
individual responsiveness during acute stress as well as on the long-term stress load. Dual-
system theories of decision-making postulate a goal-directed system and a habitual system to
compete for behavioral control (Balleine & Dickinson, 1998; Balleine & O'Doherty, 2010).
Recently, computational modeling accounts of reinforcement learning have amended these
theories (Daw et al,, 2005): here, goal-directed, model-based behavior is seen as a flexible, albeit
computationally complex strategy, which builds an internal mental model of the environment.
Thereby, future actions and their potential outcomes are planned in a forward manner. In
contrast, habitual, model-free control is seen as a retrospective and therefore more rigid
strategy driven by past rewards, which neglects environmental structure for the advantage of
computational efficiency. Crucially, human decision-making involves both control systems with
considerable inter-individual variability (Daw et al., 2011). However, it remains an intriguing
question how control over actions is allocated between the two systems depending on the
particular situation and on inter-individual trait differences (Dolan & Dayan, 2013).

Among situational factors that influence this allocation of control, stress is a key
candidate for biasing the balance of the two systems towards habitual decision-making
(Schwabe & Wolf, 2009; 2011; 2013). At the neurobiological level, cortisol, the endproduct of the
hypothalamus-pituitary-adrenal (HPA-) axis, might affect prefrontal executive capacities, which
may thus limit the degree of control exerted by the more sophisticated, model-based system. On
the behavioral level, stress has been shown to influence decision-making, e.g. in terms of

dysfunctional strategy use, automatic responding, goal implementation, response conflicts, risk

7 This chapter corresponds to the following article: Radenbach, C.*, Reiter, AM.F*, Engert, V.,
Sjoerds, Z., Villringer, A., Heinze, H.]J., Deserno, L. & Schlagenhauf, F. (2015). The interaction of acute
and chronic stress impairs model-based behavioral control. Psychoneuroendocrinology, 53, 268-
280.

*authors contributed equally
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taking, feedback processing per se and reward vs. punishment sensitivity (Petzold et al.,, 2010;
Plessow et al.,, 2011; Plessow et al, 2012; Starcke & Brand, 2012). In a recent study, Otto et al.
(2013b) compared acutely stressed and non-stressed participants and did not observe between-
group differences in the balance of behavioral control. However, inter-individual differences in
physiological stress response, as measured by cortisol increase, were negatively correlated with
the degree of model-based control across both groups. Importantly, this points to the direction
that inter-individual differences in stress reactivity, rather than a stress-eliciting condition per
se, might impact decision-making.

Beyond acute stress, animal studies suggest that chronic stress shifts decision-making
towards more habitual strategies: Dias-Ferreira et al. (2009) observed that chronically stressed
rats became insensitive to outcome devaluation, a key characteristic of habitual behavior. In
humans, the effect of chronic stress and the interplay between previous stress experience and
acute stress on model-based decision-making has not yet been investigated.

Here, we utilized a within-subjects design to assess the influence of a potent acute
psychosocial stressor on the balance between model-based and model-free control as assessed
via sequential decision-making (Daw et al.,, 2011). By means of computational modeling, we first
asked if acute psychosocial stress diminishes the degree of model-based control within
individuals. Second, we tested if inter-individual variations in physiological and subjective stress
reactivity predict the balance of behavioral control per se. Finally, we examined the interaction

of chronic and acute stress levels in human decision-making.

10.2 Materials and Methods

Participants. Thirty-nine healthy male subjects recruited by Internet advertisements completed
the study (mean age: 25.2, SD=2.7, range: 21-30 years). All participants except for one had
obtained university entrance qualification, one held the general certificate of secondary
education. The average years of education (including school, university etc.) was 16.32
(SD=3.21), the average duration of unemployment counted 0.19 years (SD=.44). Exclusion

criteria comprised presence or history of any neurological or psychiatric disorder and smoking,
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as nicotine impacts the neuroendocrine stress response (Mendelson et al, 2005). Exclusion
criteria were assessed prior to study participation during a semi-structured telephone-
screening. The study was approved by the ethics committee of the University of Leipzig. Written
informed consent was obtained from all participants prior to the study.

Procedure. In two separate sessions (interval between test sessions: M = 7.03 days, SD = 0.28),
participants performed a Markov two-step sequential decision task (Daw et al.,, 2011). One of the
sessions involved the standardized protocol Trier Social Stress Test (TSST, Kirschbaum et al,
1993) to induce psychosocial stress before task performance (stress condition). In the control
session, individuals were asked to read a neutral text before they executed the decision task
(control condition). The order of the two sessions (stress vs. control) was counterbalanced
across all participants (Figure 10-1). On the first test day, participants were introduced to the
study procedures, provided with instructions, and underwent training of the decision task.
Before the stress or control protocol was applied, participants rested for 16 min in order to
adapt to the testing situation. Importantly, both experimental sessions were scheduled at exactly
the same time of day and always between 12:00 pm and 6:00 pm to control for circadian effects
on task performance and cortisol levels (Kudielka et al, 2004). In a third test session, trait
questionnaires and working-memory were assessed (interval between the second and the third
session: M=15.69 days, SD=17.50)

Stress protocol. The TSST is a well-established experimental protocol to reliably induce acute
psychosocial stress in the laboratory and to prompt an increase in saliva cortisol levels as
described in detail elsewhere (Kirschbaum et al, 1993; Kudielka et al., 2007). After a 10 min
anticipation period participants were asked to assume the role of a job applicant and to present
themselves in front of an evaluation committee while they thought they were being audio- and
video-recorded (5 min). The job talk was followed by a challenging 5-minute mental arithmetic
task under evaluation by the committee. In the control condition, participants were undisturbed
and requested to read a neutral, non-arousing, non-fictional text on the Mesozoic era for 20

minutes.
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Assessment of cortisol response. To assess the physiological stress response of the hypothalamic
pituitary adrenal axis, salivary cortisol was acquired five times throughout the experiment
(Figure 10-1). Samples were collected using a Salivette device (SalivetteCortisol®, Sarstedt,
Nuembrecht, Germany) at the following time points: after 16 min of rest (baseline, t1), directly
after the termination of the TSST or control condition, respectively (t2), ~20 min (t3) and ~35
(t4) min after the onset of the stressor or control condition (during short breaks in the
experimental task) and after completion of the task (~62 min after the onset, t5). Saliva samples
were frozen at -20°C and analyzed using a time-resolved fluorescence immunoassay with a
cortisol - biotin conjugate as a tracer. The intra-assay coefficient of variation was between 4.0%
and 6.7%, and the corresponding inter-assay coefficients of variation were between 7.1% - 9.0%.
Different cut-offs for relevant cortisol surges have been discussed in the literature; here, using a
strict cut-off, a physiologically relevant cortisol surge was defined as an increase of at least 2.5
nmol/l above the individual baseline (Van Cauter & Refetoff, 1985; Schommer et al,, 2003).

Cortisol values were log-transformed to approximate normal distribution and then
subjected to a repeated-measures ANOVA with the within-subjects factors time (t1-t5) and
acute stress (stress vs. control). In case of violation of sphericity as indicated by Mauchly’s test
we report p-values based on Greenhouse Geisser estimates of sphericity (pgg). To compute peak
cortisol increase, log-transformed cortisol levels in the stress condition were first normalized for
those in the control condition by subtraction of the corresponding time points (stress - control).
Subsequently, individual cortisol increases were computed by subtracting normalized baseline
levels (t1) from normalized peak levels (t3) (Starcke et al, 2011).
Heart Rate. As a marker of sympathetic stress response, heart rate data were collected using a
POLAR RS800sd heart rate monitor (POLAR, Buettelborn, Germany). Due to technical failure
data were available in n = 29 subjects.

Individual heart rate increases were computed for stress and control condition
separately by subtracting the mean of a five minutes interval in the middle of the resting period

from the mean of a five minutes interval in the middle of the job interview or control condition,
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Figure 10-1 Within-Subjects study design and time line of stress intervention. A) All participants
underwent the stress and the control condition. Order of conditions was counterbalanced across all
participants. Trait measurements and working-memory capacity were assessed during a third test
session. B) Course of one experimental session with salivary cortisol responses (in nmol/l, bold
lines) and arousal response (Affect Grid Rating, dashed lines) to the stress (red lines) and the
control condition (blue lines). Time scaling is relative to the onset of the Trier Social Stress Test
(TSST). Note that the decision-making task was performed during the peak cortisol period in the

stress condition.

respectively. A paired t-test was performed comparing increases of the stress and control
condition Subjective stress response. At the predefined points of time, participants completed the
following questionnaires (five times throughout the experimental session, respectively, Figure
10-1): the Affect Grid (Russell et al., 1989), the state scale of State-Trait Anxiety Inventory (STAIL
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Laux et al, 1981) and the Aktuelle Stimmungsskala (ASTS), which is a German version of the
Profile of Mood States scale (McNair et al, 1971; Dalbert, 1992).

Arousal and valence (measured by the Affect Grid), negative mood (measured by the ASTS), and
state anxiety (measured by the STAI) were assessed to verify the subjective effects of the stress
induction by comparing the scores with the control condition. Peak increases in these scales
were computed similarly to cortisol peak increase. For all correlations with arousal we use
Spearman’s correlation coefficient.

Sequential decision task. A two-stage decision task (Daw et al, 2011; Wunderlich et al.,, 2012b;
Eppinger et al., 2013; Otto et al., 2013b; Smittenaar et al., 2013) was used to assess the degree of
model-based and model-free behavioral control.

The task was programmed in MATLAB (The MathWorks, Inc.,, Natick, Massachusetts,
United States) with Psychophysics Toolbox extensions. It consisted of 201 trials with two stages
each with a total length of approximately 35 minutes (Figure 10-2A). At the first stage,
participants chose between two grey boxes randomly displayed on the left and right side of the
screen each with different Chinese characters by pressing either a left or right button. The
chosen stimulus was framed in red and moved to the top of the screen after the 2s decision time
and remained there for 1.5s. At the second stage, one of two differently colored pairs of boxes,
again with distinctive Chinese symbols, appeared on the screen and participants had to choose
again between one of two boxes. Similar to the first step, the chosen stimulus was surrounded
with a red frame and moved to the top of the screen. This second-stage choice could either be
rewarded with 20 euro-cents or not.

Each of the first choices was predominantly associated with one of the two second-stage
stimulus pairs (70% — common) and consequently less with the other (30% — rare; Figure 10-
2B). These fixed transition frequencies remained constant during the task. Reward probabilities
at the second stage changed slowly according to Gaussian random walks in order to induce
ongoing learning (Figure 10-2C). In line with Daw et al. (2011), participants were explicitly

introduced to the task-structure (including the stable transition frequencies and the
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independent slow changes of the reward probabilities) and informed that the amount of money
they would get after the testing session was completed would depend on the reward they
received in the task. The instruction included a training period of 55 trials with different stimuli
and reward probabilities and a post-training teach-back. In the main experiment, the task was
paused after 41 and 121 trials for the collection of saliva samples (t3 and t4, see Figure 10-1).

In order to account for potential retest effects, two versions of the task differing in
Gaussian random walks and Chinese characters were implemented. These two versions were
counterbalanced between experimental days and participants (compare Wunderlich et al

(2012b) and Smittenaar et al. (2013) for other within-subjects designs of this task).
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Figure 10-2. Sequential decision-making task. A) Trail sequence. Subjects are instructed to find the
box with money inside and have to open first one of two grey boxes before the selected box moves
up and a second pair of boxes appears. After one of those second step boxes is selected monetary
reward is received depending on reward probability. B) State transition structure in the sequential
decision-making task. Each first-step choice (grey box) is predominantly associated with one of the
second-step states (orange and purple boxes) and leads there 70% of the time. These second-stage
choices are probabilistically reinforced with money. C) Reward probabilities of the second step
options change slowly over the course of the experiment according to Gaussian random walks.

Random walks differed between the two experimental sessions to rule out retest effects.
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Analysis of first-stage stay-switch behavior. Stay-switch behavior at the first stage was analyzed
as a function of reward (reward vs. non reward) and state (common vs. rare) in the previous
trial. These individual stay probabilities were subjected to a repeated-measures ANOVA with
reward, state, and acute stress (stress vs. control) as within-subjects factors.

Computational Modeling. Trial-by-trial computational modeling of the observed behavioral
responses is a powerful analysis technique that has recently been suggested to enrich the
mechanistic understanding of stress effects on learning (Schwabe & Wolf, 2013). Here, the aim of
model-free (MF) and model-based (MB) algorithms is to learn values for each of the stimuli,
which appear in the task as three pairs (sA, sB, sC). sA refers to the first-stage stimuli and sB and
sC to the two pairs of second-stage stimuli. In the following, a refers to the chosen stimuli and
the indices i and t denote the stage (i=1 for SA at the first stage and i=2 for SB or SC at the second

stage) and the trial, respectively.

First, the model-free algorithm was SARSA(A):

(24) Qur(Sig+1, Aire1) = Qur(Sie air) + @iy

(25) 8ip =Tir + Qur(Sivre @ivre) — Que(Sie air)

Notably, r; ; = 0 because no reward is delivered after a first-stage choice and QMF(S3_t, a3‘t) =0
because the task has only two states. We allowed different learning rates a; for each stage i.
Further, we allowed for an additional stage-skipping update of first-stage values by introducing
another parameter A, which connects the two stages and allows the reward prediction error at

the second stage to influence first-stage values:

(26) QMF(Sl,t+1fal,t+l) = QMF(Sl,t' al,t) + a 46,

The parameter A additionally accounts for the main effect of reward as observed in the analysis
of first-stage stay-switch behavior but not an interaction of reward and state.

Second, the model-based algorithm learns values in a forward-planning way and computes first-
stage values by simply multiplying the better option at the second stage with the transition

probabilities P:
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(27) Qus (SAv aj) = Qus (SBlsA: aj) max Qur(sp, @) + Qug (SC|SA' aj) max Qur(sc, a)
Third, the hybrid algorithm connectsQy and Qyp:
(28) Q(SA' aj) = wQup (SA' aj) +(1- w)QMF(SA' aj)
(29) Q = Qua = Qur

Importantly, w gives a weighting of the relative influence of model-free and model-based values
and is therefore the model’s parameter of most interest.

Finally, we transformed values into action probabilities using a softmax for Q:

_ _ _ exp(Bile(sir.a)+prrep(@)])
(30) P(ai,t = a|si,t) = S e (BQ(iea Yrprrep@)])

Here, B controls the stochasticity of the choices and we assume this to be different between the
two stages. The additional parameter p captures first-stage choice perseveration and rep is an
indicator function that equals 1 if the previous first-stage choice was the same. In summary, the
algorithm has a total of 7 parameters and can be reduced to its special cases w = 1 (4
parameters) and w = 0 (5 parameters). We fit bounded parameters by transforming them to a
logistic (a, A, w) or exponential () distribution to render normally distributed parameter
estimates. To infer the maximum-a-posteriori estimate of each parameter for each subject, we
set the prior distribution to the maximum-likelihood given the data of all participants and then
used Expectation-Maximization. For an in-depth description please compare Huys et al. (2011)
and Huys et al. (2012). To compare models for their relative goodness of fit, we report the
Bayesian Information Criterion (BIC) based on the log-likelihood (Table 10-1). Second, we
computed the model evidence by integrating out the free parameters. This integral was
approximated by sampling from the empirical prior distribution and we therefore added the
subscript ‘int’ to the BIC (Table 10-1; Huys et al., 2011; Huys et al,, 2012.). Third, we subject the
integrated likelihood to the spm_BMS function, a random effects model selection procedure,
contained in SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) to compute so-called

exceedance probabilities (Stephan et al., 2009).
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Testing the hypothesis that acute psychosocial stress shifts the balance of the two decision-
making systems towards model-free control, the weighting parameter ® is of most interest here
because it gives a measure of this balance. To analyze stress effects on model parameters, all
parameters (7 in total) were entered into a repeated-measures MANOVA with the within-
subjects factor condition. To test for an effect of physiological and subjective stress responses,
assessed by cortisol increase and rating scales respectively, ® from the stress and control
condition were entered into a repeated-measures ANOVA with the within-subjects factor
condition and the following stress response measures as covariates: cortisol increase, arousal
increase, valence decrease, anxiety increase, and increase of negative mood.

Influence of individual trait characteristics on stress-induced changes of the balance of the two
systems. One aim of the study was to elucidate the impact of chronic stress levels and their
interaction with acute stress on decision-making processes. During a third, independent test
session, we therefore assessed questionnaires of chronic stress levels as perceived stress
explicitly asked for the last month before the second test session (PSS-10, Cohen et al.,, 1983)
and stressful life events both within the last two years and for events within the whole life (Life
Stress Scale, Holmes & Rahe, 1967). To characterize interaction effects of acute and chronic
stress on the change in the balance between model-based vs. model-free control, while
accounting for possible influences of working-memory capacity, scores of Life Stress (24 months
and whole life, respectively), PSS-10, and the Digit Span Number-Backwards-Test (Wechsler,
1945; Von Aster et al, 2006) were entered as independent variables into a multiple regression
analysis. The dependent variable was A w (w_stress minus w_control) which reflects the changes
in the relative degree of model-based behavior under stress compared to the control condition.
Individual’s working-memory capacity was assessed during the third test session with the Digit
Span Number-Backwards-Test. It was entered due to evidence that inter-individual differences
in basic neurocognitive functioning, in particular working-memory, may play an important role
in the degree of model-based control and might mediate the influence of acute stress on model-

based vs. model-free decision-making strategies (Otto et al., 2013a; Otto et al.,, 2013b).
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10.3 Results

10.3.1 Physiological and subjective stress response

Cortisol and Heart Rate Response. Seven participants did not display a cortisol increase of at least
2.5 nmol/l and thus were considered as non-responders (Van Cauter & Refetoff, 1985;
Schommer et al,, 2003). The responder rate (~82%) was in line with other studies using the
TSST (Kudielka et al., 2007; Petzold et al, 2010). Cortisol response in n = 32 responders was
analyzed using a repeated-measures ANOVA with the within-subjects factors time (t1-t5) and
acute stress (stress vs. control). A significant main effect of acute stress (acute stress, F(1, 31) =
92.51, p <.001, n2 = 0.749), a significant main effect of time (time, F(2.25, 69.66) = 39.48, pyy
<.001, n? = 0.56) and a significant time and acute stress interaction (time x acute stress, F(2.07,
64.07) = 107.41, pgy <.001, n2 = .776) was found. A comparison between the peak cortisol
response in the stress condition with the corresponding response in the control condition (both
t3) showed a significant difference (t=14.36, p <.001, Cohen’s d =.001). Baseline cortisol showed
no significant difference between the conditions (¢(31) = 0.35, p=.732, Cohen’s d = .062; Figure
10-1B). The average peak was at t3. The cortisol level of the last sample which was determined
after task performance was still significantly higher as compared to baseline cortisol levels
(¢(31) = -6.75, p < .001), indicating that the whole task was performed in a state of elevated
cortisol levels.

Comparing heart rate increase using a paired t-test, we found a significantly higher
increase in the stress condition than in the control condition (¢(31) = -2.39, p =.042, Cohen’s d =
.983), indicating a significant increase in sympathetic nervous activity during the stress
intervention.

Subjective Ratings. Subjective arousal ratings over the course of the experiment were analyzed
using a repeated-measures ANOVA with the factors time (t1-t5) and acute stress (stress vs.
control). We found a significant main effect of acute stress (acute stress, F(1, 31) = 7.75, p =.009,
n2 = 0.200), a significant main effect of time (F(4, 124) = 8.51, p <.001, n2 =.215) and a significant
time and acute stress interaction (F(4, 124) = 17.75, p =.007, n? = 0.364). A paired sample t-test

showed that participants scored significantly higher directly after the TSST than after silent
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reading during the control condition (¢(31) =-7.4, p <.001, Cohen’s d =.118). The average peak of
arousal was found at t2. Ratings of unpleasantness, anxiety, and negative mood revealed similar
results. Thus, subjective experience was significantly affected by the stress condition (Figure 10-

1B).

10.3.2 Effects of acute social stress on model-based vs. model-free behavioral control

Analysis of stay-switch-behavior. In line with previous studies (Daw et al, 2011), a three factors
repeated-measures ANOVA (acute stress x reward x state) revealed a main effect of reward (F(1,
31)=29.09, p<.001, n? =.484) and an interaction effect of reward x state (F(1,31) = 65.44, p <.001,
n? = 0.679) on the first-stage stay probabilities in cortisol responders (n = 32). This confirms that
first-stage decisions are influenced by both rewards and states from the previous trials (Figure
10-3A). With respect to the acute psychosocial stress intervention, we found a main effect of
acute stress on first-stage choices (F(1, 31) =5.69, p =.023, n? =.155). This was due to higher

switching in the stress compared to the control condition regardless of the previous trial’s
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Figure 10-3. Stay probabilities of first-stage choices depending on second-stage states and rewards
in the control condition as well as in the stress condition. A) In both conditions, participants’
choices showed a main effect of reward and a reward x state interaction, indicating a mixture of
model-based and model-free strategy to solve the task. B) Participants switched more in the stress
compared to the control condition, irrespective of reward and state, indicated by overall reduced

stay probabilities.
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reward or state (Figure 10-3B). However, the hypothesized interaction effect of acute stress x
reward x state was not significant (F(1, 31)=.23, p=.634, n?=.007, all other interactions with
acute stress ps >.2), indicating that the stress intervention did not influence the interaction of
state and reward in the task. Thus, the analysis of stay-switch behavior does not indicate a direct
impact of acute social stress on the balance between model-free and the model-based control
(Figure 10-3A). Including order (stress on day 1 or day 2) as a between-subjects factor in the
ANOVA did not change the observed results.

Computational Modeling. Across all participants and for both conditions, the hybrid model
explained the observed data best (XP control condition = .99; XP stress condition = .99, see Table
10-1). This replicates previous studies in non-stressed participants (Daw et al, 2011).
Furthermore it indicates that the stress intervention did not change the learning mechanism,
represented by a hybrid model engaging both systems gave the best account of the observed
data in both conditions. There was no effect of acute stress on the weighting parameter , which
represents the balance of the two decision systems (t=.01, p=.99, Cohen’s d =.011). This is in line
with the absence of such an effect on stay-switch raw data reported above. A comparison of all
model parameters between stress and control condition using a repeated-measures MANOVA
revealed a main effect of acute stress (F(7, 25) = 2.92, p =.022, n? = .450). Post-hoc paired t-tests
showed significantly higher stochasticity of the participants’

choices at the first stage during stress compared with the control condition (B1: ¢(31) = 2.6,
p=.014, Cohen’s d = .427), which resembles the main effect of acute stress on stay-switch raw
data. Further, the stage-skipping update A, which connects reward prediction errors at the end
of each trial to first-stage Q-values, was significantly lower in the stress compared to the control
condition (A: t = 2.08, p =.046, Cohen’s d = .424). There were no differences for the remaining
model parameters (beta2, alphal, alpha2, rep: all ps > 0.2; Table 10-2). Including order (stress
on day 1 or day 2) as a between-subjects factor in the MANOVA did not change the observed

results.
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Table 10-1 Model comparison. -LL: negative log-likelihood, BIC:Bayesian Information Criterion,
BICint: Bayesian Information Criterion after integrating out the free parameters via sampling from

the prior distribution, XP: Exceedance Probabilities after random-effects Bayesian model selection.

-LL BIC BICint XP

Control
full hybrid model 7324 14715 15298 9999

A-LL hybrid A BIC hybrid A hybrid BICint
A=0 -136 263 213 0
o=1 -188 346 206 0
o=0 -258 506 424 .0001
®=0,A=0 -484 948 804 0
Stress
full hybrid model 7643 15354 15908 9997

A-LL hybrid A BIC hybrid A hybrid BICint
A=0 -63 117 70 .0002
o=1 -121 212 108 0.0001
o=0 -226 441 393 0
0=0,A=0 -345 671 554 .0001

Power analysis. For the purpose of a power analysis, we used effect sizes from two published
within-subjects studies using a similar sequential decision-making task. We assume that an
effect of the psychosocial stress intervention used here lies in a similar range as compared to the
interventions used in these studies (a pharmacological challenge with L-DOPA [Wunderlich et
al,, 2012], Cohen’s d = .67 and a TMS intervention [Smittenaar et al., 2013], Cohen’s d = .49).
Given a two-tailed alpha of .05 and sample size of 32 (cortisol non-responders excluded), power
analysis revealed a power of .96 and .77, respectively. Thus, even when assuming a medium
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Table 10-2. Distribution of best fitting parameters and the negative log-likelihood (-LL) of the
hybrid model in n = 32 participants

Control Stress
B1 7.89 (£3.07) 6.7 (+2.50)
B2 3.80 (£1.26) 3.86 (+1.17)
al .52 (+.18) 47 (+0.17)
a2 49 (+.18) 49 (£0.24)
A .55 (£.13) .5 (x0.11)
® .66 (+.09) .66 (£0.09)
P 13 (£.04) 13 (£0.04)
-LL -182.13 (+39.29) -188.83 (+43.48)

effect size (Cohen, 1988), the present study was well-powered to detect an effect of psychosocial

stress on model-based behavior.

10.3.3 Association of subjective and physiological stress responses with model-based control

In a next step, we tested for an effect of physiological and subjective stress responses on the
balance of model-free and model-based control as quantified by the parameter « in all
participants that completed the study (n = 39). Note that the effect of individual stress reactivity,
including a potentially dampened cortisol response, was of central interest in this analysis. Thus,
we explicitly included the cortisol non-responders into this analysis because we consider a non-
significantly elevated cortisol level after stress induction as one important possible
manifestation of individual cortisol reactivity. The model parameter ® during the stress and
control conditions (= within-subjects factor “acute stress”) was subjected to a repeated-
measures ANOVA with cortisol increase, arousal increase, valence decrease, anxiety increase,
and increase of negative mood as covariates (Table 10-3): this revealed a main effect of the two

covariates cortisol increase and arousal increase, respectively (cortisol increase: F(1, 33) = 6.81,
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p=.014, n2 = .171, arousal increase: F(1,33) = 9.82, p=.004, n? = .229) but no interactions with
acute stress (all ps > 0.2). With respect to cortisol, post-hoc correlations showed that this effect
was driven by a significant negative correlation of ® during acute stress with cortisol increase
(i.e., the change from baseline to peak calculated from the normalized cortisol stress data; r(38)
= -46, p=.004, Figure 10-4A) and a negative relationship between cortisol increase with ®
during the control condition that did not reach significance (r(38) = -.24, p =.149, Figure 10-4A).
Regarding arousal, post-hoc correlations showed that this effect resulted from significant
positive correlations between arousal increase with ® during the acute stress condition (r(38)=
41, p=.01, Figure 10-4B) and during the control condition (r(38)= .41, p=.01, Figure 10-4B). All
reported correlations remained significant when excluding cortisol non-responders and when
using a different normalization procedure (peak during stress induction minus resting phase

measure on the same day i.e. without normalization on the control day data).

Table 10-3. Descriptive values of subjective stress-related measurements.

Stress measurement Mean
. . 508.97
Life stress score (whole life) (£171.81)
. 271.94
Life stress score (24 months) (£185.88)
Perceived stress scale 14.12
(within the last month) (£6.10)
. . 2.62
Normalized arousal increase (+2.15)
. L 9.43
Normalized cortisol increase (+4.13)
B
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Figure 10-5. Association between chronic stress and shift in behavioral control due to acute social
stress. A negative correlation between the Life Stress Scale Score and the difference score of w (A w
= stress minus control condition) as determined by the computational model was found. The higher
the score on the Life Stress Scale (24 months), the lower the values of the model parameter w in the
stress condition. Higher levels of chronic stress as measured by the Life Stress Scale correlate with

a decrease in model-based behavior (beta = -.622, t = -2.93; p=.007).

10.3.4 Lifetime stress is associated with the change in model-based vs. model-free control

during acute social stress
In order to investigate the influence of previous stressful life events on a change in the balance of
the control systems induced by acute social stress, we calculated the difference of ® from the
control and from the stress condition (A w). We used a linear regression analysis for the cortisol
responders (n = 32) with A w as the dependent variable and Life Stress Scale (24 months and
whole life), PSS-10, and the Digit Span (due to the finding of Otto et al., 2013b) as independent
variables (table 10-3). Only chronic life stress in the past 24 months was significantly negatively
associated with A w (beta = -.622, t = -2.93; p=.007; Figure 10-5). This indicates that in
individuals with high levels of chronic stress (24 months) the degree of model-based behavioral

control is impaired after stress induction compared with the control condition. Since we
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detected one outlier who scored more than three standard deviations above the mean of the
chronic life stress scale for the past 24 months (z = 3.029), we repeated the linear regression
analysis without this participant and found similar results (beta = -.648, t = -2.39; p=.036).

In an exploratory analysis, in order to test for possible neuroendocrine correlates of the
chronic stress measure, a correlation of the Life Stress Score (24 months) with cortisol increase

was tested, which did not indicate a significant association (r(31)=.009, p=.957).

10.4 Discussion

This study investigated the influence of stress on the balance of model-based and model-free
behavioral control during a two-step decision task in a within-subjects design. First, after
inducing acute psychosocial stress, we did not observe a shift toward model-free behavioral
control across the entire sample. Second, we showed that variability in physiological and
psychological stress reactivity is associated with inter-individual differences in the balance
between model-free and model-based control. Third, we revealed that subjects with higher
chronic stress as indicated by stressful life events displayed a shift towards reduced model-
based control under acute social stress. Crucially, this finding demonstrates an interaction
between acute and chronic stress and for the first time elucidates their joint consequences on
behavioral control in humans.

Effects of acute psychosocial stress on sequential decision-making. First-stage decisions were
affected by acute stress in terms of more frequent switching between options. In the
computational modeling analysis, this effect was mirrored in the parameter { at the first stage,
which was found to be significantly lower in the stress than in the control condition. Lower
values of B indicate a higher degree of stochastic choices unrelated to the current choice value.
Thus, our findings might be interpreted as pronounced although unsystematic exploration
behavior triggered by acute stress. Moreover, the parameter A, linking prediction errors at the
end of each trial with first-stage choice values of the next trial, was reduced in the stress
condition. As A represents a parameter of the model-free system, hypothesized to be

predominant during stress, this finding seems counterintuitive at first glance. However, in line
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with the observations of enhanced stochasticity of first-stage choices under stress, it appears
conceivable that in a state where decisions are marked by unspecific switching behavior at the
first-stage, the use of prediction errors to update exactly these first-stage decision-values
becomes attenuated.

Notably, apart from these general effects, our results do not suggest an acute stress-
induced shift from model-based towards model-free strategies. In line with this, model-selection
revealed no evidence for differences in model fit between the stress and control condition,
supporting the conclusion that the task-solving strategy was not affected by acute stress.
Further, the study was well-powered to detect such an effect. By using a different study design
and stress induction protocol, these results replicate Otto et al. (2013b): The authors used a
similar sequential decision-making task and did not find an acute effect of stress induction on
behavioral control, as indicated by the reported non-significant 3-way-interaction of stress x
reward x state in the decision-making task. In contrast to our findings, pioneering studies
(Schwabe & Wolf, 2009; 2011) reported more habitual behavior after acute stress. However,
these studies differ from our current study and Otto et al. (2013b) in terms of the paradigm used
to examine behavioral control: there, a selective outcome devaluation protocol was applied (e.g.
Valentin et al,, 2007). Importantly, similar to our findings, but without dissecting model-free
versus model-based contributions to learning via computational modeling, Schwabe and Wolf
(2009) did not observe differences in instrumental learning following acute stress. However,
they provide evidence that acute stress promotes responding for the devalued outcome during a
test in extinction as a measure of habitual behavior. These discrepant findings may reflect a
stress-induced persistence of acquired behaviors rather than an effect of acute stress on
different modes of instrumental acquisition. Accordingly, a recent validation study comparing
both paradigms (selective devaluation and sequential decision making) suggests relatedness of
both measurements in terms of goal-directed / model-based behavior, but points to the
direction that both experiments might offer different insight into the habitual system (Friedel et

al, 2014).
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Effects of physiological and subjective stress reactivity on the balance of model-based vs. model-free
control. Our findings suggest that physiological and subjective stress reactivity are associated
with model-based control rather as trait factors in general, irrespectively of the acute exposure
to psychosocial stress. Interestingly, both stress measures relate to behavioral control in
opposite directions: stronger cortisol-reactivity was related to a lower degree of model-based
control, whereas reactivity in terms of subjective arousal was associated with a higher frequency
of model-based choices. These opposite effects are in line with the dissociation of subjective and
physiological stress responses frequently described in the literature (Campbell & Ehlert, 2012).

Regarding physiological stress reactivity, we replicate the inverse relationship of cortisol
increase and the degree of model-based behavior described by Otto et al. (2013b). However, we
go beyond Otto et al.’s interpretation by arguing that the negative correlation across a stressed
and non-stressed group reported in their between-group study likely captured a similar effect to
the one observed in our within-subjects design: the importance of the persistent trait factor
stress reactivity rather than an effect of acute neuromodulatory cortisol on model-based
decision-making. Crucially, such an effect cannot be detected in a between-subjects design,
whereas both factors are dissociable by the within-subjects design used here.

The relationship between subjective arousal reactivity and decision-making has, to our
knowledge, not been directly addressed by previous studies. However, there is a substantial
body of work on the interplay between arousal per se and decision-making: The somatic marker
hypothesis (SMH) suggests bodily arousal feedback as a guiding influence on decision-making
(Bechara et al., 1996; Bechara et al., 1997; Damasio, 1999; Critchley, 2005). A tendency to react
to challenging environmental conditions by a higher arousal increase may therefore foster the
integration of arousal feedback in the decision-making process. This might enable the individual
to evaluate future outcomes of actions more precisely, boost mental mapping of environmental
features and consequently promote the use of model-based strategies.

The interaction of chronic and acute stress attenuates model-based decision-making. It is widely

accepted that stress influences cognition differently depending on the timing and duration of
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exposure, e.g., with varying influences of acute and chronic stress (Lupien et al.,, 2009). So far,
the interaction of chronic and acute stress has not been addressed in the decision-making
literature which has hitherto primarily focused on acute stress effects in between-subjects
designs (Schwabe & Wolf, 2009; Otto et al, 2013b). Evidence from animal studies indeed
indicates that chronically stressed rats turn towards habit behavior (Dias-Ferreira et al, 2009).
The authors showed that chronic stress was associated with structural changes in fronto-striatal
networks known to be critically involved in decision-making. One study investigating subacute
stress exposure in humans suggests that this shift can be translated to human behavioral control
(Soares et al, 2012). Interaction effects of chronic and acute stress are widely discussed with
respect to volume reduction in hippocampus and prefrontal regions and volume increase in
amygdala as a result of chronic stress exposure, rendering the individual more susceptible for
acute stress effects (Lupien et al, 2009; Tse et al, 2014). However, empirical evidence of
interaction effects between acute and chronic stress on cognition is scant in humans as well as in
rodents. Here, we extend these findings by providing first evidence for an interaction effect of
chronic and acute stress on model-based control in human decision-making. It appears plausible
that repeated exposure to stressful life events renders the individual more susceptible to
detrimental changes in behavioral control brought about by an acute stressor. Further
investigations are warranted to elucidate the underlying neural mechanisms of this suggested
vulnerability-stress interaction.

Interestingly, stressful life events within the last 24 months, but neither whole-life stress
nor perceived stress within the preceding month predicted acute stress-induced changes in
model-based behavior. Given that reversibility of stress-induced effects on cognitive processes
has been postulated (Luine et al.,, 1994; Liston et al, 2009; Soares et al, 2012), it is conceivable
that participants with more chronic stress over the whole course of their life might yet have had
the chance to recover from the deteriorating effects of their stress experiences. In contrast,
perceived stress within the last month might be too recent to significantly affect behavioral

control in response to acute stress.
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Limitations. It is to be noted that the sample selection criteria of this study might limit the
generalizability of our results: only males within an age range of 21-30 years were included. Our
findings emphasize the notion that inter-individual differences are crucial in the relationship
between stress and model-based decision-making, and it is plausible that factors like age and
gender are important covariates here (Eppinger et al, 2013). We acknowledge that further
studies are needed to replicate our findings in a broader range of the population.

Conclusion. We show that inter-individual differences in acute subjective and physiological
stress response impact the degree of model-based behavioral control. Furthermore, a reduction
in model-based control in response to acute stress was only observed in subjects with higher
levels of chronic stress as indicated by a higher score in the Life Stress scale for the last 24
months.

By defining inter-individual differences in acute stress response and in chronic stress
experience as crucial factors in behavioral control, our findings contribute to the intriguing
question why some individuals shift towards attenuated model-based behavior whereas others
do not (Dolan & Dayan, 2013; Schwabe & Wolf, 2013). This might be relevant for psychiatric
conditions characterized by impaired model-based behavior like addiction, binge eating or
obsessive compulsive disorder (Sebold et al., 2014; Voon et al., 2015) for which, notably, chronic
as well as acute stress is postulated to be a pivotal factor in pathogenesis, maintenance, and
relapse (Gluck et al, 2004; McEwen, 2004; Gluck, 2006; Koob, 2008). Longitudinal designs are
required to tackle the exact interplay of different dimensions of stress reactivity (subjective

versus physiological), chronic versus acute stress and impaired model-based decision-making.
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11 General Discussion

11.1 Summary

The aim of this thesis was to adopt a dimensional psychiatry approach in order to assess
different aspects of goal-directed behavioral control 1) across different disorders characterized
by loss of control and 2) in recognized risk factors. The studies were built on the computational
formulation of a hypothesis which has traditionally been described for substance addiction:
namely addiction as reduced goal-directed control with a potential overreliance on the habitual
control system. In this thesis, I intended to investigate whether this hypothesis might be
translated to other disorders characterized by loss of control over behavior as well as to risk
factors of addiction.

The following research questions were asked:

1) Is substance addiction characterized by impaired mechanisms of flexible goal-directed
behavioral adaptation? Can this deficit be explained by reduced abstract inference on un-
chosen choice options (“what might have happened”)? What are neural correlates of this
deficit?

2) Do potential impairments of this kind transdiagnostically extend to binge eating
disorder, a nosologically distinct diagnosis which shares clinical features with substance
addiction? What are shared and differential behavioral mechanisms and neural
correlates?

3) Does a shift from model-based to model-free behavioral control extend to recognized

risk factors of addiction and might thus be seen as a vulnerability factor for addiction?

In study 1, combining counterfactual decision-making and computational modeling-
informed fMRI, we showed that alcohol-dependent patients as compared to healthy controls are
impaired in a key function of goal-directed decision-making: the ability to update unchosen
choice values by using abstract inference on the task structure. Alcohol-dependent patients
neglected the unchosen option particularly after punishment which neatly fits the clinical

picture of maladaptive behavior despite negative consequences. This behavioral impairment
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was accompanied by blunted abstract inference signals in mPFC. Within patients, these mPFC
signals were negatively correlated with compulsive drinking habits. These findings contribute to
research question 1: alcohol-dependent patients indeed show impaired mechanisms of goal-
directed, flexible behavioral adaptation. While model-free learning was found to be intact in
patients, one explanation for impaired behavioral adaptation in alcohol-dependent patients
might be reduced abstract inference on unchosen choice options.

In study 2, the same design as in study 1 was applied to patients with binge eating disorder
and matched healthy controls. In line with study 1, we could show that binge eating patients are
impaired in adapting their behavior to changing environmental conditions. Our computational
modeling analysis revealed that in contrast to alcohol-dependent patients, binge eating patients
were not impaired in updating alternative choice options, but in balancing the exploration-
exploitation trade-off appropriately. On the neural level, we detected reduced abstract inference
signals in binge eating patients’ medial prefrontal cortex, in a similar location as found in study 1
in alcohol-dependent patients. Furthermore, al/vIPFC activation in explorative trials was
reduced in binge eating patients compared to healthy controls. Thus, regarding research
question 2, common and differential features of behavioral adaptation and its neural correlates
were identified in binge eating disorder as compared to the results in alcohol addiction. This will
be further discussed in the next section 11.2.

In study 3, combining the same counterfactual decision-making task as employed in
study 1 and 2 with a modeling-informed parametric EEG analysis in healthy individuals, we
assessed electrophysiological correlates of learning signals integrating alternative choice
options. It was found that the FRN, which has previously been implicated in Reinforcement
Learning, additionally codes these abstract inference components of learning signals. This opens
up new possibilities to refine aspects of research questions 1 and 2 in future studies, in
particular in the temporal domain.

In study 4, 5 and 6, a sequential decision-making task was used to assess whether a

proposed shift from model-based to model-free control extends to risk factors of addiction. We
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investigated individuals with high trait impulsivity as well as individuals with low trait
impulsivity during fMRI (study 4) and adults with an alcohol-dependent father and matched
healthy controls behaviorally (study 5). Importantly, for both risk factors, a reduction of model-
based control per se was not found. This is in contrast to previous findings in patients (Sebold et
al, 2014; Voon et al, 2015). For impulsivity, a subtle accentuation of model-free control, along
with reduced model-based learning signals in the lateral prefrontal cortex (study 4) was
observed. No such behavioral alteration could be detected in relatives (study 5). In the two
independent samples from study 4 and 5, an interaction between impulsivity and cognitive
capacities in predicting the degree of model-based control was found (study 5). In study 6, we
probed whether acute psychosocial stress influences the balance between model-free and
model-based control during sequential decision making in healthy individuals. We did not
observe changes due to acute stress per se. However, associations with physiological and
psychological stress reactivity were shown. Further, an interaction of acute and chronic stress
was found: only in the presence of high chronic stress levels, acute stress reduced model-based
behavior. With respect to research question 3, one general conclusion from the studies 4-6 is
that findings in risk populations for addiction were qualitatively different to those in addiction
and addiction-like disorders. This résumé is further discussed in section 11.3.

In the following sections, the findings will be discussed in depth and put in relation to a
broader literature. As the results of the single studies were discussed in the empirical section
(chapters 5-10), a focus of the following part is to conjoin the multiple results derived from the
six studies (11.2 and 11.3). Thereby, I will identify limitations of the studies that might impact on
the interpretation of results and suggest future approaches to overcome these. The subsequent
section (11.4) offers a re-evaluation of theoretical and methodological aspects of the thesis
based on the empirical findings. In the last part of the discussion (11.5), [ will turn to future
directions regarding questions that remained unanswered by the studies presented but are
equally important for an across-the-board understanding of aberrant decision-making in

addiction and addiction-like disorders.
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11.2 Conjoint discussion of patient studies 1 - 2: transdiagnostic similarities and differences

between alcohol addiction and binge eating disorder

Common and differential alterations in alcohol addiction and binge eating disorder. The
translation of the addiction model to binge- and overeating has become increasingly popular
over the last decade (Volkow & Wise, 2005; Smith & Robbins, 2013; Volkow et al.,, 2013). So far,
evidence of proposed parallels mostly stems from the animal literature. For example, rodent
models of binge- or overeating showed interesting parallels to rodent models of substance
addiction: sugar “bingeing” rats became insensitive to warning cues for punishments associated
with further sugar intake (Epstein & Shaham, 2010; Johnson & Kenny, 2010). Other indications
originate from a clinically observed overlap between binge eating and substance addiction
(Ziauddeen et al, 2012), namely a loss of control over the consumption of a “substance”. This
idea is appealing from a dimensional psychiatry point of view, which tries to overcome
diagnostic boundaries and define behaviorally and biologically more plausible categorizations
(compare section 3.6). However, there are also warning gestures against a premature adoption
of this so-called food addiction model (Epstein & Shaham, 2010; Ziauddeen et al, 2012;
Salamone & Correa, 2013). Many concerns revolve around the critique that the cognitive
phenotype of binge eating is insufficiently refined. This led to a call for detailed cognitive
neuroscientific profiling of the disorder by strictly applying cognitive neuroscientific theories of
addiction when investigating binge eating disorder (Ziauddeen et al., 2012).

Studies 1 and 2 aimed to contribute to this matter by translating findings in substance
addiction (study 1) to binge eating disorder (study 2). Adopting a Computational Psychiatry
approach enables to test mechanisms underlying behavioral deficits. Interestingly, we observed
in both samples that substance addicts and binge eating patients display a reduced amount of
correct choices in a dynamically changing environment. This is in concordance with the shared
clinical feature of failure of behavioral adaptation despite negative consequences. Again in both
samples, mPFC coding of abstract inference components, integrating what might have happened,
was found diminished. These parts of the data speak in favor of important parallels between the

disorders. However, these two studies are also an illustrative example for the advantages of the
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modeling-based approach; beyond behavioral raw data impairments (less amount of correct
choices) in both groups, computational modeling allowed for a more fine-grained look at the
behavioral differences: whereas alcohol-dependent patients showed reduced updating of
alternative choices after punishment, binge eating patients did use abstract inference on the
alternative choice. Instead, another parameter of the model was found altered, binge eating
patients were characterized by accentuated and disadvantageous exploration behavior
paralleled by reduced neural exploration signals in al/vIPFC. The behavioral parameter
capturing exploration, on the other hand, was not found significantly altered in alcohol
addiction. Thus, one may conclude that behavioral adaptation is impaired in both patient groups
but that the underlying mechanisms leading to this impairment differ. These data also implicate
that one needs to tread carefully when adopting addiction models to binge eating or even
obesity (which is even much more multifaceted in origin; Ziauddeen et al.,, 2012; Dietrich et al.,
2014). It is interesting that, similar to the findings in alcohol-dependent patients, abstract
inference signals in the mPFC were reduced in binge eating patients. This was related to
behavioral performance, in terms of correct choices and exploration. However, in binge eating
patients, we did not find behavioral evidence of not using abstract inference when updating
alternative choices. This latter finding invites to explore more thoroughly how disadvantageous
exploration behavior, which was indeed significantly correlated with the neural mPFC signature,
relates to the capacity to use abstract inference on the task structure.

Abstract inference and exploration: a role for uncertainty? Conjecturing about the interplay
between the capacity to use abstract inference and exploration behavior, it is noticeable that as
shown via a simulation (study 1), double-updating of chosen and unchosen values is most
advantageous after a change in environmental conditions, or in other words in situations of
uncertainty. This is in line with key assumptions of a model-based system, which is most
efficient when only little evidence is available, and is thus thought to exert most influence in
uncertain situations (Daw et al, 2005; Keramati et al., 2011). Balancing the trade-off between

exploratory and exploitative decisions also depends on uncertainty, with exploration taking
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place proportional to experienced uncertainty (Frank et al, 2009). Put differently, both the
allocation of control to a model-based mode, as well as the degree of exploration behavior,
depend on how uncertain the agent estimates its environment. The behavioral findings in
studies 1 and 2, namely reduced double-updating, a heightened tendency towards exploration,
as well as less expression of neural exploration and abstract inference signals might thus both be
grounded in an inaccurate estimation of environmental uncertainty. Hierarchical Bayesian
modeling techniques are warranted to test and compare the role of uncertainty estimation (e.g.
Mathys et al,, 2011; Mathys et al, 2014). In accord with this hypothesis, Schwartenbeck and
colleagues (2015) have recently proposed a theoretical account on how different disorders from
the compulsive spectrum might be characterized and differentiated by differing certainty
estimates during decision-making (Schwartenbeck et al, 2015). The authors suggest that
addictive behavior is indeed caused by low certainty combined with low hazard rates (i.e.,
representation of task contingencies). This could similarly account for decision-making
alterations observed in alcohol addiction and binge eating disorder. It could however be
different in other disorders suffering from loss of behavioral control, such as Obsessive
Compulsive Disorder (OCD). For example, in OCD, hazard rate estimation might not be altered.
In sum, these are promising venues to further dissociate common and distinct aspects along the
axes of behavioral control and psychopathological syndromes.

On the neural level, connectivity analyses might offer insight in how mPFC abstract inference
and al/vIPFC exploration signaling interact. One interesting hypothesis to be investigated is that
stronger coding of abstract inference prediction errors helps to manage the exploration-
exploitation tradeoff by impact of the mPFC on the al/vIPFC. Interestingly, in previous studies al
activation has been frequently implicated in uncertainty coding (Grinband et al., 2006; Singer et
al, 2009; Menon & Uddin, 2010). Thus, a further interesting question, which could be tested
with connectivity analyses, is whether disturbed uncertainty signals influence the relevance of

mPFC abstract inference coding.
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To synthesize the similar finding of reduced goal-directed signals at close-by mPFC
coordinates in alcohol-dependent patients and binge eating patients, one might reason that
reduced mPFC function constitutes the final neural pathway leading to loss of control over one’s
actions. The mPFC might thus be speculated as an important neural point of convergence with
respect to loss over behavioral control for various psychiatric conditions. Indeed, also
previously, mPFC malfunction was implicated in the failure of different domains of self-
regulation, across different diagnoses, e.g., behavioral adaptation in juvenile ADHD (Hauser et
al, 2014a), but also in emotion regulation in posttraumatic stress disorder (Etkin & Wager,
2007). It is plausible that alterations in (anterior) mPFC function lead to loss over behavioral
control given theories on hierarchical functional organization of the prefrontal cortex which
suggest most abstract representations being located in anterior parts of the prefrontal cortex.
These superordinate regions are thought to operate on hierarchically abstract representations
and to control subordinate (more posterior) regions (Badre, 2008). Certainly, malfunction of
these meta-controllers could underlie a range of behavioral control problems across different
disorders. To test this speculation more directly, one would, in future patient studies, ideally
employ a computational model which explicitly embodies such a hierarchical structure (Mathys
et al,, 2011; Mathys et al, 2014; for application Iglesias et al, 2013). In this model, prediction
errors are weighted by certainty from the next higher level, which nicely relates back to the
speculation on the role of uncertainty for abstract inference as well as exploration behavior in
compulsive disorders (see previous paragraph and Schwartenbeck et al.,, 2015).

Finally, one might argue that unspecific mPFC alterations (e.g. reduction in gray matter
density) might underlie the observed overlap in mPFC malfunction found in both disorders.
Notably however, the reduced mPFC signal was only found for the complex abstract inference
signal, but did not differ between groups for the simpler, model-free learning signatures. This
speaks in favor of a specific impairment in abstract inference coding in both disorders.

Matching Strategy. In a nutshell, studies 1 and 2 support the view that although the behavioral

output is similar in alcohol addiction and binge eating disorder (i.e., impaired behavioral control
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and goal-directed behavior in terms of correct choices in a changing environment), while
underlying behavioral mechanisms and neural correlates appear to differ at least partially. This
calls for a direct comparison of both groups. An important caveat when inferring on similarities
and differences between two patient groups is that patient samples of study 1 and 2 do not only
differ in diagnoses but additionally regarding a number of other factors: gender (predominantly
men in the alcohol-dependent group, predominantly women in the binge eating group), age,
educational status and neurocognitive functioning. This was accounted for by including
separate, respectively as-good-as-possible matched control samples. Future studies might
consider matching patients directly to each other, which, at the first glance, allows for a more
direct comparison between the groups. However, as the patient populations differ naturally
regarding these factors, and thus the differences are inherent to the diagnostic group, this entails
the risk of studying artificial samples, which are no longer representative for the disease. It
might also even out factors which are indeed tightly interwoven with the diagnostic entity.

A similar approach has been suggested regarding performance differences in cognitive-
neuroscience studies of psychiatric patients: matching for performance was proposed to help to
identify true biological differences beyond differences in cognitive abilities (Callicott et al., 2003;
Tan et al,, 2006). The search for truly biological differences might somehow seem circular: again,
this results in non-representative samples, as cognitive impairments constitute a characteristic
of many psychiatric conditions. Further, it evades the question of how brain signals have
generated behavior. This question is certainly in the center of interest as the field still lacks any
established biological marker of different behavioral phenotypes. Nevertheless, such
performance-based subgroup analyses appear as informative control analyses and are more
feasible when relatively large samples sizes are available, most likely from multicenter studies
or via data-sharing tools (i.e. comparing patient groups with and without behavioral impairment
regarding their neural correlates). Importantly, this debate once again advocates the
computational approach: due to the inference of individual parameters, which are then

transferred to the statistical analysis of neural data, one adjusts the test of brain-behavior
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relationships for inter-individual differences in the latent process studied. However, for
potential future advances in psychiatric diagnostics a different strategy could be more
successful: namely to address biological heterogeneity within diagnostic labels and to test
whether such biologically defined subgroups map on behavioral and symptom dimensions of
clinical relevance (Stephan et al, 2015).

11.3 Conjoint discussion of studies 4-6: reduced model-based control in risk factors of

addiction - only crossing roads lead to Rome?

Across the examined risk factors of addiction, namely impulsivity, positive family history and
stress, we did not find evidence for an impairment of model-based behavioral control per se.
This is in contrast to findings in addicted and other psychiatric patient samples (Sebold et al,
2014; Voon et al., 2015). Lacking evidence in adult offspring of alcohol-dependent patients might
either indicate that impaired model-based control is not an endophenotype of addiction;
however it is important to consider the possibility that power of the study was too low to detect
the effect. Indeed the effect of reduced model-based behavior might be much more subtle in at-
risk than in addicted populations themselves (for an illustration of the hypothesized expression
of model-based behavior in risk factors, see Figure 3-2). The picture emerging for stress and
impulsivity is more complex, and points towards an important role of moderating factors: high
trait impulsivity per se did not have an impact on the behavioral level regarding model-based
choices (while the model-free system was found to be accentuated), but reduced lateral
prefrontal model-based signals were revealed (study 4). A behavioral effect of impulsivity on
model-based behavior could however be detected in interaction with cognitive capacities -
another putative risk factor for addiction (study 5). Results of study 6 point in a similar
direction: a detrimental effect of acute stress on model-based behavior was also not found per
se, replicating a previous study (Otto et al., 2013b). Only participants with a high load of chronic
stress showed slightly reduced model-based control. In resonance with this reasoning, an
interaction effect of physiological stress reactivity and fluid cognitive capacities had been

detected in a previous study (Otto et al,, 2013b).
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Taken together, these findings speak in favor of a multiple hits account in the relationship
between risk factors of addiction and model-based behavioral control: a reduction of model-
based control requires the concerted action of multiple risk factors (e.g, acute and chronic
stress, high trait impulsivity and low cognitive functioning) to impact behavioral control. It
cannot be determined from the studies at hand how exactly these risk factors act together to
deteriorate or protect the model-based system. It might be that vulnerability factors sum up or
compensate for each other (Robbins & Everitt, 1999). Alternatively, this could involve
interaction effects in the sense of: only if factor A is present, factor B can exert its detrimental
effect on behavioral control. It is also not clear which risk factor indeed interacts with which
other risk factor. To piece this together, large-scale data acquisition in a broad range of the
population, assessing a set of well-defined risk factors and their impact on model-based
decision-making within subjects (compare e.g. Schumann et al, 2010) in combination with
analysis methods like structural equation models are warranted. The latter offer a means to test
causal assumptions on the interactive effects of various assessed risk factors and have proven
fruitful in risk profiling alcohol misuse and eating disorders before (Williamson et al, 1995;
Hawkins et al., 1997).

It catches the eye that for all investigated risk factors, alterations in fronto-striatal
circuits have been described previously (Dalley et al, 2011; Dias-Ferreira et al.,, 2009; Ersche et
al., 2012a; Ersche et al, 2013). These regions are also key for goal-directed or model-based
control (compare section 3.1 and 3.4). Diminished behavioral control in impulsivity was
suggested to be associated with reduced prefrontal top-down control over striatal regions
(Dalley et al., 2011), which tallies with the finding of study 4 that high impulsive individuals
were characterized by reduced model-based signals in the lateral prefrontal cortex. Also for first
degree relatives, fronto-striatal structural abnormalities have been reported (Ersche et al,
2012a). Interestingly relatives share with their dependent family member hypertrophy in the
putamen and structural decline in the posterior insula, but not the gray matter reductions in the

prefrontal cortex (Ersche et al.,, 2012a, Ersche et al,, 2013). In a rodent model for stress, chronic
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stress and associated reduced goal-directed control were related to a structural reorganization
of fronto-striatal circuits, more specifically to atrophy of the medial prefrontal cortex and
hypertrophy of dorsolateral striatum (Dias-Ferreira et al.,, 2009).

From the set of at-risk studies in this thesis, it cannot be derived whether it is shared or
differential neural substrates that underlie the putatively interactive effect of multiple risk
factors. Puzzling together the finding of reduced lateral prefrontal model-based signatures in
impulsivity while model-based behavior was intact (study 4) with the findings in patients (study
1 and 2, albeit using a different task) where goal-directed signals were found reduced in the
medial prefrontal cortex, one might speculate that it is the failure of medial prefrontal function
which ultimately leads to a break-down of goal-directed behavioral control. This is in line with
the view of the medial prefrontal cortex as an arbitration region allocating control to one or the
other system (Lee et al, 2014). Such an arbitrator is thought to parse the degree of control
exerted by a model-free vs. a model-based system at one point in time. It is suggested that this
switching between strategies is brought about according to how reliable the predictions of the
respective system are. Dysfunction of such arbitration was indeed discussed to lead to addictive
or compulsive behaviors (Lee et al,, 2014; Gruner et al., 2015).

In this thesis, all studies regarding risk factors for addictive behavior were of cross-
sectional design and purposefully included young to middle-old adults, specifically selected not
to meet any indication of substance misuse. It has previously been argued that this sample
selection strategy might result in participants with particularly protective traits (Volkow et al.,
2006). This even invites the speculation that intact model-based behavior is a resilience factor
for the development of addiction.

In any case, the contribution of multiple hits, putatively reducing behavioral control, to a
transition into substance abuse cannot be elucidated from these cross-sectional studies. A hunch
that the degree of model-based control might indeed change over the course of addiction
development is however provoked by the observation that it covaries with time of abstinence in

alcohol addiction (Voon et al, 2015). To answer this critical question, longitudinal designs are
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warranted. Ideally, in a large-scale data approach one would overcome power issues when
investigating a large amount of teenagers with and without familiar risk for addiction,
phenotype them with respect to additional risk factors (e.g. impulsivity, cognition, and stress)
and track both, behavioral control and addictive behavior, over the course of the development.
In conclusion, inspired by the endophenotype account (Ersche et al., 2012a; Robbins et al.,
2012), different populations at risk for addiction were studied. We used the same sequential
decision-making task which had been used in previous studies (Sebold et al.,, 2014; Voon et al.,
2015) to identify that addicted patients showed less model-based control. According to the
endophenotype account, one would expect similar or intermediate expression of the behavioral
deficit observed in patients (Figure 3-2). Across the presented studies on risk factors of
addiction, we did not find evidence for an impairment of model-based behavioral control per se.
Thus, the risk factors approach applied here was informative in the sense that it revealed
qualitatively different alterations, not supporting the hypothesis that a shift from model-based
to model-free behavior can be seen as an endophenotype for addiction and addiction-like
disorders. Other than experiments used in humans, animal models of vulnerability factors in
behavioral control study the transition from goal-directed to habitual control in paradigms
involving self-administration of drugs. Building on such animal studies, authors have argued that
these transitions are influenced by Pavlovian and instrumental controllers (Everitt & Robbins,
2005; Everitt et al., 2008). It is an exciting speculation warranting future investigation, if - rather
than reduced model-based control - alterations in Pavlovian-instrumental transfer effects

constitute an endophenotype for addiction (see also section 11.5.1).

11.4 Re-evaluation of methodological aspects

The next section critically revisits methodological considerations of section 2: namely the use of
the experimental tasks, computational modeling as a tool for analyzing behavioral data, the
application of a dimensional approach regarding populations included and the use of fMRI and

EEG brain measures. Based on this re-evaluation, I will suggest extensions for future studies.
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11.4.1 Reflection of tasks used to measure behavioral adaptation

Two different tasks, namely counterfactual decision-making (studies 1-3) and a sequential
decision-making task (studies 4-6) were used. They have been suggested as the two main
paradigms to measure model-free and model-based control (Doll et al., 2012). Both these tasks
have been repeatedly used in previous studies investigating different aspects of behavioral
control, mostly in healthy individuals (Hampton et al., 2006; Daw et al., 2011; Wunderlich et al.,
2012b; Otto et al,, 2013b; Schlagenhauf et al, 2013; Smittenaar et al, 2013; Deserno et al.,
2015b).

Sequential decision-making. Sequential decision-making was used in patient studies before,
revealing reduced model-based behavior in substance addicted and binge eating patients
(Sebold et al, 2014; Voon et al, 2015). There is now ample evidence that performance in
sequential decision-making depends on general cognitive capacity (Otto et al, 2013a; Otto et al.,
2013b; Schad et al,, 2014; Otto et al, 2015). It was shown that cognitive capacity interacts with
risk factors for addiction to impair model-based behavioral control (compare study 5 and Otto et
al,, 2013b). It is important to note that in the study by Sebold and colleagues group differences in
model-based control between patients and controls were abolished when adjusting for cognitive
capacities (Sebold et al,, 2014). For patient and risk group studies, this poses the important
question whether reductions in model-based control found in this task are a specific
characteristic for the disease, or rather an epiphenomenon of a more general cognitive
impairment (which for alcohol-dependence, is inherent in the disease). As applied in the studies
presented in this thesis, it seems particularly important to include a battery of measures of
general cognition, and to test for an influence of cognitive factors on the investigated effect, in
order not to incorrectly assign variance to the behavioral control systems which is better
explained by general cognition (Collins & Frank, 2012). Evaluating this by now frequently used
task, it is of note that a very recent simulation study revealed that in this task, behavior which
appears as model-based behavior can be produced by (sophisticated) model-free agents without

involving any planning (Akam et al, 2015). These very recent findings should be taken into
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account in future studies.

In the variant of the sequential decision-making task used here, the model-based system
uses knowledge on environmental structure explicitly instructed and internalized beforehand
(e.g., during the training session). Thus, using an already learnt transition-matrix is only one part
of the model-based system, as it does not involve the acquisition of the transition function. The
latter would be required of the model-based system in realistic environments where a before-
hand training or instruction will obviously not be available in many situations. Indeed, it was
argued that the ability to form representations of the world might be one of the most important
factors in recovery from addiction (Kurth-Nelson & Redish, 2012). In a study involving healthy
individuals, Glascher and colleagues indeed introduced a variant of sequential decision-making
which tests the latent acquisition and subsequent use of the transition matrix more explicitly
(Glascher et al, 2010). However, given the neurocognitive effort the variant used in studies 4-6
already requires, it seems challenging to apply the task designed by Glascher and colleagues to
psychiatric patients. When planning neuroimaging studies involving patients, it is important to
take this point into account (Price & Friston, 1999): if patients are not able to perform the task,
one cannot conclusively interpret the associated neural signal as abnormal neural processing as
it might either be cause or consequence of impaired behavioral performance.

Counterfactual decision-making. Another aspect of capturing the environmental structure can be
investigated by the counterfactual decision-making task used in the patient studies (studies 1
and 2) and study 3. Indeed, when adjusting performance for general cognitive functioning as in
study 1, all behavioral and neuroimaging results were confirmed. This, and the fact that most
patients were explained by a simple learning model, indicates that the demand of “scanning
patients with tasks they can perform” (Price & Friston, 1999, p. 102) was indeed met by using
this task. While sequential decision-making captures one of the key characteristics of model-
based learning - the forward use of the transition matrix - in a more straightforward manner,
counterfactual learning is well-suited to tackle another feature of behavioral control which

clearly goes beyond pure model-free stimulus-action decision-making: abstract or hypothetical
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inference on the task structure. During the counterfactual decision-making task applied in
studies 1-3, the hidden task structure was learnt on the fly using abstract inference (via updating
chosen and unchosen values) while in the sequential decision-making task the transition model
was known beforehand. Implementing abstract inference via fictive outcomes, and integrating it
into one’s actions is an important hallmark of adaptive behavior (e.g., Boorman et al., 2009;
Boorman et al, 2011), as in everyday life an individual often has to come to a decision while
lacking explicit experience in favor of or speaking against the options at hand. Conjunctive
coding of multiple actions and their outcomes enhances the efficiency of reinforcement learning
(Abe & Lee, 2011; Takahashi et al,, 2013). Several studies have linked this type of inference
regarding the task structure, including the simulation of hypothetical outcomes, to the model-
based system (Lucantonio et al., 2012; Lucantonio et al. 2014; Hampton et al, 2006). Given
evidence from memory research (e.g. Shohamy & Wagner, 2008), it is well possible that
generalization effects (here, generalizing from one stimulus being good to the other being bad)
may not arise from a full model-based system but rather represent a short-cut approximation to
the environmental structure by representing the relationship between two options. Human
beings indeed can learn and benefit from correlation structures between different outcomes
(Wunderlich et al.,, 2011). It is plausible that the ability to infer values from the value of another
stimulus, thus, to generalize, and to implement statistical regularities of the environment in the
decision-making process, is a prerequisite for building mental models of the environment and
thus plays an important role in model-based behavior. Hence, counterfactual decision-making
captures a related but certainly more basic mechanism that might contribute to the previous
findings of disturbed model-based control during sequential decision-making in various patient
groups (Sebold et al., 2014; Voon et al., 2015).

Tasks to measure behavior control in addiction - what have we learnt so far? Regarding the
original question of goal-directed vs. habitual control in addiction, these tasks, combined with
the computational-modeling analysis, opened up new ways to dissect behavioral control in

human beings. These tasks enable to test the hypothesis of a shift in the dominant mode
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dimensionally. With former tasks, e.g. instructed devaluation (de Wit et al, 2009; de Wit et al,
2012a; de Wit et al, 2012b; Sjoerds et al,, 2013), differences in behavioral control are more
opaque as a reduction in goal-directed control implicates a rise in habitual control and vice
versa. Given the (mostly very recent) studies using sequential decision-making or counterfactual
decision-making, including the findings of this thesis, one résumé could be that there is
accumulating evidence for reduced goal-directed or model-based behavior in addiction and
addiction-like disorders like binge eating. This might be due to an impairment to use abstract
inference on unchosen choice options or to biases in the exploration-exploitation tradeoff
(Sebold et al, 2014; Morris et al, 2015; Voon et al,, 2015, and study 1 and 2 of this thesis).
Interestingly and contrary to the initial hypothesis, these studies provide no evidence for an
enhancement of the model-free or habitual system in addiction. The original formulation of the
hypothesis is based on observations in animals which transit into escalating habitual drug-
intake over the course of addiction development and in particular relapse to drug-intake (Everitt
& Robbins, 2005). Thus, habitual behavior in this case is tightly coupled and assessed via drug
intake, which is different from the experimental paradigms described here using monetary
incentives as reinforcers. In a theoretical account, Simon and Daw propose a modification of
these theories, promoting a more integrated view of the habitual, model-free and the goal-
directed, model-based system (Simon & Daw, 2012). The authors argue that laborious (compare
equation 5) model-based computations partially draw on cached values derived from the model-
free system. Such a combination of the two modes of behavioral control would indeed be able to
plan sequential action trajectories, but these would be targeted at reaching states with high
values as derived from model-free valuation (Simon & Daw, 2012). One crucial point about these
model-free values is that they are thought to be inflated as an effect of drug abuse, e.g.,, by
uncontrolled, excessive effects of the abused substance on dopaminergically modulated
prediction error signals (Redish, 2004; Redish et al, 2008; Simon & Daw, 2012). Behavior
resulting from such combinations of model-free and model-based valuation would bias the agent

towards actions that lead to the high model-free values. An alternative model formalizing
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combinations of model-free and model-based valuation as described is Sutton’s Dyna-Q
architecture (Sutton, 1990). The application of such an integrated algorithm appears as a highly

promising next step for research on the model-free vs. model-based dichotomy in addiction.

11.4.2 Computational Psychiatry as a tool for refining neurocognitive disease phenotypes
Refining clinical phenotypes. The computational approach as applied here proved to foster a fine-
grained understanding of the clinical phenotypes investigated (Montague et al, 2012). For
example, in study 1, we have shown that simpler learning mechanisms and the neural
representation of model-free prediction errors are upheld in individuals suffering from alcohol
addiction. Instead, they are impaired in one specific feature of behavioral control, namely
updating alternative options after punishment. This goes beyond very general explanations, e.g.
when defining addiction globally as a “disease of learning” (Hyman, 2005, p. 1414) or “a
pathology of motivation and choice” (Kalivas & Volkow, 2005, p. 1403). Thus, it at least partially
answers the question what patients can and cannot do (Price & Friston, 1999). A more fine-
grained view on psychopathology might prove advantageous for developing specifically tailored
psychopharmacological and psychotherapeutic treatment strategies. Also in light of the common
stigmatization of drug-addicted individuals (Corrigan et al., 2009), a more differentiated view
may be beneficial.

Defining shared and differential pathways of disorders. Relatedly, the computational approach
promoted the understanding of shared and differential pathways of the two patient populations,
both characterized by loss of control. Regarding the two patient groups included in this thesis
(study 1 and 2), behavioral deficits were similar at first glance (reduced correct responses in the
counterfactual decision-making task). However, when looking at the modeling parameters, this
could be pinned down to different underlying processes (compare section 11.2). This is
particularly important, as binge eating disorder is a newly defined disease in DSM-5, which is
understudied to date and still warrants thorough phenotyping (Ziauddeen et al, 2012).
Similarly, for risk factors of addiction such as impulsivity, alterations in behavioral or cognitive

processes similar or intermediate to those observed in patients have been hypothesized
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(Robbins et al., 2012). By using the computational approach, alterations observed in risk factors
could be more specifically defined as not quantitatively but rather qualitatively different from
addicted populations (i.e., study 4 revealed alterations in the model-free system in impulsivity in
contrast to the model-based system in addiction; Sebold et al, 2014, see also section 11.3).
Analyzing the dynamic nature of behavioral adaptation. Behavioral adaptation is by definition a
dynamic process over time. In the studies at hand, computational approaches enabled to mirror
this process on a trial-by-trial basis, on the behavioral and neural level (studies 1- 4). It is to be
noted that models applied in these studies might not fully reflect the dynamics inherent in both
experimental tasks: as for studies 1-3, the applied models assume that double-updating is stable
over the course of the experiment, and in studies 4-6 the models implement a stable use of the
transition function. Other computational models might mirror the dynamics of learning more
explicitly (compare Behrens et al,, 2007; Mathys et al., 2011; Mathys et al, 2014).

Classification and clustering as promising future avenues. However, despite these advantages, the
current work has not made full use of the opportunities the computational psychiatry approach
offers. As we have seen, observed behavior is distilled to specific components expressed by
parameters for each subject. These would provide an optimal basis for machine-learning-based
classification or clustering methods which aim at identifying subgroups and clinically significant
conditions (Brodersen et al., 2014; Stephan et al., 2015; Wiecki et al, 2015). For example, by
feeding parameters derived from a model of reaction time in choice tasks (Drift Diffusion Model,
Ratcliff & Rouder, 1998), combined with EEG data, into a classifier, Wiecki and colleagues could
classify Parkinson patients according to whether they were on vs. off deep brain stimulation
(Wiecki et al, 2015). This approach could also be adopted for the studies at hand (e.g. studies 1
and 2): one might use the behavioral parameters derived from the modeling analysis as well as
the associated fMRI signals to classify all participants of study 1 and 2. It might depend on the
included parameters whether this would indeed reveal three subgroups (as suggested by the
DSM-5 based sample selection criteria: alcohol-addicted, binge eating and healthy participants),

or end up in one patient (independent of diagnosis) vs. control group pattern. The latter pattern
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might arise from a classification on the basis of blunted mPFC abstract inference signatures and
further support a transdiagnostic view. It would also be interesting to use the parameters gained
in study 1 and 2 in order to cluster subgroups, agnostic to the actual diagnostic status. In a
second step, these computationally informed subgroups can be related to clinical measures and
outcome. For instance, in study 1, we found that the neural abstract inference signature in mPFC
was correlated with compulsive substance consumption in alcohol-dependent patients. Based on
these findings, one could ask, if clusters characterized by reduced mPFC signatures (probably
containing participants of both patient groups) specifically relate to the clinical characteristic of
compulsive habits, independent of diagnosis and substance (food vs. alcohol). Based on these
mechanistically informed clusters, differentiated treatment strategies could be developed
targeting at a subgroup’s specific deficit: for example different medication, psychotherapeutic or
psychosocial intervention options might be beneficial for different subgroups. As long as these
subgroups are not known, clinicians are forced to rely on a trial-and-error principle when
applying different treatment options. This touches upon the important question of differential
indication in the treatment of psychiatric disorders (Grawe et al, 1990; Roth & Fonagy, 2013). In
sum, this approach could open up an exciting avenue towards describing, assessing,
investigating and treating psychiatric diseases on the basis of measurable, reliable
computational phenotypes by overcoming symptom-based classification (Brodersen et al.,

2014b; Stephan et al,, 2015; Wiecki et al., 2015).

11.4.3 Benefit of the dimensional approach

For the patient studies in this thesis, diagnostic labels were used to recruit samples, test
hypotheses and interpret results. This is in contrast to the approach described in the last
paragraph, which might help to overcome the drawbacks of the current diagnosis systems
(compare section 3.6) by defining new computationally grounded and mechanistically informed
phenotypes. It is a legitimate objection to ask whether a dimensional approach based on

diagnostic categories is truly dimensional (Wiecki et al,, 2015). For future studies, it thus seems
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promising to make use of computational clustering and classification techniques to overcome
this bias of symptom-based classification.

One might also consider rethinking the definition of the risk factors applied here. For
positive family history, it has proven a powerful design to include patients and their siblings in
one study, such that genetic and environmental factors are mostly similar as compared to the
control group (Ersche et al, 2012a). The studies at hand included adult participants explicitly
screened not to meet any abnormalities regarding substance use. It might be that these
participants are particularly resilient not to develop an addictive disorder. In order to dissect
risk- from resilience factors, it could be fruitful to study risk populations at an earlier stage of
development, e.g. adolecents.

Regarding impulsivity, the trait has been defined as a multidimensional construct (Dalley
etal, 2011; Wilbertz et al,, 2014). Based on rodent studies, it was suggested that specifically one
subdomain, namely waiting impulsivity (i.e., premature responding) is a predisposing factor for
addictive behavior (Belin et al., 2008). A task measuring this subdomain of impulsivity has
recently been translated to test humans and has revealed higher waiting impulsivity in addicted
individuals (Voon et al, 2014). Thus, for further studies, it seems a promising option, rather than
sampling individuals based on the self-report questionnaire, to use performance in this specific

task as definition criterion for risk populations.

11.4.4 Using multiple methods to study neural signatures of behavioral control

Behavioral control as conceptualized in this thesis has more frequently been investigated using
(modeling-based) fMRI than any other method to measure brain function. Also in the studies at
hand, fMRI was used most frequently when measuring neural correlates of habitual and goal-
directed behavior (study 1, 2, 4). This is motivated by the fact that deeper brain regions like the
basal ganglia (which cannot be directly measured via EEG) are key for behavioral adaptation
(Hikosaka & Isoda, 2010). However, those studies in this thesis which probed neural group
differences using fMRI could show that these were present in medial and lateral prefrontal

structures (compare study 1, 2 and 4). The latter regions are principally also accessible via EEG
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measurements. In line, in study 3 we used a modeling-based, trial-by-trial analysis to
demonstrate ERP correlates of implementing abstract inference in counterfactual decision-
making. This might prove valuable in further studies with special populations like children or
patients tackling similar questions. It might open up the opportunity of large-scale data
acquisition as suggested at various points in this discussion (compare section 11.2 and 11.3),
because EEG is by far more economic and feasible than fMRI. For example, on-site data
acquisition directly measured at in- or out-patient departments are easy to imagine when using
EEG. In this vein, the methodological approach should be broadened towards exploiting the
temporal resolution more clearly by time-frequency analyses. Time-frequency components have
been analyzed using a modeling-based approach before; e.g.,, frontal theta oscillations were
shown to be key correlates of cognitive control and prediction error processing (Cavanagh et al.,
2010; Cavanagh & Frank, 2014). This might be an exciting target for future studies with similar
research questions, asking whether frontal theta signals covary with a shift from model-free,

habitual to model-based, goal-directed control.

11.5 Limitations, further considerations, future directions

11.5.1 The role of the Pavlovian valuation system

Regarding decision-making processes in healthy individuals and patients, the current thesis
focused on the dichotomy of habitual and goal-directed instrumental control. In reality, to come
to a decision, we undergo many sub-processes, which can be broken down into several basic
computations where habitual or goal-directed learning and control are only pieces of the puzzle
(Rangel et al, 2008). For the purpose of this thesis, this view on decision-making was
intentionally focused on one specific aspect, which results in oversimplification. To illustrate
this, imagine an addicted individual faces a situation where he or she is running out of
substance. Conceivably, the individual will seem quite flexible and engage in planning when it
comes to foraging the craved substance (e.g. show sequences of drug-seeking behavior with
delayed or in the absence of the rewarding outcome). To explain this, one might need to consider

a third valuation system, the Pavlovian system (Dayan et al, 2006; Rangel et al.,, 2008). Based on
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rodent studies, it has been suggested that drug seeking behavior is controlled by Pavlovian
stimuli (Belin et al, 2013). These conditioned reinforcers have themselves taken on rewarding
features because they had been repeatedly paired with the drug (second-order conditioning).
They can thus influence instrumental behavior and guide the addicted individual during drug-
seeking (Belin et al.,, 2013). This can result in a vicious circle of self-reinforcing loops of choice
and reward (Hogarth et al, 2007; Huys et al., 2014).

Relatedly, when studying goal-directed behavior (e.g. in paradigms using money as
reinforcers) in addicted versus healthy populations, one has to take into account that it might
not only be the way to achieve goals that differs between groups. Also the goal values per se, the
expected value of a prospective outcome (O'Doherty, 2014), might be altered. Indeed, the
importance of subjective values is emphasized in prominent addiction theories (Everitt et al,
2008): evidence from reward anticipation paradigms points towards reduced predictive value
coding of monetary outcome in alcohol-dependent patients (Wrase et al, 2007; Beck et al,
2009), which is in line with the hypothesis of a hijacked reward system in addiction (Hyman,
2005).

Already in healthy individuals, refining the computational and neural architecture of
Pavlovian systems has turned out to be difficult so far (Rangel et al., 2008; O’Doherty, 2014). The
interaction of Pavlovian valuation systems with instrumental valuation systems is at the
beginning to be understood (Talmi et al., 2008). Little is known about how the Pavlovian system
acts in concert with the habitual vs. the goal-directed control modes; exciting first results points
toward the Pavlovian system assisting the goal-directed system by yielding approximations for
the laborious computations required for goal-directed control (Huys et al, 2012). There is good
reason to assume that Pavlovian-to-instrumental transfers might be of pivotal importance for
addiction: in a very recent study in alcohol-dependent patients, it was shown that BOLD signals
reflecting the influence of Pavlovian cues on instrumental behavior predict alcohol intake and
relapse in alcohol dependence (Garbusow et al, 2015). It remains to be elucidated whether

Pavlovian-instrumental transfers also play a role in addiction vulnerability.
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11.5.2 Neuro-chemical considerations
To date, it is almost undisputable that the neurotransmitter dopamine (DA) plays an essential
role for learning and behavioral adaptation. Most prominently, dopamine firing was shown to
scale with reward prediction errors and to function as teaching signals (Montague et al., 1996;
Schultz et al., 1997). In fact, the hemodynamic correlates of prediction errors measured via fMRI
(compare studies 1, 2 and 4) have been theoretically linked to dopamine prediction error
signaling (O'Doherty et al, 2003; O'Doherty et al, 2004; Knutson & Gibbs, 2007) although one
should keep in mind that the BOLD signal is too unspecific as to reflect the particular event of
dopamine release. Importantly, phasic dopamine signals are thought to represent model-free
learning signals as the firing of dopamine neurons can be captured by model-free RL-algorithms
(see equation 5). The role of DA in model-based learning is less understood, but a recent study
has stressed the modulatory role of dopamine in the balance between model-free and model-
based control (Wunderlich et al.,, 2012b). In support, higher levels of presynaptic ventral striatal
dopamine were related to a higher degree of model-based control, enhanced coding of model-
based signatures in the lateral prefrontal cortex and reduced representation of model-free
prediction errors in ventral striatum (Deserno et al, 2015b).

The development of addiction and substance abuse is thought to involve the usurpation
of DA learning signals (Redish, 2004; Dayan, 2009a; Volkow et al, 2009; Huys et al., 2014).
Addiction has been shown to be characterized by reduced D2 receptor availability, which also
relates to drug craving and relapse (Heinz et al, 2004; Volkow et al,, 2004; Heinz et al, 2005;
Volkow et al.,, 2009). Intriguingly from a transdiagnostic perspective, also compulsively eating,
obese rats were shown to be characterized by downregulated D2 striatal receptors (Johnson &
Kenny, 2010). It is further noticeable that alterations in the DA system have not only been
described for the disorders discussed, but indeed for all risk factors investigated in this thesis:
with respect to impulsivity, Dalley and colleagues showed a reduction of D2 receptor availability
in trait-impulsive drug-naive rats, which was associated with subsequent escalation of self-

administered cocaine-intake after withdrawal (Dalley et al, 2007). Likewise for human
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participants, it was demonstrated that a higher degree of impulsivity was correlated with less
midbrain D2 auto-receptor binding and greater amphetamine-induced DA release in the
striatum (Buckholtz et al., 2010). Regarding stress, rhesus monkeys which had undergone a high
load of social stress during adolescence were characterized by lower levels of DA D2 receptor
binding in the striatum and showed pronounced self-administration of cocaine as compared to
non-stressed animals (Morgan et al., 2002). Young adults with a multigenerational family history
of substance use disorders were not significantly different from drug-naive and drug-
experienced control groups in terms of baseline D2 receptor availability (Casey et al, 2014).
Interestingly, after amphetamine intake, adults with a positive family history exhibited reduced
dopamine responses especially in right ventral striatum, when compared to drug-naive and
drug-experienced controls (Casey et al., 2014).

Based on these previous studies, the findings of the studies at hand could be interpreted
in light of the dynamic dopamine model of cognitive reinforcement learning (Frank et al., 2004). In
this model, two main projection pathways - a direct and indirect pathway - are suggested to
convey information from the striatum, via the thalamus to the cortex. The direct pathway signals
the execution of a response from the striatum through the thalamus to the cortex, whereas
signals in the indirect pathway suppress competing responses indirectly via the Globus
Pallidum. D1 receptors are prominent in the direct pathway, while D2 receptors predominate
the indirect pathway. After positive reinforcement, dopamine bursts activate the direct pathway,
and deactivate the indirect pathway. This prompts learning and the execution (or repetition) of
previously reinforced actions. Contrary, dopaminergic dips after punishment cause the opposite
effect, such that punished actions are suppressed in the future (Frank et al, 2004). Given the
above described previous findings of reduced D2 receptor availability in impulsivity, after
chronic stress, in addiction and in a rodent model of compulsive eating, but not in individuals
with family history of addiction, one might speculate that reduced D2 receptors hamper the
indirect pathway which is responsible for inhibiting disadvantageous choices. This impaired

inhibitory process might potentially account for disturbances of the goal-directed system,
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especially when punishing events occur, as well as perseverative behavior in alcohol addiction
(study 1), and enhanced switching and exploration despite negative consequences in binge
eating disorder (study 2). Likewise, it might play a role for the observed reduction in goal-
directed or model-based behavior seen in the interaction of acute and chronic stress (study 6)
and diminished neural model-based signals in impulsivity (study 5). This hypothesis could be
tested by manipulating the pathways by dopaminergic agonists and antagonists in healthy
individuals: one would expect that the pharmacological intervention causes similar alterations
in behavior and neural signaling as observed in the studies at hand.

Besides dopamine, a recent study emphasizes the role of serotonin for behavioral
adaptation after punishment in a reversal learning task (den Ouden et al, 2013). The role of
serotonin in addiction is less studied, however low serotonin levels have been linked to
aggressive behavior (Heinz et al, 2011) and impulsivity (Cools et al, 2005). This indicates that
some of the findings observed in this study might be subject to serotonergic influences.
However, causal insight into molecular mechanisms promoting drug-specific plasticity is so far
limited and requires translational research approaches (Luthi & Luscher, 2014).

11.6 Conclusions

The aim of this thesis was to elucidate mechanisms of behavioral control in alcohol addiction,
binge eating disorder and risk factors of addiction. Using computational modeling, the presented
studies could dissect specific behavioral control deficits in nosologically different psychiatric
diseases. This constitutes a step towards a more mechanistic understanding of these disorders.
On the neural level, the medial prefrontal cortex appears as an important convergence zone
monitoring goal-directed behavior. The findings suggest that malfunction of mPFC is a final
pathway involving nosologically different psychiatric conditions characterized by loss of control
over one’s behavior. Further, I could demonstrate that behavioral control alterations in risk
factors of addiction are qualitatively different to patients. The data speak in favor of a multiple
hits account of different risk factors interacting or adding up to impede goal-directed control.

This calls for applying the computational approach in future longitudinal studies before the
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onset of psychiatric diseases. Further, the application of hierarchical computational models in
combination with modeling-informed fMRI and EEG as well as machine learning and clustering
methods appear as a promising next step. This could indeed enable identification of biologically
informed subgroups and guide new treatment and prevention developments. In sum, this thesis
provides answers to the question of why some people repeat behaviors, despite often times

devastating consequences.
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12 Summary

Why do we repeat behaviors we know are bad for us?

Influential theories of behavioral control distinguish two main systems to guide behavior, a
reflexive, habitual system on the one hand, and a reflective, goal-directed system on the other
hand (Balleine & Dickinson, 1998; Daw et al., 2005; Dolan & Dayan, 2013). The habitual system
takes actions by drawing on values ‘stamped in’ by past reinforcement, even though these values
might be disparate from the current value of the action’s outcome. It is characterized by a high
degree of automaticity and computational efficiency, which comes at the cost of reduced
behavioral flexibility. In contrast, the goal-directed system plans actions in a forward manner,
mentally tracing down possible consequences of actions. This is computationally costly but has
the advantage of flexibility when adapting behavior as soon as environmental conditions have
changed. In healthy individuals, decision-making is influenced by both systems of behavioral
control (Daw et al, 2011); individuals are thought to balance the trade-off between the faster,
automated ‘habit’ system, and the slower but more flexible system to come to optimal decisions
(Keramati et al., 2011). Computational accounts have amended this dual-systems-theory (Dolan
& Dayan, 2013), by formalizing habitual control in model-free and goal-directed control in
model-based algorithms. In the last years, this computational formulation has substantially
advanced cognitive neuroscientific research on behavioral control. Neuroimaging studies
building on this approach have identified signatures of model-free and model-based control in
medial prefrontal cortex as well as ventral striatum (Daw et al., 2011).

Addiction is a psychiatric condition which is marked by adverse decisions: by definition,
addicted individuals continue substance consumption in the face of negative consequences
(American Psychiatric Association, 2013). To explain this disadvantageous kind of decision-
making, theories of addiction build on the notion of the two decision-making systems described
above. Addiction is conceptualized as a disrupted balance between goal-directed and habitual
control (Everitt & Robbins, 2005; Redish et al, 2008; Dayan, 2009a). An overreliance on the

habitual system along with an impairment of goal-directed control was hypothesized to lead to
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addicted individuals’ repeatedly choosing one action which has been reinforced in the past but is
harmful in the present.

The presented thesis employs this view on addiction and tests it in a population of
individuals suffering from alcohol dependence. Furthermore, by adopting a dimensional
approach (Robbins et al, 2012), this thesis extends the hypothesis, (1) towards another
psychiatric condition characterized by the loss of control over behavior, namely binge eating
disorder; (2) towards risk factors of addictive disorders, namely impulsivity, positive family
history, low cognitive functioning and stress. This is studied by leveraging computational
modeling techniques as well as functional Magnetic Resonance Imaging (fMRI) and
Electroencephalography (EEG) to test inter-individual differences in behavioral and neural
signatures of behavioral control.

Study 1 addresses the research question whether individuals suffering from alcohol
addiction are impaired in an important function of the goal-directed system, namely the ability
to update unchosen choice values (“what might have happened”). During fMRI, a counterfactual
decision-making task with reversals of reward contingencies was employed. Out of two options,
subjects had to find the stimulus with the higher reward probability (of 80%) in order to gain
monetary reward. Crucially, this task implemented a higher-order structure: whenever one of
the stimuli was the good one, the other one would be the worse (Hampton et al, 2006). Even
though feedback for the unchosen option is not delivered, the agent can infer from feedback
gained for the chosen option what would have happened if he had chosen the other stimulus. By
the use of computational modeling, it can be dissected how much individuals use this
information derived from abstract inference. Comparing alcohol-dependent patients with
healthy controls, choice behavior in the patient group was best explained by a more simplistic
Reinforcement Learning algorithm, which neglects alternative choice options. This was due to
reduced updating of the alternative options after punishment. Decision-making in healthy
volunteers was best explained by an algorithm which quantifies inter-individual differences in

the extent to which individuals update alternative choice options. Modeling-based fMRI analysis
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revealed that alcohol-dependent patients showed reduced representation of abstract inference
signals in the medial prefrontal cortex - a key region implied in healthy and disrupted model-
based control (Daw et al.,, 2011). No difference was found regarding neural signals of model-free
decision-making.

Study 2 adopted the same study design and experiment as in study 1 and translated it to
patients suffering from binge eating disorder. As alcohol addiction, binge eating disorder is a
psychiatric condition characterized by loss of control over one’s behavior; during recurrent
episodes of binge eating subjects experience the feeling that they cannot stop eating, despite
negative consequences like a high risk for obesity. binge eating disorder is a newly recognized
diagnosis first included in DSM-5 (American Psychiatric Association, 2013). Sometimes the
disease is referred to as food addiction (Smith & Robbins, 2013; Volkow et al, 2013), but
neurocognitive research on the disorder has been relatively scarce rendering the clinical
phenotype poorly defined (Ziauddeen et al., 2012). Using counterfactual decision-making, we
revealed that binge eating patients showed impaired behavioral adaptation in a dynamically
changing environment. Computational Modeling showed that, other than the alcohol-dependent
patients, individuals suffering from binge eating disorder were not impaired in the ability to
update alternative choices. However, binge eating patients showed a disadvantageous bias
towards explorative decisions. Modeling-based fMRI analysis revealed reduced abstract
inference signals in medial prefrontal cortex, interestingly, at close-by coordinates as found for
alcohol-dependent patients in study 1. This neural signal was indeed positively correlated with
behavioral adaptation and negatively related to exploration behavior. No difference between
patients and controls was found with respect to model-free learning signals. Moreover, we
identified reduced anterior insula / ventrolateral prefrontal cortex signals as a neural correlate
for the enhanced tendency to explore in binge eating disorder.

The aim of study 3 was to identify neural abstract inference signals, which had been
found reduced in patients in study 1 and 2, using EEG. Adopting a modeling-based EEG analysis,

it was asked whether an event-related potential associated with prediction error processing, the
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Feedback-Related Negativity (FRN), codes these abstract inference signals. Indeed, we could
show that the FRN implements what might have happened. This finding complements theories
about the role of the FRN in behavioral adaptation, which is controversially discussed in the
literature. Moreover, this result opens up new ways to study research questions like in study 1
and 2 via EEG. As EEG is more feasible as compared to fMR], this might facilitate studying large
sample sizes in special populations, for example, psychiatric patients. Moreover, EEG is
advantageous with respect to temporal resolution, which is relevant for studying learning
processes.

Studies 4-6 probed behavioral control in risk factors for addiction using sequential
decision-making (Daw et al.,, 2011). Sequential decision-making enables to dissect goal-directed,
model-based from habitual, model-free control strategies. It tests the use of a previously trained
transition matrix while subjects are confronted with a sequential (i.e., involving multiple steps)
decision-making problem. Using the transition matrix would correspond to a model-based
strategy. Previous research had shown that subjects suffering from disorders of the impulsive-
compulsive spectrum, including alcohol addiction and binge eating disorder, are impaired in
model-based behavior (Sebold et al., 2014; Voon et al.,, 2015). Studies 4-6 asked whether a shift
from model-based towards model-free control constitutes a vulnerability factor for addiction.

To this end, study 4 examined healthy high vs. low impulsive individuals using a
sequential decision-making task during fMRI. We did not find evidence for reduced model-based
control, but observed a slight attenuation of the model-free system in high impulsive individuals.
On the neural level, we revealed reduced model-based signatures in lateral prefrontal cortex.

Study 5 is a behavioral study, probing the balance of model-based and model-free control
in healthy adult individuals with an alcohol-dependent father. No evidence for reduced model-
based or enhanced model-free control could be detected. However, independent of family
history of alcohol dependence, an interaction effect of the risk factors impulsivity and cognitive
functioning on model-based control was revealed. In a re-analysis of the data from study 4, this

interaction was replicated.
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Study 6 asked whether individuals exposed to acute and chronic stressors shift from
model-based towards model-free behavior during sequential decision-making. Whereas no
effect of acute stress (as experimentally induced via public speaking, Kirschbaum et al., 1993)
per se could be revealed, physiological stress reactivity in terms of cortisol responding towards
the acute stressor correlated negatively with the expression of model-based control. Subjective
stress reactivity measured via ratings correlated positively with model-based behavior.
Furthermore, we found evidence that the interaction of acute and chronic stress impairs model-
based behavior: only in individuals with a high load of stressful life events, a reduction of model-
based control in response to the acute stressor was observed.

The aim of this thesis was to elucidate shared and differential mechanisms of behavioral control
in alcohol addiction, in binge eating disorder, a putatively addiction-like disorder, as well as in
risk factors for addiction. Altogether, the presented findings indicate reduced goal-directed
control in both, alcohol addiction and binge eating disorder, on the behavioral as well as the
neural level. In both populations, model-free signals were found preserved. By the use of
computational modeling techniques, partially differential pathways leading to this similar
behavioral and neural alterations could be dissected: alcohol-dependent patients displayed a
failure to integrate alternative choice options in their decisions after punishment, while patients
suffering from binge eating were characterized by a disadvantageous bias towards explorative
choices. The shared finding of reduced medial prefrontal cortex learning signals in both patient
groups suggests this region as a transdiagnostic convergence point essential for monitoring
behavioral control. Regarding risk factors of addiction, findings of study 4-6 were qualitatively
different to observations in populations suffering from addiction or other disorders from the
impulsive-compulsive spectrum (Sebold et al, 2014; Voon et al., 2015). The observed interaction
effects between cognition and impulsivity, as well as acute and chronic stress, suggest a multiple
hits account for vulnerability factors impeding model-based control not alone, but in interaction

with each other.
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Findings of the thesis call for longitudinal designs including large sample sizes and involving
detailed phenotyping of potential risk factors. This could have the potential to replicate
presented findings and to validate them with respect to their clinical relevance in prospective
study designs. Further, the demonstration of abstract inference learning signals via EEG could
prove fruitful for the purpose of gathering large sample sizes due to the feasibility of EEG.
Stimulated by the findings at hand, tracking goal-directed behavioral control and its neural
correlates from vulnerability over development and potential remission of addiction or
addiction-like disease is an important target for future studies; this will eventually offer causal
insight into the question of why people repeat certain behaviors, despite devastating

consequences.
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13 Zusammenfassung

Warum tun wir immer wieder Dinge, von denen wir wissen, dass sie schlecht fiir uns sind?
Theorien der Verhaltenskontrolle unterscheiden zwischen zwei Systemen, die Verhalten
steuern: Es wird ein reflexives, habituelles System und ein reflektives, zielgerichtetes System
beschrieben (Balleine & Dickinson, 1998; Daw et al.,, 2005; Dolan & Dayan, 2013). Das habituelle
System agiert retrospektiv, indem es auf Entscheidungswerte zuriickgreift, die durch
Belohnungen in der Vergangenheit erworben wurden. Dabei kann es sein, dass diese alten
Entscheidungswerte nicht mehr dem Wert der aktuellen Konsequenzen einer Handlung
entsprechen. Dementsprechend kann der Riickgriff auf diese Entscheidungswerte zu einer
Handlung mit unerwiinschten Folgen fithren. Das habituelle System arbeitet in hohem Mafe
automatisch und ressourcensparend. Diese Effizienz geht jedoch mit geringerer Flexibilitat
einher, wenn Verhalten an Umweltbedingungen angepasst werden muss. Im Gegensatz zum
habituellen System plant das zielgerichtete System vorausschauend, indem es mental die
moglichen Konsequenzen verschiedener Handlungsoptionen simuliert. Dies beansprucht in
hohem Mafle kognitive Ressourcen. Es ermoglicht dem Individuum jedoch sich schnell und
flexibel an verdanderte Umweltbedingungen anzupassen. Entscheidungsverhalten ist bei
gesunden Individuen durch beide Systeme gepriagt (Daw et al, 2011): Um zu optimalen
Entscheidungen zu kommen, wird ein Gleichgewicht zwischen dem schnellen, automatischen
habituellen und dem langsamen, aber flexibleren, zielgerichteten System gehalten. Diese 2-
System-Theorie wurde in den letzten Jahren durch computationale Ansétze erweitert (Dolan &
Dayan, 2013): Mit aus der Informatik und dem Maschinellen Lernen entlehnten Konzepten
wurde habituelle Verhaltenskontrolle in sogenannten modellfreien Algorithmen und
zielgerichtete Verhaltenskontrolle in modellbasierten Algorithmen beschrieben. Diese
computationale Rekonzeptualisierung pragte die kognitiv-neurowissenschaftliche Forschung
auf dem Gebiet der Verhaltenskontrolle in den letzten Jahren nachhaltig. In fMRT-Studien
konnten modellfreie und modellbasierte neuronale Signale in medial- und lateral prafrontalen

Kortizes und im ventralen Striatum identifiziert werden.
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Sucht ist eine psychische Erkrankung, die durch nachteilige Entscheidungen gekennzeichnet ist:
Siichtige Individuen konsumieren weiter, obwohl sie wissen, welche schwerwiegenden
Konsequenzen fiir Gesundheit und Lebensfiihrung der Substanzkonsum mit sich bringt
(American Psychiatric Association, 2013). Moderne Suchttheorien greifen auf die oben
beschriebene 2-System-Theorie zuriick, um dieses nachteilige Entscheidungsverhalten zu
erklaren (Everitt & Robbins, 2005; Redish et al, 2008; Dayan, 2009a): Es wird angenommen,
dass Sucht auf ein gestortes Gleichgewicht zwischen habituellen (modellfreien) und
zielgerichteten (modellbasierten) Systemen zuriickgeht: Da bei Sucht eine Dominanz des
habituellen Systems vorliege, wahrend der Einfluss des zielgerichteten Systems reduziert sei,
wahle der Siichtige immer wieder Verhaltensweisen, die frither einmal belohnend waren, heute
jedoch schadlich sind.

Die vorliegende Arbeit untersucht diese Hypothese in einer Population von alkoholabhdngigen
Individuen. Zudem wird diese Hypothese um eine dimensionale Perspektive (Robbins et al.,
2012) erweitert: 1) durch die Untersuchung einer weiteren Erkrankung, die durch den Verlust
iiber die Verhaltenskontrolle gekennzeichnet ist, der Binge Eating Stérung, und 2) durch
Experimente, die verschiedenen Risikofaktoren fiir Sucht einschliefden, ndmlich Impulsivitat,
positiver Familienanamnese fiir Sucht, niedriges kognitives Funktionsniveau und Stress.

Es kommen dabei Techniken der computationalen Modellierung sowie funktionelle
Magnetresonanztomographie (fMRT) und Elektroenzephalografie (EEG) zum Einsatz, um
interindividuelle Unterschiede im Verhalten und den neuronalen Korrelaten von
Verhaltenskontrolle zu untersuchen.

Studie 1 untersucht die Frage, ob alkoholabhdngige Menschen in der Fahigkeit, aus alternativen
Wahlmoglichkeiten zu lernen (,was hatte sein kénnen“), beeintrachtigt sind. Diese Fahigkeit
fiktive Konsequenzen von nicht-gewdhlten Optionen in Entscheidungen einzubeziehen stellt
eine wichtige Funktion des zielgerichteten Systems dar. Um dies zu untersuchen, wurde
wahrend der fMRT-Messung eine kontrafaktische Entscheidungsaufgabe, in der sich die

Belohnungskontingenzen regelmaflig umkehren, genutzt. Um einen Geldgewinn zu erhalten,
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sollten die Probandlnnen aus zwei Stimuli immer den mit der hoheren
Belohnungswahrscheinlichkeit (80%) auswahlen. Dieser experimentellen Aufgabe ist eine
hohere Struktur inhdrent: Die hohere Belohnungswahrscheinlichkeit eines Stimulus ist dabei
mit der niedrigeren Belohnungswahrscheinlichkeit bei einem anderen Stimulus verkniipft.
(Hampton et al., 2006). So konnte die Versuchsperson aus der Konsequenz der Wahl eines
Stimulus (zum Beispiel Geldgewinn) auf die Belohnungswahrscheinlichkeit bei Wahl des
anderen (nicht gewahlten) Stimulus schliefen. Mit der Hilfe von computationalen Modellen
kann bestimmt werden, wie sehr die Versuchspersonen diese Informationen (,was hitte sein
konnen“) nutzen. So konnte gezeigt werden, dass das Verhalten der Patientlnnengruppe am
besten durch ein einfacheres Lernmodell erklart wurde, in dem die alternative Wahlmaglichkeit
nicht berticksichtig wird. Dies war zuriickzufiihren auf ein reduziertes Beachten der alternativen
Optionen nach Bestrafung. Die gesunden KontrollprobandInnen hingegen bezogen fiktive
Information dariiber was hitte sein konnen in ihre Entscheidungen mit ein. Die fMRT-Analyse
konnte zeigen, dass alkoholabhdngige Patientlnnen die zielgerichteten Lernsignale, die
Riickschluss auf die alternative Option beinhalten, verringert neuronal reprasentieren. Dieses
Defizit wurde im medialen prafrontalen Kortex gefunden, der fiir modellbasierte
Verhaltenskontrolle essentiell ist (Daw et al., 2011).

In Studie 2 wurde dasselbe Experiment wie in Studie 1 genutzt, um Patientlnnen mit Binge
Eating Stoérung zu untersuchen. Diese Storung ist, wie Substanzabhangigkeit, gekennzeichnet
vom Verlust der Kontrolle iiber eigene Verhaltensweisen. Beispielsweise koénnen die
PatientInnen wahrend der wiederkehrenden Essanfille nicht mit dem Essen aufhéren. Die Binge
Eating Storung wurde erst vor kurzem als eigenstandige psychische Stérung anerkannt und in
die neueste Auflage des Diagnostisch Statistischen Manuals aufgenommen (American Psychiatric
Association, 2013). Die Binge Eating Stérung wird manchmal als Esssucht bezeichnet (Smith &
Robbins, 2013; Volkow et al,, 2013). Neuro-kognitive Forschung gibt es bislang jedoch wenig.
Der Kklinische Phéanotyp wird deshalb als nicht ausreichend definiert kritisiert (Ziauddeen et al.,

2012). Um hierzu einen Beitrag zu leisten, wurde in Studie 2 die Verhaltensanpassung bei
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Patientlnnen mit Binge Eating Stérung mit dem oben beschriebenen kontrafaktischen
Entscheidungsexperiment untersucht. Dies zeigte verschlechterte flexible Verhaltensanpassung
bei Binge Eating Patientlnnen. In einem weiteren Analyseschritt wurden Parameter aus der
computationalen Modellierung zwischen PatientInnen und KontrollprobandInnen verglichen.
Dabei konnte demonstriert werden, dass das behaviorale Defizit, anders als bei den
alkoholabhédngigen Patientlnnen aus Studie 1, nicht darauf zuriickzufiihren war, dass Binge
Eating PatientInnen alternative Wahlmoglichkeiten vernachlassigten. Binge Eating PatientInnen
waren hingegen durch nachteilige explorative Verhaltenstendenzen gekennzeichnet. Die
modellierungsbasierte fMRT-Auswertung zeigte reduzierte zielgerichtete Lernsignale im
medialen préfrontalen Kortex, und das in einer dhnlichen Region wie in Studie 1 bei den
alkoholabhéngigen PatientInnen. Dieses neuronale Korrelat korrelierte positiv mit erfolgreicher
Verhaltensanpassung und negativ mit Explorationsverhalten. Binge Eating PatientInnen zeigten
ein reduziertes neuronales Korrelat von explorativen Entscheidungen in der anterioren Insel
und dem ventrolateralen prifrontalen Kortex. Es konnte kein Unterschied zwischen
Patientlnnen und Kontrollgruppe hinsichtlich einfacher, modellfreier Lernsignale festgestellt
werden.

Ziel von Studie 3 war, die bei PatientInnen reduzierten zielgerichteten Lernsignale (Studie 1 und
2) mit der Methode der EEG nachzuweisen. In einer modellierungsbasierten EEG Analyse konnte
nachgewiesen werden, dass ein ereigniskorreliertes Potenzial, die sogenannte Feedback-Related
Negativity (FRN), Lernsignale mit der Information dariiber was hdtte sein kénnen kodiert. Diese
Ergebnisse erweitern Theorien liber die Rolle der FRN fiir Verhaltensanpassung, die in der
Literatur kontrovers diskutiert wird. Dariiber hinaus helfen diese Ergebnisse, Forschungsfragen
wie in Studie 1 und 2 in groflen Fallzahlen von speziellen Populationen (z.B. psychiatrischen
Patientlnnen) zu untersuchen, da EEG im Vergleich zu fMRT leichter durchfiihrbar und flexibler
einsetzbar ist.

In Studie 4-6 wurde Verhaltenskontrolle bei Personen mit Risikofaktoren fiir Suchtentwicklung

untersucht. Dabei kam eine sequentielle Entscheidungsaufgabe zum Einsatz (Daw et al,, 2011;

191



Sebold et al., 2014). Mit der Hilfe von sequentiellen Entscheidungsaufgaben kénnen modellfreie
von modellbasierten Verhaltensweisen unterschieden werden: es wird {iberpriift, ob
Probandlnnen eine vorab gelernte Transitionsregel nutzen, wenn sie mit mehrschrittigen
Entscheidungsproblemen konfrontiert sind. Das Anwenden dieser Regel entspricht dabei einer
modellbasierten Strategie. In vorangehenden Studien konnte gezeigt werden, dass Patientlnnen,
die an einer psychischen Stérung vom impulsiven-kompulsiven Spektrum (z.B.
Alkoholabhédngigkeit und Binge Eating Storung) leiden, reduziertes modellbasiertes Verhalten
an den Tag legen (Sebold et al.,, 2014; Voon et al., 2015). In den Studien 4-6 wurde untersucht, ob
reduziertes modellbasiertes Verhalten und erhdhtes modellfreies Verhalten auch bei
Risikopopulationen von Sucht gefunden werden kann und so einen Vulnerabilitatsfaktor
darstellt.

In Studie 4 wurden deshalb gesunde, hoch- und niedrig impulsive Individuen mittels einer
sequentiellen Entscheidungsaufgabe wahrend der fMRT untersucht. Hierbei konnte kein
Hinweis auf eine Reduktion des modellbasierten Systems bei hoch impulsiven Individuen
gefunden werden. Es wurde jedoch eine leichte Erh6hung des modellfreien Systems festgestellt.
In der fMRT-Analyse zeigten sich bei hoch impulsiven im Vergleich zu niedrig impulsiven
Individuen reduzierte modellbasierte Signale im lateralen prafrontalen Kortex.

In der rein behavioralen Studie 5 wurde mit einer sequentiellen Entscheidungsaufgabe
modellbasiertes und modellfreies Verhalten bei gesunden, erwachsenen Individuen mit
alkoholabhdngigem Vater untersucht. Es ergaben sich keine Hinweise auf reduzierte
modellbasierte oder erhohte modellfreie Verhaltenskontrolle. Unabhdngig von positiver
Familienanamnese konnte jedoch ein Interaktionseffekt des Risikofaktors Impulsivitdt mit dem
kognitivem Funktionsniveau auf modellbasierte Kontrolle beobachtet werden. In einer
Reanalyse der Daten aus Studie 4 konnte dieser Interaktionseffekt repliziert werden.

Studie 6 beschiftigte sich mit der Fragestellung, ob akuter und chronischer Stress dazu fiihrt,
dass das Verhalten in einer sequentiellen Entscheidungsaufgabe weniger modellbasiert und

starker modellfrei gepragt ist. Akuter Stress wurde experimentell durch eine Vortragssituation
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induziert (Kirschbaum et al,, 1993). Ein Effekt von akutem Stress per se auf Verhaltenskontrolle
konnte nicht beobachtet werden. Physiologische Stressreaktivitit (Kortisolreaktion auf
Stressor) korrelierte negativ. mit modellbasiertem Verhalten, wahrend subjektive
Stressreaktivitit (Fragebogenratings) positiv mit modellbasiertem Verhalten assoziiert war.
Ferner konnte gezeigt werden, dass die Interaktion von akutem und chronischem Stress
modellbasierte Kontrolle beeintrachtigt: Lediglich bei Individuen, die ein hohes Maf} an
stressbehafteten Lebensereignissen berichteten, konnte eine Reduktion von modellbasiertem
Verhalten nach Exposition an den akuten Stressor gefunden werden.

Gegenstand dieser Arbeit war es, geteilte und differentielle Mechanismen der
Verhaltenskontrolle bei Alkoholabhdngigkeit, Binge Eating Storung als vermeintlich
suchtdhnlicher Stérung und bei Menschen mit Risikofaktoren fiir Sucht zu untersuchen.
Zusammenfassend kann festgestellt werden, dass in beiden untersuchten Patientlnnengruppen,
sowohl auf der Verhaltensebene als auch neuronal, reduzierte Korrelate zielgerichteten
Verhaltens nachgewiesen wurden. In beiden Gruppen wurde keine Verdnderung hinsichtlich
einfacherer, modellfreier Lernsignale festgestellt. Durch computationale Modellierung konnten
teilweise unterschiedliche Mechanismen identifiziert werden, die zu diesen zunichst dhnlich
erscheinenden behavioralen und neuronalen Verdnderungen fithren. Alkoholabhangige
Patientlnnen zeigten nach Bestrafung eine reduzierte Fahigkeit, alternative Optionen in ihre
Entscheidungen einzubeziehen, wahrend das Entscheidungsverhalten von Binge Eating
PatientInnen durch eine unvorteilhafte Erhohung von explorativem Verhalten gekennzeichnet
war. Der iiber beide Patientlnnengruppen gemeinsame Befund reduzierter zielgerichteter
Lernsignale im medialen prafrontalen Kortex lasst den Riickschluss zu, dass es sich beim
medialen prafrontalen Kortex um eine transdiagnostische Konvergenzzone handelt, die
essentiell ist, um Verhaltenskontrollprozesse zu steuern, und deren Fehlfunktion den Verlust
iiber die Kontrolle des eigenen Verhaltens zur Folge haben kann. Hinsichtlich der Risikofaktoren
fiir Sucht kann zusammengefasst werden, dass die Befunde in den Risikogruppen qualitativ

unterschiedlich zu den Ergebnissen in PatientInnenstudien sind (Sebold et al,, 2014; Voon et al,,
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2015). In den vorliegenden Studien konnten mehrfach Interaktionseffekte von verschiedenen
Risikofaktoren auf modellbasiertes Verhalten festgestellt werden. Dies deutet darauf hin, dass
nicht einzelne Risikofaktoren alleine die Verhaltenskontrolle beeintrachtigen, sondern dies im
Zusammenwirken mit dem Auftreten anderer Faktoren geschieht.

Aus den vorliegenden Ergebnissen lasst sich ableiten, dass Verhaltenskontrolle innerhalb von
Langsschnittstudien in hohen Fallzahlen abgebildet werden sollte. Das Ziel ware eine detaillierte
Abbildung von vielen potenziellen Risikofaktoren und deren Zusammenwirken im Hinblick auf
die Entwicklung von Verhaltenskontrolle bis hin zu Stérungen der Verhaltenskontrolle. Hierfiir
konnte anhand der Ergebnisse aus Studie 3 die EEG eine geeignete und realisierbare Methode
sein, um neuronale Mafle auch in hohen Fallzahlen zu akquirieren. Um Kkausale
Erklarungsansatze iiber die Ursachen fiir die Fortsetzung mittel- oder langfristig schiadigenden
Verhaltensweisen bei gleichzeitig vorhandenem Wissen iiber die Konsequenzen entwickeln zu
konnen, sollte vertiefend die behaviorale und neuronale Entwicklung von Verhaltenskontrolle
iber den kompletten Prozess der Suchtentwicklung (Vulnerabilitdt, Entwicklung von Sucht-

oder suchtdhnlicher Erkrankung, Remission und potenzieller Riickfall) untersucht werden.

194



Supplementary Information
1. Supplementary Information for study 1 (SI-1)

Supplementary Methods and Materials

Participants. fMRI data were available of all 35 healthy participants and 34 patients, as 7 patients
met MRI exclusion criteria and fMRI datasets from two patients had to be excluded due to raw data
artifacts. Patients were recruited from an inpatient detoxification and rehabilitation program
(Soteria Clinic Leipzig). All patients were free of any psychotropic medication for at least four
plasma half-lives except for one patient taking doxepin due to sleeping problems. All subjects
underwent the Structured Clinical Interview for DSM 1V, Axis I disorders (First et al., 2001; SCID-I)
and patients additionally underwent a semi-structured interview on their individual addiction
history. All patients were diagnosed as alcohol-dependent according to DSM-V and ICD-10. Alcohol-
dependent patients did not meet criteria of any current comorbid psychiatric disorder. Included
control participants did not report any current nor past psychiatric disorder (SCID-I).

Measures of Addiction Severity. Addiction severity was assessed using 1) Time-Line-Follow-Back
Score (TLFB; Sobell, 1992), to assess alcohol units consumed in the month prior to treatment, 2)
Obsessive-Compulsive-Drinking Scale (OCDS; Anton et al., 1995), 3) Alcohol Craving Questionnaire
(ACQ; Tiffany et al, 2000), 4) Alcohol Use Disorder Identification Tests (AUDIT; Allen et al.,, 1997).
Neurocognitive Measurements. Alcohol dependence is known to be linked with a number of
cognitive deficits (Bates et al.,, 2002; Goldstein et al., 2004) which have recently been shown to be
associated with impaired model-based decision-making (Sebold et al, 2014).Therefore,
participants completed a battery of neurocognitive tests on the following domains: working
memory (Digit Span, Wechsler, 1955), cognitive speed (Digit-Symbol-Substitution Test, Wechsler,
1955), reasoning (Matrices Test, Amthauer, 1999), verbal 1Q (German vocabulary test, Schmidt &
Metzler, 1992), visual attention (Reitan Trail Making A, Reitan, 1955) and complex attention
(Reitan Trail Making B, Reitan, 1955). Results and group comparisons are summarized in Table S1-
1. We computed a factor analysis to extract composite measures of neurocognitive functioning.
Based on an Eigenvector cutoff of >1, a factor analysis with an oblique rotation (direct oblimin)
yielded a single factor solution, accounting for 59.61% of variance in the six tests obtained. The
composite measure of neurocognitive functioning was subsequently used as a covariate in control
analyses.

Task. In any of the 160 trials, participants decided between two cards each showing a different
geometric stimulus with a maximum response time of 1.5 sec. The location (right vs. left side of the
screen), where each of the stimuli appeared, was randomized over trials. After the participant had
chosen one stimulus by button press (left vs. right button) the selected stimulus was highlighted
and depicted for 1.5 sec minus reaction time. Feedback was shown for 0.5 sec (monetary win vs.
monetary loss, indicated by a 10 Eurocent coin or a crossed 10 Eurocent coin, respectively). During
the intertrial interval, a fixation cross was presented for a variable duration (jittered and
exponentially distributed, range 1 sec - 12.5 sec). If no response occurred during the decision

window, the message “too slow” was presented and no outcome was delivered.

195



In an instruction and training session outside the MRI scanner prior to the experiment, participants
were informed that one of the two cards had a superior chance of winning money (probabilistic
nature of the task). They were told that depending on their choice they could either win 0.10€ or
lose 0.10€ per trial, that the aim was to win as much as possible and that the total amount of money
gained would be paid out at the end of the experiment. Participants performed 20 training trials
with a different set of cards and without any reversal of reward contingencies. Subsequently,
participants were instructed that reward probabilities could change over the course of the main
experiment and that they should track such changes to win as much money as possible.
Importantly, no other information or details on reversals or the anti-correlated task structure were
provided.

Computational Modeling: Tested models. First, the model-free SU-algorithm updates a decision value

Qg for the chosen stimulus via the RPE §,,, which is defined as the difference between the
received reward R, and the anticipated reward for the chosen stimulus Q, ,:

(1) 8, = Re — Qay

The RPE §,,,is used to iteratively update decision values of the chosen decision value trial-by-trial:
(2) Qqt+1 = Qo + by,

Here, a depicts the learning rate, which weights the influence of RPEs §,,,on the updated values. a
has natural boundaries between 0 and 1. Importantly, this model neglects the anti-correlated task
structure by only updating decision values for the chosen stimulus while the value of the
alternative, unchosen stimulus Q,,, ;remains unchanged:

(3) Quat+1 = Quay

Second, the DU-algorithm updates chosen and unchosen decision values in each trial. This takes
into account the anti-correlated structure of the task. In our modeling approach, this is captured by
additionally updating the unchosen decision values based on a different error signal, which
compares the fictive outcome that might have happened with the value of the unchosen option. The
RPE for the DU-model is:

(4) 5Qua,t = —R¢ = Quar

The same learning rate « is used for updating unchosen values:

(5) Qua,t+1 = Quae + @by,

Equation 5 gives the same weight to the update of unchosen decision values as to the chosen
decision values. Third, and in contrast, we assume that the degree of updating the alternative choice
option differs across individuals. To account for inter-individual variability regarding this process,
we additionally constructed a ‘hybrid’ model to quantify each individual’s degree of DU-learning.
This is provided by the parameter k, which weights the learning rate a for the unchosen RPE 8, , .-

(6) Qua,t+1 = Quae + KBg,,,

In the hybrid model, the RPE &, ,, is weighted by the product of the learning rate for the chosen
value and the weighting parameter k, where k = 0 reduces to the SU-Model and k¥ = 1 to the DU-
Model. Note that this results in lower learning rates for DU-learning, which is in line with the key
assumption that double-update learning is computationally costly.
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To verify whether a model with a dynamic learning rate captures the observed behavior better than
the DU algorithm with a fixed learning rate, we additionally tested a RL-model featuring gain
adaptation by a variable learning rate. The Sutton-K1 model was introduced to combine dynamic
learning rate methods with ideas from Kalman filtering and least square methods (Sutton, 1992)
and was previously discussed and used as a non-hierarchical approximation for a dynamic learning
rate (Chumbley et al., 2012; Kepecs & Mainen, 2012; Landy et al., 2012; Iglesias et al., 2013). In this
model, the values are equivalently updated via prediction errors as in equations (1) and (2). The
dynamic learning rate is transformed with a logistic function to remain in boundaries between 0

and 1:

N a, =

This is initialized with ¢ =0 corresponding to an initial learning rate of .5. The update of « for the next
trial depends on the change in reward prediction errors where

(8) us1=1(t) + ud,

and

(9) hts1 = (he + ar+ 6Qar) * max((1 — ar),0)

u given in (8) is a free parameter which controls the individual degree of dynamic update of the
learning rate. (8 is a sensitivity parameter of the learning rate, controlling the influence of the RPE of
the last trial on a trial-by-trial basis as a function of u.

Decision model. For all models, decisions are transformed into action probabilities by applying a
softmax equation. The softmax equation includes the temperature f, which reflects the
stochasticity of the choices; a’ indicates all available choice options:

_ _ exp(Be@)
(10] p(at) - Ea’ exp(BQ(a’))

Learning from rewards versus punishments. We also aimed to test the hypothesis whether a
potential deficit of alcohol-dependent patients in DU-learning differs specifically as a function of
learning from rewards versus learning from punishments in our task. In our models, we account for
this by estimating separate learning rates and temperatures for reward and punishment @rew, @pun
and frew, Bpun, respectively.

Model fitting. Fitting was performed in the same Bayesian framework as introduced in (Huys et al.,
2011; Huys et al., 2012). To infer the maximum-a-posteriori estimate MAP of parameters 6 for each
individual 7, we use a Gaussian prior with mean and variance p and c:

MAP, = argmax 10gp(Y| 0) p(6|y, o)
where Y represents the data in terms of actions Ai per subject i. We set priors empirically to the

maximum likelihood estimates ML of p and o given the data by all subjects included:

ML; = argmaxlog p(Y| 0)

8Note that this parameter is called S in the original publication which we here change to ¢ because

is used throughout the main manuscript to refer to the temperature in the decision model.
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and achieve this by using Expectation-Maximization. Constrained parameters were transformed to
a logistic (alphas, kappa) or exponential (beta) distribution to enforce constraints and to render
normally distributed parameter estimates. All modeling analyses were performed using Matlab
2010b. This method was introduced and in-depth discussed in (Huys et al,, 2011; Huys et al.,, 2012),
was employed in several studies (Schlagenhauf et al, 2013; Deserno et al,, 2015b; Huys et al,
2015a) also in between-group designs (Chowdhury et al.,, 2013; Deserno et al, in press) including
patient studies (Deserno et al, 2014; Schlagenhauf et al, 2014). It should be noted that the
empirical prior mainly serves to mildly regularize parameters at the population level. As this was
done based on the data of all participants, this renders between-group parameters valid.

Model comparison. For all models, we approximate the model evidence by integrating out the free
parameters. This integral was approximated by sampling from the empirical prior distribution
(Huys et al., 2011; Huys et al,, 2012). Then, this integrated or marginal likelihood was submitted to
a random-effects Bayesian model selection procedure (spm_BMS function contained in SPMS,
Stephan et al,, 2009). The resulting exceedance probabilities XP show which model best accounts
for behavior in each population. As this powerful technique is a relative comparison, we further
show the validity of the inferred parameter by running simulations of the task based on the
inferred parameters. Indeed, this reproduced the observed choice behavior well (S-Figure 1-2).

MRI data acquisition. Functional imaging was performed using a 3 Tesla Siemens Trio scanner to
acquire gradient echo T2*-weighted echo-planar images with blood oxygenation level dependent
contrast. Covering the whole brain, 40 slices were acquired in oblique orientation at 20° to the AC-
PC line and in ascending order with 2.5-mm thickness, 3x3mm? in-plane voxel resolution, 0.5-mm
gap between slices, TR=2.09s, TE=22ms, flip angle a=90°. Prior to functional scanning, a field
distortion map was collected to account for individual homogeneity differences of the magnetic
field. Additionally, T1-weighted anatomical images were acquired.

Preprocessing  of fMRI  data. For fMRI  data analysiss, we used SPM8
(http://www.filion.ucl.ac.uk/spm/software/spm8/). Images were corrected for delay of slice time
acquisition. Voxel-displacement maps were estimated based on acquired field maps. In order to
correct for motion, all images were realigned and additionally corrected for distortion and the
interaction of distortion and motion. The images were spatially normalized to the Montreal
Neurological Institute (MNI) space using normalization parameters generated during the
segmentation of the individual T1-weighted structural image (Ashburner & Friston, 2005);
thereafter, all images were spatially smoothed with an isotropic Gaussian kernel (6mm full width at
half maximum).

Statistical analysis of functional MRI. Based on each individual’s set of parameters identified during
model fitting (random-effects parameters), we computed regressors for the statistical analysis of
fMRI data. Using the general linear model approach (GLM) as implemented in SPM8, smoothed
images were analyzed in an event-related manner. At the first level, onsets of feedback were
entered into the model and convolved with the canonical hemodynamic response function and
modulated parametrically by two trial-by-trial regressors from our modeling analysis: First, RPEs

for chosen values were computed on basis of the SU-Model with k = 0 (Model-free learner, RPEsu).
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Second, RPEs for chosen values were computed based on the DU-Model with k = 1 (RPEpu). Missing
trials were modeled separately. To account for possible confounds due to movement, we included
the six realignment parameters, the first temporal derivative of the translational realignment
parameters and a further regressor censoring scan-to-scan movement higher than 1mm.
Voxel-based Morphometry. Each subject’s anatomical T1-weighted image was segmented into
different tissue classes using the unified segmentation approach implemented in SPM8 (Ashburner
& Friston, 2005). Modulated images of gray matter density were smoothed using an isotropic
Gaussian kernel (6mm full width at half maximum) and subjected to a random-effects model. The
volume of gray matter, white matter and CSF tissue classes were summed in order to gain an
individual estimate of total intracranial volume, which was entered as covariate in between-group
comparisons. As there is strong evidence for pronounced cortical gray matter density loss in
alcohol-dependent individuals (Beck et al, 2012), we first tested for differences in gray matter
density between patients and control group. The patient group was characterized by significantly
reduced gray matter density (FWE-corrected for the whole brain p<.05) predominantly in a large
cluster covering the cingulate cortex (see S-Table 1-7 and S-Figure 1-4). Second, in order to control
for differences in gray matter density as a potential confound of our fMRI results, we extracted gray
matter density from two regions of interest: (1) based on the fMRI analysis, the conjunction of both
RPEs across the entire sample (thresholded at p-FWE <.05), (2) an anatomically predefined mask of
combining frontal lobe and cingulate cortex (obtained from aal templates, WFUPickAtlas Toolbox).
Supplementary Results

Supplementary Raw Data Results. Following a reviewer’s suggestion, we tested whether specifically
patients acquire values but fail to reverse by analyzing correct responses as a function of stimulus
(initially correct vs. post-reversal correct). An ANOVA with the between factor group and the within
factor stimulus (including 15 trials respectively, to render realizations per stimulus equal) revealed
a main effect of the factor stimulus (F=24.11, p<.001) and a main effect of group (F=11.61, p=.001),
but, importantly, no interaction effect between the two factors (F=1.52, p=.22). The latter missing
indication for a group x stimulus interaction points against a simple effect of perseveration
regarding the value acquired for stimulus with an initially high reward probability as an account of
the behavioral impairment observed in patients.

Model Simulation of Behavior. We simulated choices of the used RL-models by setting K =0 (SU-
model), K =0.5 (hybrid model) and Kk =1(DU-model), in 1000 simulations, respectively and
confirmed superiority of the hybrid model in terms of correct choices (S-Figure 1-1).

Model space. In the main manuscript, we report four models (SU, DU, hybrid, Sutton K1). The first
three of these contained separate learning rates as well as separate temperature parameter in the
softmax decision model for reward and punishment. Beforehand, we had systematically varied the
influence of reward and punishment trials on learning rates in a 2x2 fashion. We verified by
Bayesian Family Selection that the models containing both, separate learning rates for reward and
punishment outperform models without this distinction (exp_r=.75, XP=.99). In a likewise manner,
models with separate temperatures for reward and punishment outperform models without this

distinction (exp_r=.93, XP=1).
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Model Selection: Relative Model fit. Observed group differences in model evidences indicated that
patients were best explained by the model-free Single-Update Model, whereas controls were best
explained by the Hybrid Model, which includes individual variability regarding abstract inference
on the alternative choice. We additionally confirmed that these results were robust against
excluding n=7 participants who were not fitted better than chance (as indicated by a non-
significant binominal test): Exceedance Probabilities for controls XPuybria=.98, XPpy=.002, XPsy=.02,
Exceedance Probabilities for patients XPuybrid=.32, XPpu=.003, XPsy=.68.

Further, we verified that these group differences were not driven by a small subgroup of patients.
Looking at individual relative model fit, 25 of 35 healthy controls were better explained by the
hybrid model than by the SU-Model, 25 of 43 patients were better explained by the SU than by the
hybrid model. It is worth mentioning that while relative model fit indicated that patients were
explained comparably better by the SU-model than by the hybrid model, in terms of absolute model
fit, the hybrid model notwithstanding was able to explain the same majority of alcohol-dependent
patients better than chance (n=37) as participants who were fit poorly were not fit by any model.
Model Selection: Absolute Model fit. To verify that the models explain actually observed behavior
better than chance, we calculated a so-called predictive probabilities based on the negative
loglikelihood (Daw, 2009), derived by exponentiating the average log likelihood per trial. Predictive
Probabilities indicate how many of the observed data points can be accounted for by the inferred
parameters. See S-Table 1-4 for results. Using a binominal test, we verified that individual
predictive probabilities were significantly higher than chance. This resulted in n=7 participants
which were not fitted better than chance by any of the models, meaning that 90% of the total
sample and still 85% of the patient group was explained significantly better than chance by each of
the models fit to the data. See S-Figure 1-3 for an illustration based on each individual’s negative log
likelihood. In line with this observation of appropriate model fit, adjusted McFadden’s Pseudo R?
for the hybrid model was .52, .60 for controls and .46 for patients.

Between-Group comparison of modeling-inferred parameters. We verified that the group difference
on the double-update weighted learning rate was robust against excluding participants that were
not fitted better than chance by any of the models. This was indeed the case (F=4.90, p=.03).
Analysis of simulated choice data. We were interested in whether the model replicates observed
group differences on choice behavior (correct choices, win-staying, repetition of punished actions).
Thus, we analyzed the choices simulated by the model (S-Figure 1-2) in the same manner as the
original, empirical data. Hypotheses were directed, as we were interested in the replication of the
empirically found effect. Thus, one-tailed tests were used. The model replicated the main effect of
group on correct choices (t=4.56, p<.001), as well as the group effect on win-stay rates (t=3.05,
p=.02) and on repetition behavior (t=1.76, p=.04). Inferred model parameters did not recover the
group X phase interaction observed in the raw data.

Between-Group comparison of neural Single-Updating vs. Double-Updating signals. We verified that
the result of significantly reduced coding of RPEpu signatures in patients in the medial prefrontal
cortex was robust against excluding participants that were not fitted better than chance by any of

the models. Indeed, when excluding these n=7 participants, the group difference remained
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significant (-10, 62, 12, t=4.24, FWE-corrected for the conjunction ppeak=.001; and -6, 56, 2 t=3.78,
FWE-corrected for the conjunction ppeak=0.011).

Analyses of Covariance: Computational Modeling Analyses. Entering Smoking status as an additional
between-factor in the MANOVA did not indicate a significant influence of the factor smoking (p=.18)
and did not change the group difference in the double-update punishment learning-rate (p=.03).
Gray matter density in fronto-limbic regions (as derived from the voxel-based morphometry
analysis, VBM) as a covariate in the MANOVA on modeling parameters did not alter the observed
results (group difference in double-update punishment learning p=.009). Including Gray matter
density in the functional VOI (conjunction of RPEsuy and RPEpy in the fMRI analysis) as a covariate in
the reported analysis on modeling parameters did not change the observed results neither (group
difference in double-update punishment learning p=.009). Likewise including the composite
measure of cognitive functioning in the MANOVA on modeling parameters did not change the group
difference in double-update punishment learning (p=.003). Controlling for depressive mood by
entering the BDI score as a covariate did not affect the reported results (group difference on the
DU-punishment learning rate (p=.03).

Analyses of Covariance: FMRI Analyses. Smoking status was entered as a covariate when testing for
the RPE type x group interaction. Inclusion of the covariate did not alter the observed results in the
medial prefrontal cortex (-10, 62, 12, t=4.0, FWE-corrected for the conjunction ppeak=.01); and
posterior cingulate cortex (0, -40, 32, t=3.72, FWE-corrected for the conjunction ppeak=.025). Akinly,
the post-hoc contrast was significant in the medial prefrontal cortex (-8, 62, 12, t=4.10, FWE-
corrected for the conjunction ppeak=.007; and -6, 56, 2, t=3.55, FWE-corrected for the conjunction
Preak=0.04,).

We included gray matter density (as derived from VBM) in the anatomically predefined region of
interest, in fronto-limbic parts of the brain as covariates when testing for the RPE type x group
interaction. Including the covariate in the analysis did not affect the observed group differences in
the medial prefrontal cortex (-10, 62, 12, t=3.96, FWE-corrected for the conjunction ppeax=.01); and
posterior cingulate cortex (0, -40, 32, t=3.71, FWE-corrected for the conjunction ppeak=.026).
Similarly, the post-hoc contrast remained significant in the medial prefrontal cortex (-8, 62, 12,
t=4.19, FWE-corrected for the conjunction ppeak=.003; and -6, 56, 2, t=3.79, FWE-corrected for the
conjunction ppeak=0.02).

Gray matter density values (as derived from VBM) in a functionally predefined region of interest
(conjunction of RPEsy and RPEpy in the fMRI analysis) were likewise included as a covariate, when
testing for the RPE type x group interaction. Inclusion of the covariate did not affect significance in
medial prefrontal cortex (-10, 62, 12, t=3.97, FWE-corrected for the conjunction ppeak=.01); and
posterior cingulate cortex (0, -40, 32, t=3.71, FWE-corrected for the conjunction ppeak=.026). Also
the post-hoc contrast remained significant in the medial prefrontal cortex (-8, 62, 12, t=4.35, FWE-
corrected for the conjunction ppeak=.003; and -6, 56, 2, t=3.76, FWE-corrected for the conjunction
Preak=0.02).

Next, we included the composite measure of cognitive functioning as a covariate when testing for

the RPE type x group interaction. Inclusion of the covariate did not alter the findings in medial

201



prefrontal cortex (-10, 62, 12, t=3.96, FWE-corrected for the conjunction ppeak=.01); and posterior
cingulate cortex (0, -40, 32, t=3.72, FWE-corrected for the conjunction ppeak=.021). Alike, the post-
hoc contrast remained significant in the medial prefrontal cortex (-8, 62, 12, t=3.82, FWE-corrected
for the conjunction ppeak=.02 and -6, 56, 2, t=3.59, FWE-corrected for the conjunction ppeax=.04).

To control for a possible influence of depressive mood on the observed results, we included the BDI
score as a covariate when testing for the RPE type x group interaction. This did not affect
significance in medial prefrontal cortex (-10, 62, 12, t=4.08, FWE-corrected for the conjunction
Preak=.01); and posterior cingulate cortex (0, -40, 32, t=3.72, FWE-corrected for the conjunction
Preak=.026). In line with our previous results, the post-hoc contrast remained significant in the
medial prefrontal cortex (-8, 62, 12, t=4.38, FWE-corrected for the conjunction ppeak=.003, and -8,
56, 0, t=3.90, FWE-corrected for the conjunction ppeax=.01).
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S-Table 1-1. Sample characteristics

Healthy Controls

Alcohol-dependent patients

Test statistic

Demographic characteristics

Age (35/43) M=42.00 (SD=10.49) M=44.42 (SD=10.21), t=1.03, p=.307
Gender (male/female,35/43) 25/10 34/9 Chi?=.434
Smokers (35/42) 16 33 Chi?*=.003
Handedness according to 32/3 33/5/1 Chi?*=.521
Edinburgh Handedness scale
(right/both/left, 35/39)
School leaving qualification 0/5/14/16 1/12/25/3 Chi*=.001
(none/ basic secondary
schooling/intermediate school
certificate/university entrance
qualification,35/41)
Total years of unemployment | M=0.9 (SD=1.58) M=4.54 (SD= 6.37) t=3.27, p=.002
(35/41)

Neuropsychological Measurements
Reasoning (Matrices) (35/41) | M=10.91(SD= 4.00) M=6.71(SD= 3.64) t=4.80, p<.001
Working Memory M=7.49 (SD=2.50) M=6.19(5D= 2.00) t=2.54, p=.013
(Backward Digit Span) (35/42)
Cognitive Speed (Trail Making | M=27.31 (SD= 14.44) M=38.82 (SD=18.10) t=-3.04, p=.003
A) (35/42)
Complex attention, M=62.84(SD= 28.59) M=101.82 (SD=79.52) t=2.75, p=.007
(Trail Making Test B) (35/42)
Cognitive speed (Digit Symbol | M=79.91(SD=18.38) M=60.85(SD= 16.14) t=4.81, p<.001
Substitution Test) (35/41)
Premorbid IQ (German M=31.74 (SD=3.38) M=24.20(SD= 6.96) t=5.85, p<.001
vocabulary test) (35/41)
Barrat Impulsiveness Scale M=59.96 (SD=10.03) M=65.81 (SD=9.18) t=2.80, p=.007
(35/42)

Clinical characteristics

Alcohol units (month before M=20.43 (SD=21.67) M=301.61 (§D=294.06) t=5.64, p<.001

participation/ treatment begin,
35/38)

Obsessive Compulsive Drinking
Scale (31/42)

M=3.65 (SD=3.86)

M=25.55 (SD=9.78)

t=11.80, p<.001

Alcohol Use Disorder
Identification Test (35/42)

M=4.26 (SD=3.18)

M=26.24 (SD=8.72)

t=14.14, p<.001

Alcohol Craving Questionnaire | M=1.3 (§D=0.38) M=2.04 (§D=0.88) t=4.42, p<.001
(34/42)

Duration of dependence - M=14.64 (5D=9.96) -

(years) (36)

Number of preceding - M=3.43 (§D=3.99) -
detoxification treatments (35)

Beck Depression Inventory M =5.09 (5D=6.32) M =13.59 (§D=10.02) t=4.24, p<.001

(33/41)
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S-Table 1-2. Model Selection Results. All models were compared using Bayesian Model Selection.

We report Exceedance Probabilities (XP), protected Exceedance Probabilities (pXP) and posterior

model probabilities (exp_r)

Single-Update Double-Update Hybrid Sutton K1
XP pXP exp_r XP pXP exp_r XP pXP exp_r XP pXP exp_r
Overall 11 .19 31 .00 15 .08 .89 .51 43 .00 15 .18
Controls .003 22 .18 .00 .20 12 .99 .39 .54 .00 .20 .16
Patients 93 .58 46 .00 .13 .07 .06 .16 27 .01 .13 .20
S-Table 1-3. Best fitting parameters of the hybrid model
Preward Pounish Ctreward Clpunish K Initial Q

25t All 3.53 0.80 0.27 0.19 0.03 -0.44
Percentile HC 3.35 0.98 0.41 0.30 0.04 -0.33

Patients 3.57 0.61 0.17 0.08 0.03 -0.51
Median All 4.18 1.38 0.59 0.49 0.09 -0.23

HC 4.52 1.74 0.59 0.47 0.12 -0.24

Patients 4.08 1.22 0.49 0.53 0.08 -0.22
75t percentile All 4.95 1.92 0.79 0.71 0.22 0.08

HC 4.99 2.48 0.75 0.73 0.25 0.07

patients 4.78 1.57 0.81 0.71 0.20 0.09
S-Table 1-4. Mean Predictive Probabilities per group and winning model

Single-Update Model Hybrid Model

Overall m=0.71, SD=.10 m=0.73, SD=.11
Healthy Controls m=0.76, SD=.10 m=0.77, SD=.10
Alcohol-Dependent Patients m=0.68, SD=.09 m=0.69, SD=.10
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S-Table 1-5. Neural signatures of single-update learning (RPEsu) for both healthy controls and

alcohol-dependent patients taken together at p<.05 FWE whole brain corrected.

Single-Update Signals

MNI coordinate Cluster size T p-FWE peak
Ventral Striatum -88-10 57 8.66 <0.001
Ventral Striatum 128-10 82 8.54 <0.001
Middle Orbital Gyrus 6 42 -8 201 7.89 <0.001
Middle Orbital Gyrus 8 60 4 6.18 | <0.001
Superior Medial Gyrus -10 64 12 80 6.00 0.001
Middle Orbital Gyrus -6 54 2 5.85 0.002
Anterior Cingulate Gyrus -6 44 6 34 6.10 0.001
Anterior Cingulate Gyrus -4 30 16 14 5.62 0.004
Middle Orbitofrontal Gyrus -24 32-16 20 5.55 0.006
Putamen -26 -6 6 21 5.62 0.004
Putamen 2602 17 5.53 0.006
Posterior Cingulate Gyrus 0-34 34 68 6.30 <0.001
Precuneus -4-50 16 29 5.55 0.006
Angular Gyrus -46 -70 34 17 5.46 0.008
Cerebellum -44 -74 -34 161 6.80 <0.001
Cerebellum 36-72-40 93 6.20 <0.001
Cerebellum 44 -72-32 5.49 0.008
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S-Table 1-6. Neural signatures of double-update learning (RPEsu) for both healthy controls and

alcohol-dependent patients taken together at p<.05 FWE whole brain corrected.

Double-Update Signals

MNI coordinate Cluster size | T p-FWE peak
Middle Orbital Gyrus -2 56 -4 2681 11.20 <0.001
Rectal Gyrus -6 44 -10 10.52 <.0.001
Inferior Frontal Gyrus -34 36-10 10.20 <0.001
Inferior Frontal Gyrus 34 36-12 86 6.77 <0.001
Superior Frontal Gyrus -12 48 36 190 6.65 <0.001
Superior Frontal Gyrus -18 38 50 5.79 0.002
Middle Frontal Gyrus -24 32 50 5.76 0.002
Insula -38 -2 14 37 5.88 0.001
Ventral Striatum. -6 8-10 386 7.43 <0.001
Ventral Striatum 10 12 -8 7.01 <0.001
Anterior Cingulate Cortex

2200 6.66 <0.001
Caudate 20 18 26 52 5.59 0.005
Hippocampus -30-12-18 188 7.61 <0.001
Hippocampus 32-28-10 5.88 0.001
Fusiform Gyrus -32-36-14 5.5 0.007
Hippocampus 38-24-14 52 6.44 <0.001
Fusiform Area 42-18-18 5.88 0.001
Posterior Cingulate Gyrus -2-42 32 1201 9.05 <0.001
Precuneus -6-54 18 8.7 <0.001
Posterior Cingulate Gyrus -4-52 26 8.14 <0.001
Middle Temporal Gyrus -50-70 22 180 6.23 0
Angular Gyrus -46 -72 32 5.96 0.001
Middle Temporal Gyrus -44-60 22 5.92 0.001
Middle Temporal Gyrus 58 -8-22 29 6.25 <0.001
Middle Temporal Gyrus -60-10-20 52 6.12 0.001
Superior Temporal Gyrus 68-22 14 17 5.3 0.016
Superior Temporal Gyrus 60-24 16 5.19 0.025
Temporal Pole 56 2 6 22 5.79 0.002
Operculum 44-20 20 40 5.67 0.004
Precentral Gyrus 42-16 62 69 6.14 <0.001
Postcentral Gyrus 40-26 58 5.07 0.038
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S-Table 1-7. Voxel-Based Morphometry: Group differences. Controls > alcohol-dependent patients

at FWE whole brain corrected p<.05.

Voxel-Based Morphometry

MNI coordinate Cluster size T p-FWE peak
Suppl Motor Cortex 2 448 523 7.60 <0.001
Superior Medial Gyrus 2 30 38 7.587.1 | <0.001
Middle Cingulate Cortex 012 38 1 <0.001
Superior Medial Gyrus 4 52 38 26 7.44 <0.001
Middle Cingulate Cortex 0-32 46 378 7.25 <0.001
Middle Cingulate Cortex 2-40 50 6.53 0.001
Precuneus 0-46 38 6.44 0.002
Precuneus 2-78 40 22 6.41 0.002
Anterior Cingulate -2 48 16 24 6.36 0.003
Frontal Pole 50 48 26 24 5.93 0.012
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Supplemental Figures

Simulated Correct
Choices (%)

0 50 Trials 100 150

Simulated Correct Choices (%)
S
25
[=]

0.50

pre-reversal reversal post-reversal

S-Figure 1-1. Simulation of correct choices, predicted by the RL-models applied. Choice behavior
was simulated 1000 times per model (k =0 (SU-model), k =0.5 (hybrid model) and k =1(DU-model).
Learning rates a were fixed to .5 and the decision noise f§ to 3, respectively.

Note that the advantage of double-update weighted learning is prominent in blocks that require
flexible behavioral adaptation. This is reflected by faster simulated adaptation after reversals (S-

Figure 1-1A) and also a higher average of simulated correct responses (S-Figure 1-1B).
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S-Figure 1-2. Simulation of Correct Responses on the basis of each individual’s inferred
parameters. Simulation of choice reproduced empirically observed choices (compare Figure 5-2),

with the exception of not recapturing the group by phase interaction observed in the empirical

data.
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S-Figure 1-3. Absolute model fit. The negative log-likelihood for the hybrid model of each
participant. Values closer to zero indicate better fit. Marked in red, we show participants that are fit
by the model not significantly better than chance by the model (binominal test). Red lines indicate

chance fit, which varies slightly based on the number of valid trials available.
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S-Figure 1-4. Group differences (controls > alcohol-dependent patients) in Voxel-Based-

Morphometry.
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2. Supplementary Information for study 2 (SI-2)

Supplemental Methods

Participants. All subjects underwent the Structured Clinical Interview for DSM 1V, Axis I disorders,
SCID-I (First et al., 2001). Healthy controls (HC) who were included did not report any current nor
past psychiatric disorder. Patients suffering from binge eating disorder (BED) were diagnosed
according to DSM-5 criteria by a psychologist using the German version of the structured Eating
Disorder Examination Interview (Hilbert et al, 2004). As Body-Mass-Index is not a diagnostic
criterion according to DSM-5, patients were included irrespective of their BMI (Dingemans & van
Furth, 2012). Participants who were included did not use any psychotropic medication. Due to raw
data artifacts, fMRI datasets from two participants (n=1 BED, n=1 HC) were excluded. For
demographic and clinical characteristics, see S-Table 2-1.

Neuropsychological testing. Behavioral control was shown to be linked to general cognitive
capacities (Otto et al.,, 2013b; Schad et al, 2014; Otto et al, 2015), which might relate to between-
group differences in patient studies (Sebold et al, 2014). Thus, participants underwent
neuropsychological testing in an independent session on the following domains: working memory
(Digit Span, Wechsler, 1955), cognitive speed (Digit-Symbol-Substitution Test, Wechsler, 1955),
reasoning (Matrices Test, Amthauer, 1999), verbal IQ (German vocabulary test, Schmidt & Metzler,
1992) visual attention (Reitan Trail Making A, Reitan, 1955) and executive functioning (Reitan Trail
Making B, Reitan, 1955). For results, see S-Table 2-2.

Task. Maximum response time was 1.5s. The displayed location (right vs. left) was randomized over
trials. After choice of one stimulus by button press, the selected card was highlighted for 1.5s minus
reaction time. Feedback (monetary win, 10 Eurocent vs. monetary loss, crossed 10 Eurocent) was
displayed for 0.5s. During the inter-trial interval, a fixation cross was shown for a variable duration
(jittered and exponentially distributed, range 1-12.5s, mean 2.5s). On average, trials were 4s long.
If no response occurred in time, no outcome but the message “too slow” was presented. Mean
number of missing trials was 1.14 ($SD=2.06, maximum: 9). No significant group difference on
missing trials was observed (¢=0.29, p>.77).

Prior to the experiment (outside the MRI scanner), participants were instructed to opt for the card
with the higher chance of winning. Depending on their choice, they could either win or lose 10
Eurocent per trial and the balance was paid to them at the end of the experiment. Participants were
informed that reward probabilities might change over the course of the main experiment. These
instruction slides did not provide details of reward probabilities, reversals nor of the task structure.
The instruction session included 20 training trials with a different set of cards and without any
reversal.

Computational Modeling of choice behavior. Different Reinforcement-Learning (RL-) models were fit
to the observed choice data: a model-free Single-Update (SU-) model, a full Double-Update (DU-)
model, and a third model that individually weights the degree of double-updating via a parameter

(iDU). In the following, we describe each model in detail accompanied by equations.
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First, the SU-algorithm updates a decision value @, for the chosen stimulus via the RPE §,, , which
is defined as the difference between the received reward R, and the anticipated reward for the
chosen stimulus Qg :
1) 6Qa}t = Ry — Qq;

The RPE §,,,is used to iteratively update decision values of the chosen decision value trial-by-trial:

(2) Qa1 = Quy + @by,
Here, a depicts the learning rate, which weights the influence of RPEs 5Qa’t0n the updated values. a
has natural boundaries between 0 and 1. Importantly, this model neglects the counterfactual task
structure by only updating decision values for the chosen stimulus while the value of the unchosen
stimulus @, ;remains unchanged:

(3) Quat+1 = Quar

Second, the DU-algorithm updates chosen and unchosen decision values in each trial. This takes the
counterfactual structure of the task into account. In our modeling approach, this is captured by
additionally updating the unchosen decision The RPE for the DU-model is:

(4) 5Qua,t = —R; — Quar

The same learning rate «a is used for updating unchosen values, thus, equation 5 gives the same
weight to the update of unchosen decision values as to that of chosen decision values:

(5) Quats1 = Quar + a‘SQua,,

Third, the iDU-algorithm assumes that the degree of updating the alternative choice option differs
across individuals. This is provided by the parameter x, which weights the learning a for the

unchosen RPE 6Qua,t:

(6) Quat+1 = Quae + Kabq,,,

Please note that the three models described are nested. In the iDU-model, the RPE BQHM is weighted
by the product of the learning rate for the chosen value and the parameter k, where k = 0 reduces
to the SU-Model and x = 1 to the DU-Model. This results in lower learning rates for DU-learning.
For the task at hand, as double-updating depends on abstract inference derived from feedback
actually experienced, updating the unchosen stimulus always relies on learning from feedback for
the chosen stimulus, that is, it is rather unlikely to be a process which is independent from updating
the chosen stimulus (compare (Li & Daw, 2011) for the identical implementation).

Additionally, we included a model with an adaptive learning rate, Sutton-K1 (Sutton, 1992). Sutton
K-1 was discussed and used as a non-hierarchical approximation of a dynamic learning rate
(Chumbley et al, 2012; Kepecs & Mainen, 2012; Landy et al, 2012; Iglesias et al, 2013). By
including it, we tested whether a dynamic learning rate captures the observed behavior generally
better than algorithms with a fixed learning rate. In this model, values are also updated via
prediction errors as in equations (1) and (2). Differently, learning rate a is dynamically updated as
a function of the change in prediction errors encountered (Sutton, 1992). The dynamic learning rate

is transformed with a logistic function to remain in boundaries between 0 and 1:

(N ar =

1
1+ exp(—t)
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This is initialized with ¢ =0 corresponding to an initial learning rate of .5. The update of ¢ for the next
trial depends on the change in reward prediction errors where

(8) ur1=1(t) + udg, e

and

(9) hts1 = (bt + @t 8Qar) * max((1 — av),0)

1 given in (8) is a parameter which controls dynamic update of the learning rate. ¢ is a sensitivity
parameter of the learning rate, controlling the influence of the RPE of the last trial on a trial-by-trial
basis as a function of . Again, note that this model is nested with RL-models with a constant
learning rate because setting =0 keeps o constant.

Decision model. For all models, decisions are transformed into action probabilities by applying a
softmax equation. This includes a parameter f, which reflects the stochasticity of the choices and
captures the exploration-exploitation dimension.

_ _exp(BQ@)
(M@ =5 o ge@n

Model Fitting. Models were fitted using the HGF toolbox 2.0 (Poldrack, 2006; Mathys et al,, 2011) as
part of TNU Algorithms for Psychiatry-Advancing Science (TAPAS,
http://www.translationalneuromodeling.org/tapas/). For priors on parameters of the learning
algorithm and the observation model (softmax), please see S-Table 2-3. The negative variational
free energy was maximized to gain a minimal Kullback-Leibler divergence, that is, the minimal
divergence between true (exact) and approximate posterior distribution (Friston et al,, 2007). For
optimization, a quasi-Newton optimization algorithm was applied. As an approximation to the log-
evidence, the negative variational free energy was subjected to random-effects Bayesian Model
Selection (BMS) for each model and each individual (Stephan et al., 2009). After comparison of best-
fitting modeling parameters between groups, we also controlled for the possibility that parameter
comparisons can be confounded by poor absolute model fit (Akam et al, 2015), namely that a
model cannot explain the data better than chance. This was done by looking at each individual’s
negative log-likelihood (the probability that the data is given by the parameters) relative to number
the number of trials. If this “percentage of explained trials” did not exceed .55, a subject was
classified as not fitting better than chance. This was the case for two patients.

MRI data acquisition. Functional imaging was conducted on a 3 Tesla Siemens Trio scanner to
acquire gradient echo T2*-weighted echo-planar images with blood oxygenation level dependent
contrast (40 slices at 20° to the AC-PC line, ascending order, 2.5-mm thickness, 3x3mm? in-plane
voxel resolution, 0.5-mm gap, TR=2.09s, TE=22ms, flip angle a=90°). To account for individual
homogeneity differences of the magnetic field, we acquired a field distortion map. T1-weighted
anatomical images were collected for normalization purposes.

Preprocessing of fMRI data. Data were preprocessed and analyzed using SPM8. Images were
corrected for delay of slice time acquisition. Voxel-displacement maps were estimated based on
acquired field maps. For the purpose of motion correction, all images were realigned and
additionally corrected for distortion and the interaction of distortion and motion. Normalization
parameters were derived from the segmentation of the individual T1-weighted structural image

(Ashburner & Friston, 2005) and used for spatial normalization of the functional images to the
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Montreal Neurological Institute space. Normalized images were spatially smoothed (isotropic
Gaussian kernel, 6mm full-width at half maximum).

Supplemental Results

Neuropsychological Measurements. We tested for group differences in general cognitive capacities
by subjecting results of all neuropsychological tests (S-Table 2-2) to a Multivariate Analysis of
Variance (MANOVA) with the between-subject factor group. No significant effect of group was
observed (F=1.52, p=.19).

Brain-Behavior Relationships. For both groups separately, we tested for an association between
BOLD activation in response to explorative trials at the peak coordinate of the between-group
difference in al/IPFC and behavioral performance (correct choices, switching behavior). Results did
not indicate any significant correlation (Correlation with correct choices: ruc= .376 pnc=.093, rsep

=200, pgen.=.383; Correlation with switching: ruc=.054 puc=.814 ,rgen .193, psep. =.40).
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Supplemental Tables

S-Table 2-4. Sample Characteristics. BMI=Body Mass Index, EHI=Edinburgh Handedness Inventory.

Healthy Controls

Binge Eating Patients

Test statistic

Demographic characteristics

(none/compulsory basic
secondary schooling/intermediate
school certificate/university
entrance qualification, 22/22)

Age (22/22) M=27.8 (SD=4.54) M=29.0 (§D=9.40) t=1.27, p=.57
Gender (male/female,22/22) 7/15 6/16 Chi?=11 p=.74
Handedness according to EHI 20/0/2 17/2/3 Chi®=2.44,p=.30
(right/both/left, 22/22)

Smokers (22/22) 8 9 Chi®=.10. p=.76
BMI (22/22) M=26.06 (SD=4.35) M=28.27 (§D=6.58), t=1.31, p=.20
School leaving qualification 0/0/1/21 0/0/5/17 Chi?=3.09, p=.08

Total years of unemployment M=0.5 (SD=1.05) M=0.7 (SD=1.68) t=0.55, p=.60
(22/22)

Clinical characteristics

Yale Food Addiction Scale (17/22) | M=0.82 (SD=0.63) M=4.68 (SD=2.21) t=3.88, p<.001
Food Craving State (22/22) M=27.55 (SD=12.41) M=41.00 (SD=11.18) t=7.78, p<.001
Food Craving Trait (17/22) M=78.82 (SD=18.41) M=158.14 (SD=34.10) t=8.65, p<.001
Number of Objective Binge Eating |- M=8.25 (SD=3.42) -

Episodes (last 28 days) (20)

Age of Onset (14) - M=18.93 (5D=9.01) -

Duration of Disease (14) - M=8.29 (§D=7.01) -
S-Table 2-5. Neuropsychological Tests. HC healthy controls BED binge eating patients.

Neuropsychological Measurements
Measurement HC BED

Reasoning (Matrices) (21/21)

12.29 (SD=2.99)

10.38 (SD=3.64)

Working Memory (Backward Digit Span) (21/21)

8.38 (SD=7.52)

7.52 (SD=2.16)

Visual Attention (Trail Making A) Time (21/21)

21.74 (SD=6.88)

27.22 (SD=9.01)

Visual Attention (Trail Making A) Errors (21/21)

0 (SD=0)

.05 (SD=.22)

Complex Attention / Task Switching (Trail Making B) Time (21/21)

46.70 (SD=14.34)

69.46 (SD=56.22)

Complex Attention / Task Switching (Trail Making B) Errors

(21/21)

0.14 (SD=.36)

0.57 (SD=1.17)

Cognitive Speed (Digit Symbol Substitution Test)

87.33 (SD=14.54)

81.90 (SD=13.65)

Verbal Intelligence (German Vocabulary Test) (21/21)

110.29 (SD=8.83)

102.24 (SD=11.80)
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S-Table 2-6. Priors of parameters. The decision parameter of the observation model  was
estimated in log-space and also parameters p and h of Sutton K1; parameters o and « of the

learning algorithms were estimated in logit-space.

| Prior Mean | Prior Variance
Observation Model for all learning models
Softmax
B | 1 | 16
Learning models
SU
K 0 0
o .55 1
SU-WL
K 0 0
a(w/l) | 5/.6 1/1
DU
K 1 0
o .25 1
DU-WL
K 1 0
aw/) | 4/1 1/1
iDU
K 1 1
o .25 1
iDU-WL
K 1 1
a(w/l) | .55/.45 1
Sutton-K1
u 1 1
H .005 1

S-Table 2-7. Model Selection: Expected Posterior Probabilities (PP) and Exceedance Probabilities
(XP) for all models. SU=single-update, DU=double-update, iDU=inidividually-weighted double-
update, WL indicates that the model had separate learning rates for wins and losses HC healthy

controls BED binge eating patiens

su SU-WL | DU DU-WL | iDU iDU-WL | Sutton K-1
All PP | 160 072 052 150 271 231 066
m=44) [XP_| 054 001 <001 039 601 303 <001

HC PP | 130 073 060 180 241 280 040
(=22) "xp [ 035 005 003 113 321 522 <001
BED | PP | .175 117 096 1099 219 158 137
(=22) TXp | 210 058 030 033 426 150 094
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S-Table 2-8. Descriptive Statistics of parameters for iDU, the best-fitting model across HC and BED.

The index c index indicates the learning rate for chosen stimulus. M=mean, SD=standard deviation.

ac K* o

Healthy Controls M=6.13,SD=2.67 M=0.54, SD=0.19 M=0.07, SD=0.04
(n=22)

Binge Eating Patients M=4.17,5D=2.50 M=0.49, SD=0.24 M=0.07, SD=0.06
(n=22)

S-Table 2-9. Distribution of inferred parameters for iDU, the best-fitting model across HC and BED

yil ax K*ac
25th Percentile 2.78 .37 .03
50th Percentile 4.58 .56 .07
75th Percentile 7.73 .67 .09
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S-Table 2-10. Single-Update activation, Double-Update activation (only clusters k=>10) and

conjunct activation of both.

cluster size

Region MNI coordinates T l(JFWE)
Single-Update RPE Activation
812-10 6.18 <0.001
Caudate 14 6-14 76 5.98 <0.001
28-44 6.58 <0.001
30-12 4 6.22 0.001
Putamen 3064 101 5.65 0.009
-126-14 6.90 <0.001
-18-6-18 6.63 <0.001
Amygdala -26-4-18 141 6.07 <0.001
Hippocampus 28-18-18 12 5.65 0.009
26 -6 -20 6.36 0.001
Hippocampus 18-8-18 24 5.98 0.002
Inferior Frontal Gyrus -3436-16 18 5.58 0.001
2630-18 5.86 0.004
Inferior Frontal Gyrus 3036-14 49 5.89 0.004
-14 60 -2 6.20 0.001
Superior Medial Gyrus -14 66 -6 24 5.20 0.042
Middle Orbital Gyrus -6 60 -8 19 5.90 0.003
-650-14 5.41 0.020
6-48 30 6.02 0.002
Posterior Cingulate Cortex -4 -36 38 67 5.19 0.043
-60-40-12 6.36 <0.001
Middle Temporal Gyrus -62-32-14 38 5.66 0.012
Inferior Temporal Gyrus -56 -58 -8 14 5.34 0.004
-40-70 -42 7.29 <0.001
-40 -78 -30 6.58 <0.001
Cerebellum -28-86 -28 204 6.05 <0.001
44 -74 -32 6.81 <0.001
Cerebellum 44 -68 -42 101 6.34 0.001
Double-Update RPE Activation
Caudate -418-8 13 6.27 <0.001
Angular Gyrus -40-68 30 24 5.79 <0.001
Middle Orbital Gyrus -854-2 19 5.62 0.009
Conjunction Single-Update and Double-Update RPE
Middle Orbital Gyrus -652-12 3 5.27 0.033
Inferior Frontal Gyrus 3236-12 1 5.79 0.040
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S-Table 2-11. Activation in Explorative vs. Exploitative Trials (F-contrast). vIPFC = ventrolateral

prefrontal cortex.

Main Effect. Exploration vs. Exploitation

Region MNI coordinate Cluster size F p(FWE-corr)
al/VIPFC -2826-2 41 59.95 <0.001
al/vIPFC 3224-8 17 53.34 0.001

Supplemental Figure

S-Figure 2-1. Regions of Interest for Small Volume Correction of between-group differences. A) The

peak voxel of the conjunction of both types of RPE (RPEsu /RPEpu) across the entire sample was

surrounded by a 15mm sphere. B) For the neural analysis of exploration, the whole-brain peak

voxels across all participants in left and right insula were each surrounded with 15mm spheres and

combined in one volume.
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3. Supplementary Information for study 4 (SI-3)

Computational modeling. As in previous studies (Daw et al,, 2011; Wunderlich et al,, 2012b; Deserno
et al, 2015b; Voon et al, 2015), we adopted a modeling approach to disentangle influences of
model-free and model-based control on participant’s choice behavior. As described in the main
manuscript, three types of algorithms were applied. All three algorithms learn values (Q) for each of
the stimuli, which appear in the task as three pairs (sA, sB, sC). sA refers to the first-stage stimuli
where values of model-free and model-based algorithms differ. sB and sC refer to the two pairs of
second-stage stimuli. In the following equations, a indexes the chosen stimulus and index i denotes
the stage (i=1 for SA at the first stage and i=2 for SB or SC at the second stage) and t signifies the
trial.

First, the model-free algorithm was SARSA (A) which learns values retrospectively after prediction
errors occurred (Sutton & Barto, 1998):

[1] Qur (Sie1, ier1) = Qur(Sips air) + @;i8ip

[218:¢ = Tie + Qur (Sivrer Gi1e) = Qur(Sier i)

Here, o denotes learning rates for the first and second stage. Notably, r; , = 0 and QMF(SM, a3,t) =0
because no reward is delivered after a first-stage choice and Qyp (s3yt,a3,t) = Ory; = 0 because the
task has only two states. Further, we allow for an additional stage-skipping update of first-stage
values by introducing the parameter A. As part of the model-free algorithm, this parameter connects
the two stages in way that reward prediction errors at the second stage can influence first-stage
values:

[3] QMF(Sl,tv al,t) = QMF(Sl,t' al,t) + a1 48,

Importantly, A accounts for the main effect of reward as observed in the analysis of first-stage stay-
switch behavior but not for an interaction of reward and state. Notably, a model-free temporal-
difference algorithm, here SARSA (1), could acquire the state transition given enough time and
stationary reward probabilities at the second stage. In the applied task, second-stage rewards
probabilities changed slowly and independently according Gaussian random walks, which were
identical to Daw et al. (2011).

Second, the model-based algorithm learns values prospectively and computes first-stage values by
multiplying the maximum values at the second stage with the explicitly instructed transition
probabilities:

[4] Qua(sas aj) = P(S|Sa a;) max Qur(sz, a) + P(Sc|Sa a;) max Qur(sc, @)

In equation 4, second-stage values come from the model-free algorithm because the model-based
algorithm converges with the model-free algorithm at the second stage. Note that this approach
simplifies transition learning as this algorithm does not learn transition probabilities incrementally
but this is in line with the task instructions and the training. In a simulation by Daw et al. (2011) it
could be shown that this approach outperforms incremental learning of the transition probabilities;
moreover, this was identically applied in other non-clinical (Wunderlich et al.,, 2012b; Deserno et
al.,, 2015b) and clinical studies (Voon et al., 2015).
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Third, the hybrid algorithm connects model-free and model-based values via the weighting
parameter :

[5] Q(s4. @) = @Quz(sa, ;) + (1 — @) Qur (54, ;)

Importantly, w gives a weighing of the relative influence of model-free and model-based values. It
represents the balance of the two control strategies.

Finally, we transform values into action probabilities using a softmax for values Q:

exp(Bi[Q(sir.a) +prrep(a)])
o exp(Bi[Q((sie.ah)+prrep(al)])

[6] p(ai,t = a|5i,t) =3
Here, B controls the stochasticity of the choices at the first and second stage separately. The
additional parameter p captures first-stage choice perseveration and rep is an indicator function
that equals 1 if the previous first-stage choice was the same (Daw et al.,, 2011).

Model fitting. Constrained parameters were transformed to a logistic (a, A, w) or exponential (f3)
distribution to enforce constraints and to render normally distributed parameter estimates. To
infer the maximum-a-posteriori estimate MAP of parameters 6, we use a Gaussian prior with mean
and variance p and o:

[7]1 MAP; = argmaxlogp(Y | 0) p(@ly, o)

where Y represents the data in terms of actions Ai per subject i. We set priors empirically to the
maximum likelihood estimates ML of p and o given the data by all subjects:

[8] ML; = argmaxlogp(Y | 0)

and achieve this by using Expectation-Maximisation. For an in-depth description please compare
Huys et al., 2011; Huys et al.,, 2012. Inferred parameters were distributed similarly as observed in
previous studies with the same task (e.g. Daw et al,, 2011; Wunderlich et al., 2012b; Deserno et al.,
2015b; Radenbach et al, 2015; Voon et al, 2015, S-Table 3-2). All modeling analyses were
performed using Matlab 2010b. Code of the analyses is available from the authors upon request.
Model comparison. For all three models, we first report the negative log-likelihood and the
Bayesian Information Criterion (BIC) based on the negative log-likelihood, S-Table 3-1). Second, we
approximate the model evidence by integrating out the free parameters. The integral was
approximated by sampling from the prior distribution and we therefore add the subscript ‘int’ to
the BIC (S-Table 3-1; compare Huys et al., 2011; Huys et al., 2012). Third and reported in the main
manuscript, we submit this integrated likelihood to a random-effects Bayesian model selection
procedure (Stephan et al, 2009, spm_BMS contained in SPM8). We also show that best-fitting
parameters nicely reproduce the observed behavior.

Relationship of the parameters w and A In parallel to the analysis of first-state choice data, the
parameter A resembles the main effect of reward on first-stage behavior while w relates to the
interaction of reward and state. However, relatively low levels of w could either result from a
reduced influence of first-stage model-based values or from a stronger weighting of first-stage
model-free values. Thus at certain levels of A, w will decrease and vice versa. Given relatively
midrange levels for both parameters in a sample, no correlation would be expected. First, as we
have previously published independent samples with this task including the identical modeling

analysis, we did check the correlation of both parameters in all three samples (Deserno et al.,
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2015b; Radenbach et al, 2015, for the former from the control condition only): Deserno et al.
(2015): r=-.09, p=.65, mean w=.53+.18 (SD), A.71+.09; Radenbach et al. (2015): r=-.41, p=.01, mean
w=.68+.08, A=.57+.11; presented study: r=-.34, p=.02, ©=.65+.09, A=.60+.11; These correlations
obtained across three independent samples demonstrate that a consistent correlation between the
two parameters cannot be assumed. Importantly, the correlation in the present sample was not
driven by one of the two groups (low-impulsivity r=-.40, p=.05, mean w=.59+.11, A=.62+.10, high-
impulsivity r=-.39, p=.06, mean w=.61+.11, A=.69+.08). Given this relatively low to moderate
correlations, we conclude that a change in one of the two does not simply imply a change in the
other, which would in fact render an additional parameter redundant. This is also supported by the
observation that the parameter w can be well re-fitted from generated data based on the inferred
parameters (please compare Deserno et al, 2015b). In the same vein, we were asked whether
fitting A as a free parameter could have concealed a group difference on w. In fact, finding a
difference on w when fixing A would be surprising because the raw data does not support a change
in the overall balance of model-free and model-based control (while the reward x impulsivity in
raw data supports an effect of impulsivity on A). Thus, such an effect due to fixing A would speak for
redundancy of the two parameters, which is, as pointed out, not the case. In line with this
reasoning, the suggested analysis did not reveal any difference in w when keeping A fixed to the
sample mean of .65 and fitting the model (w high-impulsive .61+.11, low-impulsive .60+.11,

T(1,48)=.38, p=.70).
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S-Table 3-1. Model Selection. -LL: negative log-likelihood; BIC: Bayesian Information Criterion, the

subscript int refers to integrating out the free parameters; XP: Exceedance Probability; all=all

participants n=50, high=high-impulsive n=24, low=low-impulsive n=26.

-LL BIC BICint XP
hybrid with A all 9261.94 18593.14 19326.75 9999
high 4578.76 9221.65 9560.81 .9950
low 4683.18 9431.04 9825.49 .9997
A -LL A BIC A BICint
hybrid hybrid hybrid
hybrid without A all -151.14 292.39 265.54 0
high -83.09 157.01 147.86 3e-04
low -68.05 126.87 109.17 le-05
model-based all -260.38 491.07 325.59 0
high -114.20 200.92 128.38 9e-05
low -146.18 264.63 171.68 3e-05
model-free with A all -304.58 599.27 468.23 le-05
high -120.77 232.37 183.13 .0050
low -183.81 358.38 276.60 .0003
model-free all -549.17 1078.54 905.82 0
without A
high -247.29 476.26 403.75 0
low -301.88 585.27 485.05 le-05
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S-Table 3-2. Distribution of best-fitting parameters. Hybrid Model. o: weighting of model-free and
model-based values; al,a1: learning rates at the first and second stage; A: stage-skipping update;
Softmax Observation Model. B1,82: stochasticity of first- and second-stage choices; -LL: negative

log-likelihood; all=all participants n50, high=high-impulsive n=24, low=low-impulsive n=26.

® o a2 A B1 B2 p -LL

25t All .55 .36 49 .60 4.28 2.21 .10 222.24
percentile

High .57 41 43 .63 3.76 2.15 13 227.61

Low .53 .30 .55 .55 5.01 2.34 .08 206.64
Median All .60 49 .62 .65 7.20 3.08 14 179.47

High .62 .52 .63 .69 6.13 3.04 15 191.16

Low .59 40 .62 .64 7.62 3.21 12 176.77
75t All .68 .65 71 71 8.46 3.89 .18 141.66
percentile

high .70 .66 74 73 7.99 3.85 .18 149.60

Low .68 .60 .68 .68 9.28 3.89 .18 141.62
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S-Table 3-3 fMRI results. Whole-brain results for the conjunction of model-free and model-based

learning signals across both groups (n=48, 23 high-impulsive and 25 low-impulsive participants)

Region coordinates t-value p-FWE K p-FWE
peak-level cluster-level
Conjunction of model-free and model-based
Medial PFC 0,50,0 4.83 .059 919 2.55e-05
0,44,8 4.59 125
-4,30,8 4.02 .545
Ventral Striatum -12,12,-8 5.51 .005 1451 2.49e-07
12,8,-8 5.42 .007
-8,12,2 5.23 .014
Lateral PFC/OFC 20,28,-16 443 .200 250 0.036
38,24,-16 3.98 .587
32,42,-14 3.77 796
Lateral Parietal | 58,-44, 38 4.85 .054 856 4.55e-05
Cortex 60, -56, 38 4.62 114
58,-52,20 4.15 417
-40, -70, 42 411 453 319 .014
-40,-62, 26 4.02 .543
-44, -56, 30 4.01 .561
Posterior  Cingulate | 12, -44, 30 5.48 .004 1564 1.24e-07
Cortex -4,-42,36 4,51 161
8,-44, 30 4.51 161
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S-Figure 3-1. Observed choice and simulated data based on inferred parameters. Upper and lower
left panels display data of high- and low-impulsive groups both showing aspects of model-free and
model-based control in first-stage stay-switch behavior. Upper and lower right panels show
simulated data based on inferred parameters of the hybrid model demonstrating that the hybrid

model nicely recovers the actually observed behavior.

226



References

Abe, H. & Lee, D. (2011) Distributed coding of actual and hypothetical outcomes in the orbital and
dorsolateral prefrontal cortex. Neuron, 70, 731-741.

Adams, C.D. (1981) Variations in the sensitivity of instrumental responding to reinforcer devaluation. Q J
Exp Psychol, 34B, 77-98.

Adams, C.D. & Dickinson, A. (1981) Instrumental responding following reinforcer devaluation. Q J Exp
Psychol, 33B, 109-121.

Akam, T, Costa, R. & Dayan, P. (2015) Simple plans or sophisticated habits? State, transition and learning
Interactions in the Two-step Task. bioRxiv.

Alexander, W.H. & Brown, ].W. (2011) Medial prefrontal cortex as an action-outcome predictor. Nature
neuroscience, 14, 1338-1344.

Allen, ].P,, Litten, R.Z,, Fertig, ].B. & Babor, T. (1997) A review of research on the Alcohol Use Disorders
Identification Test (AUDIT). Alcohol Clin Exp Res, 21, 613-619.

Amthauer, R.B,, B.; Liepmann, D.; Beauducel, A. (1999) Intelligenz-Struktur-Test 2000. Horgrefe, Gottingen,
Germany.

Anselme, P., Robinson, M.J. & Berridge, K.C. (2013) Reward uncertainty enhances incentive salience
attribution as sign-tracking. Behav Brain Res, 238, 53-61.

Anton, R.F, Moak, D.H. & Latham, P. (1995) The Obsessive Compulsive Drinking Scale: a self-rated
instrument for the quantification of thoughts about alcohol and drinking behavior. Alcohol Clin Exp Res,
19, 92-99.

Ashburner, J. & Friston, K.J. (2005) Unified segmentation. Neuroimage, 26, 839-851.

American Psychiatric Association (2013). The Diagnostic and Statistical Manual of Mental Disorder: DSM 5.
American Psychiatric Association, Washington D.C.

Badre, D. (2008) Cognitive control, hierarchy, and the rostro-caudal organization of the frontal lobes.
Trends Cogn Sci, 12, 193-200.

Balleine, B.W., Daw, N.D. & O'Doherty ], P. (2008a) Multiple Forms of Value Learning and the Function of
Dopamine. In Glimcher, P.W.,, Camerer, C., Fehr, E., Poldrack, R.A. (eds) Neuroeconomics: decision making
and the brain,. Academic Press.

Balleine, B.W., Daw, N.D. & O’Doherty, ].P. (2008b) Multiple forms of value learning and the function of
dopamine. Neuroeconomics: decision making and the brain, Academic Press, 367-385.

Balleine, B.W. & Dickinson, A. (1998) Goal-directed instrumental action: contingency and incentive
learning and their cortical substrates. Neuropharmacology, 37, 407-419.

Balleine, B.W. & O'Doherty, J.P. (2010) Human and rodent homologies in action control: corticostriatal
determinants of goal-directed and habitual action. Neuropsychopharmacology, 35, 48-69.

Bates, M.E., Bowden, S.C. & Barry, D. (2002) Neurocognitive impairment associated with alcohol use
disorders: implications for treatment. Experimental and clinical psychopharmacology, 10, 193-212.

Bechara, A. & Damasio, H. (2002) Decision-making and addiction (part I): impaired activation of somatic
states in substance dependent individuals when pondering decisions with negative future consequences.
Neuropsychologia, 40, 1675-1689.

Bechara, A, Damasio, H., Tranel, D. & Damasio, A.R. (1997) Deciding advantageously before knowing the
advantageous strategy. Science, 275, 1293-1295.

227



Bechara, A, Tranel, D., Damasio, H. & Damasio, A.R. (1996) Failure to respond autonomically to anticipated
future outcomes following damage to prefrontal cortex. Cerebral cortex, 6, 215-225.

Beck, A, Schlagenhauf, F., Wustenberg, T., Hein, ], Kienast, T.,, Kahnt, T., Schmack, K., Hagele, C., Knutson,
B., Heinz, A. & Wrase, J. (2009) Ventral striatal activation during reward anticipation correlates with
impulsivity in alcoholics. Biol Psychiatry, 66, 734-742.

Beck, A, Wustenberg, T., Genauck, A,, Wrase, ], Schlagenhauf, F., Smolka, M.N., Mann, K. & Heinz, A. (2012)
Effect of brain structure, brain function, and brain connectivity on relapse in alcohol-dependent patients.
Arch Gen Psychiatry, 69, 842-852.

Becker, M.P., Nitsch, A.M., Miltner, W.H. & Straube, T. (2014) A single-trial estimation of the feedback-
related negativity and its relation to BOLD responses in a time-estimation task. ] Neurosci, 34, 3005-3012.

Behrens, T.E., Woolrich, M.W., Walton, M.E. & Rushworth, M.F. (2007) Learning the value of information in
an uncertain world. Nat Neurosci, 10, 1214-1221.

Belin, D., Belin-Rauscent, A, Murray, J.E. & Everitt, B.J. (2013) Addiction: failure of control over
maladaptive incentive habits. Curr Opin Neurobiol, 23, 564-572.

Belin, D., Mar, A.C,, Dalley, ].W., Robbins, T.W. & Everitt, B.J. (2008) High impulsivity predicts the switch to
compulsive cocaine-taking. Science, 320, 1352-1355.

Bellman, R.E. (1957) Dynamic Programming. Princeton University Press, Princeton, NJ.

Beveridge, T.J., Gill, K.E, Hanlon, C.A. & Porrino, L.J. (2008) Review. Parallel studies of cocaine-related
neural and cognitive impairment in humans and monkeys. Philos Trans R Soc Lond B Biol Sci, 363, 3257-
3266.

Boorman, E.D., Behrens, T.E. & Rushworth, M.F. (2011) Counterfactual choice and learning in a neural
network centered on human lateral frontopolar cortex. PLoS Biol, 9, e1001093.

Boorman, E.D., Behrens, T.E., Woolrich, M.W. & Rushworth, M.F. (2009) How green is the grass on the
other side? Frontopolar cortex and the evidence in favor of alternative courses of action. Neuron, 62, 733-
743.

Braver, T.S. & Cohen, ].D. (1999) Dopamine, cognitive control, and schizophrenia: the gating model. Prog
Brain Res, 121, 327-349.

Brodersen, K.H., Deserno, L., Schlagenhauf, F., Lin, Z.,, Penny, W.D., Buhmann, ].M. & Stephan, K.E. (2014)
Dissecting psychiatric spectrum disorders by generative embedding. Neurolmage: Clinical, 4, 98-111.

Bromberg-Martin, E.S., Matsumoto, M., Hong, S. & Hikosaka, 0. (2010) A pallidus-habenula-dopamine
pathway signals inferred stimulus values. ] Neurophysiol, 104, 1068-1076.

Buckholtz, ].W. & Meyer-Lindenberg, A. (2012) Psychopathology and the human connectome: toward a
transdiagnostic model of risk for mental illness. Neuron, 74, 990-1004.

Buckholtz, JW. Treadway, M.T.,, Cowan, R.L, Woodward, N.D., Li, R, Ansari, M.S, Baldwin, R.M,,
Schwartzman, A.N., Shelby, E.S., Smith, C.E., Kessler, RM. & Zald, D.H. (2010) Dopaminergic network
differences in human impulsivity. Science, 329, 532.

Buxton, R.B. (2009) Introduction to functional magnetic resonance imaging: principles and techniques.
Cambridge university press.

Callicott, ].H., Mattay, V.S., Verchinski, B.A,, Marenco, S., Egan, M.F. & Weinberger, D.R. (2003) Complexity

of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry, 160, 2209-
2215.

228



Campbell, ]. & Ehlert, U. (2012) Acute psychosocial stress: does the emotional stress response correspond
with physiological responses? Psychoneuroendocrinology, 37, 1111-1134.

Casey, K'F.,, Benkelfat, C.,, Cherkasova, M.V., Baker, G.B., Dagher, A. & Leyton, M. (2014) Reduced dopamine
response to amphetamine in subjects at ultra-high risk for addiction. Biological psychiatry, 76, 23-30.

Cavagnaro, D.R, Gonzalez, R, Myung, J.I. & Pitt, M.A. (2013) Optimal Decision Stimuli for Risky Choice
Experiments: An Adaptive Approach. Management science, 59, 358-375.

Cavanagh, ].F. & Frank, M.J. (2013) Stop! Stay tuned for more information. Exp Neurol, 247, 289-291.

Cavanagh, J.F. & Frank, M.J. (2014) Frontal theta as a mechanism for cognitive control. Trends in cognitive
sciences, 18, 414-421.

Cavanagh, J.F,, Frank, M.J,, Klein, T.]. & Allen, ].J. (2010) Frontal theta links prediction errors to behavioral
adaptation in reinforcement learning. Neuroimage, 49, 3198-3209.

Chase, H.W,, Swainson, R,, Durham, L., Benham, L. & Cools, R. (2011) Feedback-related negativity codes
prediction error but not behavioral adjustment during probabilistic reversal learning. / Cogn Neurosci, 23,
936-946.

Chiu, P.H,, Lohrenz, T.M. & Montague, P.R. (2008) Smokers' brains compute, but ignore, a fictive error
signal in a sequential investment task. Nat Neurosci, 11, 514-520.

Chowdhury, R,, Guitart-Masip, M., Lambert, C,, Dayan, P., Huys, Q., Duzel, E. & Dolan, R.J. (2013) Dopamine
restores reward prediction errors in old age. Nat Neurosci, 16, 648-653.

Chumbley, ].R, Flandin, G., Bach, D.R., Daunizeau, J., Fehr, E., Dolan, R.J. & Friston, K.J. (2012) Learning and
generalization under ambiguity: an fMRI study. PLoS Comput Biol, 8, e1002346.

Cohen, J. (1988) Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Erlbaum, Hillsdale, NJ.

Cohen, ].D., McClure, S.M. & Yu, A.J. (2007) Should I stay or should I go? How the human brain manages the
trade-off between exploitation and exploration. Philos Trans R Soc Lond B Biol Sci, 362, 933-942.

Cohen, M.X,, Cavanagh, ].F. & Slagter, H.A. (2011a) Event-related potential activity in the basal ganglia
differentiates rewards from nonrewards: temporospatial principal components analysis and source
localization of the feedback negativity: commentary. Hum Brain Mapp, 32, 2270-2271.

Cohen, M.X., Wilmes, K.A. & van de Vijver, 1. (2011b) Cortical electrophysiological network dynamics of
feedback learning. Trends in cognitive sciences, 15, 558-566.

Cohen, S., Kamarck, T. & Mermelstein, R. (1983) A global measure of perceived stress. Journal of health and
social behavior, 24, 385-396.

Collins, A.G. & Frank, M.J. (2012) How much of reinforcement learning is working memory, not
reinforcement learning? A behavioral, computational, and neurogenetic analysis. Eur ] Neurosci, 35, 1024-

1035.

Coltheart, M. (2006) What has functional neuroimaging told us about the mind (so far)? Cortex, 42, 323-
331.

Coltheart, M. (2013) How Can Functional Neuroimaging Inform Cognitive Theories? Perspectives on
psychological science: a journal of the Association for Psychological Science, 8, 98-103.

Cools, R. (2011) Dopaminergic control of the striatum for high-level cognition. Curr Opin Neurobiol, 21,
402-407.

229



Cools, R, Blackwell, A, Clark, L., Menzies, L., Cox, S. & Robbins, T.W. (2005) Tryptophan depletion disrupts
the motivational guidance of goal-directed behavior as a function of trait impulsivity.
Neuropsychopharmacology, 30, 1362-1373.

Cools, R, Clark, L., Owen, A.M. & Robbins, T.W. (2002) Defining the neural mechanisms of probabilistic
reversal learning using event-related functional magnetic resonance imaging. ] Neurosci, 22, 4563-4567.

Corbit, L.H. & Balleine, B.W. (2003) The role of prelimbic cortex in instrumental conditioning. Behav Brain
Res, 146, 145-157.

Corrigan, P.W., Kuwabara, S.A. & 0'Shaughnessy, J. (2009) The public stigma of mental illness and drug
addiction findings from a stratified random sample. Journal of Social Work, 9, 139-147.

Critchley, D.R. (2005) Genetic, biochemical and structural approaches to talin function. Biochem Soc T, 33,
1308-1312.

Dalbert, C. (1992) ASTS - Aktuelle Stimmungsskala, http://www.erzwiss.uni-
halle.de/gliederung/paed/ppsych/sdasts.pdf.

Dalley, ].W.,, Everitt, B.]. & Robbins, T.W. (2011) Impulsivity, compulsivity, and top-down cognitive control.
Neuron, 69, 680-694.

Dalley, ].W.,, Fryer, T.D., Brichard, L., Robinson, E.S., Theobald, D.E., Laane, K., Pena, Y., Murphy, E.R., Shah,
Y., Probst, K., Abakumova, I, Aigbirhio, F.I,, Richards, H.K., Hong, Y., Baron, ].C,, Everitt, B.]. & Robbins, T.W.
(2007) Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science,
315,1267-1270.

Damasio, A.R. (1999) The feeling of what happens: Body and Emotion in the Making of Consciousness.
Harcourt Incorporated, New York.

Danner, U.N., Ouwehand, C., van Haastert, N.L., Hornsveld, H. & de Ridder, D.T. (2012) Decision-making
impairments in women with binge eating disorder in comparison with obese and normal weight women.
European eating disorders review : the journal of the Eating Disorders Association, 20, e56-62.

Davis, C., Patte, K. Curtis, C. & Reid, C. (2010) Immediate pleasures and future consequences. A
neuropsychological study of binge eating and obesity. Appetite, 54, 208-213.

Daw, N.D. (2009) Trial-by-trial data analysis using computational models. In Phelps, E.A., Robbins, T.W.,
Delgado, M. (eds) In Affect, Learning and Decision Making, Attention and Performance XXIII. Oxford
University Press, New York, pp. 3-38.

Daw, N.D. (2011) Trial-by-trial data analysis using computational models. Decision making, affect, and
learning: Attention and performance XXIII, 23, 1.

Daw, N.D., Gershman, S.J., Seymour, B., Dayan, P. & Dolan, R.J. (2011) Model-based influences on humans'
choices and striatal prediction errors. Neuron, 69, 1204-1215.

Daw, N.D,, Niv, Y. & Dayan, P. (2005) Uncertainty-based competition between prefrontal and dorsolateral
striatal systems for behavioral control. Nat Neurosci, 8, 1704-1711.

Daw, N.D., O'Doherty, J.P., Dayan, P., Seymour, B. & Dolan, R.J. (2006) Cortical substrates for exploratory
decisions in humans. Nature, 441, 876-879.

Daw, N.D. & O’Doherty, J.P. (2013) Multiple systems for value learning. Neuroeconomics: Decision Making,
and the Brain.

Dayan, P. (2009a) Dopamine, reinforcement learning, and addiction. Pharmacopsychiatry, 42 Suppl 1,
S56-65.

Dayan, P. (2009b) Goal-directed control and its antipodes. Neural Netw, 22, 213-219.
230



Dayan, P. & Daw, N.D. (2008) Decision theory, reinforcement learning, and the brain. Cogn Affect Behav
Neurosci, 8, 429-453.

Dayan, P. & Niv, Y. (2008) Reinforcement learning: the good, the bad and the ugly. Curr Opin Neurobiol, 18,
185-196.

Dayan, P., Niv, Y., Seymour, B. & Daw, N.D. (2006) The misbehavior of value and the discipline of the will.
Neural Netw, 19, 1153-1160.

de Lissa, P., Sorensen, S., Badcock, N, Thie, J. & McArthur, G. (2015) Measuring the face-sensitive N170
with a gaming EEG system: A validation study. ] Neurosci Methods, 253, 47-54.

de Wit, S., Corlett, P.R, Aitken, M.R,, Dickinson, A. & Fletcher, P.C. (2009) Differential engagement of the
ventromedial prefrontal cortex by goal-directed and habitual behavior toward food pictures in humans. J
Neurosci, 29,11330-11338.

de Wit, S, Standing, H.R,, Devito, E.E., Robinson, 0.J., Ridderinkhof, K.R,, Robbins, T.W. & Sahakian, B.J.
(2012a) Reliance on habits at the expense of goal-directed control following dopamine precursor
depletion. Psychopharmacology (Berl), 219, 621-631.

de Wit, S, Watson, P, Harsay, H.A, Cohen, M.X, van de Vijver, I. & Ridderinkhof, K.R. (2012b)
Corticostriatal connectivity underlies individual differences in the balance between habitual and goal-
directed action control. ] Neurosci, 32, 12066-12075.

Delorme, A. & Makeig, S. (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics
including independent component analysis. ] Neurosci Methods, 134, 9-21.

den Ouden, H.E,, Daw, N.D,, Fernandez, G., Elshout, ].A,, Rijpkema, M., Hoogman, M., Franke, B. & Cools, R.
(2013) Dissociable effects of dopamine and serotonin on reversal learning. Neuron, 80, 1090-1100.

Deserno, L., Beck, A, Huys, Q.J., Lorenz, R.C., Buchert, R,, Buchholz, H., Plotkin, M., Kumakara, Y., Cumming,
P., Heinze, H., Grace, A.A,, Rapp, M.A,, Schlagenhauf, F. & Heinz, A. (2014) Chronic alcohol intake abolishes
the relationship between dopamine synthesis capacity and learning signals in the ventral striatum. Eur J
Neurosci.

Deserno, L., Beck, A, Huys, QJ., Lorenz, R.C, Buchert, R, Buchholz, H.G., Plotkin, M., Kumakara, Y.,
Cumming, P., Heinze, H.],, Grace, A.A, Rapp, M.A,, Schlagenhauf, F. & Heinz, A. (2015a) Chronic alcohol
intake abolishes the relationship between dopamine synthesis capacity and learning signals in the ventral
striatum. Eur J Neurosci, 41, 477-486.

Deserno, L., Boehme, R, Heinz, A. & Schlagenhauf, F. (2013) Reinforcement learning and dopamine in
schizophrenia: dimensions of symptoms or specific features of a disease group? Front Psychiatry, 4, 172.

Deserno, L., Huys, Q., Boehme, R., Buchert, R., Heinze, H.J,, Grace, A.A., Dolan, R.]., Heinz, A. & Schlagenhauf,
F. (2015b) Ventral striatal presynaptic dopamine reflects behavioral and neural signatures of model-
based control during sequential decision-making. Proc Natl Acad Sci U S A.

Deserno, L., Wilbertz, T. Reiter, AM.F., Horstmann, A, Neumann, ], Villringer, A, Heinze, HJ]. &
Schlagenhauf, F. (in press) Lateral prefrontal model-based signals are reduced in healthy individuals with
high trait impulsivity. Transl Psychiatry.

Dias-Ferreira, E., Sousa, J.C., Melo, I, Morgado, P., Mesquita, A.R., Cerqueira, J.J., Costa, RM. & Sousa, N.
(2009) Chronic stress causes frontostriatal reorganization and affects decision-making. Science, 325, 621-
625.

Dickinson, A. & Balleine, B. (2002) The role of learning in the operation of motivational systems. In
Gallistel, R. (ed) Stevens' handbook of experimental psychology. Wiley, pp. 497-534.

231



Dickinson, A.D. (1985) Action and Habits: The Development of Behavioural Autonomy. Philos Trans R Soc
Lond B Biol Sci, 308, 67-78.

Diener, E. (2010) Neuroimaging: Voodoo, New Phrenology, or Scientific Breakthrough? Introduction to
Special Section on fMRI. Perspectives on psychological science : a journal of the Association for Psychological
Science, 5, 714-715.

Dietrich, A, Federbusch, M.G., Grellmann, C., Villringer, A. & Horstmann, A. (2014) Body weight status,
eating behavior, sensitivity to reward/punishment, and gender: relationships and interdependencies.
Frontiers Psychology, 5, 1073.

Dingemans, A.E. & van Furth, E.F. (2012) Binge eating disorder psychopathology in normal weight and
obese individuals. International Journal of Eating Disorders, 45, 135-138.

Dolan, R.J. (2008) Neuroimaging of cognition: past, present, and future. Neuron, 60, 496-502.
Dolan, R.J. & Dayan, P. (2013) Goals and habits in the brain. Neuron, 80, 312-325.

Doll, B.B.,, Duncan, K.D., Simon, D.A, Shohamy, D. & Daw, N.D. (2015) Model-based choices involve
prospective neural activity. Nat Neurosci, 18, 767-772.

Doll, B.B,, Simon, D.A. & Daw, N.D. (2012) The ubiquity of model-based reinforcement learning. Curr Opin
Neurobiol, 22,1075-1081.

Doya, K, Samejima, K., Katagiri, K. & Kawato, M. (2002) Multiple model-based reinforcement learning.
Neural Comput, 14, 1347-1369.

Eppinger, B., Walter, M., Heekeren, H.R. & Li, S.C. (2013) Of goals and habits: age-related and individual
differences in goal-directed decision-making. Front Neurosci, 7, 253.

Epstein, D.H. & Shaham, Y. (2010) Cheesecake-eating rats and the question of food addiction. Nat Neurosci,
13,529-531.

Ersche, K.D., Jones, P.S.,, Williams, G.B., Smith, D.G., Bullmore, E.T. & Robbins, T.W. (2013) Distinctive
personality traits and neural correlates associated with stimulant drug use versus familial risk of
stimulant dependence. Biol Psychiatry, 74, 137-144.

Ersche, K.D., Jones, P.S., Williams, G.B., Turton, A.]J., Robbins, T.W. & Bullmore, E.T. (2012a) Abnormal brain
structure implicated in stimulant drug addiction. Science, 335, 601-604.

Ersche, K.D,, Roiser, ].P.,, Abbott, S., Craig, K.J., Muller, U., Suckling, J., Ooi, C., Shabbir, S.S., Clark, L., Sahakian,
B.J., Fineberg, N.A,, Merlo-Pich, E.V,, Robbins, T.W. & Bullmore, E.T. (2011) Response perseveration in
stimulant dependence is associated with striatal dysfunction and can be ameliorated by a D(2/3) receptor
agonist. Biol Psychiatry, 70, 754-762.

Ersche, K.D., Roiser, ]J.P., Robbins, T.W. & Sahakian, B.J. (2008) Chronic cocaine but not chronic
amphetamine use is associated with perseverative responding in humans. Psychopharmacology (Berl),
197, 421-431.

Ersche, K.D,, Turton, AJ,, Chamberlain, S.R., Muller, U., Bullmore, E.T. & Robbins, T.W. (2012b) Cognitive
dysfunction and anxious-impulsive personality traits are endophenotypes for drug dependence. Am ]

Psychiatry, 169, 926-936.

Ersche, K.D., Turton, AJ, Pradhan, S, Bullmore, E.T. & Robbins, T.W. (2010) Drug addiction
endophenotypes: impulsive versus sensation-seeking personality traits. Biol Psychiatry, 68, 770-773.

Etkin, A. & Wager, T.D. (2007) Functional neuroimaging of anxiety: a meta-analysis of emotional
processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry, 164, 1476-1488.

232



Everitt, B.J,, Belin, D., Economidou, D., Pelloux, Y., Dalley, ] W. & Robbins, T.W. (2008) Review. Neural
mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philos
Trans R Soc Lond B Biol Sci, 363, 3125-3135.

Everitt, B.J. & Robbins, T.W. (2005) Neural systems of reinforcement for drug addiction: from actions to
habits to compulsion. Nat Neurosci, 8, 1481-1489.

Farr, 0.M,, Hu, S, Zhang, S. & Li, C.S. (2012) Decreased saliency processing as a neural measure of Barratt
impulsivity in healthy adults. Neuroimage, 63, 1070-1077.

Farrell, S. & Lewandowsky, S. (2010) Computational Models as Aids to Better Reasoning in Psychology.
Current Directions in Psychological Science, 19, 329-335.

Farrell, S. & Lewandowsky, S. (2015) An Introduction to Cognitive Modeling. In Forstmann, B.U,
Wagenmakers, E.J. (eds) Model-Based Cognitive Neuroscience. Springer, New York, pp. 3-24.

Featherstone, R.E. & McDonald, R.J. (2004) Dorsal striatum and stimulus-response learning: lesions of the
dorsolateral, but not dorsomedial, striatum impair acquisition of a simple discrimination task. Behav Brain
Res, 150, 15-23.

First, M.B,, Spitzer, R.L,, Gibbon, M. & Williams, J. (2001) Structured Clinical interview for DSM-IV-TR Axis I
Disorders, Research Version, Patient Edition With Psychotic Screen (SCID-I/P W/ PSY SCREEN). New York
State Psychiatric Institute New York.

First, M.B., Spitzer, R. L., Gibbon, M., & Williams, J. B. (1997) User's guide for the Structured clinical
interview for DSM-1V axis I disorders SCID-I: clinician version. Biometrics Research Dept, New York State
Psychiatric Institute, New York, N.Y.

Fischer, A.G. & Ullsperger, M. (2013) Real and fictive outcomes are processed differently but converge on a
common adaptive mechanism. Neuron, 79, 1243-1255.

Forstmann, B.U,, Dutilh, G., Brown, S., Neumann, J., von Cramon, D.Y., Ridderinkhof, K.R. & Wagenmakers,
E.J. (2008) Striatum and pre-SMA facilitate decision-making under time pressure. Proc Natl Acad Sci U S A,
105, 17538-17542.

Forstmann, B.U. & Wagenmakers, E.J. (2015) Model-Based Cognitive Neuroscience: A Conceptual
Introduction An Introduction to Model-Based Cognitive Neuroscience. Springer, New York, pp. 139-156.

Forstmann, B.U., Wagenmakers, E.J., Eichele, T., Brown, S. & Serences, ].T. (2011) Reciprocal relations
between cognitive neuroscience and formal cognitive models: opposites attract? Trends Cogn Sci, 15, 272-
279.

Foti, D., Weinberg, A, Dien, ]. & Hajcak, G. (2011a) Event-related potential activity in the basal ganglia
differentiates rewards from nonrewards: response to commentary. Hum Brain Mapp, 32, 2267-2269.

Foti, D., Weinberg, A, Dien, ]J. & Hajcak, G. (2011b) Event-related potential activity in the basal ganglia
differentiates rewards from nonrewards: temporospatial principal components analysis and source
localization of the feedback negativity. Hum Brain Mapp, 32, 2207-2216.

Frank, M., Doll, B.B., Oas-Terpstra, ]. & Moreno, F. (2009) Prefrontal and striatal dopaminergic genes
predict individual differences in exploration and exploitation. Nat Neurosci, 12, 1062-1068.

Frank, M.J,, Seeberger, L.C. & O'Reilly R, C. (2004) By carrot or by stick: cognitive reinforcement learning in
parkinsonism. Science, 306, 1940-1943.

Freedman, R., Lewis, D.A, Michels, R, Pine, D.S., Schultz, S.K, Tamminga, C.A,, Gabbard, G.O., Gau, S.S.,

Javitt, D.C,, Oquendo, M.A,, Shrout, P.E., Vieta, E. & Yager, J. (2013) The initial field trials of DSM-5: new
blooms and old thorns. Am ] Psychiatry, 170, 1-5.

233



Friedel, E., Koch, S.P., Wendyt, ], Heinz, A, Deserno, L. & Schlagenhauf, F. (2014) Devaluation and sequential
decisions: linking goal-directed and model-based behavior. Front Hum Neurosci, 8, 587.

Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J. & Penny, W. (2007) Variational free energy and
the Laplace approximation. Neuroimage, 34, 220-234.

Friston, K.J. (2009) Modalities, modes, and models in functional neuroimaging. Science, 326, 399-403.

Garavan, H. & Stout, J.C. (2005) Neurocognitive insights into substance abuse. Trends Cogn Sci, 9, 195-201.
Garbusow, M., Schad, D.J,, Sebold, M., Friedel, E., Bernhardt, N., Koch, S.P., Steinacher, B., Kathmann, N.,
Geurts, D.E. & Sommer, C. (2015) Pavlovian-to-instrumental transfer effects in the nucleus accumbens

relate to relapse in alcohol dependence. Addiction biology.

Gehring, W.J. & Willoughby, A.R. (2002) The medial frontal cortex and the rapid processing of monetary
gains and losses. Science, 295, 2279-2282.

Gershman, S.J., Markman, A.B. & Otto, A.R. (2014) Retrospective revaluation in sequential decision making:
a tale of two systems. Journal of experimental psychology. General, 143, 182-194.

Gillan, C.M,, Otto, A.R,, Phelps, E.A. & Daw, N.D. (2015) Model-based learning protects against forming
habits. Cogn Affect Behav Neurosci.

Glascher, ], Daw, N, Dayan, P. & O'Doherty, J.P. (2010) States versus rewards: dissociable neural
prediction error signals underlying model-based and model-free reinforcement learning. Neuron, 66, 585-

595.

Glascher, ], Hampton, A.N. & O'Doherty, ].P. (2009) Determining a role for ventromedial prefrontal cortex
in encoding action-based value signals during reward-related decision making. Cereb Cortex, 19, 483-495.

Gluck, M.E. (2006) Stress response and binge eating disorder. Appetite, 46, 26-30.

Gluck, M.E,, Geliebter, A.,, Hung, J. & Yahav, E. (2004) Cortisol, hunger, and desire to binge eat following a
cold stress test in obese women with binge eating disorder. Psychosomatic medicine, 66, 876-881.

Goldstein, R.Z,, Craig, A.D., Bechara, A, Garavan, H., Childress, A.R., Paulus, M.P. & Volkow, N.D. (2009) The
neurocircuitry of impaired insight in drug addiction. Trends Cogn Sci, 13, 372-380.

Goldstein, R.Z., Leskovjan, A.C., Hoff, A.L,, Hitzemann, R., Bashan, F., Khalsa, S.S., Wang, G.J., Fowler, ].S. &
Volkow, N.D. (2004) Severity of neuropsychological impairment in cocaine and alcohol addiction:

association with metabolism in the prefrontal cortex. Neuropsychologia, 42, 1447-1458.

Goldstein, R.Z. & Volkow, N.D. (2011) Dysfunction of the prefrontal cortex in addiction: neuroimaging
findings and clinical implications. Nat Rev Neurosci, 12, 652-669.

Goto, Y. & Grace, A.A. (2005) Dopaminergic modulation of limbic and cortical drive of nucleus accumbens
in goal-directed behavior. Nat Neurosci, 8, 805-812.

Gottesman, II & Shields, J. (1973) Genetic theorizing and schizophrenia. Br ] Psychiatry, 122, 15-30.

Grant, B.F,, Stinson, F.S., Dawson, D.A,, Chou, S.P., Dufour, M.C., Compton, W., Pickering, R.P. & Kaplan, K.
(2004) Prevalence and co-occurrence of substance use disorders and independentmood and anxiety
disorders: Results from the national epidemiologic survey on alcohol and relatedconditions. Archives of
general psychiatry, 61, 807-816.

Grawe, K. (2005) Empirisch validierte Wirkfaktoren statt Therapiemethoden. Report Psychologie, 7, 311.

Grawe, K., Caspar, F. & Ambuhl, H. (1990) Die Berner Therapievergleichsstudie: Wirkungsvergleich und
differentielle Indikation. Zeitschrift fiir Klinische Psychologie, 19, 338-361.

234



Grinband, J., Hirsch, ]. & Ferrera, V.P. (2006) A neural representation of categorization uncertainty in the
human brain. Neuron, 49, 757-763.

Gruner, P, Anticevic, A, Lee, D. & Pittenger, C. (2015) Arbitration between action strategies in obsessive-
compulsive disorder. The Neuroscientist, 1073858414568317.

Haber, S.N. & Behrens, T.E. (2014) The neural network underlying incentive-based learning: implications
for interpreting circuit disruptions in psychiatric disorders. Neuron, 83, 1019-1039.

Hampton, A.N., Bossaerts, P. & O'Doherty, J.P. (2006) The role of the ventromedial prefrontal cortex in
abstract state-based inference during decision making in humans. J Neurosci, 26, 8360-8367.

Hare, T. (2014) Neuroscience. Exploiting and exploring the options. Science, 344, 1446-1447.

Hauser, T.U.,, lannaccone, R, Ball, ], Mathys, C., Brandeis, D., Walitza, S. & Brem, S. (2014a) Role of the
medial prefrontal cortex in impaired decision making in juvenile attention-deficit/hyperactivity disorder.
JAMA Psychiatry,71,1165-1173.

Hauser, T.U, Iannaccone, R., Stampfli, P., Drechsler, R., Brandeis, D., Walitza, S. & Brem, S. (2014b) The
feedback-related negativity (FRN) revisited: new insights into the localization, meaning and network
organization. Neuroimage, 84, 159-168.

Hawkins, ].D., Graham, J.W., Maguin, E., Abbott, R, Hill, K.G. & Catalano, R.F. (1997) Exploring the effects of
age of alcohol use initiation and psychosocial risk factors on subsequent alcohol misuse. Journal of studies
on alcohol, 58, 280.

Hayes, A.F. & Matthes, ]. (2009) Computational procedures for probing interactions in OLS and logistic
regression: SPSS and SAS implementations. Behav Res Methods, 41, 924-936.

Heathcote, A., Brown, S.D. & Wagenmakers, E.-]. (2015) An introduction to good practices in cognitive
modeling An Introduction to Model-Based Cognitive Neuroscience. Springer, pp. 25-48.

Heinz, A. (2002) Dopaminergic dysfunction in alcoholism and schizophrenia--psychopathological and
behavioral correlates. Eur Psychiatry, 17, 9-16.

Heinz, A. & Batra, A. (2003) Neurobiologie der Alkohol-und Nikotinabhdngigkeit. Kohlhammer.

Heinz, A. Siessmeier, T, Wrase, ], Buchholz, H.G, Grunder, G. Kumakura, Y., Cumming, P,
Schreckenberger, M., Smolka, M.N., Rosch, F., Mann, K. & Bartenstein, P. (2005) Correlation of alcohol
craving with striatal dopamine synthesis capacity and D2/3 receptor availability: a combined [18F]DOPA
and [18F]DMFP PET study in detoxified alcoholic patients. Am J Psychiatry, 162, 1515-1520.

Heinz, A., Siessmeier, T., Wrase, ], Hermann, D., Klein, S., Grusser, S.M., Flor, H., Braus, D.F., Buchholz, H.G.,
Grunder, G., Schreckenberger, M., Smolka, M.N., Rosch, F., Mann, K. & Bartenstein, P. (2004) Correlation
between dopamine D(2) receptors in the ventral striatum and central processing of alcohol cues and
craving. Am J Psychiatry, 161, 1783-1789.

Heinz, AJ., Beck, A, Meyer-Lindenberg, A., Sterzer, P. & Heinz, A. (2011) Cognitive and neurobiological
mechanisms of alcohol-related aggression. Nat Rev Neurosci, 12, 400-413.

Hewig, ., Trippe, R, Hecht, H., Coles, M.G., Holroyd, C.B. & Miltner, W.H. (2007) Decision-making in
Blackjack: an electrophysiological analysis. Cerebral Cortex, 17, 865-877.

Hikosaka, O. & Isoda, M. (2010) Switching from automatic to controlled behavior: cortico-basal ganglia
mechanisms. Trends in cognitive sciences, 14, 154-161.

Hilbert, A., Tuschen-Caffier, B. & Ohms, M. (2004) Eating disorder examination: a German version of the
structured eating disorder interview. Diagnostica, 50, 98-106.

235



Hodgins, D.C,, Maticka-Tyndale, E., el-Guebaly, N. & West, M. (1993) The cast-6: development of a short-
form of the Children of Alcoholics Screening Test. Addict Behav, 18, 337-345.

Hogarth, L., Attwood, A.S., Bate, H.A. & Munafo, M.R. (2012a) Acute alcohol impairs human goal-directed
action. Biol Psychol, 90, 154-160.

Hogarth, L. Balleine, B.W., Corbit, L.H. & Killcross, S. (2013) Associative learning mechanisms
underpinning the transition from recreational drug use to addiction. Ann N Y Acad Sci, 1282, 12-24.

Hogarth, L., Chase, HW. & Baess, K. (2012b) Impaired goal-directed behavioural control in human
impulsivity. Quarterly journal of experimental psychology, 65, 305-316.

Hogarth, L., Dickinson, A., Wright, A., Kouvaraki, M. & Duka, T. (2007) The role of drug expectancy in the
control of human drug seeking. ] Exp Psychol Anim Behav Process, 33, 484-496.

Holmes, A. & Friston, K. (1998) Generalisability, Random Effects & Population Inference. Neuroimage, 7,
S754.

Holmes, T.H. & Rahe, R.H. (1967) The Social Readjustment Rating Scale. Journal of psychosomatic research,
11, 213-218.

Holroyd, C.B. & Coles, M.G. (2002) The neural basis of human error processing: reinforcement learning,
dopamine, and the error-related negativity. Psychol Rev, 109, 679-709.

Huettel, S.A.,, Song, A\W. & McCarthy, G. (2004) Functional magnetic resonance imaging. Sinauer Associates
Sunderland.

Huys, Q.J., Cools, R,, Golzer, M,, Friedel, E., Heinz, A, Dolan, R.J. & Dayan, P. (2011) Disentangling the roles
of approach, activation and valence in instrumental and pavlovian responding. PLoS Comput Biol, 7,
€1002028.

Huys, Q.J.,, Eshel, N., O'Nions, E., Sheridan, L., Dayan, P. & Roiser, ].P. (2012) Bonsai trees in your head: how
the pavlovian system sculpts goal-directed choices by pruning decision trees. PLoS Comput Biol, 8,

€1002410.

Huys, Q.J., Lally, N., Faulkner, P., Eshel, N., Seifritz, E., Gershman, S.J., Dayan, P. & Roiser, ].P. (2015a)
Interplay of approximate planning strategies. Proc Natl Acad Sci U S A, 112, 3098-3103.

Huys, Q.J., Tobler, P.N,, Hasler, G. & Flagel, S.B. (2014) The role of learning-related dopamine signals in
addiction vulnerability. Prog Brain Res, 211, 31-77.

Huys, Q.J.M., Guitart-Masip, M., Dolan, R. & Dayan, P. (2015b) Decision-Theoretic Psychiatry. Clinical
Psychologial Science, 3, 400-421.

Hyman, S.E. (2005) Addiction: a disease of learning and memory. Am ] Psychiatry, 162, 1414-1422.
Hyman, S.E. (2012) Revolution stalled. Science translational medicine, 4, 155cm111.

Iglesias, S., Mathys, C., Brodersen, K.H., Kasper, L., Piccirelli, M., den Ouden, H.E. & Stephan, K.E. (2013)
Hierarchical Prediction Errors in Midbrain and Basal Forebrain during Sensory Learning. Neuron, 80, 519-
530.

Insel, T. Cuthbert, B.,, Garvey, M., Heinssen, R, Pine, D.S, Quinn, K, Sanislow, C. & Wang, P. (2010)
Research domain criteria (RDoC): toward a new classification framework for research on mental

disorders. Am J Psychiatry, 167, 748-751.

Jensen, R. (2006) Behaviorism, latent learning, and cognitive maps: needed revisions in introductory
psychology textbooks. The Behavior analyst / MABA, 29, 187-209.

236



Jentsch, ].D., Olausson, P., De La Garza, R., 2nd & Taylor, J.R. (2002) Impairments of reversal learning and
response perseveration after repeated, intermittent cocaine administrations to monkeys.
Neuropsychopharmacology, 26, 183-190.

Johnson, P.M. & Kenny, P.J. (2010) Dopamine D2 receptors in addiction-like reward dysfunction and
compulsive eating in obese rats. Nat Neurosci, 13, 635-641.

Kalivas, P.W. & Volkow, N.D. (2005) The neural basis of addiction: a pathology of motivation and choice.
Am ] Psychiatry, 162, 1403-1413.

Kappenman, E.S. & Luck, S.J. (2012) ERP components: The ups and downs of brainwave recordings. In
Luck, S.J., Kappenman, E.S. (eds) The Oxford Handbook of Event-Related Potential Components. Oxford
University Press, Oxford, pp. 3-30.

Kapur, S., Phillips, A.G. & Insel, T.R. (2012) Why has it taken so long for biological psychiatry to develop
clinical tests and what to do about it? Mol Psychiatry, 17, 1174-1179.

Kelley, A.E. (2004) Ventral striatal control of appetitive motivation: role in ingestive behavior and reward-
related learning. Neurosci Biobehav Rev, 27, 765-776.

Kennedy, D. (2005) Neuroimaging: revolutionary research tool or a post-modern phrenology? The
American journal of bioethics : AJOB, 5, 19; discussion W13-14.

Kepecs, A. & Mainen, Z.F. (2012) A computational framework for the study of confidence in humans and
animals. Philos Trans R Soc Lond B Biol Sci, 367, 1322-1337.

Keramati, M., Dezfouli, A. & Piray, P. (2011) Speed/accuracy trade-off between the habitual and the goal-
directed processes. PLoS Comput Biol, 7, e1002055.

Kim, W.,, Pitt, M.A,, Lu, Z.L., Steyvers, M. & Myung, ].I. (2014) A hierarchical adaptive approach to optimal
experimental design. Neural Comput, 26, 2465-2492.

Kirschbaum, C., Pirke, KM. & Hellhammer, D.H. (1993) The 'Trier Social Stress Test'--a tool for
investigating psychobiological stress responses in a laboratory setting. Neuropsychobiology, 28, 76-81.

Klimesch, W., Sauseng, P., Hanslmayr, S., Gruber, W. & Freunberger, R. (2007) Event-related phase
reorganization may explain evoked neural dynamics. Neurosci Biobehav Rev, 31, 1003-1016.

Klimesch, W., Schack, B., Schabus, M., Doppelmayr, M., Gruber, W. & Sauseng, P. (2004) Phase-locked alpha
and theta oscillations generate the P1-N1 complex and are related to memory performance. Brain Res
Cogn Brain Res, 19, 302-316.

Kloppel, S., Abdulkadir, A, Jack, C.R, Jr. Koutsouleris, N, Mourao-Miranda, ]J. & Vemuri, P. (2012)
Diagnostic neuroimaging across diseases. Neuroimage, 61, 457-463.

Knutson, B. & Gibbs, S.E. (2007) Linking nucleus accumbens dopamine and blood oxygenation.
Psychopharmacology (Berl), 191, 813-822.

Koechlin, E., Ody, C. & Kouneiher, F. (2003) The architecture of cognitive control in the human prefrontal
cortex. Science, 302, 1181-1185.

Koob, G.F. (2008) A role for brain stress systems in addiction. Neuron, 59, 11-34.

Kraus, L. & Augustin, R. (2001) Représentativerhebung zum Gebrauch psychoaktiver Substanzen bei
Erwachsenen in Deutschland 2000. Sucht, 47, 3-85.

Krugel, LK, Biele, G.,, Mohr, P.N,, Li, S.C. & Heekeren, H.R. (2009) Genetic variation in dopaminergic

neuromodulation influences the ability to rapidly and flexibly adapt decisions. Proc Natl Acad Sci U S A4,
106, 17951-17956.

237



Kudielka, B.M., Hellhammer, D.H. & Kirschbaum, C. (2007) Ten years of research with the Trier Social
Stress Test—revisited. In Harmon-Jones E, W.P. (ed) Social neuroscience: Integrating biological and
psychological explanations of social behavior. The Guilford Press, New York, pp. 56-83.

Kudielka, B.M., Schommer, N.C., Hellhammer, D.H. & Kirschbaum, C. (2004) Acute HPA axis responses,
heart rate, and mood changes to psychosocial stress (TSST) in humans at different times of day.
Psychoneuroendocrinology, 29, 983-992.

Kurth-Nelson, Z. & Redish, A.D. (2012) Don'T let me do that! - models of precommitment. Front Neurosci,
6,138.

Landy, M.S., Trommershauser, J. & Daw, N.D. (2012) Dynamic estimation of task-relevant variance in
movement under risk. / Neurosci, 32,12702-12711.

Laux, L. Glanzmann, P. Schaffner, P. & Spielberger, C. (1981) Das State-Trait-Angstinventar. Beltz,
Weinheim.

Lee, S.W., Shimojo, S. & O'Doherty, J.P. (2014) Neural Computations Underlying Arbitration between
Model-Based and Model-free Learning. Neuron, 81, 687-699.

Lehmann, D. & Skrandies, W. (1980) Reference-free identification of components of checkerboard-evoked
multichannel potential fields. Electroencephalography and clinical neurophysiology, 48, 609-621.

Lewandowsky, S. & Farrell, S. (2011) Computational Modeling in Cognition. SAGE Publications, Inc.,
Thousand Oaks.

Li, J. & Daw, N.D. (2011) Signals in human striatum are appropriate for policy update rather than value
prediction. / Neurosci, 31, 5504-5511.

Li, J., Schiller, D., Schoenbaum, G., Phelps, E.A. & Daw, N.D. (2011) Differential roles of human striatum and
amygdala in associative learning. Nat Neurosci, 14, 1250-1252.

Liston, C., McEwen, B.S. & Casey, B.J. (2009) Psychosocial stress reversibly disrupts prefrontal processing
and attentional control. Proceedings of the National Academy of Sciences of the United States of America,
106,912-917.

Logothetis, N.K. (2007) The ins and outs of fMRI signals. Nat Neurosci, 10, 1230-1232.

Logothetis, N.K,, Pauls, ., Augath, M., Trinath, T. & Oeltermann, A. (2001) Neurophysiological investigation
of the basis of the fMRI signal. Nature, 412, 150-157.

Lohrenz, T., McCabe, K., Camerer, C.F. & Montague, P.R. (2007) Neural signature of fictive learning signals
in a sequential investment task. Proc Natl Acad Sci U S A, 104, 9493-9498.

Lorenz, R.C,, Gleich, T, Kuhn, S., Pohland, L., Pelz, P., Wustenberg, T., Raufelder, D., Heinz, A. & Beck, A.
(2015) Subjective illusion of control modulates striatal reward anticipation in adolescence. Neuroimage.

Lucantonio, F., Stalnaker, T.A., Shaham, Y., Niv, Y. & Schoenbaum, G. (2012) The impact of orbitofrontal
dysfunction on cocaine addiction. Nat Neurosci, 15, 358-366.

Lucantonio, F., Takahashi, Y.K., Hoffman, AF., Chang, C.Y., Bali-Chaudhary, S., Shaham, Y., Lupica, C.R. &
Schoenbaum, G. (2014) Orbitofrontal activation restores insight lost after cocaine use. Nat Neurosci, 17,
1092-1099.

Luce, R.D. (1995) Four tensions concerning mathematical modeling in psychology. Annu Rev Psychol, 46,
1-26.

Luck, S.J. (2012) Event-related potentials. In Cooper, H., Camic, P.M,, Long, D.L., Panter, A.T., Rindskopf, D.,
Sher, KJ. (eds) APA handbook of research methods in psychology. American Psychological Association,
Washington, DC, pp. 523-546.

238



Luine, V., Villegas, M., Martinez, C. & McEwen, B.S. (1994) Repeated stress causes reversible impairments
of spatial memory performance. Brain research, 639, 167-170.

Lupien, S.J., McEwen, B.S., Gunnar, M.R. & Heim, C. (2009) Effects of stress throughout the lifespan on the
brain, behaviour and cognition. Nat Rev Neurosci, 10, 434-445.

Luthi, A. & Luscher, C. (2014) Pathological circuit function underlying addiction and anxiety disorders. Nat
Neurosci, 17, 1635-1643.

Maia, T.V. (2015) Introduction to the Series on Computational Psychiatry. Clinical Psychologial Science, 3,
374-377.

Maia, T.V. & Frank, M.J. (2011) From reinforcement learning models to psychiatric and neurological
disorders. Nat Neurosci, 14, 154-162.

Maier, S.U., Makwana, A.B. & Hare, T.A. (2015) Acute Stress Impairs Self-Control in Goal-Directed Choice
by Altering Multiple Functional Connections within the Brain's Decision Circuits. Neuron, 87, 621-631.

Makeig, S. & Onton, J. (2012) ERP Features and EEG Dynamics: An ICA Perspective. In Luck, SJ.,
Kappenman, E.S. (eds) The Oxford Handbook of Event-Related Potential Components. Oxford University
Press, Oxford, pp. 51-86.

Mars, R.B., Debener, S., Gladwin, T.E., Harrison, L.M., Haggard, P., Rothwell, ].C. & Bestmann, S. (2008) Trial-
by-trial fluctuations in the event-related electroencephalogram reflect dynamic changes in the degree of
surprise. ] Neurosci, 28, 12539-12545.

Mars, R.B., Shea, N.J,, Kolling, N. & Rushworth, M.F. (2012) Model-based analyses: Promises, pitfalls, and
example applications to the study of cognitive control. Quarterly journal of experimental psychology, 65,
252-267.

Martinez, D., Gil, R, Slifstein, M., Hwang, D.R,, Huang, Y., Perez, A., Kegeles, L., Talbot, P., Evans, S., Krystal, J.,
Laruelle, M. & Abi-Dargham, A. (2005) Alcohol dependence is associated with blunted dopamine
transmission in the ventral striatum. Biol Psychiatry, 58, 779-786.

Martinez, D., Narendran, R., Foltin, R.W,, Slifstein, M., Hwang, D.R,, Broft, A, Huang, Y., Cooper, T.B,,
Fischman, M.W.,, Kleber, H.D. & Laruelle, M. (2007) Amphetamine-induced dopamine release: markedly
blunted in cocaine dependence and predictive of the choice to self-administer cocaine. Am J Psychiatry,
164, 622-629.

Martinez, D., Saccone, P.A,, Liu, F,, Slifstein, M., Orlowska, D., Grassetti, A., Cook, S., Broft, A.,, Van Heertum,
R. & Comer, S.D. (2012) Deficits in dopamine D(2) receptors and presynaptic dopamine in heroin
dependence: commonalities and differences with other types of addiction. Biol Psychiatry, 71, 192-198.

Mathys, C., Daunizeau, J., Friston, K.J. & Stephan, K.E. (2011) A bayesian foundation for individual learning
under uncertainty. Front Hum Neurosci, 5, 39.

Mathys, C.D., Lomakina, E.I, Daunizeau, J., Iglesias, S., Brodersen, K.H,, Friston, K.J. & Stephan, K.E. (2014)
Uncertainty in perception and the Hierarchical Gaussian Filter. Front Hum Neurosci, 8, 825.

McEwen, B.S. (2004) Protection and damage from acute and chronic stress: allostasis and allostatic
overload and relevance to the pathophysiology of psychiatric disorders. Annals of the New York Academy
of Sciences, 1032, 1-7.

McGee, T.J,, King, C., Tremblay, K., Nicol, T.G., Cunningham, J. & Kraus, N. (2001) Long-term habituation of
the speech-elicited mismatch negativity. Psychophysiology, 38, 653-658.

McNair, D., Lorr, M. & Droppleman, L. (1971) Manual for the Profile of Mood States. Educational and
Industrial Testing Services, San Diego.

239



Mendelson, J.H., Sholar, M.B., Goletiani, N., Siegel, A.J. & Mello, N.K. (2005) Effects of low- and high-nicotine
cigarette smoking on mood states and the HPA axis in men. Neuropsychopharmacology : official publication
of the American College of Neuropsychopharmacology, 30, 1751-1763.

Menon, V. & Uddin, L.Q. (2010) Saliency, switching, attention and control: a network model of insula
function. Brain Struct Funct, 214, 655-667.

Merikangas, K.R., Stevens, D.E., Fenton, B, Stolar, M., 0'Malley, S., Woods, S.W. & Risch, N. (1998a) Co-
morbidity and familial aggregation of alcoholism and anxiety disorders. Psychol Med, 28, 773-788.

Miltner, W.H., Braun, C.H. & Coles, M.G. (1997) Event-related brain potentials following incorrect feedback
in a time-estimation task: Evidence for a “generic” neural system for error detection. Journal of cognitive

neuroscience, 9, 788-798.

Montague, P.R,, Dayan, P. & Sejnowski, T.J. (1996) A framework for mesencephalic dopamine systems
based on predictive Hebbian learning. ] Neurosci, 16, 1936-1947.

Montague, P.R., Dolan, R, Friston, K.J. & Dayan, P. (2012) Computational psychiatry. Trends Cogn Sci, 16,
72-80.

Morgan, D., Grant, KA, Gage, H.D., Mach, R.H., Kaplan, J.R, Prioleau, O. Nader, S.H., Buchheimer, N,
Ehrenkaufer, R.L. & Nader, M.A. (2002) Social dominance in monkeys: dopamine D2 receptors and cocaine
self-administration. Nat Neurosci, 5, 169-174.

Morris, L.S., Baek, K., Kundu, P., Harrison, N.A,, Frank, M.]. & Voon, V. (2015) Biases in the Explore-Exploit
Tradeoff in Addictions: the Role of Avoidance of Uncertainty. Neuropsychopharmacology, accepted article

preview.

Myung, ].I. & Pitt, M.A. (2009) Optimal experimental design for model discrimination. Psychol Rev, 116,
499-518.

Nidal, K. & Malik, A.S. (2014) EEG/ERP Analysis: Methods and Applications. CRC Press.

Norris, D. (2005) How do computational models help us build better theories? In Cutler, A. (ed) Twenty-
first century psycholinguistics: four cornerstones. Lawrence Erlbaum, Mahwah, pp. 331-346.

O'Doherty, J., Dayan, P., Schultz, ]J., Deichmann, R., Friston, K. & Dolan, RJ. (2004) Dissociable roles of
ventral and dorsal striatum in instrumental conditioning. Science, 304, 452-454.

O'Doherty, J.P. (2014) The problem with value. Neurosci Biobehav Rev, 43, 259-268.

O'Doherty, J.P., Dayan, P., Friston, K., Critchley, H. & Dolan, RJ. (2003) Temporal difference models and
reward-related learning in the human brain. Neuron, 38, 329-337.

O'Doherty, J.P., Hampton, A. & Kim, H. (2007) Model-based fMRI and its application to reward learning and
decision making. Ann N Y Acad Sci, 1104, 35-53.

Ogawa, S, Lee, T.M,, Kay, A.R. & Tank, D.W. (1990) Brain magnetic resonance imaging with contrast
dependent on blood oxygenation. Proc Natl Acad Sci U S A, 87, 9868-9872.

Ostlund, S.B. & Balleine, B.W. (2005) Lesions of medial prefrontal cortex disrupt the acquisition but not
the expression of goal-directed learning. ] Neurosci, 25, 7763-7770.

Otto, A.R,, Gershman, S.J., Markman, A.B. & Daw, N.D. (2013a) The curse of planning: dissecting multiple
reinforcement-learning systems by taxing the central executive. Psychol Sci, 24, 751-761.

Otto, AR, Raio, C.M,, Chiang, A., Phelps, E.A. & Daw, N.D. (2013b) Working-memory capacity protects
model-based learning from stress. Proc Natl Acad Sci U S A, 110, 20941-20946.

240



Otto, AR, Skatova, A., Madlon-Kay, S. & Daw, N.D. (2015) Cognitive control predicts use of model-based
reinforcement learning. J Cogn Neurosci, 27, 319-333.

Park, S.Q., Kahnt, T., Beck, A., Cohen, M.X,, Dolan, R.J., Wrase, ]. & Heinz, A. (2010) Prefrontal cortex fails to
learn from reward prediction errors in alcohol dependence. ] Neurosci, 30, 7749-7753.

Parvaz, M.A., Konova, A.B,, Proudfit, G.H., Dunning, J.P., Malaker, P., Moeller, S.J., Maloney, T., Alia-Klein, N.
& Goldstein, R.Z. (2015) Impaired Neural Response to Negative Prediction Errors in Cocaine Addiction.
The Journal of Neuroscience, 35, 1872-1879.

Patton, ].H., Stanford, M.S. & Barratt, E.S. (1995) Factor structure of the Barratt impulsiveness scale. J Clin
Psychol, 51, 768-774.

Pauling, L. & Coryell, C.D. (1936) The Magnetic Properties and Structure of Hemoglobin, Oxyhemoglobin
and Carbonmonoxyhemoglobin. Proc Natl Acad Sci U S A, 22, 210-216.

Paulus, M.P., Lovero, K.L., Wittmann, M. & Leland, D.S. (2008) Reduced behavioral and neural activation in
stimulant users to different error rates during decision making. Biol Psychiatry, 63, 1054-1060.

Paulus, M.P., Rogalsky, C., Simmons, A, Feinstein, ].S. & Stein, M.B. (2003) Increased activation in the right
insula during risk-taking decision making is related to harm avoidance and neuroticism. Neuroimage, 19,
1439-1448.

Penny, W.D,, Friston, K.J., Ashburner, ].T., Kiebel, S.J. & Nichols, T.E. (2011) Statistical parametric mapping:
the analysis of functional brain images: the analysis of functional brain images. Academic press.

Petzold, A., Plessow, F., Goschke, T. & Kirschbaum, C. (2010) Stress reduces use of negative feedback in a
feedback-based learning task. Behavioral neuroscience, 124, 248-255.

Philiastides, M.G., Biele, G., Vavatzanidis, N., Kazzer, P. & Heekeren, H.R. (2010) Temporal dynamics of
prediction error processing during reward-based decision making. Neuroimage, 53, 221-232.

Pitt, M.A. & Myung, 1.]. (2002) When a good fit can be bad. Trends Cogn Sci, 6, 421-425.

Pizzagalli, D.A. (2007) Electroencephalography and high-density electrophysiological source localization.
Handbook of psychophysiology, 3, 56-84.

Plessow, F., Fischer, R., Kirschbaum, C. & Goschke, T. (2011) Inflexibly focused under stress: acute
psychosocial stress increases shielding of action goals at the expense of reduced cognitive flexibility with
increasing time lag to the stressor. Journal of cognitive neuroscience, 23, 3218-3227.

Plessow, F., Kiesel, A. & Kirschbaum, C. (2012) The stressed prefrontal cortex and goal-directed behaviour:
acute psychosocial stress impairs the flexible implementation of task goals. Experimental brain research,
216, 397-408.

Poldrack, R.A. (2006) Can cognitive processes be inferred from neuroimaging data? Trends Cogn Sci, 10,
59-63.

Popper, K.R. (1982) Logik der Forschung. JCB Mohr (Paul Siebeck).

Preuschoff, K., Quartz, S.R. & Bossaerts, P. (2008) Human insula activation reflects risk prediction errors
as well as risk. ] Neurosci, 28, 2745-2752.

Price, C.]J. & Friston, K.J. (1999) Scanning patients with tasks they can perform. Human brain mapping, 8,
102-108.

Radenbach, C,, Reiter, A.M., Engert, V., Sjoerds, Z., Villringer, A., Heinze, H.]., Deserno, L. & Schlagenhauf, F.

(2015) The interaction of acute and chronic stress impairs model-based behavioral control.
Psychoneuroendocrinology, 53, 268-280.

241



Rangel, A., Camerer, C. & Montague, P.R. (2008) A framework for studying the neurobiology of value-based
decision making. Nat Rev Neurosci, 9, 545-556.

Rangel, A. & Hare, T. (2010) Neural computations associated with goal-directed choice. Curr Opin
Neurobiol, 20, 262-270.

Ratcliff, R. & Rouder, J.N. (1998) Modeling response times for two-choice decisions. Psychological Science,
9, 347-356.

Redish, A.D. (2004) Addiction as a computational process gone awry. Science, 306, 1944-1947.

Redish, A.D, Jensen, S. & Johnson, A. (2008) A unified framework for addiction: vulnerabilities in the
decision process. Behav Brain Sci, 31, 415-437; discussion 437-487.

Reitan, R.M. (1955) The relation of the trail making test to organic brain damage. J Consult Psychol, 19,
393-394.

Reiter, A.M.F, Deserno, L., Kallert, T.,, Heinz, A., Heinze, H.J. & Schlagenhauf, F. (under review). Neglecting
what might have happened - disturbed inference on alternative choices in alcohol-dependent patients.

Reiter, AM.F,, Deserno, L., Wilbertz, T., Heinze, H.]. & Schlagenhauf, F. (under review). Risk factors
for addiction and their association with model-based behavioral control.

Reiter, AM.F, Heinze, H.J., Schlagenhauf, F. & Deserno, L. (under review). Impaired flexible reward-
based decision-making in Binge Eating Disorder: evidence from computational modeling and
functional neuroimaging.

Reiter, A.M.F.,, Koch, S.P., Schroger, E., Hinrichs, H., Heinze, H.J., Deserno, L. & Schlagenhauf, F. (in revision)
The Feedback-Related Negativity codes components of abstract inference during reward-based decision-
making Journal of Cognitive Neuroscience.

Robbins, T.W. & Clark, L. (2015) Behavioral addictions. Curr Opin Neurobiol, 30, 66-72.
Robbins, T.W. & Everitt, B.J. (1999) Drug addiction: bad habits add up. Nature, 398, 567-570.

Robbins, T.W,, Gillan, C.M., Smith, D.G., de Wit, S. & Ersche, K.D. (2012) Neurocognitive endophenotypes of
impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn Sci, 16, 81-91.

Roesch, M.R,, Esber, G.R,, Li, ], Daw, N.D. & Schoenbaum, G. (2012) Surprise! Neural correlates of Pearce-
Hall and Rescorla-Wagner coexist within the brain. Eur J Neurosci, 35, 1190-1200.

Roth, A. & Fonagy, P. (2013) What works for whom?: a critical review of psychotherapy research. Guilford
Publications.

Rushworth, M.F., Noonan, M.P., Boorman, E.D., Walton, M.E. & Behrens, T.E. (2011) Frontal cortex and
reward-guided learning and decision-making. Neuron, 70, 1054-1069.

Russell, J.A., Weiss, A. & Mendelsohn, G.A. (1989) Affect Grid - a Single-Item Scale of Pleasure and Arousal.
Pers Soc Psychol, 57,493-502.

Salamone, ].D. & Correa, M. (2013) Dopamine and food addiction: lexicon badly needed. Biol Psychiatry,
73, e15-24.

Schad, D/, Junger, E., Sebold, M., Garbusow, M., Bernhardt, N., Javadi, A.H., Zimmermann, U.S., Smolka,
M.N., Heinz, A., Rapp, M.A. & Huys, Q.J. (2014) Processing speed enhances model-based over model-free
reinforcement learning in the presence of high working memory functioning. Front Psychol, 5, 1450.

Schlagenhauf, F., Huys, Q.J., Deserno, L., Rapp, M.A,, Beck, A, Heinze, H.],, Dolan, R. & Heinz, A. (2014)
Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. Neuroimage, 89, 171-
180.

242



Schlagenhauf, F,, Rapp, M.A,, Huys, Q.J., Beck, A, Wustenberg, T., Deserno, L., Buchholz, H.G., Kalbitzer, J.,
Buchert, R, Bauer, M,, Kienast, T., Cumming, P., Plotkin, M., Kumakura, Y., Grace, A.A., Dolan, R.J. & Heinz, A.
(2013) Ventral striatal prediction error signaling is associated with dopamine synthesis capacity and fluid
intelligence. Hum Brain Mapp, 34, 1490-1499.

Schluter, T., Winz, O., Henkel, K,, Prinz, S., Rademacher, L., Schmaljohann, ], Dautzenberg, K., Cumming, P.,
Kumakura, Y., Rex, S., Mottaghy, F.M., Grunder, G. & Vernaleken, 1. (2013) The impact of dopamine on
aggression: an [18F]-FDOPA PET Study in healthy males. ] Neurosci, 33, 16889-16896.

Schmidt, K.-H. & Metzler, P. (1992) Wortschatztest (WST). Beltz Test GmbH., Weinheim.

Schoenbaum, G. & Setlow, B. (2005) Cocaine makes actions insensitive to outcomes but not extinction:
implications for altered orbitofrontal-amygdalar function. Cereb Cortex, 15, 1162-1169.

Schoenbaum, G. & Shaham, Y. (2008) The role of orbitofrontal cortex in drug addiction: a review of
preclinical studies. Biol Psychiatry, 63, 256-262.

Schommer, N.C., Hellhammer, D.H. & Kirschbaum, C. (2003) Dissociation between reactivity of the
hypothalamus-pituitary-adrenal axis and the sympathetic-adrenal-medullary system to repeated
psychosocial stress. Psychosomatic medicine, 65, 450-460.

Schultz, W. (2013) Updating dopamine reward signals. Curr Opin Neurobiol, 23, 229-238.

Schultz, W.,, Dayan, P. & Montague, P.R. (1997) A neural substrate of prediction and reward. Science, 275,
1593-1599.

Schumann, G., Loth, E., Banaschewski, T., Barbot, A., Barker, G., Buchel, C., Conrod, P.]., Dalley, ].W.,, Flor, H.,
Gallinat, J., Garavan, H., Heinz, A., Itterman, B., Lathrop, M., Mallik, C., Mann, K., Martinot, J.L., Paus, T.,
Poline, J.B., Robbins, T.W., Rietschel, M., Reed, L., Smolka, M., Spanagel, R, Speiser, C., Stephens, D.N,,
Strohle, A, Struve, M. & consortium, I. (2010) The IMAGEN study: reinforcement-related behaviour in
normal brain function and psychopathology. Mol Psychiatry, 15, 1128-1139.

Schwabe, L. & Wolf, 0.T. (2009) Stress prompts habit behavior in humans. The Journal of neuroscience : the
official journal of the Society for Neuroscience, 29, 7191-7198.

Schwabe, L. & Wolf, 0.T. (2011) Stress-induced modulation of instrumental behavior: from goal-directed
to habitual control of action. Behavioural brain research, 219, 321-328.

Schwabe, L. & Wolf, O0.T. (2013) Stress and multiple memory systems: from "thinking' to 'doing’. Trends in
cognitive sciences, 17, 60-68.

Schwartenbeck, P., FitzGerald, T.H., Mathys, C., Dolan, R., Wurst, F., Kronbichler, M. & Friston, K. (2015)
Optimal inference with suboptimal models: addiction and active Bayesian inference. Med Hypotheses, 84,
109-117.

Schwarz, G. (1978) Estimating the dimension of a model. The annals of statistics, 6, 461-464.

Seamans, ].K. & Yang, C.R. (2004) The principal features and mechanisms of dopamine modulation in the
prefrontal cortex. Prog Neurobiol, 74, 1-58.

Sebold, M., Deserno, L., Nebe, S., Schad, D.J., Garbusow, M., Hagele, C., Keller, ], Junger, E., Kathmann, N.,
Smolka, M., Rapp, M.A, Schlagenhauf, F., Heinz, A. & Huys, Q.J. (2014) Model-based and model-free
decisions in alcohol dependence. Neuropsychobiology, 70, 122-131.

Shohamy, D. & Wagner, A.D. (2008) Integrating memories in the human brain: hippocampal-midbrain
encoding of overlapping events. Neuron, 60, 378-389.

Simon, D.A. & Daw, N.D. (2011) Neural correlates of forward planning in a spatial decision task in humans.
J Neurosci, 31, 5526-5539.

243



Simon, D.A. & Daw, N.D. (2012) Dual-system learning models and drugs of abuse Computational
Neuroscience of Drug Addiction. Springer, pp. 145-161.

Singer, T., Critchley, H.D. & Preuschoff, K. (2009) A common role of insula in feelings, empathy and
uncertainty. Trends Cogn Sci, 13, 334-340.

Sinha, R. (2008) Chronic stress, drug use, and vulnerability to addiction. Ann N Y Acad Sci, 1141, 105-130.

Sjoerds, Z., de Wit, S,, van den Brink, W., Robbins, T.W., Beekman, A.T., Penninx, BW. & Veltman, D.J.
(2013) Behavioral and neuroimaging evidence for overreliance on habit learning in alcohol-dependent
patients. Transl Psychiatry, 3, e337.

Smith, D.G. & Robbins, T.W. (2013) The neurobiological underpinnings of obesity and binge eating: a
rationale for adopting the food addiction model. Biol Psychiatry, 73, 804-810.

Smittenaar, P. (2015) Action control in uncertain environments. Wellcome Trust Centre for Neuroimaging.
University College London, pp. 272.

Smittenaar, P., FitzGerald, T.H., Romei, V., Wright, N.D. & Dolan, R.J. (2013) Disruption of dorsolateral
prefrontal cortex decreases model-based in favor of model-free control in humans. Neuron, 80, 914-919.

Soares, ].M., Sampaio, A., Ferreira, L.M., Santos, N.C., Marques, F., Palha, J.A., Cerqueira, ].J. & Sousa, N.
(2012) Stress-induced changes in human decision-making are reversible. Translational psychiatry, 2,
el31.

Sobell, L.C.S, M.B. (1992) Timeline follow-back: A technique for assessing self-reported alcohol
consumption. In Litten, R.Z.A,, J. (ed) Measuring alcohol consumption: Psychosocial and biological methods.
Humana Press, New Jersey.

Sokol-Hessner, P., Hutcherson, C., Hare, T. & Rangel, A. (2012) Decision value computation in DLPFC and
VMPFC adjusts to the available decision time. Eur J Neurosci, 35, 1065-1074.

Stahl, S.M. (2008) Stahl's Essential Psychopharmacology: Neuroscientific Basis and Practical Applications.
Cambridge University Press.

Stanford, M.S., Mathias, C.W., Dougherty, D.M,, Lake, S.L., Anderson, N.E. & Patton, J.H. (2009) Fifty years of
the Barratt Impulsiveness Scale: An update and review. Personality and Individual Differences, 47, 385-
395.

Starcke, K. & Brand, M. (2012) Decision making under stress: a selective review. Neuroscience and
biobehavioral reviews, 36, 1228-1248.

Starcke, K., Polzer, C., Wolf, O.T. & Brand, M. (2011) Does stress alter everyday moral decision-making?
Psychoneuroendocrinology, 36, 210-219.

Stephan, KE., Iglesias, S, Heinzle, ]. & Diaconescu, A.O. (2015) Translational Perspectives for
Computational Neuroimaging. Neuron, 87, 716-732.

Stephan, K.E. & Mathys, C. (2014) Computational approaches to psychiatry. Curr Opin Neurobiol, 25, 85-92.

Stephan, K.E,, Penny, W.D., Daunizeau, J., Moran, R.J. & Friston, K.J. (2009) Bayesian model selection for
group studies. Neuroimage, 46, 1004-1017.

Sutton, R.S. (1992) Integrated architectures for learning, planning, and reacting based on approximating
dynamic programming. Proceedings of the seventh international conference on machine learning, p. 216-
224.

Sutton, R.S. (1992) Gain adaptation beats least squares? Proceedings of the 7th Yale Workshop on Adaptive
and Learning Systems, pp. 161-166.

244



Sutton, R.S. & Barto, A.G. (1998) Reinforcement Learning: An Introduction. MIT Press, Cambridge, MA.

Svaldi, J., Brand, M. & Tuschen-Caffier, B. (2010) Decision-making impairments in women with binge
eating disorder. Appetite, 54, 84-92.

Takahashi, Y.K, Chang, C.Y., Lucantonio, F., Haney, R.Z, Berg, B.A,, Yau, H/J,, Bonci, A. & Schoenbaum, G.
(2013) Neural estimates of imagined outcomes in the orbitofrontal cortex drive behavior and learning.
Neuron, 80,507-518.

Talmi, D., Atkinson, R. & El-Deredy, W. (2013) The feedback-related negativity signals salience prediction
errors, not reward prediction errors. The Journal of Neuroscience, 33, 8264-8269.

Talmi, D., Fuentemilla, L., Litvak, V., Duzel, E. & Dolan, R.J. (2012) An MEG signature corresponding to an
axiomatic model of reward prediction error. Neuroimage, 59, 635-645.

Talmi, D., Seymour, B., Dayan, P. & Dolan, R.J. (2008) Human pavlovian-instrumental transfer. ] Neurosci,
28,360-368.

Tan, H.Y, Sust, S., Buckholtz, ].W. Mattay, V.S., Meyer-Lindenberg, A, Egan, M.F,, Weinberger, D.R. &
Callicott, J.H. (2006) Dysfunctional prefrontal regional specialization and compensation in schizophrenia.
Am ] Psychiatry, 163, 1969-1977.

Tanabe, J., Reynolds, J., Krmpotich, T., Claus, E., Thompson, L.L., Du, Y.P. & Banich, M.T. (2013) Reduced
neural tracking of prediction error in substance-dependent individuals. Am J Psychiatry, 170, 1356-1363.

Thorndike, E.L. (1911) Animal intelligence: Experimental studies. Macmillan.

Tiffany, S.T., Carter, B.L. & Singleton, E.G. (2000) Challenges in the manipulation, assessment and
interpretation of craving relevant variables. Addiction, 95 Suppl 2, S177-187.

Tolman, E.C. (1948) Cognitive maps in rats and men Psychol Rev, 55, 189-208.

Trantham-Davidson, H., Burnett, E.J., Gass, ].T., Lopez, M.F., Mulholland, P.J., Centanni, S.W., Floresco, S.B. &
Chandler, L.J. (2014) Chronic alcohol disrupts dopamine receptor activity and the cognitive function of the
medial prefrontal cortex. ] Neurosci, 34, 3706-3718.

Tricomi, E., Balleine, B.W. & O'Doherty, J.P. (2009) A specific role for posterior dorsolateral striatum in
human habit learning. Eur ] Neurosci, 29, 2225-2232.

Tse, Y.C., Montoya, I, Wong, A.S., Mathieu, A, Lissemore, ]., Lagace, D.C. & Wong, T.P. (2014) A longitudinal
study of stress-induced hippocampal volume changes in mice that are susceptible or resilient to chronic
social defeat. Hippocampus, 24, 1120-1128.

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, 0., Delcroix, N., Mazoyer, B. &
Joliot, M. (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical
parcellation of the MNI MRI single-subject brain. Neuroimage, 15, 273-289.

Ullsperger, M,, Fischer, A.G., Nigbur, R. & Endrass, T. (2014) Neural mechanisms and temporal dynamics of
performance monitoring. Trends in cognitive sciences, 18, 259-267.

Valentin, V.V,, Dickinson, A. & O'Doherty, ].P. (2007) Determining the neural substrates of goal-directed
learning in the human brain. / Neurosci, 27, 4019-4026.

Van Cauter, E. & Refetoff, S. (1985) Evidence for two subtypes of Cushing's disease based on the analysis of
episodic cortisol secretion. The New England journal of medicine, 312, 1343-1349.

van der Meer, M.A, Johnson, A, Schmitzer-Torbert, N.C. & Redish, A.D. (2010) Triple dissociation of
information processing in dorsal striatum, ventral striatum, and hippocampus on a learned spatial
decision task. Neuron, 67, 25-32.

245



van Maanen, L., Forstmann, B.U., Keuken, M.C., Wagenmakers, E.J. & Heathcote, A. (2015) The impact of
MRI scanner environment on perceptual decision-making. Behav Res Methods.

Verbruggen, F., McLaren, I.P. & Chambers, C.D. (2014) Banishing the Control Homunculi in Studies of
Action Control and Behavior Change. Perspectives on psychological science : a journal of the Association for
Psychological Science, 9, 497-524.

Verdejo-Garcia, A., Lawrence, A.J. & Clark, L. (2008) Impulsivity as a vulnerability marker for substance-
use disorders: review of findings from high-risk research, problem gamblers and genetic association
studies. Neurosci Biobehav Rev, 32, 777-810.

Volkow, N., Fowler, ], Wang, G., Baler, R. & Telang, F. (2009) Imaging dopamine's role in drug abuse and
addiction. Neuropharmacology, 56, 3-8.

Volkow, N.D., Fowler, ].S., Wang, G.J. & Swanson, ].M. (2004) Dopamine in drug abuse and addiction: results
from imaging studies and treatment implications. Mol Psychiatry, 9, 557-569.

Volkow, N.D,, Fowler, ].S., Wolf, A.P., Schlyer, D., Shiue, C.Y., Alpert, R., Dewey, S.L.,, Logan, J., Bendriem, B,,
Christman, D. & et al. (1990) Effects of chronic cocaine abuse on postsynaptic dopamine receptors. Am ]
Psychiatry, 147, 719-724.

Volkow, N.D., Wang, G.]., Begleiter, H., Porjesz, B. Fowler, ].S., Telang, F., Wong, C, Ma, Y., Logan, ],
Goldstein, R., Alexoff, D. & Thanos, P.K. (2006) High levels of dopamine D2 receptors in unaffected
members of alcoholic families: possible protective factors. Arch Gen Psychiatry, 63, 999-1008.

Volkow, N.D., Wang, G.J., Fowler, .S, Logan, J., Hitzemann, R, Ding, Y.S., Pappas, N., Shea, C. & Piscani, K.
(1996) Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol Clin Exp

Res, 20, 1594-1598.

Volkow, N.D., Wang, G.J,, Tomasi, D. & Baler, R.D. (2013) The addictive dimensionality of obesity. Biol
Psychiatry, 73,811-818.

Volkow, N.D. & Wise, R.A. (2005) How can drug addiction help us understand obesity? Nat Neurosci, 8,
555-560.

Von Aster, M., Neubauer, A. & Horn, R. (2006) Wechsler Intelligenztest fiir Erwachsene. Harcourt Test
Services, Frankfurt.

Voon, V., Derbyshire, K, Ruck, C., Irvine, M.A,, Worbe, Y., Enander, J., Schreiber, L.R,, Gillan, C., Fineberg,
N.A, Sahakian, B.J., Robbins, T.W.,, Harrison, N.A,, Wood, J., Daw, N.D., Dayan, P., Grant, ]J.E. & Bullmore, E.T.
(2015) Disorders of compulsivity: a common bias towards learning habits. Mol Psychiatry, 20, 345-352.
Voon, V., Irvine, M.A,, Derbyshire, K., Worbe, Y., Lange, 1., Abbott, S., Morein-Zamir, S., Dudley, R., Caprioli,
D., Harrison, N.A,, Wood, ], Dalley, J.W., Bullmore, E.T., Grant, ].E. & Robbins, T.W. (2014) Measuring
"waiting" impulsivity in substance addictions and binge eating disorder in a novel analogue of rodent
serial reaction time task. Biol Psychiatry, 75, 148-155.

Walsh, M.M. & Anderson, J.R. (2012) Learning from experience: event-related potential correlates of
reward processing, neural adaptation, and behavioral choice. Neurosci Biobehav Rev, 36, 1870-1884.

Wang, X.J. & Krystal, ].H. (2014) Computational psychiatry. Neuron, 84, 638-654.
Watkins, C.J. & Dayan, P. (1992) Q-learning. Machine learning, 8, 279-292.
Wechsler, D. (1945) A standardized memory scale for clinical use. Journal of Psychology, 19, 87-95.

Wechsler, D. (1955) Wechsler Adult Intelligence Scale Manual. Psychological Corporation, New York.

246



Weisberg, D.S,, Keil, F.C., Goodstein, ], Rawson, E. & Gray, J.R. (2008) The seductive allure of neuroscience
explanations. ] Cogn Neurosci, 20, 470-477.

White, C.N. & Poldrack, RA. (2013) Using fMRI to Constrain Theories of Cognition. Perspectives on
psychological science : a journal of the Association for Psychological Science, 8, 79-83.

Wiecki, T., Poland, J. & Frank, M.. (2015) Model-Based Cognitive Neuroscience Approaches to
Computational Psychiatry Clustering and Classification. Clinical Psychologial Science, 3, 378-399.

Wilbertz, T. Deserno, L, Horstmann, A, Neumann, ], Villringer, A, Heinze, H.J, Boehler, C.N. &
Schlagenhauf, F. (2014) Response inhibition and its relation to multidimensional impulsivity. Neuroimage,
103C, 241-248.

Williamson, D.A., Netemeyer, R.G., Jackman, L.P., Anderson, D.A, Funsch, C.L. & Rabalais, ].Y. (1995)
Structural equation modeling of risk factors for the development of eating disorder symptoms in female
athletes. International Journal of Eating Disorders, 17, 387-393.

Wimmer, G.E., Daw, N.D. & Shohamy, D. (2012) Generalization of value in reinforcement learning by
humans. Eur J Neurosci, 35, 1092-1104.

Wrase, |, Schlagenhauf, F., Kienast, T., Wustenberg, T., Bermpoh], F., Kahnt, T., Beck, A, Strohle, A., Juckel,
G., Knutson, B. & Heinz, A. (2007) Dysfunction of reward processing correlates with alcohol craving in

detoxified alcoholics. Neuroimage, 35, 787-794.

Wunderlich, K., Dayan, P. & Dolan, R.J. (2012a) Mapping value based planning and extensively trained
choice in the human brain. Nat Neurosci, 15, 786-791.

Wunderlich, K., Smittenaar, P. & Dolan, RJ. (2012b) Dopamine enhances model-based over model-free
choice behavior. Neuron, 75, 418-424.

Wunderlich, K., Symmonds, M., Bossaerts, P. & Dolan, RJ. (2011) Hedging your bets by learning reward
correlations in the human brain. Neuron, 71, 1141-1152.

Yin, H.H., Knowlton, B.J. & Balleine, B.W. (2004) Lesions of dorsolateral striatum preserve outcome
expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci, 19, 181-189.

Yin, H.H., Ostlund, S.B., Knowlton, B.J. & Balleine, B.W. (2005) The role of the dorsomedial striatum in
instrumental conditioning. Eur ] Neurosci, 22, 513-523.

Ziauddeen, H., Farooqj, .S. & Fletcher, P.C. (2012) Obesity and the brain: how convincing is the addiction
model? Nat Rev Neurosci, 13, 279-286.

247



List of Tables

Table 5-1. Study 1: Descriptives of best-fitting parameters (hybrid model).......ccccouuosmmeeriinnereinnns 55
Table 5-2. Study 1: fMRI whole-brain results for the conjunction of single-update and double-
update learning signals across both groups. 57
Table 6-1. Study 2: Model Selection. Exceedance Probabilities (XP) for all models.......ccocumuvurunns 72
Table 7-1. Study 3: Model Selection.. 86
Table 7-2. Study 3: Distribution of best-fitting parameters (hybrid model).......cconmrseeenreeerneenn. 88
Table 8-1. Study 4: Sample Characteristics 100
Table 9-1. Study 5: Sample characteristics of the original sample.. 120
Table 9-2. Study 5: Distribution of best-fitting parameters (hybrid model)........cccuuuermecerrrecennns 124
Table 10-1. Study 6: Model comparison. 147
Table 10-2. Study 6: Distribution of best fitting parameters and the negative log-likelihood (-LL)
of the hybrid model 148
Table 10-3. Descriptive values of subjective stress-related measurements. .......oumeermnseesens 149

248



List of Figures

Figure 2-1. General principle of computational modeling in the cognitive sciences..........cccuuuurennes 11
Figure 2-2. General steps: modeling-based analysis of neural data. 15
Figure 2-3. Principles of (f)MRI 19
Figure 3-1. Model-Based and Model-Free Decision-Making 31
Figure 3-2. Hypothesis of expression of model-based behavior in the population ... 42
Figure 4-1. Research questions and design. 46
Figure 4-2. Methods 46
Figure 5-1. Schematic: parallel double-updating of chosen and unchosen choice values. ......... 51
Figure 5-2. Study 1: Counterfactual decision-making task.. 54
Figure 5-3. Study 1: Computational Modeling Results 56
Figure 5-4. Study 1: Neural coding of single-update vs. double-update signals across the entire
sample 58
Figure 5-5. Study 1:Group differences in the neural coding of single-update vs. double-update
signals. 59
Figure 6-1. Study 2: Counterfactual decision-making task.. 68
Figure 6-2. Study 2: Behavioral Results. 72
Figure 6-3. Study 2: Neural correlates of Single-Update and Double-Update Prediction Errors.74
Figure 6-4. Study 2: Neural correlates of the exploration-exploitation trade-off........ccccomeeernnes 75
Figure 7-1. Study 3: Serial reversal task. 83
Figure 7-2. Study 3: Grand average of the FRN. 90
Figure 7-3. Study 3: Mean Reward Prediction Errors. 92
Figure 8-1. Study 4: Task and behavioral raw data. 108
Figure 8-2. Study 4: Hybrid model parameters.. 110
Figure 8-3. Study 4: fMRI results across the entire sample. 112
Figure 8-4 Study 4: Gray matter density and the balance of behavioral control. ........cccuucnnueeee. 112
Figure 9-1. Study 5: Task and Raw Data Results.. 125
Figure 9-2. Study 5: BIS-11 values. 127
Figure 9-3. Study 5: Association of model-based behavior. 130
Figure 9-4. Study 5:Post hoc tests with cognitive subdomains. 130
Figure 10-1. Study 6: Within-Subjects study design and time line of stress intervention........... 140
Figure 10-2. Study 6: Sequential Decision-Making Task 138
Figure 10-3. Stay 6: Stay probabilities of first-stage choices 145
Figure 10-4. Study 6:Correlation of stress reactivity with w 149

Figure 10-5. Study 6: Association between chronic stress and shift in behavioral control due to

acute social

stress.

150

249



Abbreviations

ACQ Alcohol Craving Questionnaire

al anterior Insula

ANOVA Analysis of Variance

AUDIT Alcohol Use Disorder Test

BED Binge Eating Disorder

BIC Bayesian Information Criterion
BIS Barratt Impulsiveness Scale
BMS Bayesian Model Selection

BOLD Blood Oxygen Level Dependence
DA Dopamine

DSM Diagnostic Statistical Manual

DS Digit Span

DU Double-Update

e.g. exempli gratia (for example)
EEG Electroencephalography

ERP Event-Related Potential

etal. and others

fMRI Functional magnetic resonance imaging
FRN Feedback-Related Negativity
GLM General Linear Model

Hb Hemoglobin

HC Healthy control

ie. id est (that is)

ICA Independent component analysis
iDU individually weighte double-updating
ISI Interstimulus interval

ITI Intertrial interval

MANOVA  Multivariate analysis of variance
MFC Media frontal cortex

MNI Montreal Neurological Institute
mPFC Medial prefrontal cortex

ms Milliseconds

0CD Obsessive Compulsive Disorder
0CDS Obsessive compulsive drinking scale
PE Prediction Error

PET Positions Emissions Tomography
RF pulse Radio frequency

RL Reinforcement Learning

RPE Reward Prediction Error

S Second

SD Standard Deviation

SI Supplementary Information

Sig. Significance

S-R Stimulus-Response

SU Single-Update

TD Temporal difference

250



TE
TLFB
TMS
TR
VBM
vIPFC
vmPFC
WST
XP

Echo Time
Time-Line-Follow-Back-Questionnaire
Transcranial Magnetic Stimulation
Repetition Time

Voxel-based Morphometry
Ventro-lateral prefrontal cortex
Ventro-medial prefrontal cortex
Wortschatztest

Exceedance Probabilities

251



Curriculum Vitae

Andrea Maria Franziska Reiter
Date of Birth: 17.05.1986 in Augsburg

Education

Career

252

Since 2012: Studies of Psychotherapy (Master of Advanced Sciences, Cognitive
Behavioral Therapy), University of Bern, Switzerland

Since 2012: Postgraduate Training in Psychotherapy (Cognitive Behavioral Therapy),
Deutsche Gesellschaft fiir Verhaltenstherapie, Tiibingen, Germany

2012: Diploma in Psychology
2009: Studies of Psychology, University of Lisbon, Portugal

2008 - 2012: Studies of Literature, Linguistics and Cultural Studies of Modern
Languages (Romance and English studies), University of Wiirzburg, Germany

2006 -2012: Studies of Psychology, University of Wiirzburg, Germany

2005: University Entrance Qualification (Abitur), Gymnasium Kénigsbrunn, Germany

Since 2015: Research Position, Lifespan Developmental Neuroscience, Technische
Universitat Dresden, Germany

2012 - 2015: PhD Student, International Max Planck Research School for the
Neuroscience of Communication, Research Group: Cognitive and Affective Control of
Behavioral Adaptation, Max Planck Institute for Human Cognitive and Brain Sciences,
Leipzig, Germany

2012 - 2014: Lecturer for Psychology of Emotion and Motivation, Department of
Psychology II, Julius-Maximilians-Universitat Wiirzburg, Germany

2012: Clinical Psychologist, Department of Psychiatry, Hospital Tauberbischofsheim,
Germany



Publications

Publications

Talks

Reiter, A.M.F, Deserno, L., Kallert, T., Heinz, A, Heinze, H.J., Schlagenhauf, F. (under
review). Neglecting what might have happened - disturbed inference on alternative
choices in alcohol-dependent patients.

Reiter, A.M.F.*, Deserno, L.*, Wilbertz, T., Heinze, H.J., Schlagenhauf, F. (under review).
Risk factors for addiction and their association with model-based behavioral control.
*equal contribution

Reiter, A.M.F., Heinze, H.J., Schlagenhauf, F, Deserno, L. (under review). Impaired
flexible reward-based decision-making - evidence from computational modeling and
functional neuroimaging.

Mussel, P., Reiter, A. M.F., Schmitt, B., Albrecht, B. Osinsky, R., Hewig, ]. (under review).
Approaching the construct of greed.

Reiter, A.M.F., Koch, S.P, Schroeger, E., Hinrichs, H., Heinze H.J, Deserno, L.,
Schlagenhauf, F. (in revision). The Feedback-Related Negativity codes components of
abstract inference during reward-based decision-making.

Deserno, L., Wilbertz, T., Reiter, A., Horstmann, A,, Neumann, |, Villringer, A., Heinze,H.-
], Schlagenhauf, F. (in press). Lateral prefrontal model-based signatures are reduced in
healthy individuals with high trait impulsivity. Translational Psychiatry

Radenbach, C.*. Reiter, A.M.F.*, Engert, V. Sjoerds, Z., Heinze, H.-]., Deserno, L.,
Schlagenhauf, F. (2015). The interaction of chronic and acute stress impairs model-based
behavioral control. Psychoneuroendocrinology. 53, 268-280.

*equal contribution

Mussel, P., Reiter, A.M.F., Osinksy, R., Hewig, ]. (2014). State- and trait-greed, its impact
on risky decision-making and underlying neural mechanisms. Social Neuroscience 10(2),
126-134.

Reiter, A.M.F. (2013). Vom Homo Oeconomicus zum Homo Emotionalis. Marketing
intern 3, 32-33.

Reiter, A.M.F, Deserno, L., Heinze, H], Schlagenhauf, F. (2015). Goals and habits in
addictive disorders. Talk presented at the 57th Conference of Experimental
Psychologists (Tagung experimentell arbeitender Psychologen, TeaP) University of
Hildesheim, Germany, 2015-03-09

Reiter, AM.F & Schlagenhauf, F. (2014). Stérungen basaler Lernmechanismen bei
Alkoholabhéngigkeit, Talk presented at HELIOS Park-Klinikum Leipzig, Germany, 2014-
12-03

Reiter, A.M.F. (2014). Behaviors running out of control? (Neuro-)clinical investigations
on behavioral adaptation. Invited Talk presented at colloquium, Research Group
Motivation and Emotion, Julius-Maximilians-Universitat Wiirzburg, Germany, 2014-02-
09

253



Poster Presentations

254

Schaare, L., Gaebler, M., Kumral, D., Reinelt, J., Erbey, M., Reiter, A., Robbig, ], Babayan, A. &
Villringer, A. (2015). Higher blood pressure is associated with lower regional grey matter
density in healthy, young adults. Poster presented at the Conference of the International

Society for Autonomic Neuroscience, Stresa, Italy.

Gaebler, M., Kumral, D., Reinelt, ]., Erbey, M., Reiter, A, Robbig, ], Babayan, A. & Villringer,
A. (2015): Allostatic load and its connection to the brain. Poster presented at the 45th

meeting of the International Society for Psychoneuroendocrinology, Edinburgh, Scotland.

Reinelt, ], Kumral, D., Erbey, M., Robbig, |, Reiter, A., Schaare, H. L., Babayan, A., Villringer,
A. & Gaebler, M. (2015): Neural dynamics of stress recovery and their relation to hormonal,
cardiac, and subjective changes. Poster presented at the 45th meeting of the International

Society for Psychoneuroendocrinology, Edinburgh, Scotland.

Reiter, A.M.F., Radenbach, C., Sjoerds, Z., Engert, V., Kallert, T., Heinz, A., Villringer, A,
Heinze H.J,, Deserno L., Schlagenhauf, F. (2015): Failure Modes of the Will - from goals to
habits in addictive disorders and their risk factors. Poster presented at 5th IMPRS

NeuroCom Summer School, Leipzig, Germany

Reiter, A.M.F,, Deserno, L. Kallert, T., Heinze, H.J, Heinz, A. Schlagenhauf F. (2015):
Neglecting what might have happened - disturbed inference on alternative choices in
alcohol-dependent patients. Poster presented at the 21st annual meeting of the

Organization of Human Brain Mapping, Honolulu, Hawaii.

Deserno L, Wilbertz T, Reiter A, Horstmann A, Neumann J, Villringer A, Heinze H]J,
Schlagenhauf F (2015): Lateral prefrontal model-based signatures are reduced in healthy
individuals with high trait impulsivity. Poster presented at 21st Annual Meeting of the

Organization for Human Brain Mapping (OHBM), Honolulu, Hawaii.

Reiter, AM.F., Deserno, L., Schlagenhauf, F. (2014). Dissecting Learning from Reward and
Punishment. Poster presented at Summer School on Computational Modeling of Cognition,

Laufen, Germany.

Reiter, A.M.F., Deserno, L. Sjoerds, Z., Radenbach, C.D., Heinze, H.J., Schlagenhauf F.(2014).
Learning to Crave: Appetitive Pavlovian Conditioning in Addictive Disorders. Poster

presented at 4th IMPRS NeuroCom Summer School, London, United Kingdom.



Schaare, H. L., Rohr, C.,, Mueller, K., Margulies, D. S., Pampel, A,, Erbey, M., Gaebler, M.,
Reinelt, ]., Reiter, A., Robbig, J., Sacher, J., Dreyer, M., Okon-Singer, H., Babayan, A, &
Villringer, A. (2014). Less grey matter density in young adults’ frontal lobes is associated
with higher blood pressure. Poster presented at 4th IMPRS NeuroCom Summer School,

London, United Kingdom.

Reiter, A.M.F., Deserno, L. Sjoerds, Z., Wilbertz, T., Heinze, H.J., Schlagenhauf F.(2014):
Transdiagnostic Investigation of Learning Mechanisms in Patients with Failure of
Behavioral Adaptation. Poster presented at Society of Biological Psychiatry's 69th Annual
Meeting, New York City, USA.

Reiter, A.M.F,, Deserno, L. Sjoerds, Z., Wilbertz, T., Heinze, H.J., Schlagenhauf F. (2014):
Transdiagnostic Investigation of Learning Mechanisms in Patients with Failure of
Behavioral Control. Poster presented at 20th Annual Meeting of the Organization for

Human Brain Mapping (OHBM), Hamburg, Germany.

Schaare, L., Rohr, C., Margulies, D., Pampel, A,, Erbey, M., Reiter, A, Roebbig, ]., Dreyer, D.,
Babayan, A, Villringer, A. (2014). Resting State Functional Connectivity Patterns of Blood
Pressure: Links to Emotional Dampening? Poster presented at 20th Annual Meeting of the

Organization for Human Brain Mapping (OHBM), Hamburg, Germany

Erbey, M., Nierhaus, T., Schaare, L., Reiter, A., Roebbig, J., Rohr, C. Reinelt, ], Sacher, J.,
Babayan, A., Villringer, A. (2014). An eye tracker study on the positivity effect and its
cognitive correlates. Poster presented at the Mind, Brain & Body Symposium, Berlin,

Germany.

Radenbach, C., Reiter, A.M.F., Deserno, L., Engert, V., Wilbertz, T, Villringer, A., Heinze, H.-].,
Schlagenhauf, F. (2013). Influences of acute stress on model-based versus model-free
choice behavior. Poster presented at the annual conference of Deutsche Gesellschaft fiir

Psychiatrie und Psychotherapie, Psychosomatik und Nervenheilkunde, Berlin, Germany.

Reiter, A.M.F.,, Koch, S.P,, Deserno, L., Klein, T.A,, Heinze, H.-]., Schlagenhauf, F. (2013).The
Feedback Related Negativity - An Electrophysiological Correlate of Model-Based Decision-
Making. Poster presented at the 34 IMPRS Summerschool, Leipzig, Germany.

255






Erklarung gemaf3 § 8 der Promotionsordnung

Hiermit versichere ich, dass die vorliegende Arbeit ohne unzuldssige Hilfsmittel und ohne
Benutzung anderer als der angegebenen Hilfsmittel angefertigt wurde. Aus fremden Quellen
direkt oder indirekt iibernommene Gedanken sind in der Arbeit als solche kenntlich gemacht.
Diese Arbeit enthalt eine Liste, in der alle Ko-autoren Art und Umfang ihres Anteils an der
wissenschaftlichen Leistung der in dieser Promotion enthaltenen Publikationen angeben. Ich
versichere, dass aufier den hier genannten Personen keine weiteren Personen bei der geistigen
Herstellung dieser Arbeit beteiligt waren, insbesondere auch nicht die Hilfe eines
Promotionsberaters in Anspruch genommen wurde. Ich versichere, dass kein Dritter
unmittelbar oder mittelbar geldwerte Leistungen fiir Arbeiten erhalten hat, die im
Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen. Die vorgelegte Arbeit
wurde nicht in gleicher oder dhnlicher Form einer anderen wissenschaftlichen Einrichtung zum
Zwecke der Promotion oder eines anderen Priifungsverfahrens vorgelegt. Es gab keine fritheren

erfolglosen Promotionsversuche.

Die Promotionsordnung vom 29.04.2015 ist bekannt und wird anerkannt.

Leipzig, den 16.10.2015 Andrea Maria Franziska Reiter

256






MPI Series in Human Cognitive and Brain Sciences:

1

Anja Hahne
Charakteristika syntaktischer und semantischer Prozesse bei der auditi-
ven Sprachverarbeitung: Evidenz aus ereigniskorrelierten Potentialstudien

Ricarda Schubotz
Erinnern kurzer Zeitdauern: Behaviorale und neurophysiologische
Korrelate einer Arbeitsgeddchtnisfunktion

Volker Bosch
Das Halten von Information im Arbeitsgeddchtnis: Dissoziationen
langsamer corticaler Potentiale

Jorge Jovicich
An investigation of the use of Gradient- and Spin-Echo (GRASE) imaging
for functional MRI of the human brain

Rosemary C. Dymond
Spatial Specificity and Temporal Accuracy in Functional Magnetic
Resonance Investigations

Stefan Zysset
Eine experimentalpsychologische Studie zu Geddchtnisabrufprozessen
unter Verwendung der funktionellen Magnetresonanztomographie

Ulrich Hartmann
Ein mechanisches Finite-Elemente-Modell des menschlichen Kopfes

Bertram Opitz
Funktionelle Neuroanatomie der Verarbeitung einfacher und komplexer
akustischer Reize: Integration haemodynamischer und elektrophysiolo-
gischer MalSe

Gisela Miller-Plath

Formale Modellierung visueller Suchstrategien mit Anwendungen bei der
Lokalisation von Himfunktionen und in der Diagnostik von Aufmerksam-
keitsstdrungen

Thomas Jacobsen
Characteristics of processing morphological structural and inherent case
in language comprehension

Stefan Kolsch

Brain and Music

A contribution to the investigation of central auditory processing with a
new electrophysiological approach

Stefan Frisch
Verb-Argument-Struktur, Kasus und thematische Interpretation beim
Sprachverstehen

Markus Ullsperger
The role of retrieval inhibition in directed forgetting — an event-related
brain potential analysis

Martin Koch
Measurement of the Self-Diffusion Tensor of Water in the Human Brain

Axel Hutt
Methoden zur Untersuchung der Dynamik raumzeitlicher Signale

Frithjof Kruggel
Detektion und Quantifizierung von Hirnaktivitdt mit der funktionellen
Magnetresonanztomographie

Anja Dove

Lokalisierung an internen Kontrollprozessen beteiligter Hirgebiete
mithilfe des Aufgabenwechselparadigmas und der ereigniskorrelierten
funktionellen Magnetresonanztomographie

Karsten Steinhauer
Hirnphysiologische Korrelate prosodischer Satzverarbeitung bei gespro-
chener und geschriebener Sprache

19

20

2

22

23

24

25

26

27

28

29

30

32

33

34

35

36

37

Silke Urban
Verbinformationen im Satzverstehen

Katja Werheid
Implizites Sequenzlernen bei Morbus Parkinson

Doreen Nessler
Is it Memory or llusion? Electrophysiological Characteristics of True and
False Recognition

(hristoph Herrmann
Die Bedeutung von 40-Hz-Oszillationen fiir kognitive Prozesse

(Christian Fiebach

Working Memory and Syntax during Sentence Processing.

A neurocognitive investigation with event-related brain potentials and
functional magnetic resonance imaging

Grit Hein
Lokalisation von Doppelaufgabendefiziten bei gesunden dlteren
Personen und neurologischen Patienten

Monica de Filippis
Die visuelle Verarbeitung unbeachteter Werter. fin elektrophysiologischer
Ansatz

Ulrich Miller
Die katecholaminerge Modulation prdfrontaler kognitiver Funktionen
beim Menschen

Kristina UhI
Kontrollfunktion des Arbeitsgeddchtnisses tiber interferierende Information

Ina Bornkessel
The Argument Dependency Model: A Neurocognitive Approach to
Incremental Interpretation

Sonja Lattner
Neurophysiologische Untersuchungen zur auditorischen Verarbeitung
von Stimminformationen

(Christin Griinewald
Die Rolle motorischer Schemata bei der Objektrepréisentation: Untersu-
chungen mit funktioneller Magnetresonanztomographie

Annett Schirmer
Emotional Speech Perception: Electrophysiological Insights into the
Processing of Emotional Prosody and Word Valence in Men and Women

André J. Szameitat
Die Funktionalitdit des lateral-prdfrontalen Cortex fiir die Verarbeitung
von Doppelaufgaben

Susanne Wagner
Verbales Arbeitsgeddchtnis und die Verarbeitung ambiger Worter in
Wort- und Satzkontexten

Sophie Manthey

Hirn und Handlung: Untersuchung der Handlungsreprdsentation im
ventralen primotorischen Cortex mit Hilfe der funktionellen Magnet-
Resonanz-Tomographie

Stefan Heim

Towards a Common Neural Network Model of Language Production and
Comprehension: fMRI Evidence for the Processing of Phonological and
Syntactic Information in Single Words

(laudia Friedrich
Prosody and spoken word recognition: Behavioral and ERP correlates

Ulrike Lex
Sprachlateralisierung bei Rechts- und Linkshdndern mit funktioneller
Magnetresonanztomographie



38

39

40

4

/s

S1

44

45

46

47

48

49

50

52

53

54

55

56

Thomas Amold
Computergestiitzte Befundung Klinischer Elektroenzephalogramme

Carsten H. Wolters
Influence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/
MEG based Source Localization in the Human Brain

Ansgar Hantsch
Fisch oder Karpfen? Lexikale Aktivierung von Benennungsalternative bei
der Objektbenennung

Peqgy Bungert

Zentralnervdse Verarbeitung akustischer Informationen
Signalidentifikation, Signallateralisation und zeitgebundene Informati-
onsverarbeitung bei Patienten mit erworbenen Himschddigungen

Daniel Senkowski
Neuronal correlates of selective attention: An investigation of electro-
physiological brain responses in the £EG and MEG

GertWollny
Analysis of Changes in Temporal Series of Medical Images

Markus Ullsperger & Michael Falkenstein
Errors, Conflicts, and the Brain Current Opinions on Performance
Monitoring

Angelika Wolf
Sprachverstehen mit Cochlea-Implantat: EKP-Studien mit postlingual
ertaubten erwachsenen Cl-Trdgern

Kirsten G. Volz
Brain correlates of uncertain decisions: Types and degrees of uncertainty

Hagen Huttner
Magnetresonanztomographische Untersuchungen iiber die anatomische
Variabilitdt des Frontallappens des menschlichen GroShirns

Dirk Kster
Morphology and Spoken Word Comprehension: Electrophysiological
Investigations of Internal Compound Structure

(laudia A. Hruska

Einfliisse kontextueller und prosodischer Informationen in der audito-
rischen Satzverarbeitung: Untersuchungen mit ereigniskorrelierten
Himpotentialen

Hannes Ruge

Eine Analyse des raum-zeitlichen Musters neuronaler Aktivierung im
Aufgabenwechselparadigma zur Untersuchung handlungssteuernder
Prozesse

Ricarda l. Schubotz
Human premotor cortex: Beyond motor performance

(lemens von Zerssen
Bewusstes Erinnern und falsches Wiedererkennen: Fine funktionelle MRT
Studie neuroanatomischer Geddchtniskorrelate

(Christiane Weber

Rhythm is gonna get you.

Electrophysiological markers of rhythmic processing in infants with and
without risk for Specific Language Impairment (SLI)

Marc Schdnwiesner
Functional Mapping of Basic Acoustic Parameters in the Human Central
Auditory System

Katja Fiehler
Temporospatial characteristics of error correction

Britta Stolterfoht
Processing Word Order Variations and Ellipses: The Interplay of Syntax
and Information Structure during Sentence Comprehension

(laudia Danielmeier
Neuronale Grundlagen der Interferenz zwischen Handlung und visueller
Wahrnebmung

57

58

59

60

62

63

64

65

66

67

68

69

70

72

73

74

75

Margret Hund-Georgiadis

Die Organisation von Sprache und ihre Reorganisation bei ausgewdhlten,
neurologischen Erkrankungen gemessen mit funktioneller Magnetreso-
nanztomographie — Einfliisse von Héndigkeit, Ldsion, Performanz und
Perfusion

Jutta L. Mueller
Mechanisms of auditory sentence comprehension in first and second
language: An electrophysiological miniature grammear study

Franziska Biedermann
Auditorische Diskriminationsleistungen nach unilateralen Ldsionen im
Di- und Telenzephalon

Shirley-Ann Riischemeyer

The Processing of Lexical Semantic and Syntactic Information in Spoken
Sentences: Neuroimaging and Behavioral Studies of Native and Non-
Native Speakers

Kerstin Leuckefeld

The Development of Argument Processing Mechanisms in German.
An Electrophysiological Investigation with School-Aged Children and
Adults

Axel Christian Kilhn
Bestimmung der Lateralisierung von Sprachprozessen unter besondere
Berticksichtigung des temporalen Cortex, gemessen mit fIMRT

Ann Pannekamp

Prosodische Informationsverarbeitung bei normalsprachlichem und
deviantem Satzmaterial: Untersuchungen mit ereigniskorrelierten
Hirmpotentialen

Jan Derrfuld
Functional specialization in the lateral frontal cortex: The role of the
inferior frontal junction in cognitive control

Andrea Mona Philipp
The cognitive representation of tasks — Exploring the role of response
modalities using the task-switching paradigm

Ulrike Toepel
Contrastive Topic and Focus Information in Discourse — Prosodic
Realisation and Electrophysiological Brain Correlates

Karsten Miller
Die Anwendung von Spektral- und Waveletanalyse zur Untersuchung
der Dynamik von BOLD-Zeitreihen verschiedener Himareale

Sonja A.Kotz
The role of the basal ganglia in auditory language processing: Evidence
from ERP lesion studies and functional neuroimaging

Sonja Rossi
The role of proficiency in syntactic second language processing: Evidence
from event-related brain potentials in German and ltalian

Birte U. Forstmann
Behavioral and neural correlates of endogenous control processes in task
switching

Silke Paulmann
Flectrophysiological Evidence on the Processing of Emotional Prosody:
Insights from Healthy and Patient Populations

Matthias L. Schroeter
Enlightening the Brain — Optical Imaging in Cognitive Neuroscience

Julia Reinholz
Interhemispheric interaction in abject- and word-related visual areas

Evelyn C. Ferstl
The Functional Neuroanatomy of Text Comprehension

Miriam Gade
Aufgabeninhibition als Mechanismus der Konfliktreduktion zwischen
Aufgabenreprasentationen



76

77

8

79

80

81

82

83

84

85

86

87

88

89

90

9

92

93

94

Juliane Hofmann
Phonological, Morphological, and Semantic Aspects of Grammatical
Gender Processing in German

Petra Augurzky
Attaching Relative Clauses in German — The Role of Implicit and Explicit
Prosody in Sentence Processing

UtaWolfensteller
Habituelle und arbitréire sensomotorische Verkniipfungen im lateralen
prémotorischen Kortex des Menschen

Pdivi Sivonen
Event-related brain activation in speech perception: from sensory to
cognitive processes

Yun Nan
Music phrase structure perception: the neural basis, the effects of
acculturation and musical training

Katrin Schulze
Neural Correlates of Working Memory for Verbal and Tonal Stimuli in
Nonmusicians and Musicians With and Without Absolute Pitch

Korinna Eckstein
Interaktion von Syntax und Prosodie beim Sprachverstehen: Untersu-
chungen anhand ereigniskorrelierter Himpotentiale

Florian Th. Siebdrger
Funktionelle Neuroanatomie des Textverstehens: Kohdrenzbildung bei
Witzen und anderen ungewahnlichen Texten

Diana Bottger
Aktivitdt im Gamma-Frequenzbereich des EEG: Finfluss demographischer
Faktoren und kognitiver Korrelate

Jorg Bahimann
Neural correlates of the processing of linear and hierarchical artificial
grammar rules: Electrophysiological and neuroimaging studies

Jan Zwickel
Specific Interference Effects Between Temporally Overlapping Action and
Perception

Markus Ullsperger
Functional Neuroanatomy of Performance Monitoring: fMRI, ERP and
Patient Studies

Susanne Dietrich
Vom Briillen zum Wort — MRI-Studien zur kognitiven Verarbeitung
emotionaler Vokalisationen

Maren Schmidt-Kassow
What's Beat got to do with ist? The Influence of Meter on Syntactic
Processing: ERP Evidence from Healthy and Patient populations

Monika Liick
Die Verarbeitung morphologisch komplexer Warter bei Kindern im
Schulalter: Neurophysiologische Korrelate der Entwicklung

Diana P Szameitat
Perzeption und akustische Eigenschaften von Emotionen in mensch-
lichem Lachen

Beate Sabisch

Mechanisms of auditory sentence comprehension in children with
specific language impairment and children with developmental dyslexia:
A neurophysiological investigation

Regine Oberecker
Grammatikverarbeitung im Kindesalter: EKP-Studien zum auditorischen
Satzverstehen

Stikrii Baris Demiral
Incremental Argument Interpretation in Turkish Sentence Comprehension

95

9%

97

98

99

100

102

103

104

105

106

107

108

109

110

112

E

114

Henning Holle
The Comprehension of Co-Speech lconic Gestures: Behavioral, Electrophy-
siological and Neuroimaging Studies

Marcel Bral8
Das inferior frontale Kreuzungsareal und seine Rolle bei der kognitiven
Kontrolle unseres Verhaltens

Anna S. Hasting
Syntax in a blink: Early and automatic processing of syntactic rules as
revealed by event-related brain potentials

Sebastian Jentschke
Neural Correlates of Processing Syntax in Music and Language — Influ-
ences of Development, Musical Training and Language Impairment

Amelie Mahlstedt

The Acquisition of Case marking Information as a Cue to Argument
Interpretation in German

An Electrophysiological Investigation with Pre-school Children

Nikolaus Steinbeis
Investigating the meaning of music using F£G and fMRI

Tilmann A. Klein
Learning from errors: Genetic evidence for a central role of dopamine in
human performance monitoring

Franziska Maria Korb
Die funktionelle Spezialisierung des lateralen prfrontalen Cortex:
Untersuchungen mittels funktioneller Magnetresonanztomographie

Sonja Fleischhauer
Neuronale Verarbeitung emotionaler Prosodie und Syntax: die Rolle des
verbalen Arbeitsgeddchtnisses

Friederike Sophie Haupt

The component mapping problem: An investigation of grammatical
function reanalysis in differing experimental contexts using eventrelated
brain potentials

Jens Brauer
Functional development and structural maturation in the brain’s neural
network underlying language comprehension

Philipp Kanske
Exploring executive attention in emotion: ERP and fMRI evidence

Julia Grieser Painter
Music, meaning, and a semantic space for musical sounds

Daniela Sammler
The Neuroanatomical Overlap of Syntax Processing in Music and
Language - Evidence from Lesion and Intracranial ERP Studies

Norbert Zmyj
Selective Imitation in One-Year-Olds: How a Model’s Characteristics
Influence Imitation

Thomas Fritz
Emotion investigated with music of variable valence — neuraphysiology
and cultural influence

Stefanie Regel
The comprehension of figurative lanquage: Electrophysiological evidence
on the processing of irony

Miriam Beisert
Transformation Rules in Tool Use

Veronika Krieghoff
Neural correlates of Intentional Actions

Andreja Bubic
Violation of expectations in sequence processing



120

122

123

124

125

126

127

128

129

130

132

133

134

(laudia Ménnel
Prosodic processing during language acquisition: Electrophysiological
studies on intonational phrase processing

Konstanze Albrecht
Brain correlates of cognitive processes underlying intertemporal choice for
selfand other

Katrin Sakreida
Nicht-motorische Funktionen des primotorischen Kortex:
Patientenstudien und funktionelle Bildgebung

Susann Wolff
The interplay of free word order and pro-drop in incremental sentence
processing: Neurophysiological evidence from Japanese

Tim Raettig
The Cortical Infrastructure of Language Processing: Evidence from
Functional and Anatomical Neuroimaging

Maria Golde
Premotor cortex contributions to abstract and action-related relational
processing

Daniel S. Margulies

Resting-State Functional Connectivity MRI: A new approach for asses-
sing functional neuroanatomy in humans with applications to neuroa-
natomical, developmental and clinical questions

Franziska St
The interplay between attention and syntactic processes in the adult and
developing brain: ERP evidences

Stefan Bode
From stimuli to motor responses: Decoding rules and decision mecha-
nisms in the human brain

(hristiane Diefenbach
Interactions between sentence comprehension and concurrent action:
The role of movement effects and timing

Moritz M. Daum
Mechanismen der friihkindlichen Entwicklung des Handlungsverstdnd-
nisses

Jiirgen Dukart
Contribution of FDG-PET and MRI to improve Understanding, Detection
and Differentiation of Dementia

Kamal Kumar Choudhary
Incremental Argument Interpretation in a Split Frgative Language:
Neurophysiological Evidence from Hindi

Peggy Sparenberg
Filling the Gap: Temporal and Motor Aspects of the Mental Simulation of
Occluded Actions

Luming Wang
The Influence of Animacy and Context on Word Order Processing: Neuro-
physiological Evidence from Mandarin Chinese

Barbara Ettrich
Beeintrchtigung frontomedianer Funktionen bei Schddel-Hirn-Trauma

Sandra Dietrich
Coordination of Unimanual Continuous Movements with External Events

R. Muralikrishnan
An Electrophysiological Investigation Of Tamil Dative-Subject Construc-
tions

(hristian Obermeier
Exploring the significance of task, timing and background noise on
gesture-speech integration

Bjérn Herrmann
Grammar and perception: Dissociation of early auditory processes in the
brain

148

14

o

150

151

152

15

o

154

Eugenia Solano-Castiella
Invivo anatomical segmentation of the human amygdala and parcellati-
on of emotional processing

Marco Taubert
Plastizitdt im sensomotorischen System — Lerninduzierte Verdnderungen
in der Struktur und Funktion des menschlichen Gehirns

Patricia Garrido Vdsquez
Emotion Processing in Parkinsons Disease:
The Role of Motor Symptom Asymmetry

Michael Schwartze
Adaptation to temporal structure

(hristine S. Schipke
Processing Mechanisms of Argument Structure and Case-marking in
Child Development: Neural Correlates and Behavioral Evidence

Sarah Jessen
Emotion Perception in the Multisensory Brain

Jane Neumann
Beyond activation detection: Advancing computational techniques for
the analysis of functional MRI data

Franziska Knolle
Knowing what’s next: The role of the cerebellum in generating
predictions

Michael Skeide
Syntax and semantics networks in the developing brain

Sarah M. E. Gierhan

Brain networks for language

Anatomy and functional roles of neural pathways supporting language
comprehension and repetition

Lars Meyer
The Working Memory of Argument-Verb Dependencies
Spatiotemporal Brain Dynamics during Sentence Processing

Benjamin Stahl
Treatment of Non-Fluent Aphasia through
Melody, Rhythm and Formulaic Language

Kathrin Rothermich
The hythm’s gonna get you: ERP and fVRI evidence on the interaction
of metric and semantic processing

Julia Merrill

Song and Speech Perception — Evidence from fMRI, Lesion Studies and
Musical Disorder

Klaus-Martin Kronke

Learning by Doing?

Gesture-Based Word-Learning and its Neural Correlates in Healthy
Volunteers and Patients with Residual Aphasia

Lisa Joana Knoll

IWhen the hedgehog kisses the frog

Afunctional and structural investigation of syntactic processing in the
developing brain

Nadine Diersch

Action prediction in the aging mind

Thomas Dolk

A Referential Coding Account for the Social Simon Effect

Mareike Bacha-Trams

Neurotransmitter receptor distribution in Broca’s area and the posterior
superior temporal gyrus

Andrea Michaela Walter

The role of goal representations in action control



155

156

157

158

160

161

162

163

164

S2

166

167

168

169

170

172

Anne Keitel
Action perception in development: The role of experience

Iris Nikola Knierim
Rules don't come easy: Investigating feedback-based learning of
phonotactic rules in language.

Jan Schreiber
Plausibility Tracking: A method to evaluate anatomical connectivity
and microstructural properties along fiber pathways

Katja Macher
Die Beteiligung des Cerebellums am verbalen Arbeitsgeddchtnis

Julia Erb
The neural dynamics of perceptual adaptation to degraded speech

Philipp Kanske
Neural bases of emotional processing in affective disorders

David Moreno-Dominguez
Whole-brain cortical parcellation: A hierarchical method based on
dMRI tractography

Maria Christine van der Steen
Temporal adaptation and anticipation mechanisms in sensorimotor
synchronization

Antje Strauf®
Neural oscillatory dynamics of spoken word recognition

Jonas Obleser
The brain dynamics of comprehending degraded speech

Corinna E. Bonhage
Memory and Prediction in Sentence Processing

Tania Singer, Bethany . Kok, Boris Bornemann, Matthias Bolz, and
Christina A. Bochow

The Resource Project

Background, Design, Samples, and Measurements

Anna Wilsch
Neural oscillations in auditory working memory

Dominique Goltz
Sustained Spatial Attention in Touch: Underlying Brain Areas and
Their Interaction

Juliane Dinse
A Model-Based Cortical Parcellation Scheme for High-Resolution
7 Tesla MRI Data

Gesa Schaadt
Visual, Auditory, and Visual-Auditory Speech Processing in School
Children with Writing Difficulties

LauraVerga
Learning together or learning alone: Investigating the role of social
interaction in second language word learning

Eva Maria Quinque
Brain, mood and cognition in hypothyroidism

Malte Wostmann
Neural dynamics of selective attention to speech in noise

52

Charles-Etienne Benoit
Music-based gait rehabilitation in Parkinson’s disease

Anja Fengler
How the Brain Attunes to Sentence Processing Relating Behavior,
Structure, and Function

Emiliano Zaccarella
Breaking Down Complexity: The Neural Basis of the Syntactic Merge
Mechanism in the Human Brain

Tania Singer, Bethany E. Kok, Boris Bornemann, Sandra Zurborg,
Matthias Bolz, and Christina Bochow

The Resource Project

Background, Design, Samples, and Measurements

Second Edition

Manja Attig
Handlungsverstdndnis in den ersten Lebensjahren: retrospektive und
prospektive Verarbeitung






	Leere Seite

