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Abstract

In this paper we propose an approach for articulated
tracking of multiple people in unconstrained videos. Our
starting point is a model that resembles existing architec-
tures for single-frame pose estimation but is several or-
ders of magnitude faster. We achieve this in two ways:
(1) by simplifying and sparsifying the body-part relation-
ship graph and leveraging recent methods for faster infer-
ence, and (2) by offloading a substantial share of compu-
tation onto a feed-forward convolutional architecture that
is able to detect and associate body joints of the same per-
son even in clutter. We use this model to generate proposals
for body joint locations and formulate articulated tracking
as spatio-temporal grouping of such proposals. This allows
to jointly solve the association problem for all people in
the scene by propagating evidence from strong detections
through time and enforcing constraints that each proposal
can be assigned to one person only. We report results on a
public MPII Human Pose benchmark and on a new dataset
of videos with multiple people. We demonstrate that our
model achieves state-of-the-art results while using only a
fraction of time and is able to leverage temporal informa-
tion to improve state-of-the-art for crowded scenes1.

1. Introduction
This paper addresses the task of articulated human pose

tracking in monocular video. We focus on scenes of realistic
complexity that often include fast motions, large variability
in person appearance and clothing styles, and person-person
occlusions. A successful approach should thus be able to
identify the number of people present in each video frame,
determine locations of the joints of each person and cor-

1Models and the dataset will be made publicly available.

Figure 1. Example articulated tracking results of our approach.

rectly associate the body joints over time.
One of the key challenges in such scenes is that peo-

ple might overlap and only a subset of joints of the person
might be visible in each frame either due to person-person
occlusion or truncation by image boundaries (c.f . Fig. 1).
Arguably, resolving such cases correctly requires reasoning
beyond purely geometric information on the arrangement
of body joints in the image, and requires incorporation of a
variety of image cues and joint modeling of several human
subjects.

The design of our model is motivated by two factors. We
would like to leverage bottom-up end-to-end learing to di-
rectly capture image information. At the same time we aim
to address a complex prediction problem of multi-person
articulated tracking that does not naturally lend itself to an
end-to-end prediction task and for which training data is
not available in the amounts usually required for end-to-end
learning.

To leverage the available image information we learn a
model for associating a body joint to a specific person in an
end-to-end fashion relying on a convolutional network. We
then incorporate these part-to-person association responses
into a framework for jointly reasoning about assignment of
body joints within the image and over time. To that end we
use the graph partitioning formulation that has been used for
people tracking and pose estimation in the past [21, 19], but
has not been shown to enable articulated people tracking.
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To facilitate efficient inference in video we resort to fast
inference methods based on local combinatorial optimiza-
tion [16] and aim for a sparse model that keeps the num-
ber of connections between variables to a minimum. As
we demonstrate, in combination with feed-forward reason-
ing for joint-to-person association this allows us to achieve
speed-ups of several orders of magnitude compared to state-
of-the-art [12] while maintaining the same level of accuracy.

The key contribution of this work is a new model for ar-
ticulated tracking that operates by bottom-up assembly of
part detections within each frame and over time. Contrary
to existing work such as [10, 18] this model is suitable for
scenes with an unknown number of subjects and performs
reasoning jointly across multiple people incorporating inter-
person exclusion constraints and propagating strong obser-
vations to neighboring frames.

Our second contribution is a formulation for single-
frame pose estimation that relies on a sparse graph between
body parts and a mechanism for generating body-part pro-
posals conditioned on a person’s location. This is in contrast
to state-of-the-art approaches [19, 12] that perform expen-
sive inference in a full graph and rely on generic bottom-up
proposals. We demonstrate that a sparse model with a few
spatial edges performs competitively with a fully-connected
model while being much more efficient. Notably, a sim-
ple model that operates in top-down/bottom-up fashion ex-
ceeds the performance of a fully-connected model while be-
ing 24x faster at inference time (cf. Tab. 3). This is due to
offloading of a large share of the reasoning about body-part
association onto a feed-forward convolutional architecture.

Finally, we contribute a new challenging dataset for eval-
uation of articulated body joint tracking in crowded realistic
environments with multiple overlapping people. Our mod-
els and a new dataset will be made publicly available.
Related work. Convolutional networks have emerged as
an effective approach to localizing body joints of people in
images [24, 25, 17, 12] and have also been extended for
joint estimation of body configurations over time [10].

Current approaches are increasingly effective on the task
of estimating body configurations of single people [24, 25,
17, 4, 10] achieving high accuracies on this task, but are
still failing on fast moving and articulated limbs. More
complex recent models are able to jointly work with entire
scenes [19, 12], but are too complex and inefficient to be di-
rectly generalizable to perform reasoning across the entire
video. [14] propose an efficient approach to multi-person
pose estimation that relies on greedy inference prone to lo-
cal optima. Recent feed-forward models are able to jointly
infer body joints of the same person and even operate over
time [10] but consider isolated persons only and do not gen-
eralize to the case of multiple overlapping people. Simi-
larly, [5, 18] consider a simplified task of tracking upper
body poses of isolated upright individuals.

Recently, [8, 9] proposed an approach that aims at gen-
eralizing from a studio-based motion capture setting to
the outdoor environments. However, they require multiple
views of the same scene and are only able to simultaneously
track poses of a low number of persons (1-2 typically). In
contrast, we focus on monocular video sequences and pro-
pose an approach to tracking arbitrary number of highly ar-
ticulated people.

We build on recent convnet detectors [12] that have been
shown to be effective in localizing body joints even in the
presence of clutter and explore different mechanisms for as-
sembling the joints into multiple person configurations. To
that end we rely on a graph partitioning approach closely
related to [21, 19, 12]. However, in contrast to [21] who
focus on pedestrian tracking, and [19, 12] who perform sin-
gle frame based multi-person pose estimation, we go be-
yond and solve much more complex problem of articulated
multi-person pose tracking. In contrast to [19, 12] that per-
form expensive inference in the full graph we employ much
more efficient approaches based on sparse graph represen-
tations and novel person conditioned top-down bottom-up
reasoning.

Earlier approaches to articulated pose tracking in monoc-
ular videos rely on hand-crafted image representations and
focus on either of simplified tasks, such as tracking upper
body poses of frontal isolated people [20, 27, 23, 7], or
tracking walking pedestrians with little degree of articula-
tion [2, 3]. In contrast, we address much harder problem
of multi-person highly-articulated pose tracking and heav-
ily rely on learning representations from image pixels by
offloading the larger share of the reasoning about body-part
association onto feed-forward convolutional architecture.
Overview. Our model consists of the two components: (1)
a convolutional network for generating body part propos-
als and (2) an approach to group the proposals into spatio-
temporal clusters. In Sec. 2 we proceed by introducing a
general formulation for multi-target tracking that follows
[21] and allows us to define pose estimation and articulated
tracking in a unified framework. We then describe the de-
tails of our articulated tracking approach in Sec. 3, and in-
troduce two variants of our formulation: bottom-up (BU)
and top-down/bottom-up (TD/BU). We present experimen-
tal results in Sec. 4.

2. Tracking by Spatio-temporal Grouping
Our body part detector generates a set of proposals D =

{di} for each frame of the video. Each proposal is given
by di = (ti, d

pos
i , πi, τi), where ti denotes the index of the

video frame, dposi is the spatial location of the proposal in
image coordinates, πi is the probability of correct detection,
and τi is the type of the body joint (e.g. ankle or shoulder).

LetG = (D,E) be a graph whose nodesD are the body-
part proposals of an entire video and whose edges E con-
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nect pairs of detections that hypothetically correspond to the
same target.

The output of the tracking algorithm is a subgraph G′ =
(D′, E′) of G, where D′ is a subset of nodes after filter-
ing redundant and erroneous detection hypotheses and E′

are edges linking nodes corresponding to the same target.
We specify G′ via binary indicator variables x ∈ {0, 1}D
and y ∈ {0, 1}E that define subsets of edges and nodes in-
cluded in G′. In particular each track will correspond to a
connected component in G′.

As a general way to introduce constraints on edge con-
figurations that correspond to a valid tracking solution we
introduce a set Z ⊆ {0, 1}D∪E and define a combination
of edge and node indicator variables to be feasible if and
only if (x, y) ∈ Z. An example of a constraint encoded
through Z is that endpoint nodes of an edge included by y
must also be included by x. Note that the variables x and y
are coupled though Z. Moreover, assuming that (x, y) ∈ Z
we are free to set components of x and y independently to
maximize the tracking objective.

Given image observations we compute a set of features
for each node and edge in the graph. We denote such node
and edge features as f and g respectively. Assuming inde-
pendence of the feature vectors the conditional probability
of indicator functions x of nodes and y of edges given fea-
tures f and g and given a feasible set Z is given by

p(x, y|f, g, Z) ∝ p(Z|x, y)
∏
d∈D

p(xd|fd)
∏
e∈E

p(ye|ge) ,

(1)

where p(Z|x, y) assigns a constant non-zero probability to
every feasible solution and is equal to zero otherwise. Min-
imizing the negative log-likelihood of Eq. 1 is equivalent to
solving the following integer-linear program:

min
(x,y)∈Z

∑
d∈D

cdxd +
∑
e∈E

deye , (2)

where cd = log p(xd=1|fd)
p(xd=0|fd)

is the cost of retaining d as part

of the solution, and de = log p(ye=1|ge)
p(ye=0|ge) is the cost of as-

signing the detections connected by an edge e to the same
person track.

We define the set of constraints Z as in [21]:

∀e = vw ∈ E : yvw ≤ xv (3)
∀e = vw ∈ E : yvw ≤ xw (4)
∀C ∈ cycles(G) ∀e ∈ C :

(1− ye) ≤
∑

e′∈C\{e}

(1− ye′) (5)

Jointly with the objective in Eq. 2 the constraints (3)-(5)
define an instance of the minimum cost subgraph multicut

(a) (b)
Figure 2. Different connectivity types. (a): fully connected graph
as in [19, 12]; (b): sparse graph. For fully connected graph only a
subset of edges is shown.

Frame t

Frame t Frame t+1

(a) (b)
Figure 3. Visualization of attractive-repulsive and temporal edges
in our model. We show only a subset of attractive/repulsive and
temporal edges for clarity.

problem [21]. The constraints (3) and (4) ensure that as-
signment of node and edge variables is consistent. The con-
straint (5) ensures that for every two nodes either all or none
of the paths between these nodes in graph G are contained
in one of the connected components of subgraph G′. This
constraint is necessary to unambigously assign person iden-
tity to a body part proposal based on its membership in a
specific connnected component of G′.

3. Articulated Multi-person Tracking
In Sec. 2 we introduced a general framework for multi-

object tracking by solving an instance of the subgraph mul-
ticut problem. The subgraph multicut problem is NP-hard,
but recent work [21, 16] has shown that efficient approxi-
mate inference is possible with local search methods. The
framework allows for a variety of graphs and connectivity
patterns. Simpler graph connectivity will usually allow for
faster and more efficient processing at the cost of ignor-
ing some of the potentially informative dependencies be-
tween model variables. Our goal is to design a model that
is efficient, with as few edges as possible, yet effective in
crowded scenes with many people and allowing us to model
temporal continuity and inter-person exclusion. Our articu-
lated tracking approach proceeds by constructing a graph G
that couples body part proposals within the same frame and
across neighboring frames. In general the graph G is going
to have three types of edges:

• cross-type pairwise terms shown in Fig. 2 and 5 (b) that
connect two parts of different types

3



conv1-conv4_4 

predict all parts

of all people root part heatmap

+

merge upstream

Person Condition block

elbows and hips

+ +

conv4_14 conv4_18

Spatial propagation block 

knees

final prediction

conv5_3

Figure 4. CNN architecture for computing person conditioned proposals and pairwise terms. SP block for shoulders at conv 4 8 is omitted
for clarity.

• same-type pairwise terms shown in Fig. 3 (a) connect
two nodes of the same type in the same image

• temporal pairwise terms shown in Fig. 3 (b) that con-
nect nodes in the neighboring frames.

We now define two variants of our model which
we denote as Bottom-Up (BU) and Top-Down/Bottom-Up
(TD/BU). These models rely on the identical same-type and
temporal pairwise terms, but differ with respect to mech-
anism for proposal generation, the form of cross-type pair-
wise terms, and connectivity of nodes inG. For both models
we will rely on the solver from [16] for inference.

3.1. Bottom-Up Model (BU).

In the Bottom-Up model the detection proposals are gen-
erated by a convolutional part detector. We use off-the-shelf
code made publicly available by the authors of [12]2. For
each body part proposal di the detector outputs image loca-
tion, probability of detection πi, and a label τi that indicates
the type of the detected body part (e.g. shoulder or ankle).
We directly use the probability of detection to derive the
unary costs in Eq. 2 as cdi = log(πi/(1− πi)). Image fea-
tures fd in this case correspond to the image representation
generated by the convolutional network.

We consider two connectivity patterns for nodes in the
graph G. We either define edges for every pair of proposals
which results in a fully connected graph between proposals
in each image as is shown in Fig. 2 (a). Alternatively we
obtain a sparse version of the model by defining edges for
a subset of part types only as is shown in Fig. 2 (b). The
rationale behind the sparse version is to obtain a cleaner
and faster version of the model by omitting edges between
parts that carry little information about each other’s image
location (e.g. left ankle and right arm).
Edge costs. In our Bottom-Up model the cost of the edges
de connecting two body part detections di and dj is defined
as a function of the detection types τi and τj . Following [12]
we thus train for each pair of part types a regression function
that predicts relative image location of the parts in the pair.
The cost de is given by the output of the logistic regression

2http://pose.mpi-inf.mpg.de/

given the features computed from offset and angle of the
predicted and actual location of the other joint in the pair.
We refer to [12] for more details on these pairwise terms.

Note that our model generalizes [21] in that the edge cost
depends on the type of nodes being connected by the edge.
It also generalizes [19, 12] by allowing G to be sparse. This
is achieved by reformulating the model with a more general
type of cycle constraint (5), in contrast to simple triangle
inequalities used in [19, 12]3.

3.2. Top-Down/Bottom-up Model (TD/BU)

We now introduce a version of our model that operates
by first generating body part proposals conditioned on the
locations of people in the image and then performing joint
reasoning to group these proposals into spatio-temporal
clusters corresponding to different people. Here we fol-
low the intuition that it is considerably easier to identify
and detect individual people (e.g. by detecting their heads)
compared to correctly associating body parts such as ankles
and wrists to each person. We select person’s head as the
root part that is responsible for representing the person lo-
cation, and delegate the task of identifying body parts of the
person corresponding to a head location to a convolutional
network.

For head detection, we use a simplified version of our
model that contains the two head parts (chin and “head
top”). This makes our TD/BU model related to the hierar-
chical model defined in [12] that also uses easier-to-detect
parts to condition the rest of the inference process. However
here we replace all the stages in the hierarchical inference
except the first stage with the feed-forward convolutional
network.

The structure of our TD/BU model is illustrated in Fig. 5
(b) for the simplified case of two distinct head detections.
Let us denote the set of all root part detections as Droot =
{drooti }. Fer each pair of the root nodes we explicitly set
the corresponding edge indicator variables ydroot

j ,droot
k

= 0.
This implements a “must-not-link” constraint between these
nodes, and in combination with the cycle inequality (5) im-
plies that each proposal can be connected to one of the “per-

3See Sec. 2.1 in [19]
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Root part heatmap Person-conditioned heatmaps TD Prediction

(c)(a)

shoulder proposals

knee proposals

person detection nodes

(b) 

TD/BU PredictionTD/BU graph

Figure 5. (a) Processing stages of the Top-Down model shown for an example with significantly overlapping people. Left: Heatmaps for
the chin (=root part) used to condition the CNN on the location of the person in the back (top) and in the front (bottom). Middle: Output
heatmaps for all body parts, notice the ambiguity in estimates of the arms of the front person. Right: TD predictions for each person. (b)
Example of the Top-Down/Bottom-Up graph. Red dotted line represents the must-cut constraint. Note that body part proposals of different
type are connected to person nodes but not between each other. (c) Top-Down/Bottom-Up predictions. Notice that the TD/BU inference
correctly assigns the forearm joints of the frontal person.

son nodes” only. We define the cost for an edge connect-
ing detection proposal dk and a “person node” drooti based
on the conditional distribution pdc

k
(dposk |drooti ) generated by

the convolutional network. The output of such network is a
set of conditional distributions, one for each node type. We
augment the graph G with attractive/repulsive and temporal
terms as described in Sec. 3.3 and Sec. 3.4 and set the unary
costs for all indicator variables xd to a constant. We con-
sider a proposal to be excluded from the final solution if it
is not connected to any of the root nodes. We use the solver
from [16] for consistency, but a simpler KL-based solver as
in [21] could be used as well since the TD/BU model ef-
fectively ignores the unary variables xd. We illustrate the
processing stages of the TD/BU model in Fig. 5. Note that
the body-part heatmaps change substantially depending on
the person-identity signal provided by the person’s chin, and
that the bottom-up step was able to correct the predictions
on the forearms of the front person.

Model details. In the following we provide the details of
training the convolutional network that generates the con-
ditional distributions. The structure of the convolutional
network is shown on Fig. 4. The network resembles the
ResNet-101 architecture from [11], which we modify as in
[12] to bring the stride of the full network down to 8px. This
is achieved by using dilated convolutions [6] in conv5 bank
and up-convolutional layers with stride 2 in the final layer.

We place a cross-entropy classification loss layer (N bi-
nary classifications) that indiscriminately predicts all parts
of all people in the image at the conv4 4 block of the net-
work. At each training iteration we forward pass an image
with multiple people potentially in close proximity to each
other. We select a single person from the image and condi-

tion the network on the head location of that person. This is
achieved by masking out the prediction heat-map of the root
joint around its ground truth location on the given person.
We then map the prediction maps to match the dimensional-
ity of the feature channels and add them to the main stream
of the ResNet. We finally add a part prediction layer at the
top of the network with a loss that considers predictions to
be correct only if they correspond to body parts of the se-
lected person.
Spatial propagation (SP). In our network the person iden-
tity signal is provided by the location of the head. In princi-
ple the receptive field size of the network is large enough
to propagate this signal to all body parts4. However we
found that it is useful to introduce an additional mechanism
to propagate the person identity signal. To that end we inject
intermediate supervision layers for individual body parts
arranged in the order of kinematic proximity to the root
joint (Figure 4). We place prediction layers for shoulders at
conv4 8, for elbows and hips at conv4 14 and for knees at
conv4 18. We empirically found that such an explicit form
of spatial propagation significantly improves performance
on joints such as ankles, that are typically far from the head
in the image space (see Tab. 2 for details).

4In our network the root part location is specified at the layer conv4 4.
Between this layer and the top of the network there are N1 = 18 layers
in the conv4 bank and N2 = 3 layers of conv5 bank that run at stride
stride = 16px. The receptive field at the top prediction layer with respect
to injection of the person condition signal is given by stride × (k1 −
1)×N1 + stride× (k2 − 1)×N2 where k1 = 3 is the size of kernels
in each residual block in conv4 and k2 = 5 is the effective size of the
kernel in conv5 taking into account the dilated convolution. Therefore the
total receptive field is 768px. We scale our train and test images such that
average height of a person is 340px so the receptive field is large enough
to allow for the information from the head to propagate to lower body.
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Training. We use Caffe’s [15] ResNet implementation and
initialize from the ImageNet-pre-trained models. Networks
are trained on the MPII Human Pose dataset [1] with SGD
for 1M iterations with stepwise learning rate (lr=0.002 for
400k, lr=0.0002 for 300k and lr=0.0001 for 300k).

3.3. Attractive/Repulsive Edges

Attractive/repulsive edges are defined between two pro-
posals of the same type within the same image. The costs
of these edges are given by a logistic classifier that takes
distance between proposals as a feature and assigns an in-
creasingly low probability to edges between proposals that
are far from each other [12]. This achieves an effect similar
to non-maximum suppression but the decision to group two
nodes is made based on evidence from the entire image and
not just the state of two detection proposals. Inversely, these
terms prevent grouping of multiple distant hypothesis of the
same type, e.g. preventing two proposals for the person’s
head to be assigned to the same person.

3.4. Temporal Model

Regardless of the type of within frame model (BU or
TD/BU) we rely on the same type of temporal edges that
connect nodes of the same type in adjacent frames. We de-
rive the costs for such temporal edges via logistic regres-
sion. Given the feature vector gij the probability that the
two proposals di and dj in adjacent frames correspond to
the same body part is given by:

p(yij = 1|gij) =
1

1 + exp(−〈ωt, gij〉)
, (6)

where gij = (∆L2
ij ,∆

Sift
ij ,∆DM

ij , ∆̃DM
ij ), and ∆L2

ij =

‖dposi - dposj ‖2, ∆Sift
ij is Euclidean distance between the

SIFT descriptors computed at dposi and dposj , and ∆DM
ij

and ∆̃DM
ij measure the agreement with the dense motion

field computed with the DeepMatching approach of [26].
In the evaluation in Tab. 5 we refer to these features as det-
distance, sift-distance and deepmatch respectively.

For SIFT features we specify the location of the detec-
tion proposal, but rely on SIFT to identify the local orien-
tation. In cases with multiple local maxima in orientation
estimation we compute SIFT descriptor for each orientation
and set ∆Sift

ij to the minimal distance among all pairs of de-
scriptors. We found that this makes the SIFT distance more
robust in the presence of rotations of the body limbs.

We define the features ∆DM
ij and ∆̃DM

ij inspired by [22].
For each part proposal di we define a corresponding image
region Ri = R(di) that covers the image area between the
proposal and the predicted location of the part adjacent to it
in the body kinematic tree. The adjacent part location pre-
diction is trained jointly with the part detector as in [12].

∆DM
ij is then defined as a ratio of number of point corre-

spondences between the regions Ri and Rj and the total
number of point correspondences in either of them. Specif-
ically, let C = {ck|k = 1, . . . ,K} be a set of point corre-
spondences between the two images computed with Deep-
Matching, where ck = (ck1 , c

k
2) and ck1 and ck2 denote the

corresponding points in the first and second image respec-
tively. Using this notation we define:

∆DM
ij =

|{ck|ck1 ∈ Ri ∧ ck2 ∈ Rj}|
|{ck|ck1 ∈ Ri}|+ |{ck|ck2 ∈ Rj}|

. (7)

The rationale behind computing ∆DM
ij by aggregating

across multiple correspondences is to make the feature ro-
bust to outliers and to inaccuracies in body part detection.
∆̃DM

ij is defined analogously, but using the DeepMatching
correspondences obtained by inverting the order of images.
Discussion. As we demonstrate in Sec. 4, we found the set
of features described above to be complementary to each
other. Euclidean distance between proposals is informa-
tive for finding correspondences for slow motions, but fails
for faster motions and in the presence of multiple people.
DeepMatching is usually effective in finding corresponding
regions between the two images, but occasionally fails in
the case of sudden background changes due to fast motion
or large changes in body limb orientation. In these cases
SIFT is often still able to provide a meaningful measure of
similarity due to its rotation invariance.

4. Experiments
We perform evaluation of the proposed single-frame and

video-based approaches after introducing datasets and the
evaluation measure.

4.1. Datasets and evaluation measure

Single frame. We evaluate our single-frame models on the
MPII Human Pose (Multi-Person) dataset [1]. It consists
of 3844 training and 1758 testing groups of multiple over-
lapping people in highly articulated poses with a variable
number of parts. We report all intermediate results on a val-
idation set of 200 images sampled uniformly at random and
refer to it as MPII Multi-Person Val, while major results and
comparison to the state of the art are reported on the test set.
Video. In order to evaluate video-based models we intro-
duce a novel dataset. To this end we manually selected chal-
lenging keyframes from MPII Human Pose (Multi-Person
Test) dataset. Selected keyframes represent crowded scenes
with highly articulated people engaging in various dynamic
activities. In addition to each keyframe, we include +/-10
neighboring frames from the corresponding publicly avail-
able video sequences, and annotate every second frame5.

5The annotations in the original key-frame are kept unchanged.
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Each body pose was annotated following the standard an-
notation procedure [1], while maintaining the identity of
each individual throughout the sequence. In contrast to
MPII Multi-Person where some frames may contain non-
annotated people, in our dataset we annotate all people par-
ticipating in the activity captured in the video, and add ig-
nore regions for areas that contain dense crowds (e.g. static
spectators in the dancing sequences). In total, our dataset
consists of 28 sequences with over 2, 000 annotated poses
in total. We will release the dataset to the public.
Evaluation details. Evaluation on all datasets is performed
on a per-frame basis. The average precision (AP) mea-
sure [19] is used for performance comparison. Addition-
ally, for each algorithm we report the time in seconds per
frame (s/f) it takes for the graph partitioning step to con-
verge. All time measurements were conducted on a single
core Intel Xeon 2.70GHz. Note that the actual run-time of
each method might be somewhat longer due to the constant
time steps such as computation of part proposals and pair-
wise terms. Evaluation on our Multi-Person Video dataset
is performed on the full frames using the publicly available
evaluation kit of [1]. On MPII Multi-Person we follow the
official evaluation protocol6 and evaluate on groups using
the provided rough group location and scale.

4.2. Single-frame models

Bottom-Up. We consider different variants of our
Bottom-Up model (c.f . Sec. 3.1) that (1) uses regression
pairwise in a fully-connected graph of up to 1, 000 detection
proposals and infers both partitioning and labeling of de-
tection proposals, similar to [12] (BU-full, label); (2) same
as (1), but only partitioning is inferred, whereas the label-
ing of detection proposals is performed using highest de-
tection score (BU-full); (3) same as (2) but uses a sparsely-
connected graph (BU-sparse). Results are shown in Tab. 1.
BU-full, label achieves 70.5% AP with a median run-time
of 1.48 secons/frame (s/f). BU-full achieves 11× run-time
reduction (0.13 vs. 1.48 s/f): pre-labeling detection candi-
dates based on part detection score allows to dramatically
reduce the number of variables in the problem graph. Inter-
estingly, pre-labeling also improves the performance (71.9
vs. 70.5% AP). The intuition is that some of the low-scoring
detections may confuse the solver that tries to find an op-
timal part labeling based on detection scores. BU-sparse
achieves further reduction in run-time (0.07 vs. 0.13 s/f), as
it reduces the complexity of the initial problem by sparsify-
ing the graph, at a price of a drop in performance (70.6 vs.
71.9% AP).
Top-Down/Bottom-Up. The results are shown in Tab. 2.
Proposed TD achieves 71.7% AP. Interestingly, its perfor-
mance is on par with more complex BU-full. This under-

6http://human-pose.mpi-inf.mpg.de/#evaluation

Setting Head Sho Elb Wri Hip Knee Ank AP time, [s/f]

BU-full, label 90.0 84.9 71.1 58.4 69.7 64.7 54.7 70.5 1.48
BU-full 91.2 86.0 72.9 61.5 70.4 65.4 55.5 71.9 0.13
BU-sparse 91.1 86.5 70.7 58.1 69.7 64.7 53.8 70.6 0.07

TD/BU + SP 92.2 86.1 72.8 63.0 74.0 66.2 58.4 73.3 0.01

Table 1. Effects of various variants of BU model on pose estima-
tion performance (AP) on MPII Multi-Person Val.

Setting Head Sho Elb Wri Hip Knee Ank AP

TD 91.6 84.7 72.9 63.2 72.3 64.7 52.8 71.7
TD + SP 90.7 85.0 72.0 63.1 73.1 65.0 58.3 72.5
TD/BU + SP 92.2 86.1 72.8 63.0 74.0 66.2 58.4 73.3

Table 2. Effects of various versions of TD/BU model on pose esti-
mation performance (AP) on MPII Multi-Person Val.

Setting Head Sho Elb Wri Hip Knee Ank AP time [s/f]

BU-full 91.5 87.8 74.6 62.5 72.2 65.3 56.7 72.9 0.12
TD/BU+ SP 88.8 87.0 75.9 64.9 74.2 68.8 60.5 74.3 0.005

DeeperCut [12] 79.1 72.2 59.7 50.0 56.0 51.0 44.6 59.4 485
DeeperCut [13] 89.4 84.5 70.4 59.3 68.9 62.7 54.6 70.0 485
Iqbal&Gall [14] 58.4 53.9 44.5 35.0 42.2 36.7 31.1 43.1 10

Table 3. Pose estimation results (AP) on MPII Multi-Person Test.

lines the advantages of the proposed strategy of offload-
ing the larger share of the reasoning about body-part as-
sociation onto the feed-forward convolutional architecture.
Explicit spatial propagation (TD+SP) further improves the
results (72.5 vs. 71.7% AP). The largest improvement
is observed for ankles: progressive prediction that condi-
tions on the close-by parts in the tree hierarchy reduces
the distance from the conditioning location and location of
the coditioned body part thereby simplifying the prediction
task. Performing inference (TD/BU+SP) further improves
the performance to 73.3% AP, as it allows for more optimal
assignment of part detection candidates to corresponding
persons. Due to the star connectivity in the TD/BU graph,
inference time is reduced even further (0.01 vs. 0.07 for
BU-sparse). Overall we observe very good pose predic-
tion results with our simple and efficient person conditioned
Top-Down/Bottom-Up model.
Comparison to the State of the Art. The proposed single-
frame approaches are evaluated on the MPII Multi-Person
dataset and compared to the state of the art [13] in Tab. 3.
We obseve that both BU-full and TD/BU models improve
over the best published result of DeeperCut [13], achieving
72.9 and 74.3% AP respectively vs. 70.0% AP by Deep-
erCut. For the TD/BU approach the improvements on ar-
ticulated parts (elbows, wrists, ankles, knees) are especially
pronounced. We argue that this is due to using the network
that is directly trained to disambiguate body parts of dif-
ferent people, instead of using explicit geometric pairwise
terms that only serve as a proxy to person’s identity. Over-
all, the performance of our best approach TD/BU is notice-
ably higher (74.3 vs. 70.0% AP). Remarkably, inference
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Figure 6. Qualitative comparison of results using single frame based model (BU-sparse) vs. articulated tracking (BU-sparse+temporal).
See http://youtube.com/watch?v=eYtn13fzGGo for the supplemental material showcasing our results.

run-time in our least complex TD/BU approach is 5 orders
of magnitude faster compared to DeeperCut. This speed-up
is a combination of two factors. First, we are relying on
a faster solver from [16] that tackles the graph-partitioning
problem via local search, in contrast to the integer-linear
program solver used in [12]. Second, in the case of TD/BU
model the graph is sparse and a large portion of the compu-
tation is performed by the feed-forward convolutional net-
work introduced in Sec. 3.2.

4.3. Multi-frame models

Comparison of video-based models. Performance of the
proposed video-based models is compared in Tab. 4. Over-
all we observe that video-based models outperform single-
frame models in each case. BU-full+temporal slightly out-
performs BU-full, where improvements are noticeable for
ankle, knee and head. Video-based BU-sparse+temporal
noticeably improves over BU-sparse (73.1 vs. 71.6% AP).
We observe significant improvements on the most diffi-
cult body parts such as ankles (+3.9% AP) and wrists
(+2.6% AP). Interestingly, BU-sparse+temporal outper-
forms BU-full + temporal: longer-range connections such

8
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Setting Head Sho Elb Wri Hip Knee Ank AP

BU-full 84.0 83.8 73.0 61.3 74.3 67.5 58.8 71.8
+ temporal 84.9 83.7 72.6 61.6 74.3 68.3 59.8 72.2

BU-sparse 84.5 84.0 71.8 59.5 74.4 68.1 59.2 71.6
+ temporal 85.6 84.5 73.4 62.1 73.9 68.9 63.1 73.1

TD/BU+ SP 82.2 85.0 75.7 64.6 74.0 69.8 62.9 73.5
+ temporal 82.6 85.1 76.3 65.5 74.1 70.7 64.7 74.2

Table 4. Pose estimation results (AP) on our Multi-Person Video.

as e.g. head to neck may introduce additional confu-
sion when information is propagated over time. Finally,
TD/BU+temporal improves over TD/BU alone (+0.7%
AP). Similarly to BU-sparse+temporal, improvement is
most prominent on ankles (+1.8% AP) and wrists (+0.9%
AP). It is worth noting, that even the single-frame version of
TD/BU outperforms the best temporal BU model. This is in
line with our findings for single-frame models that demon-
strate benefits of employing the convnet to directly perform
multi-person inference.

We show examples of articulated tracking results on our
video dataset in Fig. 6. Temporal reasoning helps in cases
when image information is ambiguous due to close prox-
imity of multiple people. For example the video-based ap-
proach succeeds in correctly localizing legs of the person
in Fig. 6 (d), (h) and (l). Video typically helps more in
difficult scenes with occlusions such as the first and sec-
ond sequences in Fig. 6, but helps less in cases such as
the third sequence when single-frame approach already per-
forms rather well.

Evaluation of temporal features. We evaluate the im-
portance of combining temporal features introduced in
Sec. 3.4 on our Multi-Person Video dataset. To that end,
we consider BU-sparse+temporal model and compare re-
sults to BU-sparse in Tab. 5. Single-frame BU-sparse
achieves 71.6% AP. It can be seen that using geometry
based det-distance features slightly improves the results to
72.1% AP, as it enables the propagation of information from
neighboring frames. Using deepmatch features slightly im-
proves the performance further as it helps to link the same
body part of the same person over time based on the body
part appearance. It is especially helpful in the case of fast
motion where det-distance may fail. The combination of
both geometry and appearance based features further im-
proves the performance to 72.5%, which shows their com-
plementarity. Finally, adding the sift-distance feature im-
proves the results to 73.1%, since it copes better with the
sudden changes in background and body part orientations.
Overall, using a combination of temporal features in BU-
sparse+temporal results in a 1.5% AP improvement over
the single-frame BU-sparse. This demonstrates the advan-
tages of the proposed approach to improve pose estimation
performance using temporal information.

Setting Head Sho Elb Wri Hip Knee Ank AP

BU-sparse 84.5 84.0 71.8 59.5 74.4 68.1 59.2 71.6
+ det-distance 84.8 84.3 72.9 61.8 74.1 67.4 59.1 72.1
+ deepmatch 85.5 83.9 73.0 62.0 74.0 68.0 59.5 72.3

+ det-distance 85.1 83.6 72.2 61.5 74.4 68.8 62.2 72.5
+ sift-distance 85.6 84.5 73.4 62.1 73.9 68.9 63.1 73.1

Table 5. Effects of different temporal features on pose estimation
performance (AP) (BU-sparse+temporal model) on our Multi-
Person Video dataset.

5. Conclusion
In this paper we introduced an efficient and effective ap-

proach to articulated human pose estimation and tracking
in monocular video. Our approach defines a model that
jointly groups body part proposals within each video frame
and across time. Grouping is formulated as a graph parti-
tioning problem that lends itself to efficient inference with
recent local search techniques. Our approach improves over
state-of-the-art while being substantially faster compared to
other related work.

Acknowledgements. This work has been supported by
the Max Planck Center for Visual Computing and Com-
munication. The authors would like to thank Varvara
Obolonchykova and Bahar Tarakameh for their help in cre-
ating the video dataset.

Appendix: Additional Results on the MPII
Multi-Person Dataset

We perform qualitative comparison of the proposed
single-frame based TD/BU and BU-full methods on chal-
lenging scenes containing highly articulated and strongly
overlapping individuals. Results are shown in Fig. 7 and
Figure 8. The BU-full works well when persons are suffi-
ciently separated (images 11 and 12). However, it fails on
images where people significantly overlap (images 1-3, 5-
10) or exhibit high degree of articulation (image 4). This
is due to the fact that geometric image-conditioned pair-
wise may get confused in the presence of multiple over-
lapping individuals and thus mislead post-CNN bottom-up
assembling of body poses. In contrast, TD/BU performs
explicit modeling of person identity via top-dop bottom-up
reasoning while offloading the larger share of the reason-
ing about body-part association onto feed-forward convolu-
tional architecture, and thus is able to resolve such challeng-
ing cases. Interestingly, TD/BU is able to correctly predict
lower limbs of people in the back through partial occlusion
(image 3, 5, 7, 10). TD/BU model occasionally incorrectly
assembles body parts in kinematically implausible manner
(image 12), as it does not explicitly model geometric body
part relations. Finally, both models fail in presense of high
variations in scale (image 13). We envision that reasoning
over multiple scales is likely to improve the results.
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Figure 7. Qualitative comparison of single-frame based TD/BU and BU-full on MPII Multi-Person dataset.

References
[1] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele. 2d

human pose estimation: New benchmark and state of the art

analysis. In CVPR’14. 6, 7

[2] M. Andriluka, S. Roth, and B. Schiele. People-tracking-by-

10



B
U

T
D

/B
U

8 9 10

B
U

T
D

/B
U

11 12 13

Figure 8. Successfull (8-11) and failure (12-13) pose estimation results by single-frame based TD/BU and comparison to BU-full on MPII
Multi-Person dataset.

detection and people-detection-by-tracking. In CVPR’08. 2

[3] M. Andriluka, S. Roth, and B. Schiele. Monocular 3d pose
estimation and tracking by detection. In CVPR, 2010. 2

[4] A. Bulat and G. Tzimiropoulos. Human pose estimation via
convolutional part heatmap regression. In ECCV’16. 2

[5] J. Charles, T. Pfister, D. Magee, and A. Hogg, D. Zisserman.
Personalizing human video pose estimation. In CVPR’16. 2

[6] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and
A. L. Yuille. Semantic image segmentation with deep con-
volutional nets and fully connected crfs. In ICLR, 2015. 5

[7] A. Cherian, J. Mairal, K. Alahari, and C. Schmid. Mix-
ing body-part sequences for human pose estimation. In
CVPR’14. 2

[8] A. Elhayek, E. Aguiar, A. Jain, J. Tompson, L. Pishchulin,
M. Andriluka, C. Bregler, B. Schiele, and C. Theobalt. Ef-
ficient convnet-based marker-less motion capture in general
scenes with a low number of cameras. In CVPR’15. 2

[9] A. Elhayek, E. Aguiar, A. Jain, J. Tompson, L. Pishchulin,
M. Andriluka, C. Bregler, B. Schiele, and C. Theobalt. Mar-
coni - convnet-based marker-less motion capture in outdoor
and indoor scenes. 2

11



[10] G. Gkioxari, A. Toshev, and N. Jaitly. Chained predictions
using convolutional neural networks. 2

[11] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learn-
ing for image recognition. arXiv preprint arXiv:1512.03385,
2015. 5

[12] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka, and
B. Schiele. Deepercut: A deeper, stronger, and faster multi-
person pose estimation model. In ECCV’16. 2, 3, 4, 5, 6, 7,
8

[13] E. Insafutdinov, L. Pishchulin, B. Andres, M. Andriluka,
and B. Schiele. Deepercut: A deeper, stronger, and
faster multi-person pose estimation model. arXiv preprint
arXiv:1605.03170. 7

[14] U. Iqbal and J. Gall. Multi-person pose estimation with local
joint-to-person associations. In ECCVw’16. 2, 7

[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Gir-
shick, S. Guadarrama, and T. Darrell. Caffe: Convolu-
tional architecture for fast feature embedding. arXiv preprint
arXiv:1408.5093, 2014. 6

[16] E. Levinkov, S. Tang, E. Insafutdinov, and B. Andres. Joint
graph decomposition and node labeling by local search.
arXiv preprint arXiv:1611.04399. 2, 3, 4, 5, 8

[17] A. Newell, K. Yang, and J. Deng. Stacked hourglass net-
works for human pose estimation. In ECCV’16. 2

[18] T. Pfister, J. Charles, and A. Zisserman. Flowing convnets
for human pose estimation in videos. In ICCV’15. 2

[19] L. Pishchulin, E. Insafutdinov, S. Tang, B. Andres, M. An-
driluka, P. Gehler, and B. Schiele. Deepcut: Joint subset
partition and labeling for multi person pose estimation. In
CVPR’16. 1, 2, 3, 4, 7

[20] B. Sapp, D. Weiss, and B. Taskar. Parsing human motion
with stretchable models. In CVPR’11. 2

[21] S. Tang, B. Andres, M. Andriluka, and B. Schiele. Subgraph
decomposition for multi-target tracking. In CVPR, 2015. 1,
2, 3, 4, 5

[22] S. Tang, B. Andres, M. Andriluka, and B. Schiele. Multi-
person tracking by multicuts and deep matching. In BMTT,
2016. 6

[23] R. Tokola, W. Choi, and S. Savarese. Breaking the chain:
liberation from the temporal markov assumption for tracking
human poses. In ICCV’13. 2

[24] J. J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint train-
ing of a convolutional network and a graphical model for
human pose estimation. In NIPS’14. 2

[25] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Con-
volutional pose machines. In CVPR’16. 2

[26] P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid.
Deepflow: Large displacement optical flow with deep match-
ing. In ICCV’13. 6

[27] D. J. Weiss and B. Taskar. Learning adaptive value of infor-
mation for structured prediction. In NIPS’13. 2

12


