

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# {2,2'-[(2,2-Dimethylpropane-1,3-diyldinitrilo)bis(phenylmethylidyne)]diphenolato}nickel(II)

### Hadi Kargar,<sup>a</sup>\* Reza Kia,<sup>b</sup> Majid Moghadam,<sup>c</sup> Fatemeh Froozandeh<sup>a</sup> and Muhammad Nawaz Tahir<sup>d</sup>\*

<sup>a</sup>Chemistry Department, Payame Noor University, Tehran 19395-4697, Iran, <sup>b</sup>X-ray Crystallography Laboratory, Plasma Physics Research Center, and Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran, <sup>c</sup>Catalysis Division, Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran, and <sup>d</sup>Department of Physics, University of Sargodha, Punjab, Pakistan

Correspondence e-mail: hkargar@pnu.ac.ir, dmntahir\_uos@yahoo.com

Received 16 July 2011; accepted 22 July 2011

Key indicators: single-crystal X-ray study; T = 291 K; mean  $\sigma$ (C–C) = 0.013 Å; R factor = 0.053; wR factor = 0.097; data-to-parameter ratio = 13.3.

The asymmetric unit of the title complex,  $[Ni(C_{31}H_{28}N_2O_2)]$ , comprises two crystallographically independent molecules. The geometry around the Ni<sup>II</sup> atom in each molecule is distorted square planar. The dihedral angles between the two phenoxy rings in each molecule are 17.8 (4) and 36.5 (4)°. The crystal packing is stabilized by weak  $\pi$ - $\pi$  interactions [centroid-centroid distance = 3.758 (5) Å] and C-H··· $\pi$ interactions.

### **Related literature**

For standard values of bond lengths, see: Allen *et al.* (1987). For background on tetradentate Schiff bases and their complexes, see: Kargar *et al.* (2010, 2009).



### **Experimental**

Crystal data [Ni(C<sub>31</sub>H<sub>28</sub>N<sub>2</sub>O<sub>2</sub>)]

 $M_r = 519.26$ 

metal-organic compounds

Mo  $K\alpha$  radiation

 $0.24 \times 0.12 \times 0.08 \text{ mm}$ 

 $\mu = 0.81 \text{ mm}^-$ 

T = 291 K

Z = 8

Monoclinic,  $P2_1/c$  a = 23.722 (3) Å b = 9.4716 (6) Å c = 26.961 (4) Å  $\beta = 124.319$  (9)° V = 5003.2 (10) Å<sup>3</sup>

#### Data collection

| Stoe IPDS 2T image-plate             | 23324 measured reflections             |
|--------------------------------------|----------------------------------------|
| diffractometer                       | 8608 independent reflections           |
| Absorption correction: multi-scan    | 2512 reflections with $I > 2\sigma(I)$ |
| [MULABS (Blessing, 1995) in          | $R_{\rm int} = 0.117$                  |
| PLATON (Spek, 2009)]                 |                                        |
| $T_{\min} = 0.830, T_{\max} = 1.000$ |                                        |

#### Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.053 & 649 \text{ parameters} \\ wR(F^2) &= 0.097 & H\text{-atom parameters constrained} \\ S &= 0.61 & \Delta\rho_{max} &= 0.23 \text{ e } \text{\AA}^{-3} \\ 8608 \text{ reflections} & \Delta\rho_{min} &= -0.24 \text{ e } \text{\AA}^{-3} \end{split}$$

### Table 1

Table 1. C–H··· $\pi$  interactions (Å, °).

| Cg2,  | Cg3    | and   | Cg4   | are | the | centroids | of the | C18-C23, | C32-C37 | and | C55-C60 |
|-------|--------|-------|-------|-----|-----|-----------|--------|----------|---------|-----|---------|
| rings | , resp | pecti | vely. |     |     |           |        |          |         |     |         |

| $C-H\cdots Cg$                | С-Н  | $H \cdot \cdot \cdot Cg$ | $C \cdots Cg$ | $C-H\cdots Cg$ |
|-------------------------------|------|--------------------------|---------------|----------------|
| $C21 - H21A \cdots Cg2^{ii}$  | 0.93 | 2.90                     | 3.757 (11)    | 153            |
| $C41 - H41A \cdots Cg3^{iii}$ | 0.93 | 2.83                     | 3.680 (12)    | 153            |
| $C44 - H44A \cdots Cg4^{iv}$  | 0.93 | 2.95                     | 3.708 (10)    | 149            |
| $C47 - H47A \cdots Cg4^{v}$   | 0.93 | 2.92                     | 3.884 (9)     | 171            |
|                               |      |                          |               |                |

Symmetry codes: (ii)  $x, \frac{3}{2} - y, \frac{1}{2} + z$ ; (iii) 1 - x, 2 - y, 1 - z; (iv)  $1 - x, -\frac{1}{2} + y, \frac{3}{2} - z$ ; (v)  $1 - x, \frac{1}{2} + y, \frac{3}{2} - z$ .

Data collection: X-AREA (Stoe & Cie, 2009); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HK and FF thank the PNU for financial support. RK thanks the Science and Research Branch, Islamic Azad University, Tehran, for support. MNT thanks Sargodha University for the research facility.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2297).

### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Kargar, H., Kia, R., Jamshidvand, A. & Fun, H.-K. (2009). Acta Cryst. E65, 0776–0777.

Kargar, H., Kia, R., Ullah Khan, I. & Sahraei, A. (2010). *Acta Cryst.* E66, o539. Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.

# supporting information

### Acta Cryst. (2011). E67, m1173 [doi:10.1107/S1600536811029813]

# {2,2'-[(2,2-Dimethylpropane-1,3-diyldinitrilo)bis(phenylmethylidyne)]diphenolato}nickel(II)

## Hadi Kargar, Reza Kia, Majid Moghadam, Fatemeh Froozandeh and Muhammad Nawaz Tahir

## S1. Comment

Schiff base ligands are one of the most prevalent systems in coordination chemistry. As part of a general study of potentially tetradenate Schiff bases and their complexes (Kargar *et al.*, 2009; Kargar *et al.*, 2010), we have determined the crystal structure of the title compound.

The asymmetric unit of the title compound, Fig. 1, comprises two crystallographically independent molecules (A and B). The bond lengths in the complex are normal (Allen *et al.*, 1987). The geometry around the Ni<sup>II</sup> atoms in each molecule is distorted square planar. The dihedral angles between the coordination planes (O1—Ni1—N1 and O2—Ni1—N2 in molecule A and O3—Ni2—N3 and O4—Ni2—N4 in molecule B) are 13.43 (24) and 11.83 (32) Å, respectively. The dihedral angles between the two phenoxy rings (C1–C6) and (C24–C29) in molecule A, and (C32–C37) and (C55–C60) in molecule B, are 17.8 (4) and 36.5 (4)°, respectively.

The crystal packing is stabilized by weak  $\pi$ - $\pi$  interactions [ $Cg1\cdots Cg1^i = 3.758$  (5) Å, perpendiculaire separation 3.750 (4) Å, slippage 1.171 Å; (i) 2 - x, 2 - y, 1 - z; Cg1 is the centroid of benzene ring (C1-C6)]. There are also a number of C-H··· $\pi$  interactions present (Table 1).

### **S2.** Experimental

The title compound was synthesized by adding a methanolic solution (25 ml) of bis(2-hydroxybenzophenone)-2,2'-dimethyl propanediimine (2 mmol) to a solution of NiCl<sub>2</sub>.6H<sub>2</sub>O (2 mmol in 25 ml ethanol). The mixture was refluxed with stirring for 30 min. The resultant green solution was filtered. Dark-red single crystals, suitable for *X*-ray diffraction analysis, were obtained by recrystallization from ethanol by slow evaporation of the solvent at room temperature over several days.

### **S3. Refinement**

The quality of the crystal was not optimal and it diffracted weakly; only 29% of the data can be considered to be observed [I> $2\sigma$ (I)]. Although recrystallization was attempted repeatedly, better crystals could not be obtained. The C-bound H-atoms were included in calculated positions and treated as riding atoms: C-H = 0.93, 0.97 and 0.96 Å for CH, CH<sub>2</sub> and CH<sub>3</sub> H-atoms, respectively, with U<sub>iso</sub>(H) = k × U<sub>eq</sub>(parent C-atom), where k = 1.5 for CH<sub>3</sub> H-atoms and k = 1.2 for all other H-atoms.



## Figure 1

The molecular structure of the two independent molecules (A and B) of the title compound, showing 30% probability displacement ellipsoids and the atomic numbering [H-atoms have been removed for clarity].

## {2,2'-[(2,2-Dimethylpropane-1,3- diyldinitrilo)bis(phenylmethylidyne)]diphenolato}nickel(II)

| $[Ni(C_{31}H_{28}N_2O_2)]$                | F(000) = 2176                                                             |
|-------------------------------------------|---------------------------------------------------------------------------|
| $M_r = 519.26$                            | $D_{\rm x} = 1.379 {\rm ~Mg} {\rm ~m}^{-3}$                               |
| Monoclinic, $P2_1/c$                      | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å                     |
| Hall symbol: -P 2ybc                      | Cell parameters from 220 reflections                                      |
| a = 23.722 (3) Å                          | $\theta = 2.9 - 20.0^{\circ}$                                             |
| b = 9.4716 (6) Å                          | $\mu = 0.81 \text{ mm}^{-1}$                                              |
| c = 26.961 (4)  Å                         | T = 291  K                                                                |
| $\beta = 124.319 \ (9)^{\circ}$           | Block, dark-red                                                           |
| $V = 5003.2 (10) \text{ Å}^3$             | $0.24 \times 0.12 \times 0.08 \text{ mm}$                                 |
| Z = 8                                     |                                                                           |
| Data collection                           |                                                                           |
| Stoe IPDS 2T image-plate                  | 23324 measured reflections                                                |
| diffractometer                            | 8608 independent reflections                                              |
| Radiation source: fine-focus sealed tube  | 2512 reflections with $I > 2\sigma(I)$                                    |
| Graphite monochromator                    | $R_{\rm int} = 0.117$                                                     |
| ωscans                                    | $\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$ |
| Absorption correction: multi-scan         | $h = -28 \rightarrow 27$                                                  |
| [MULABS (Blessing, 1995) in PLATON (Spek, | $k = -10 \rightarrow 11$                                                  |
| 2009)]                                    | $l = -30 \rightarrow 32$                                                  |
| $T_{\min} = 0.830, \ T_{\max} = 1.000$    |                                                                           |

Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier         |
|-------------------------------------------------|----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                      |
| $R[F^2 > 2\sigma(F^2)] = 0.053$                 | Hydrogen site location: inferred from                    |
| $wR(F^2) = 0.097$                               | neighbouring sites                                       |
| S = 0.61                                        | H-atom parameters constrained                            |
| 8608 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.005P)^2]$                   |
| 649 parameters                                  | where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                   |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} = 0.001$                      |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.23 \  m e \  m \AA^{-3}$        |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$ |
|                                                 |                                                          |

### Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|      | x           | У            | Ζ           | $U_{ m iso}*/U_{ m eq}$ |
|------|-------------|--------------|-------------|-------------------------|
| Nil  | 1.02997 (5) | 0.78653 (13) | 0.65990 (4) | 0.0311 (3)              |
| 01   | 1.0842 (2)  | 0.8006 (7)   | 0.6312 (2)  | 0.0507 (19)             |
| 02   | 1.1123 (2)  | 0.8077 (7)   | 0.7328 (2)  | 0.054 (2)               |
| N1   | 0.9521 (3)  | 0.7266 (8)   | 0.5836 (2)  | 0.0324 (19)             |
| N2   | 0.9807 (3)  | 0.8051 (7)   | 0.6956 (2)  | 0.0290 (18)             |
| C1   | 1.0658 (4)  | 0.8149 (10)  | 0.5766 (3)  | 0.034 (2)               |
| C2   | 1.1152 (4)  | 0.8582 (9)   | 0.5660 (3)  | 0.038 (3)               |
| H2A  | 1.1595      | 0.8755       | 0.5989      | 0.046*                  |
| C3   | 1.1012 (4)  | 0.8759 (10)  | 0.5096 (3)  | 0.044 (3)               |
| H3A  | 1.1352      | 0.9040       | 0.5046      | 0.052*                  |
| C4   | 1.0358 (4)  | 0.8513 (10)  | 0.4605 (3)  | 0.047 (3)               |
| H4A  | 1.0253      | 0.8636       | 0.4220      | 0.057*                  |
| C5   | 0.9863 (4)  | 0.8089 (10)  | 0.4683 (3)  | 0.043 (3)               |
| H5A  | 0.9424      | 0.7934       | 0.4346      | 0.052*                  |
| C6   | 0.9993 (3)  | 0.7877 (9)   | 0.5257 (3)  | 0.031 (2)               |
| C7   | 0.9468 (3)  | 0.7330 (9)   | 0.5322 (3)  | 0.033 (2)               |
| C8   | 0.8828 (4)  | 0.6750 (10)  | 0.4753 (3)  | 0.030 (2)               |
| C9   | 0.8779 (4)  | 0.5353 (10)  | 0.4586 (3)  | 0.044 (3)               |
| H9A  | 0.9147      | 0.4745       | 0.4813      | 0.053*                  |
| C10  | 0.8181 (4)  | 0.4868 (10)  | 0.4081 (3)  | 0.050 (3)               |
| H10A | 0.8147      | 0.3923       | 0.3974      | 0.061*                  |
| C11  | 0.7642 (4)  | 0.5735 (11)  | 0.3738 (3)  | 0.048 (3)               |
| H11A | 0.7236      | 0.5378       | 0.3409      | 0.057*                  |
| C12  | 0.7699 (4)  | 0.7168 (11)  | 0.3879 (3)  | 0.046 (3)               |
| H12A | 0.7341      | 0.7778       | 0.3628      | 0.055*                  |

| C13          | 0.8287 (4)             | 0.7687 (10)             | 0.4393 (3)             | 0.046 (3)         |
|--------------|------------------------|-------------------------|------------------------|-------------------|
| H13A         | 0.8323                 | 0.8635                  | 0.4497                 | 0.055*            |
| C14          | 0.9025 (3)             | 0.6505 (8)              | 0.5891 (3)             | 0.033(2)          |
| H14A         | 0.9262                 | 0.5774                  | 0.6192                 | 0.040*            |
| H14B         | 0.8704                 | 0.6041                  | 0.5511                 | 0.040*            |
| C15          | 0.8626 (4)             | 0.7401 (9)              | 0.6057 (3)             | 0.034(2)          |
| C16          | 0.9092(3)              | 0.8557 (9)              | 0.6521 (3)             | 0.036(2)          |
| H16A         | 0.9100                 | 0.9374                  | 0.6308                 | 0.044*            |
| H16B         | 0.8900                 | 0.8851                  | 0.6741                 | 0.044*            |
| C17          | 1.0024 (4)             | 0.7955 (9)              | 0.7519 (3)             | 0.028(2)          |
| C18          | 0.9564 (4)             | 0.8038 (10)             | 0.7730 (3)             | 0.030(2)          |
| C19          | 0.9331 (4)             | 0.6818 (10)             | 0.7838 (3)             | 0.040(2)          |
| H19A         | 0.9454                 | 0.5946                  | 0.7768                 | 0.048*            |
| C20          | 0.8916 (3)             | 0.6868 (11)             | 0.8048(3)              | 0.042(3)          |
| H20A         | 0.8759                 | 0.6038                  | 0.8116                 | 0.051*            |
| C21          | 0.8737(4)              | 0.8168 (14)             | 0.8157 (4)             | 0.051             |
| H21A         | 0.8464                 | 0.8216                  | 0.8304                 | 0.050(5)          |
| C22          | 0.8962 (4)             | 0.0210<br>0.9379 (11)   | 0.8048(4)              | 0.000             |
| H22A         | 0.8833                 | 1 0249                  | 0.8048 (4)             | 0.051 (5)         |
| C23          | 0.0000                 | 0.9330(10)              | 0.7842(3)              | 0.001             |
| H23A         | 0.9538                 | 1 0163                  | 0.7778                 | 0.038 (3)         |
| C24          | 1.0757 (3)             | 0.7739 (9)              | 0.7995 (3)             | 0.040<br>0.032(2) |
| C25          | 1.0757(5)<br>1.0976(4) | 0.7739(9)<br>0.7541(9)  | 0.7555(3)              | 0.032(2)          |
| U25<br>Н25 Л | 1.0570 (4)             | 0.7541 ())              | 0.8595 (5)             | 0.042 (3)         |
| C26          | 1.0050                 | 0.7306 (10)             | 0.8084                 | 0.051             |
| U26 A        | 1.1040 (4)             | 0.7390 (10)             | 0.9052 (5)             | 0.054 (5)         |
| 1120A        | 1.1/7/<br>1.2121 (4)   | 0.7231<br>0.7473 (11)   | 0.9444                 | 0.005             |
|              | 1.2131 (4)             | 0.7473 (11)             | 0.0914 (3)             | 0.050 (5)         |
| 1127A        | 1.2392<br>1 1044 (4)   | 0.7580                  | 0.9219<br>0.8345 (3)   | $0.007^{\circ}$   |
| U28          | 1.1944 (4)             | 0.7078 (10)             | 0.8343 (3)             | 0.054 (5)         |
| C20          | 1.2200<br>1.1253(4)    | 0.7710<br>0.7824 (10)   | 0.8209                 | $0.005^{\circ}$   |
| C29          | 1.1233(4)              | 0.7834(10)<br>0.8248(0) | 0.7800(3)<br>0.5512(3) | 0.033(2)          |
|              | 0.8047 (3)             | 0.8248 (9)              | 0.5515 (5)             | 0.033(3)          |
| HJUA         | 0.7730                 | 0.7605                  | 0.5201                 | 0.083*            |
| H30B         | 0.8240                 | 0.8866                  | 0.5363                 | 0.083*            |
| H30C         | 0.7807                 | 0.8/9/                  | 0.5637                 | 0.083*            |
|              | 0.8321 (4)             | 0.6435 (10)             | 0.6292 (3)             | 0.059 (3)         |
| H3IA         | 0.86/9                 | 0.5918                  | 0.6631                 | 0.088*            |
| H31B         | 0.8013                 | 0.5786                  | 0.5982                 | 0.088*            |
| H3IC         | 0.8077                 | 0.6986                  | 0.6411                 | 0.088*            |
| N12          | 0.53222 (5)            | 0.89266 (12)            | 0.72050 (4)            | 0.0273(3)         |
| 03           | 0.6131 (2)             | 0.9183 (7)              | 0.7276 (2)             | 0.0426 (18)       |
| 04           | 0.5829 (2)             | 0.9419 (7)              | 0.8019 (2)             | 0.0405 (18)       |
| N3           | 0.4869 (3)             | 0.8180 (7)              | 0.6412 (2)             | 0.0281 (18)       |
| N4           | 0.4505 (3)             | 0.9045 (7)              | 0.7181 (2)             | 0.0285 (18)       |
| C32          | 0.6266 (4)             | 0.9007 (10)             | 0.6874 (3)             | 0.032 (2)         |
| C33          | 0.6938 (4)             | 0.9313 (9)              | 0.7043 (3)             | 0.038 (2)         |
| H33A         | 0.7255                 | 0.9647                  | 0.7429                 | 0.046*            |
| C34          | 0.7135 (4)             | 0.9136 (10)             | 0.6662 (3)             | 0.045 (3)         |

| H34A                 | 0.7576              | 0.9371      | 0.6782               | 0.054*    |
|----------------------|---------------------|-------------|----------------------|-----------|
| C35                  | 0.6674 (4)          | 0.8602 (9)  | 0.6091 (3)           | 0.046 (3) |
| H35A                 | 0.6811              | 0.8439      | 0.5833               | 0.056*    |
| C36                  | 0.6019 (4)          | 0.8316 (9)  | 0.5906 (3)           | 0.037 (3) |
| H36A                 | 0.5714              | 0.7994      | 0.5516               | 0.044*    |
| C37                  | 0.5787 (3)          | 0.8485 (9)  | 0.6275 (3)           | 0.028 (2) |
| C38                  | 0.5097 (3)          | 0.8071 (9)  | 0.6077 (3)           | 0.025 (2) |
| C39                  | 0.4662 (4)          | 0.7477 (10) | 0.5448 (3)           | 0.034 (2) |
| C40                  | 0.4368 (4)          | 0.8401 (10) | 0.4967 (3)           | 0.043 (3) |
| H40A                 | 0.4425              | 0.9370      | 0.5033               | 0.051*    |
| C41                  | 0.3986 (4)          | 0.7873 (13) | 0.4380 (3)           | 0.053(3)  |
| H41A                 | 0.3800              | 0.8483      | 0.4053               | 0.063*    |
| C42                  | 0.3889(4)           | 0.6428 (13) | 0.4292(4)            | 0.054(3)  |
| H42A                 | 0.3618              | 0.6070      | 0 3904               | 0.065*    |
| C43                  | 0.4190(4)           | 0.5516 (11) | 0.4773(4)            | 0.054(3)  |
| H43A                 | 0.4135              | 0.4547      | 0.4710               | 0.065*    |
| C44                  | 0.4133<br>0.4577(4) | 0.4547      | 0.4710<br>0.5355 (3) | 0.003     |
| С44<br>Н <i>44</i> А | 0.4778              | 0.5443      | 0.5555 (5)           | 0.043(2)  |
| C45                  | 0.4778              | 0.5445      | 0.5001               | 0.031     |
| U45                  | 0.4133(3)           | 0.7514 (8)  | 0.0211 (3)           | 0.029(2)  |
| П43А<br>1145D        | 0.4272              | 0.0031      | 0.0310               | 0.035*    |
| П43Б                 | 0.4030              | 0.0983      | 0.3640               | 0.033     |
| C40                  | 0.3045(3)           | 0.8560 (9)  | 0.6092(3)            | 0.035(2)  |
| C4/                  | 0.3940 (3)          | 0.9652 (9)  | 0.6615 (3)           | 0.036 (2) |
| H4/A                 | 0.4099              | 1.0480      | 0.6517               | 0.043*    |
| H4/B                 | 0.3581              | 0.9947      | 0.6663               | 0.043*    |
| C48                  | 0.4448 (3)          | 0.8/68 (9)  | 0.7615 (3)           | 0.026 (2) |
| C49                  | 0.3789 (3)          | 0.8908 (11) | 0.7567 (3)           | 0.029 (2) |
| C50                  | 0.3352 (4)          | 0.7777 (11) | 0.7428 (3)           | 0.044 (3) |
| H50A                 | 0.3467              | 0.6880      | 0.7372               | 0.053*    |
| C51                  | 0.2742 (4)          | 0.8000 (12) | 0.7373 (3)           | 0.056 (3) |
| H51A                 | 0.2445              | 0.7248      | 0.7278               | 0.067*    |
| C52                  | 0.2570 (4)          | 0.9323 (12) | 0.7456 (4)           | 0.058 (3) |
| H52A                 | 0.2154              | 0.9462      | 0.7409               | 0.070*    |
| C53                  | 0.2999 (4)          | 1.0415 (11) | 0.7606 (4)           | 0.055 (3) |
| H53A                 | 0.2882              | 1.1298      | 0.7673               | 0.066*    |
| C54                  | 0.3611 (4)          | 1.0242 (10) | 0.7661 (4)           | 0.044 (3) |
| H54A                 | 0.3903              | 1.1006      | 0.7760               | 0.052*    |
| C55                  | 0.5051 (4)          | 0.8366 (9)  | 0.8212 (3)           | 0.031 (2) |
| C56                  | 0.4964 (3)          | 0.7722 (10) | 0.8633 (3)           | 0.041 (3) |
| H56A                 | 0.4532              | 0.7419      | 0.8516               | 0.049*    |
| C57                  | 0.5511 (4)          | 0.7536 (10) | 0.9217 (3)           | 0.051 (3) |
| H57A                 | 0.5453              | 0.7076      | 0.9491               | 0.061*    |
| C58                  | 0.6140 (4)          | 0.8031 (11) | 0.9394 (3)           | 0.052 (3) |
| H58A                 | 0.6503              | 0.7936      | 0.9794               | 0.063*    |
| C59                  | 0.6246 (4)          | 0.8659 (10) | 0.8999 (3)           | 0.050 (3) |
| H59A                 | 0.6679              | 0.8988      | 0.9134               | 0.060*    |
| C60                  | 0.5695 (4)          | 0.8823 (10) | 0.8375 (3)           | 0.029 (2) |
| C61                  | 0.3381 (4)          | 0.9449 (10) | 0.5511 (3)           | 0.059 (3) |
|                      | ~ /                 |             |                      | x- /      |

# supporting information

| H61A | 0.3197     | 0.8827      | 0.5172     | 0.088*    |  |
|------|------------|-------------|------------|-----------|--|
| H61B | 0.3752     | 0.9980      | 0.5556     | 0.088*    |  |
| H61C | 0.3031     | 1.0084      | 0.5448     | 0.088*    |  |
| C62  | 0.3060 (3) | 0.7700 (10) | 0.6021 (4) | 0.058 (3) |  |
| H62A | 0.3223     | 0.7170      | 0.6381     | 0.087*    |  |
| H62B | 0.2886     | 0.7063      | 0.5688     | 0.087*    |  |
| H62C | 0.2702     | 0.8325      | 0.5948     | 0.087*    |  |
|      |            |             |            |           |  |

Atomic displacement parameters  $(\mathring{A}^2)$ 

|     | $U^{11}$   | $U^{22}$   | $U^{33}$   | $U^{12}$    | $U^{13}$   | $U^{23}$    |
|-----|------------|------------|------------|-------------|------------|-------------|
| Ni1 | 0.0228 (5) | 0.0430 (8) | 0.0227 (5) | -0.0028 (6) | 0.0098 (4) | 0.0008 (6)  |
| 01  | 0.026 (3)  | 0.097 (6)  | 0.028 (3)  | -0.009 (3)  | 0.015 (3)  | 0.001 (3)   |
| O2  | 0.022 (3)  | 0.103 (6)  | 0.029 (3)  | -0.010 (3)  | 0.010 (3)  | -0.001 (3)  |
| N1  | 0.030 (4)  | 0.043 (6)  | 0.027 (3)  | -0.005 (4)  | 0.019 (3)  | -0.001 (4)  |
| N2  | 0.021 (3)  | 0.037 (5)  | 0.028 (3)  | 0.000 (3)   | 0.013 (3)  | 0.000 (3)   |
| C1  | 0.039 (5)  | 0.038 (7)  | 0.037 (5)  | 0.003 (5)   | 0.028 (4)  | -0.003 (4)  |
| C2  | 0.028 (4)  | 0.053 (8)  | 0.037 (4)  | -0.007 (4)  | 0.020 (4)  | 0.000 (4)   |
| C3  | 0.042 (5)  | 0.059 (8)  | 0.037 (5)  | -0.006 (5)  | 0.027 (4)  | -0.007 (5)  |
| C4  | 0.048 (5)  | 0.071 (9)  | 0.036 (5)  | 0.000 (5)   | 0.031 (5)  | 0.001 (5)   |
| C5  | 0.032 (4)  | 0.062 (8)  | 0.026 (4)  | -0.009 (5)  | 0.010 (4)  | -0.004 (5)  |
| C6  | 0.022 (4)  | 0.043 (6)  | 0.030 (4)  | -0.009 (4)  | 0.017 (4)  | 0.001 (4)   |
| C7  | 0.026 (4)  | 0.032 (6)  | 0.025 (4)  | 0.006 (4)   | 0.005 (4)  | 0.001 (4)   |
| C8  | 0.028 (4)  | 0.035 (7)  | 0.024 (4)  | -0.004 (4)  | 0.014 (4)  | -0.005 (4)  |
| C9  | 0.033 (5)  | 0.047 (7)  | 0.042 (5)  | 0.007 (5)   | 0.016 (4)  | 0.002 (5)   |
| C10 | 0.048 (6)  | 0.045 (7)  | 0.039 (5)  | -0.002 (5)  | 0.013 (5)  | -0.011 (5)  |
| C11 | 0.029 (5)  | 0.074 (9)  | 0.029 (4)  | -0.026 (5)  | 0.009 (4)  | -0.020 (5)  |
| C12 | 0.031 (4)  | 0.072 (8)  | 0.030 (4)  | 0.011 (5)   | 0.014 (4)  | 0.007 (5)   |
| C13 | 0.051 (5)  | 0.052 (7)  | 0.032 (4)  | 0.000 (5)   | 0.022 (4)  | -0.007 (5)  |
| C14 | 0.022 (4)  | 0.043 (7)  | 0.027 (4)  | -0.005 (4)  | 0.009 (4)  | 0.003 (4)   |
| C15 | 0.031 (4)  | 0.039 (7)  | 0.026 (4)  | 0.002 (4)   | 0.012 (4)  | 0.010 (4)   |
| C16 | 0.030 (4)  | 0.044 (7)  | 0.034 (4)  | 0.015 (4)   | 0.018 (4)  | 0.015 (4)   |
| C17 | 0.035 (4)  | 0.030 (6)  | 0.026 (4)  | -0.003 (5)  | 0.022 (4)  | 0.004 (4)   |
| C18 | 0.028 (4)  | 0.035 (6)  | 0.027 (4)  | -0.005 (5)  | 0.016 (4)  | -0.003 (5)  |
| C19 | 0.036 (5)  | 0.036 (7)  | 0.044 (5)  | -0.004 (4)  | 0.020 (4)  | -0.010 (5)  |
| C20 | 0.027 (4)  | 0.078 (9)  | 0.032 (4)  | -0.012 (5)  | 0.023 (4)  | 0.004 (5)   |
| C21 | 0.036 (5)  | 0.106 (11) | 0.041 (5)  | 0.014 (6)   | 0.030 (4)  | 0.000 (6)   |
| C22 | 0.041 (5)  | 0.053 (9)  | 0.057 (6)  | 0.006 (5)   | 0.026 (5)  | 0.001 (6)   |
| C23 | 0.038 (5)  | 0.049 (8)  | 0.039 (5)  | -0.009 (5)  | 0.029 (4)  | -0.006 (5)  |
| C24 | 0.016 (4)  | 0.046 (7)  | 0.026 (4)  | 0.002 (4)   | 0.006 (3)  | 0.006 (4)   |
| C25 | 0.039 (5)  | 0.049 (8)  | 0.043 (5)  | 0.003 (5)   | 0.026 (4)  | 0.013 (5)   |
| C26 | 0.038 (5)  | 0.093 (10) | 0.017 (4)  | 0.002 (5)   | 0.006 (4)  | 0.019 (5)   |
| C27 | 0.028 (4)  | 0.100 (10) | 0.031 (4)  | 0.010 (5)   | 0.012 (4)  | 0.029 (5)   |
| C28 | 0.029 (4)  | 0.093 (9)  | 0.041 (5)  | 0.000 (5)   | 0.020 (4)  | 0.012 (6)   |
| C29 | 0.025 (4)  | 0.045 (7)  | 0.029 (4)  | -0.007 (4)  | 0.011 (4)  | -0.001 (5)  |
| C30 | 0.034 (5)  | 0.081 (9)  | 0.039 (4)  | 0.011 (5)   | 0.014 (4)  | 0.010 (5)   |
| C31 | 0.052 (5)  | 0.079 (9)  | 0.056 (5)  | -0.023 (5)  | 0.037 (5)  | -0.014 (5)  |
| Ni2 | 0.0227 (5) | 0.0371 (8) | 0.0204 (5) | -0.0030 (6) | 0.0112 (4) | -0.0031 (6) |

# supporting information

| O3  | 0.029 (3) | 0.065 (5)  | 0.032 (3) | -0.003 (3) | 0.016 (3) | 0.002 (3)  |
|-----|-----------|------------|-----------|------------|-----------|------------|
| O4  | 0.030 (3) | 0.066 (5)  | 0.029 (3) | -0.016 (3) | 0.018 (3) | -0.012 (3) |
| N3  | 0.023 (3) | 0.026 (5)  | 0.035 (3) | 0.001 (3)  | 0.016 (3) | -0.002 (3) |
| N4  | 0.024 (3) | 0.034 (5)  | 0.021 (3) | -0.001 (3) | 0.009 (3) | -0.004 (4) |
| C32 | 0.025 (4) | 0.037 (6)  | 0.037 (5) | 0.001 (4)  | 0.019 (4) | 0.002 (5)  |
| C33 | 0.032 (5) | 0.042 (7)  | 0.032 (4) | -0.008 (4) | 0.013 (4) | 0.004 (4)  |
| C34 | 0.039 (5) | 0.066 (8)  | 0.042 (5) | -0.005 (5) | 0.031 (4) | -0.008 (5) |
| C35 | 0.051 (5) | 0.066 (8)  | 0.048 (5) | -0.002 (5) | 0.044 (5) | -0.016 (5) |
| C36 | 0.031 (5) | 0.053 (8)  | 0.021 (4) | -0.009 (4) | 0.012 (4) | -0.006 (4) |
| C37 | 0.018 (4) | 0.039 (7)  | 0.028 (4) | -0.001 (4) | 0.014 (4) | -0.002 (4) |
| C38 | 0.033 (4) | 0.017 (6)  | 0.032 (4) | 0.006 (4)  | 0.022 (4) | 0.010 (4)  |
| C39 | 0.031 (4) | 0.044 (7)  | 0.026 (4) | -0.005 (4) | 0.015 (4) | -0.007 (4) |
| C40 | 0.039 (5) | 0.051 (8)  | 0.033 (5) | -0.015 (5) | 0.017 (4) | -0.005 (5) |
| C41 | 0.042 (5) | 0.089 (9)  | 0.025 (4) | 0.011 (6)  | 0.017 (4) | 0.000 (6)  |
| C42 | 0.049 (6) | 0.088 (10) | 0.019 (4) | -0.011 (6) | 0.015 (4) | -0.028 (6) |
| C43 | 0.063 (6) | 0.051 (8)  | 0.051 (6) | 0.003 (6)  | 0.034 (5) | -0.012 (6) |
| C44 | 0.045 (5) | 0.034 (7)  | 0.042 (5) | -0.002 (5) | 0.021 (4) | -0.006 (5) |
| C45 | 0.031 (4) | 0.027 (6)  | 0.025 (4) | -0.014 (4) | 0.013 (3) | -0.005 (4) |
| C46 | 0.022 (4) | 0.042 (7)  | 0.029 (4) | -0.003 (4) | 0.010 (4) | 0.003 (4)  |
| C47 | 0.026 (4) | 0.047 (7)  | 0.034 (4) | 0.005 (4)  | 0.017 (4) | 0.016 (4)  |
| C48 | 0.022 (4) | 0.021 (6)  | 0.032 (4) | 0.005 (4)  | 0.015 (4) | 0.007 (4)  |
| C49 | 0.018 (4) | 0.041 (6)  | 0.026 (4) | 0.018 (5)  | 0.012 (3) | 0.015 (5)  |
| C50 | 0.039 (5) | 0.050 (7)  | 0.046 (5) | -0.003 (5) | 0.025 (4) | -0.005 (5) |
| C51 | 0.027 (5) | 0.081 (9)  | 0.054 (5) | -0.001 (6) | 0.021 (4) | 0.029 (6)  |
| C52 | 0.031 (5) | 0.079 (10) | 0.072 (7) | 0.022 (6)  | 0.033 (5) | 0.027 (7)  |
| C53 | 0.048 (6) | 0.041 (8)  | 0.073 (6) | 0.012 (5)  | 0.033 (5) | 0.001 (6)  |
| C54 | 0.041 (5) | 0.038 (7)  | 0.060 (6) | -0.006 (5) | 0.033 (5) | -0.003 (5) |
| C55 | 0.034 (5) | 0.043 (7)  | 0.023 (4) | 0.004 (4)  | 0.020 (4) | 0.005 (4)  |
| C56 | 0.025 (4) | 0.065 (8)  | 0.036 (4) | 0.010 (5)  | 0.019 (4) | 0.005 (5)  |
| C57 | 0.056 (6) | 0.065 (9)  | 0.041 (5) | 0.021 (6)  | 0.032 (5) | 0.017 (5)  |
| C58 | 0.043 (5) | 0.080 (9)  | 0.034 (5) | 0.019 (6)  | 0.022 (4) | 0.012 (6)  |
| C59 | 0.025 (4) | 0.082 (9)  | 0.043 (5) | 0.008 (5)  | 0.020 (4) | -0.008 (5) |
| C60 | 0.028 (5) | 0.034 (6)  | 0.032 (4) | 0.005 (4)  | 0.020 (4) | -0.001 (4) |
| C61 | 0.055 (6) | 0.066 (8)  | 0.041 (5) | 0.009 (5)  | 0.019 (5) | 0.007 (5)  |
| C62 | 0.036 (5) | 0.070 (9)  | 0.074 (6) | -0.012 (5) | 0.035 (5) | -0.015 (6) |
|     |           |            |           |            |           |            |

Geometric parameters (Å, °)

| Ni1—O2 | 1.841 (4) | Ni2—O3 | 1.833 (5) |
|--------|-----------|--------|-----------|
| Ni1-01 | 1.841 (5) | Ni2—O4 | 1.872 (5) |
| Ni1—N2 | 1.896 (6) | Ni2—N4 | 1.904 (6) |
| Ni1—N1 | 1.918 (5) | Ni2—N3 | 1.907 (6) |
| 01—C1  | 1.286 (8) | O3—C32 | 1.304 (9) |
| O2—C29 | 1.307 (9) | O4—C60 | 1.298 (9) |
| N1—C7  | 1.319 (9) | N3—C38 | 1.292 (9) |
| N1-C14 | 1.458 (9) | N3—C45 | 1.498 (8) |
| N2-C17 | 1.302 (8) | N4—C48 | 1.281 (9) |
| N2—C16 | 1.497 (8) | N4—C47 | 1.466 (8) |
|        |           |        |           |

| C1—C6            | 1.413 (9)               | C32—C33            | 1.419 (10)             |
|------------------|-------------------------|--------------------|------------------------|
| C1—C2            | 1.415 (11)              | C32—C37            | 1.441 (9)              |
| C2—C3            | 1.369 (9)               | C33—C34            | 1.358 (10)             |
| C2—H2A           | 0.9300                  | С33—Н33А           | 0.9300                 |
| C3—C4            | 1.378 (9)               | C34—C35            | 1.387 (9)              |
| С3—НЗА           | 0.9300                  | C34—H34A           | 0.9300                 |
| C4—C5            | 1.363 (11)              | C35—C36            | 1.365 (10)             |
| C4—H4A           | 0.9300                  | C35—H35A           | 0.9300                 |
| C5—C6            | 1 410 (10)              | C36—C37            | 1 391 (10)             |
| C5—H5A           | 0.9300                  | C36—H36A           | 0.9300                 |
| C6—C7            | 1 449 (10)              | $C_{37} - C_{38}$  | 1 460 (9)              |
| C7—C8            | 1 528 (9)               | $C_{38}$ $C_{39}$  | 1 511 (9)              |
| $C_8 - C_9$      | 1.320(9)<br>1.381(10)   | $C_{39}$ $C_{44}$  | 1.364(11)              |
| C8-C13           | 1.301(10)<br>1 403 (10) | $C_{39}$ $C_{40}$  | 1.304(11)<br>1 384(10) |
| $C_{0}$ $C_{10}$ | 1.405(10)<br>1.377(10)  | C40-C41            | 1.304(10)<br>1.400(10) |
| $C_{0}$ H0V      | 0.0300                  | $C_{40}$ $H_{40A}$ | 0.0300                 |
| C10 C11          | 1.354(10)               | $C_{40}$           | 1.386(12)              |
| C10_H10A         | 1.334(10)               | C41 = C42          | 1.380(12)              |
| C11_C12          | 0.9300                  | C42 - C42          | 0.9300                 |
|                  | 1.393 (12)              | C42 - C43          | 1.373(12)              |
| CII—HIIA         | 0.9300                  | C42—H42A           | 0.9300                 |
| C12—C13          | 1.390 (9)               | C43—C44            | 1.393 (10)             |
| CI2—HI2A         | 0.9300                  | C43—H43A           | 0.9300                 |
| С13—Н13А         | 0.9300                  | C44—H44A           | 0.9300                 |
| C14—C15          | 1.514 (10)              | C45—C46            | 1.528 (10)             |
| C14—H14A         | 0.9700                  | C45—H45A           | 0.9700                 |
| C14—H14B         | 0.9700                  | C45—H45B           | 0.9700                 |
| C15—C31          | 1.510 (10)              | C46—C62            | 1.527 (10)             |
| C15—C30          | 1.553 (9)               | C46—C47            | 1.562 (10)             |
| C15—C16          | 1.557 (10)              | C46—C61            | 1.564 (10)             |
| C16—H16A         | 0.9700                  | C47—H47A           | 0.9700                 |
| C16—H16B         | 0.9700                  | C47—H47B           | 0.9700                 |
| C17—C24          | 1.481 (9)               | C48—C55            | 1.477 (9)              |
| C17—C18          | 1.490 (11)              | C48—C49            | 1.500 (10)             |
| C18—C19          | 1.381 (11)              | C49—C50            | 1.387 (11)             |
| C18—C23          | 1.388 (11)              | C49—C54            | 1.399 (11)             |
| C19—C20          | 1.386 (10)              | C50—C51            | 1.385 (11)             |
| C19—H19A         | 0.9300                  | C50—H50A           | 0.9300                 |
| C20—C21          | 1.388 (12)              | C51—C52            | 1.374 (12)             |
| C20—H20A         | 0.9300                  | C51—H51A           | 0.9300                 |
| C21—C22          | 1.366 (12)              | С52—С53            | 1.343 (12)             |
| C21—H21A         | 0.9300                  | С52—Н52А           | 0.9300                 |
| C22—C23          | 1.384 (11)              | C53—C54            | 1.385 (11)             |
| C22—H22A         | 0.9300                  | С53—Н53А           | 0.9300                 |
| С23—Н23А         | 0.9300                  | С54—Н54А           | 0.9300                 |
| C24—C25          | 1.405 (9)               | C55—C60            | 1.400 (10)             |
| C24—C29          | 1.415 (11)              | C55—C56            | 1.403 (10)             |
| C25—C26          | 1.361 (9)               | C56—C57            | 1.375 (8)              |
| C25—H25A         | 0.9300                  | С56—Н56А           | 0.9300                 |

| C26—C27                       | 1.398 (11)            | C57—C58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.367 (11)           |
|-------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| C26—H26A                      | 0.9300                | С57—Н57А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9300               |
| C27—C28                       | 1.347 (10)            | C58—C59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.362 (11)           |
| С27—Н27А                      | 0.9300                | C58—H58A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9300               |
| C28—C29                       | 1.415 (9)             | C59—C60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.444 (9)            |
| C28—H28A                      | 0.9300                | С59—Н59А                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9300               |
| С30—Н30А                      | 0.9600                | C61—H61A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9600               |
| C30—H30B                      | 0.9600                | C61—H61B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9600               |
| C30—H30C                      | 0.9600                | С61—Н61С                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9600               |
| C31—H31A                      | 0.9600                | C62—H62A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9600               |
| C31—H31B                      | 0.9600                | С62—Н62В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9600               |
| C31—H31C                      | 0.9600                | C62—H62C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.9600               |
|                               |                       | 0.2 11020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 010000               |
| O2—Ni1—O1                     | 82.5 (2)              | O3—Ni2—O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 84.3 (2)             |
| O2—Ni1—N2                     | 92.0 (2)              | O3—Ni2—N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 168.5 (3)            |
| O1—Ni1—N2                     | 169.5 (3)             | O4—Ni2—N4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 89.7 (2)             |
| O2—Ni1—N1                     | 167.8 (3)             | O3—Ni2—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93.6 (3)             |
| 01—Ni1—N1                     | 92.8 (2)              | O4—Ni2—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 172.1 (3)            |
| N2—Ni1—N1                     | 94.3 (2)              | N4—Ni2—N3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 93.6 (2)             |
| C1 - O1 - Ni1                 | 128.5 (5)             | $C_{32} = O_{3} = N_{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 129.0(5)             |
| $C_{29} = O_{2} = N_{11}$     | 127.2 (5)             | C60 - O4 - Ni2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 119.7 (5)            |
| C7-N1-C14                     | 121.6 (6)             | $C_{38} N_{3} C_{45}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 119.4 (6)            |
| C7—N1—Nil                     | 125.2(5)              | $C_{38}$ N3 Ni2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 128.2(5)             |
| $C_14$ N1 Ni1                 | 1125.2(5)             | $C_{45}$ N3 Ni2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.2(5)             |
| C17 - N2 - C16                | 117.8 (6)             | C48 - N4 - C47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 121.6 (6)            |
| C17 = N2 = 010                | 129 3 (5)             | C48—N4—Ni2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.0(6)<br>126.0(5) |
| C16 N2 Nil                    | 129.3(3)<br>112.4(4)  | C47 N4 Ni2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.0(5)<br>1121(5)  |
| $O_1  C_1  C_6$               | 112.4(4)<br>124.4(8)  | $C_{4} = 1012$<br>$C_{4} = 1012$<br>$C_{3} = 1012$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 112.1(3)<br>117.8(7) |
| 01 - C1 - C2                  | 124.4(0)<br>118 5 (7) | 03 - C32 - C37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 117.8(7)<br>124 6(7) |
| $C_{1}^{-}C_{1}^{-}C_{2}^{-}$ | 117.1(7)              | $C_{33}$ $C_{32}$ $C_{37}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 124.0(7)             |
| $C_{0} = C_{1} = C_{2}$       | 117.1(7)<br>122.2(7)  | $C_{33} = C_{32} = C_{37}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117.0(8)<br>122.4(7) |
| $C_3 = C_2 = C_1$             | 118 /                 | $C_{34} = C_{33} = C_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.4 (7)            |
| $C_{1}$ $C_{2}$ $H_{2A}$      | 118.4                 | $C_{34} = C_{33} = H_{33} A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 118.8                |
| $C_1 = C_2 = C_1$             | 110.4                 | $C_{32} = C_{33} = H_{33} = H$ | 110.0                |
| $C_2 = C_3 = U_2 \wedge C_2$  | 110.9 (0)             | $C_{22} = C_{24} = U_{24}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.4 (7)            |
| $C_2 = C_3 = H_2 A$           | 120.0                 | $C_{25} = C_{24} = H_{24A}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.3                |
| $C_4 = C_5 = C_4 = C_2$       | 120.0<br>120.2(7)     | $C_{33} = C_{34} = H_{34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.3                |
| $C_5 = C_4 = U_4$             | 120.2 (7)             | $C_{30} = C_{33} = C_{34}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.1 (7)            |
| $C_{3}$ $C_{4}$ $H_{4}$       | 119.9                 | C30-C35-H35A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.9                |
| $C_3 - C_4 - H_4 A$           | 119.9                 | C34—C35—H35A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 119.9                |
| C4 = C5 = U5                  | 122.4 (7)             | $C_{35} = C_{30} = C_{37}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.9 (7)            |
| C4—C5—H5A                     | 118.8                 | C35 - C36 - H36A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 118.5                |
| C6—C5—H5A                     | 118.8                 | $C_3/-C_{36}$ -H36A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 118.5                |
|                               | 118.2 (7)             | $C_{30} = C_{37} = C_{32}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 117.5 (6)            |
|                               | 120.9 (6)             | $C_{30} - C_{37} - C_{38}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.4 (6)            |
|                               | 120.8 (6)             | $U_{32} - U_{37} - U_{38}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.0 (7)            |
| NI - C' - C6                  | 124.3 (6)             | N3-C38-C37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 123.3 (7)            |
| NI-C/-C8                      | 119.4 (7)             | N3-C38-C39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.5 (6)            |
| C6-C7-C8                      | 116.2 (6)             | C37—C38—C39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 115.2 (7)            |

| C9—C8—C13                                                             | 120.3 (7)            | C44—C39—C40                          | 120.4 (7)         |
|-----------------------------------------------------------------------|----------------------|--------------------------------------|-------------------|
| C9—C8—C7                                                              | 121.7 (7)            | C44—C39—C38                          | 120.8 (7)         |
| C13—C8—C7                                                             | 118.0 (8)            | C40—C39—C38                          | 118.7 (8)         |
| C10—C9—C8                                                             | 119.5 (8)            | C39—C40—C41                          | 119.8 (9)         |
| С10—С9—Н9А                                                            | 120.3                | C39—C40—H40A                         | 120.1             |
| С8—С9—Н9А                                                             | 120.3                | C41—C40—H40A                         | 120.1             |
| C11—C10—C9                                                            | 121.5 (9)            | C42—C41—C40                          | 119.0 (9)         |
| C11—C10—H10A                                                          | 119.2                | C42—C41—H41A                         | 120.5             |
| C9-C10-H10A                                                           | 119.2                | C40—C41—H41A                         | 120.5             |
| C10-C11-C12                                                           | 119.7 (7)            | C43 - C42 - C41                      | 120.8 (8)         |
| C10-C11-H11A                                                          | 120.2                | C43 - C42 - H42A                     | 119.6             |
| C12—C11—H11A                                                          | 120.2                | C41 - C42 - H42A                     | 119.6             |
| $C_{12} = C_{11} = C_{11}$                                            | 120.2                | C42 - C43 - C44                      | 119.6 (10)        |
| $C_{13}$ $C_{12}$ $H_{12A}$                                           | 110.0                | C42 - C43 - C44                      | 120.2             |
| $C_{11}$ $C_{12}$ $H_{12A}$                                           | 119.9                | C44 $C43$ $H43A$                     | 120.2             |
| $C_{12}$ $C_{12}$ $C_{13}$ $C_{8}$                                    | 119.9                | $C_{44} = C_{43} = \Pi_{43} \Lambda$ | 120.2<br>120.4(0) |
| $C_{12}$ $C_{13}$ $C_{13}$ $C_{12}$ $C_{13}$                          | 110.0 (9)            | $C_{39} = C_{44} = C_{43}$           | 120.4 (9)         |
| C12— $C13$ — $H13A$                                                   | 120.7                | $C_{39} = C_{44} = H_{44}A$          | 119.8             |
| Co-CI3-HISA                                                           | 120.7                | C43 - C44 - H44A                     | 119.8             |
| NI-C14-C15                                                            | 115.3 (7)            | $N_{3} - C_{45} - C_{46}$            | 114.5 (6)         |
| NI-CI4-HI4A                                                           | 108.5                | N3—C45—H45A                          | 108.6             |
| C15—C14—H14A                                                          | 108.5                | C46—C45—H45A                         | 108.6             |
| NI-CI4-HI4B                                                           | 108.5                | N3—C45—H45B                          | 108.6             |
| C15—C14—H14B                                                          | 108.5                | C46—C45—H45B                         | 108.6             |
| H14A—C14—H14B                                                         | 107.5                | H45A—C45—H45B                        | 107.6             |
| C31—C15—C14                                                           | 108.1 (7)            | C62—C46—C45                          | 107.1 (6)         |
| C31—C15—C30                                                           | 109.3 (6)            | C62—C46—C47                          | 112.2 (7)         |
| C14—C15—C30                                                           | 112.2 (6)            | C45—C46—C47                          | 110.2 (5)         |
| C31—C15—C16                                                           | 112.4 (6)            | C62—C46—C61                          | 109.8 (6)         |
| C14—C15—C16                                                           | 110.7 (6)            | C45—C46—C61                          | 111.8 (7)         |
| C30-C15-C16                                                           | 104.2 (7)            | C47—C46—C61                          | 105.8 (7)         |
| N2-C16-C15                                                            | 112.4 (6)            | N4—C47—C46                           | 111.2 (6)         |
| N2-C16-H16A                                                           | 109.1                | N4—C47—H47A                          | 109.4             |
| C15—C16—H16A                                                          | 109.1                | C46—C47—H47A                         | 109.4             |
| N2-C16-H16B                                                           | 109.1                | N4—C47—H47B                          | 109.4             |
| C15—C16—H16B                                                          | 109.1                | C46—C47—H47B                         | 109.4             |
| H16A—C16—H16B                                                         | 107.9                | H47A—C47—H47B                        | 108.0             |
| N2—C17—C24                                                            | 121.3 (7)            | N4—C48—C55                           | 120.8 (6)         |
| N2-C17-C18                                                            | 123.2 (6)            | N4—C48—C49                           | 123.1 (6)         |
| C24—C17—C18                                                           | 115.6 (6)            | C55—C48—C49                          | 116.0 (7)         |
| C19—C18—C23                                                           | 118.7 (8)            | C50—C49—C54                          | 119.5 (7)         |
| C19—C18—C17                                                           | 120.2 (9)            | C50—C49—C48                          | 122.6 (9)         |
| C23—C18—C17                                                           | 121.1 (9)            | C54 - C49 - C48                      | 1180(8)           |
| $C_{18}$ $C_{19}$ $C_{20}$                                            | 121.1(9)<br>121.3(9) | C51 - C50 - C49                      | 119.1 (9)         |
| C18—C19—H19A                                                          | 119.4                | C51—C50—H50A                         | 120.4             |
| C20-C19-H19A                                                          | 119.4                | C49-C50-H50A                         | 120.4             |
| C19-C20-C21                                                           | 119.3 (0)            | $C_{12} = C_{23} = C_{23} = C_{23}$  | 120.4             |
| C19 C20 C21                                                           | 120.3                | C52—C51—H51A                         | 110 7             |
| C21—C20—H20A                                                          | 120.3                | C50-C51-H51A                         | 119.7             |
| $\cup$ | 140.0                |                                      | 11/1/             |

| C22—C21—C20                | 119.7 (9)   | C53—C52—C51     | 120.5 (9)   |
|----------------------------|-------------|-----------------|-------------|
| C22—C21—H21A               | 120.2       | С53—С52—Н52А    | 119.7       |
| C20—C21—H21A               | 120.2       | С51—С52—Н52А    | 119.7       |
| C21—C22—C23                | 121.0 (10)  | C52—C53—C54     | 120.8 (10)  |
| C21—C22—H22A               | 119.5       | С52—С53—Н53А    | 119.6       |
| С23—С22—Н22А               | 119.5       | С54—С53—Н53А    | 119.6       |
| C22—C23—C18                | 120.0 (10)  | C53—C54—C49     | 119.4 (9)   |
| С22—С23—Н23А               | 120.0       | С53—С54—Н54А    | 120.3       |
| C18—C23—H23A               | 120.0       | C49—C54—H54A    | 120.3       |
| C25—C24—C29                | 118.9 (6)   | C60—C55—C56     | 120.9 (7)   |
| C25—C24—C17                | 120.5 (7)   | C60—C55—C48     | 118.5 (7)   |
| C29—C24—C17                | 120.5 (6)   | C56—C55—C48     | 120.0 (7)   |
| C26—C25—C24                | 122.7 (8)   | C57—C56—C55     | 120.5 (7)   |
| C26—C25—H25A               | 118.7       | С57—С56—Н56А    | 119.7       |
| C24—C25—H25A               | 118.7       | С55—С56—Н56А    | 119.7       |
| $C_{25}$ $C_{26}$ $C_{27}$ | 118.1 (7)   | C58—C57—C56     | 119.7 (9)   |
| C25—C26—H26A               | 121.0       | С58—С57—Н57А    | 120.1       |
| C27—C26—H26A               | 121.0       | С56—С57—Н57А    | 120.1       |
| $C_{28}$ $C_{27}$ $C_{26}$ | 121.2 (7)   | C59—C58—C57     | 121.6 (7)   |
| C28—C27—H27A               | 119.4       | C59—C58—H58A    | 119.2       |
| C26—C27—H27A               | 119.4       | C57—C58—H58A    | 119.2       |
| C27—C28—C29                | 122.2 (8)   | C58—C59—C60     | 120.9 (8)   |
| C27—C28—H28A               | 118.9       | С58—С59—Н59А    | 119.6       |
| C29—C28—H28A               | 118.9       | С60—С59—Н59А    | 119.6       |
| 02-C29-C28                 | 117.7 (7)   | 04—C60—C55      | 125.5 (6)   |
| O2—C29—C24                 | 125.3 (6)   | O4—C60—C59      | 118.1 (7)   |
| C28—C29—C24                | 117.0 (7)   | C55—C60—C59     | 116.3 (8)   |
| С15—С30—Н30А               | 109.5       | C46—C61—H61A    | 109.5       |
| С15—С30—Н30В               | 109.5       | С46—С61—Н61В    | 109.5       |
| H30A—C30—H30B              | 109.5       | H61A—C61—H61B   | 109.5       |
| С15—С30—Н30С               | 109.5       | C46—C61—H61C    | 109.5       |
| H30A—C30—H30C              | 109.5       | H61A—C61—H61C   | 109.5       |
| H30B—C30—H30C              | 109.5       | H61B—C61—H61C   | 109.5       |
| С15—С31—Н31А               | 109.5       | С46—С62—Н62А    | 109.5       |
| C15—C31—H31B               | 109.5       | C46—C62—H62B    | 109.5       |
| H31A—C31—H31B              | 109.5       | H62A—C62—H62B   | 109.5       |
| С15—С31—Н31С               | 109.5       | С46—С62—Н62С    | 109.5       |
| H31A—C31—H31C              | 109.5       | H62A—C62—H62C   | 109.5       |
| H31B—C31—H31C              | 109.5       | H62B—C62—H62C   | 109.5       |
|                            |             |                 |             |
| O2—Ni1—O1—C1               | -169.8 (8)  | C17—C24—C29—C28 | 177.2 (8)   |
| N2—Ni1—O1—C1               | -111.3 (13) | O4—Ni2—O3—C32   | 177.9 (8)   |
| N1—Ni1—O1—C1               | 21.5 (8)    | N4—Ni2—O3—C32   | -123.1 (13) |
| O1—Ni1—O2—C29              | -165.6 (8)  | N3—Ni2—O3—C32   | 5.5 (8)     |
| N2—Ni1—O2—C29              | 23.3 (8)    | O3—Ni2—O4—C60   | -144.8 (6)  |
| N1—Ni1—O2—C29              | -97.8 (15)  | N4—Ni2—O4—C60   | 45.0 (6)    |
| O2—Ni1—N1—C7               | -79.4 (17)  | O3—Ni2—N3—C38   | -5.1 (8)    |
| O1—Ni1—N1—C7               | -12.6 (8)   | N4—Ni2—N3—C38   | 165.9 (7)   |
|                            |             |                 |             |

| N2—Ni1—N1—C7                                                | 159.7 (8)            | O3—Ni2—N3—C45                                | 167.7 (5)              |
|-------------------------------------------------------------|----------------------|----------------------------------------------|------------------------|
| O2—Ni1—N1—C14                                               | 91.0 (14)            | N4—Ni2—N3—C45                                | -21.3(5)               |
| O1—Ni1—N1—C14                                               | 157.9 (6)            | O3—Ni2—N4—C48                                | -90.3 (15)             |
| N2—Ni1—N1—C14                                               | -29.9 (6)            | O4—Ni2—N4—C48                                | -31.7 (8)              |
| O2—Ni1—N2—C17                                               | -16.1 (8)            | N3—Ni2—N4—C48                                | 141.1 (8)              |
| O1—Ni1—N2—C17                                               | -73.8 (17)           | O3—Ni2—N4—C47                                | 83.4 (13)              |
| N1—Ni1—N2—C17                                               | 153.5 (8)            | O4—Ni2—N4—C47                                | 142.0 (5)              |
| O2—Ni1—N2—C16                                               | 155.5 (5)            | N3—Ni2—N4—C47                                | -45.2 (6)              |
| 01—Ni1—N2—C16                                               | 97.7 (13)            | Ni2—O3—C32—C33                               | 178.6 (6)              |
| N1-Ni1-N2-C16                                               | -35.0 (6)            | Ni2—O3—C32—C37                               | -3.3(14)               |
| Ni1-01-C1-C6                                                | -16.7(14)            | 03-C32-C33-C34                               | 178.6 (9)              |
| Ni1-01-C1-C2                                                | 164.6 (6)            | C37—C32—C33—C34                              | 0.3 (14)               |
| 01-C1-C2-C3                                                 | 179 6 (9)            | $C_{32}$ $C_{33}$ $C_{34}$ $C_{35}$          | -1.8(15)               |
| C6-C1-C2-C3                                                 | 0.8(14)              | $C_{33}$ $C_{34}$ $C_{35}$ $C_{36}$ $C_{36}$ | 2.8(15)                |
| C1 - C2 - C3 - C4                                           | 0.3(11)              | $C_{34}$ $C_{35}$ $C_{36}$ $C_{37}$          | -2.5(15)               |
| $C_{2} = C_{3} = C_{4} = C_{5}$                             | -0.6(14)             | $C_{35}$ $C_{36}$ $C_{37}$ $C_{37}$ $C_{37}$ | 10(14)                 |
| $C_{2}^{-} = C_{3}^{-} = C_{4}^{-} = C_{5}^{-} = C_{6}^{-}$ | -0.4(15)             | $C_{35} - C_{36} - C_{37} - C_{32}$          | -1754(8)               |
| $C_{4}^{4} - C_{5}^{5} - C_{6}^{6} - C_{1}^{1}$             | 1.5(15)              | 03-032-037-036                               | -178.0(9)              |
| C4 - C5 - C6 - C7                                           | -1756(9)             | $C_{33}$ $C_{32}$ $C_{37}$ $C_{36}$          | 0.1(12)                |
| $C_1 = C_2 = C_0 = C_1$                                     | 179.6(9)             | $C_{33} = C_{32} = C_{37} = C_{30}$          | -1.6(14)               |
| $C_{1}^{2} = C_{1}^{2} = C_{0}^{2} = C_{1}^{2}$             | -1.7(13)             | $C_{33}$ $C_{32}$ $C_{37}$ $C_{38}$          | 1.0(14)                |
| $C_2 - C_1 - C_0 - C_3$                                     | -3.3(14)             | $C_{33} - C_{32} - C_{37} - C_{38} - C_{37}$ | -170.0(3)              |
| $C_{1}^{2} = C_{1}^{2} = C_{0}^{2} = C_{1}^{2}$             | 175 A (8)            | $N_{12} = N_3 = C_{36} = C_{37}$             | 170.0(7)<br>2 3 (12)   |
| $C_2 = C_1 = C_0 = C_7$                                     | -170.1(7)            | $N_{12} = N_{3} = C_{38} = C_{37}$           | 2.3(12)<br>0.1(12)     |
| $N_{14} = N_{1} = C_{14} = C_{14}$                          | -0.5(12)             | $N_{12} = N_{13} = C_{10} = C_{10} = C_{10}$ | -178.6(5)              |
|                                                             | 76(12)               | $C_{36}$ $C_{37}$ $C_{38}$ $N_{3}$           | 178.0(3)               |
| $N_{14} = N_{1} = C_{7} = C_{8}$                            | 7.0(12)              | $C_{30} = C_{37} = C_{38} = N_3$             | 1/0.3(0)<br>20(13)     |
| $NII - NI - C / - C \delta$                                 | -171.2(0)            | $C_{32} - C_{37} - C_{38} - N_{3}$           | 2.0(13)                |
| $C_{3} = C_{0} = C_{7} = N_{1}$                             | -1/1.3(9)            | $C_{30} = C_{37} = C_{38} = C_{39}$          | -0.9(12)<br>-1771(8)   |
| $C_1 = C_0 = C_1 = N_1$                                     | 11.7(13)<br>11.0(12) | $C_{32} = C_{37} = C_{38} = C_{39}$          | -1//.1(6)              |
| $C_{3} = C_{0} = C_{7} = C_{8}$                             | 11.0(12)             | $N_{3} = C_{38} = C_{39} = C_{44}$           | -79.4(11)              |
| C1 - C0 - C7 - C8                                           | -100.0(8)            | $C_{3} = C_{30} = C_{44}$                    | 99.8 (9)<br>102.0 (10) |
| NI = C7 = C8 = C9                                           | -88.0(11)            | $N_{3} = C_{38} = C_{39} = C_{40}$           | 102.9 (10)             |
| $C_{0} - C_{1} - C_{8} - C_{9}$                             | 89.3 (10)            | $C_{3} = C_{3} = C_{3} = C_{40} = C_{40}$    | -78.0(10)              |
| NI = C = C = C = C = C = C = C = C = C =                    | 92.5 (10)            | C44 - C39 - C40 - C41                        | -0.5(13)               |
| $C_{0} - C_{1} - C_{0} - C_{13}$                            | -89.6 (9)            | $C_{38} = C_{39} = C_{40} = C_{41}$          | 1//.3(/)               |
| C13 - C8 - C9 - C10                                         | -3.6(14)             | C39 - C40 - C41 - C42                        | 2.2 (13)               |
| C/-C8-C9-C10                                                | 1//.5 (/)            | C40 - C41 - C42 - C43                        | -3.1(15)               |
|                                                             | 1.1 (14)             | C41 - C42 - C43 - C44                        | 2.2 (15)               |
| C9—C10—C11—C12                                              | 3.0 (14)             | C40 - C39 - C44 - C43                        | -0.5 (14)              |
| C10—C11—C12—C13                                             | -4.5 (14)            | $C_{38} - C_{39} - C_{44} - C_{43}$          | -178.2 (8)             |
| C11—C12—C13—C8                                              | 2.1 (12)             | C42-C43-C44-C39                              | -0.4 (14)              |
| C9—C8—C13—C12                                               | 2.0 (12)             | $V_{38} = N_{3} = C_{45} = C_{46}$           | -116.3(8)              |
| C/C8C13C12                                                  | -1/9.1(7)            | N12—N3—C45—C46                               | /0.2 (7)               |
| C/—NI—CI4—CI5                                               | -117.5 (8)           | N3-C45-C46-C62                               | -168.5 (6)             |
| N11—N1—C14—C15                                              | 71.7 (7)             | N3-C45-C46-C47                               | -46.1 (8)              |
| NI-C14-C15-C31                                              | -161.6 (6)           | N3-C45-C46-C61                               | 71.2 (8)               |
| NI-C14-C15-C30                                              | 77.8 (8)             | C48—N4—C47—C46                               | -110.5 (9)             |
| N1—C14—C15—C16                                              | -38.1 (8)            | Ni2—N4—C47—C46                               | 75.5 (7)               |

| C17—N2—C16—C15  | -114.9 (8) | C62—C46—C47—N4  | 91.3 (8)   |
|-----------------|------------|-----------------|------------|
| Ni1—N2—C16—C15  | 72.5 (7)   | C45—C46—C47—N4  | -28.0(9)   |
| C31—C15—C16—N2  | 85.4 (8)   | C61—C46—C47—N4  | -149.0 (7) |
| C14—C15—C16—N2  | -35.6 (8)  | C47—N4—C48—C55  | -170.5 (7) |
| C30-C15-C16-N2  | -156.4 (6) | Ni2—N4—C48—C55  | 2.6 (13)   |
| C16—N2—C17—C24  | -167.8 (7) | C47—N4—C48—C49  | 5.8 (14)   |
| Ni1—N2—C17—C24  | 3.4 (13)   | Ni2—N4—C48—C49  | 178.9 (7)  |
| C16—N2—C17—C18  | 12.8 (13)  | N4—C48—C49—C50  | 95.3 (11)  |
| Ni1—N2—C17—C18  | -176.0 (7) | C55—C48—C49—C50 | -88.2 (10) |
| N2-C17-C18-C19  | 96.9 (10)  | N4—C48—C49—C54  | -84.0 (11) |
| C24—C17—C18—C19 | -82.6 (9)  | C55—C48—C49—C54 | 92.5 (9)   |
| N2-C17-C18-C23  | -85.4 (11) | C54—C49—C50—C51 | 1.3 (12)   |
| C24—C17—C18—C23 | 95.2 (9)   | C48—C49—C50—C51 | -178.0(7)  |
| C23—C18—C19—C20 | 0.6 (11)   | C49—C50—C51—C52 | -0.2 (13)  |
| C17—C18—C19—C20 | 178.4 (6)  | C50—C51—C52—C53 | -1.5 (14)  |
| C18—C19—C20—C21 | -0.5 (11)  | C51—C52—C53—C54 | 2.0 (15)   |
| C19—C20—C21—C22 | 0.9 (11)   | C52—C53—C54—C49 | -0.8 (14)  |
| C20—C21—C22—C23 | -1.4 (12)  | C50—C49—C54—C53 | -0.9 (12)  |
| C21—C22—C23—C18 | 1.4 (12)   | C48—C49—C54—C53 | 178.5 (7)  |
| C19—C18—C23—C22 | -1.0 (11)  | N4-C48-C55-C60  | 25.5 (13)  |
| C17—C18—C23—C22 | -178.8 (7) | C49—C48—C55—C60 | -151.1 (8) |
| N2-C17-C24-C25  | -175.6 (9) | N4—C48—C55—C56  | -163.6 (9) |
| C18—C17—C24—C25 | 3.9 (12)   | C49—C48—C55—C56 | 19.8 (12)  |
| N2-C17-C24-C29  | 9.1 (13)   | C60—C55—C56—C57 | 0.5 (14)   |
| C18—C17—C24—C29 | -171.4 (9) | C48—C55—C56—C57 | -170.2 (8) |
| C29—C24—C25—C26 | -1.9 (14)  | C55—C56—C57—C58 | 2.5 (14)   |
| C17—C24—C25—C26 | -177.2 (8) | C56—C57—C58—C59 | -2.6 (16)  |
| C24—C25—C26—C27 | 1.0 (15)   | C57—C58—C59—C60 | -0.2 (15)  |
| C25—C26—C27—C28 | -0.3 (17)  | Ni2—O4—C60—C55  | -32.1 (12) |
| C26—C27—C28—C29 | 0.3 (17)   | Ni2—O4—C60—C59  | 150.6 (6)  |
| Ni1-O2-C29-C28  | 162.6 (6)  | C56—C55—C60—O4  | 179.5 (9)  |
| Ni1-O2-C29-C24  | -18.6 (15) | C48—C55—C60—O4  | -9.7 (13)  |
| C27—C28—C29—O2  | 177.7 (10) | C56—C55—C60—C59 | -3.2 (13)  |
| C27—C28—C29—C24 | -1.1 (15)  | C48—C55—C60—C59 | 167.6 (7)  |
| C25—C24—C29—O2  | -176.9 (9) | C58—C59—C60—O4  | -179.4 (9) |
| C17—C24—C29—O2  | -1.6 (15)  | C58—C59—C60—C55 | 3.1 (13)   |
| C25—C24—C29—C28 | 1.8 (14)   |                 |            |
|                 |            |                 |            |