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Abstract
Wederive a general expression that quantifies the total entanglement production rate in continuous
variable systems, where a source emits two entangledGaussian beamswith arbitrary correlators. This
expression is especially useful for situationswhere the source emits an arbitrary frequency spectrum,
e.g. when cavities are involved. To exemplify itsmeaning and potential, we apply it to a four-mode
optomechanical setup that enables the simultaneous up- and down-conversion of photons from a
drive laser into entangled photon pairs. This setup is efficient in that both the drive and the
optomechanical up- and down-conversion can be fully resonant.

1. Introduction

Entanglement is an essential feature of quantummechanics and a crucial resource for quantum communication
and information processing. Themost common situation involves a source that continuously produces
entangled beams.One of themost natural characteristics of such a source is obviously the rate at which it
generates entanglement. If the source sends out pairs of entangled particles, with subsequent pairs completely
independent, this rate can simply be defined as the entanglement of each pair, divided by the time between pairs.
However, such a naive approach fails if there are correlations between subsequent pairs, or if we consider
entangled beams of radiation that cannot be naturally decomposed intowell-defined pairs of particles. In
particular, this is true for the very important case of continuous variable (CV) entangled beams. Althoughmany
quantum information protocols exploit qubits, with their discrete state space, the original Einstein–Podolsky–
Rosen [1] entanglement involves CVs, andCV entanglement hasmanymodern applications [2–8].

In this article, we set out to provide a general definition for an entanglement rate in such nontrivial
situations. It will turn out that our general definition, when applied to stationaryGaussianCVbeams, gives rise
to a frequency integral over what we call a ‘spectral density of entanglement’.We showhow to obtain this from
the two-point time correlators of the entangled beams, using a suitable additive entanglementmeasure (the
logarithmic negativity [9]). For one of themost common situations, we also provide explicit analytical
expressions. Our definition of the entanglement rate is particularly important for setupswhere the output
spectrum is arbitrary (e.g. containing one or several peaks). This is a widespread case, since the generation of CV-
entangled radiation beams is often enhanced by using cavitymodes (e.g. [10, 11] in themicrowave domain, or
[12, 13] in the optical domain). Recently, the authors of the first experiment on spatially separatedCV
entanglement in superconducting circuits even quantified their source by quoting the effective number of
entangled bits per second [10], estimated from the bandwidth of the circuit and the entanglement between two
modes. Our entanglement ratewould provide a precisely definedway to quantitatively characterize such
situations.

After we introduce and discuss the general definition, we illustrate our entanglement rate by applying it to a
four-mode optomechanical setup that allows the fully resonant, and thereby efficient, generation of
entanglement. The rapidly developing field of cavity optomechanics focuses on the dynamics of photons and
phonons coupled via radiation forces, see [14] for a recent review. The optomechanical interaction has been
predicted to produce entanglement, e.g. between optics andmechanics [15–20] or between lightmodes [21–31].
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Recently, optomechanical entanglement was demonstrated experimentally for thefirst time, in amicrowave
circuit [32], making its analysis especially timely.

2. The entanglement rate

The situationwe have inmind is very general: a source emits twoCV-entangled beams, described by bosonic
fields A t1

ˆ ( ) and A t2
ˆ ( ), see figure 1(a). These could be, for example, two light beams of different polarization or

fields propagating along two different waveguides. Typical sourcesmight be a nonlinear crystal optical resonator
driven by a pumpbeam, a driven optomechanical cavity, or a driven on-chipmicrowave cavity containing
nonlinear elements like Josephson junctions.

We focus on the important regime of generating stationaryGaussianCV-entanglement. In that regime, one
treats the pump as classical and then obtains a quadraticHamiltonian, leading toGaussian statistics of the
emitted beams. Because of the pump, thatHamiltonianwill be time-dependent, containing terms of the form

+w-a a e h.c.c c
ti pˆ ˆ† † , where acˆ would be a cavitymode (our analysis also applies for several differentmodes). Here

wp is the pump frequency if the original nonlinearity was of the c 2( ) -type, +a a a h.c.c c pˆ ˆ ˆ† † , whereas wp would be

twice the pump frequency for a c 3( ) -type nonlinearity a a ac c p
2ˆ ˆ ˆ† † . As is usual in such situations, it will bemost

useful to switch to a frame rotating at the frequency w 2p , such that theHamiltonian becomes time-independent
andwe are dealingwith a stationary problem. In that new frame, w = 0 relates to the pump frequency.

Our analysis then focusses on the entanglement properties of the fields A t1,2
ˆ ( ) emitted from any such source.

BeingGaussian, thesefields are completely characterized by their two-time correlators. The details of the source
do notmatter, except that it is assumed to produceGaussian beams that are stationary, i.e. where the correlators
only depend on the time-difference.

At this point we note that in some situations itmay also be natural to consider only a single field A tˆ ( ),
propagating along a single waveguide. Then, frequency components centered symmetrically around the pump
frequency can be entangled, and theymay afterwards be directed to two different output ports by frequency-
filtering. For such a situation, we can still apply our approach if we define A t1

ˆ ( ) to contain the positive frequency
(w > 0) components of thefield A tˆ ( ), while likewise A t2

ˆ ( )would contain the negative frequency (w < 0)
components, whereω is already determinedwith respect to the rotating frame.

Since the situation is stationary, it is natural to try and define an entanglement rate, i.e. the entanglement per
unit time emitted from the source.We propose to do this in themost natural way by calculating the overall
amount of entanglement between the two beams in a long time intervalT and then dividing byT, in the end
sendingT to infinity:

G º
¥

E T

T
lim . 1E

T

( ) ( )

This definition is not constrained toCV entangled beams or toGaussian states. It only requires (a) stationarity of
the source, (b) an entanglementmeasure that is additive for product states, and (c) afinite correlation time tc for
the beams. Given such a finite correlation time, the fields on two subsequent time-intervals of length tT c are
not correlated to a very good approximation. This holds because even though theremay be remaining
correlations near the boundary between the time-intervals, these are appreciable only up to a distance of order tc

from the boundary and can be neglected in the limit tT c . Due to the additivity (and stationarity), we then get
»E T E T2 2( ) ( ), such that the entanglement rate calculated for time intervals of sizesT or T2 is the same (up to

the small corrections whichwe can neglect in the limit of largeT).

Figure 1. (a)A source of two entangled beams, where the aim is to calculate the entanglement between beams 1 and 2 in the large time
intervalT. (b) Frequencymodes that are correlated (entangled) in the limit of largeT.
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Fromnowon, we specialize to stationaryGaussianCV entangled beams.Wewill use the logarithmic
negativity [4, 9]EN as an entanglementmeasure, since it is both straightforwardly evaluated forGaussianmulti-
mode states and has the important property of additivity.

Let us now consider thefields A ts
ˆ ( ) on the interval T0,[ ], even though they are defined for all times t.We

can define discrete frequencymodes (s=1, 2):

å=
w p

w
w

=

-A t
T

A
1

e . 2s
j T

s
t

2
,

iˆ ( ) ˆ ( )

The normalization is chosen such that the wAs,
ˆ fulfill bosonic commutation relations, d d=w w w w¢ ¢ ¢ ¢A A,s s s s, , , ,[ ˆ ˆ ]

†
,

where w p= j T2 is discrete, with j an integer.
We nowwant to calculate the full logarithmic negativity E TN ( ) between the two beams on that time interval,

which is equivalent to the entanglement between two sets of harmonic oscillators [33]. In our case, we are even
considering infinitelymany harmonic oscillators wAs,

ˆ .We stress that the entanglement E TN ( ) is (of course)
independent of our choice of basis for each of the beams, as a different choice of basis amounts to implementing
a local unitary transformation. The correlations between the two beams can be arbitrary, except that they are
supposed to decay beyond some correlation time tc (which is true in any reasonable physical situation). As
alreadymentioned above, wewill assume that tT c, such that the correlations between subsequent intervals
of sizeT can be neglected. In that limit, we can use stationarity to show that only the following types of

correlatorsmay be nonzero in the present situation, up to corrections that are small in t Tc : á ñw w¢A As s, ,
ˆ ˆ†

and

á ñw w¢ -A As s, ,
ˆ ˆ (and their conjugates). For example, wefind

dá ñ » á ñw w w w w¢ ¢ ¢ ¢ -A A A A , 3s s s s, , ,
ˆ ˆ ˆ ˆ ( )† †

wherewe have defined the Fourier transformof the correlator: òá ñ º á ñw
w

-¥

+¥
AB t A t Bd e 0tiˆ ˆ ˆ ( ) ˆ ( ) . Likewise, we

have dá ñ = á ñw w w w w¢ ¢ - ¢ ¢A A A As s s s, , ,
ˆ ˆ ˆ ˆ . These results are the combined outcome of stationarity and the long time

interval (i.e., tT c), as also pointed out in [34].
In summary, for any given w > 0, only the correlators involving themodesω and w- are nonzero (see

figure 1(b)). There is entanglement wEN [ ]between the twomodes wA1,
ˆ and w-A1,

ˆ of beam1with the twomodes

wA2,
ˆ and w-A2,

ˆ of beam2. Further below, wewill showhow wEN [ ]can be calculated from the correlators. The
overall entanglement E TN ( ) between the two beams can then be decomposed into a sum, because of the
additivity of the logarithmic negativity:

å w=
w>

E T E . 4N N
0

( ) [ ] ( )

Wenote that wEN [ ] in the sumdoes not depend onT (after adopting the approximation of equation (3)),
although the number of summation terms does scale withT due to the discretization ofω.

The sumover discrete frequencies can be converted into an integral. To leading order at largeT, we have

òw p w wå »w>
- ¥

E T E2 dN N0
1

0
[ ] ( ) [ ]. Therefore, we can identify wEN [ ]as the ‘spectral density of

entanglement’4. In addition, this confirms that the total entanglement indeed grows linearly inT for sufficiently
large times. As a consequence wefinally obtain the entanglement rate:

ò
w
p

wG º =
¥

¥E T

T
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d

2
. 5E
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N

0

( ) [ ] ( )

This shows that wEN [ ] itselfmay be interpreted as the entanglement rate per frequency interval. It is possible to
give an explicit expression for wEN [ ] in terms of the covariancematrix containing the correlators [9]. The
general case, involving the fourmodes w w-A A,1, 1,

ˆ ˆ , wA2,
ˆ , and w-A2,

ˆ , is a bit cumbersome, requiring the
symplectic diagonalization of a 8×8 covariancematrix. However, the expressions simplify considerably if there
is purely two-mode squeezing, i.e. if the intra-mode correlators á ñw w-A As s, ,

ˆ ˆ vanish. In that case, wefind

w w w= + -E E E . 6N [ ] [ ] [ ] ( )

For positive w wE, [ ] is the entanglement between wA1,
ˆ and w-A2,

ˆ while w-E [ ] is the entanglement between

w-A1,
ˆ and wA2,

ˆ . This entanglement between two opposite frequency components has been analyzed in detail in
[34]. Especially it was found to be connectedwith the composite quadrature variance of these twomodes, and
therefore could bemeasured directly in experiments. In contrast to wEN [ ], the density wE [ ] is double-sided (has
contributions both at negative and positive frequencies).We note that in the followingwewill also commonly
refer to wE [ ]as the spectral density of entanglement, since it is closely related to wEN [ ]. Setting

º á ñ +w w+n A A1, 1,
1

2
ˆ ˆ†

, º á ñ +w w- - -n A A2, 2,
1

2
ˆ ˆ†

, and x º á ñw w-A A1, 2,
ˆ ˆ , we have:

4
Note that the phrase ‘entanglement spectrum’has already a differentmeaning, which iswhywe prefer to use ‘spectral density of

entanglement’.
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w h= - -E max 0, ln 2 , 7[ ] ( ( )) ( )

h x= + - - +- + - + -n n n n2 4 . 82 2( ) ∣ ∣ ( )

As an asidewe note thatwe choose toworkwith the natural logarithm in our discussion (some articles use log2,
which ismore natural for discrete qubits [9]).

In this special case, the entanglement rate is therefore:

ò
w
p

wG =
-¥

+¥
E

d

2
. 9E [ ] ( )

3. Relation to entanglement betweenwave packets

Wenowwant to connect our general result to previously applied approaches for quantifying the entanglement
in such situations. It is a commonprocedure to employ normalizedmode functions (‘filter functions’) f ts ( ) that
have the shape of wave packets, in order to define two harmonic oscillatormodes, one for each beam:

òº
-¥

+¥
a t f t A td . 10s s sˆ ( ) ˆ ( ) ( )

Here ò =
-¥

+¥
f t td 1s

2∣ ( )∣ . The entanglement between a1̂ and a2ˆ can then be calculated, e.g. again using the

logarithmic negativity as an entanglementmeasure. This filtering analysis has been applied to several settings
[21, 26, 31], for a detailed explanation see e.g. [21, 22]. The catch is that this procedure introduces afiltering time
τ (the extent of thewave packets), and the results will be a function of τ, which is usually taken to be arbitrary.

Howwould one loosely define an entanglement rate based on this procedure?We can imagine that there is a
streamof suchwave packets, with a spacing of about τ (where carewould have to be taken to define them to be
orthogonal). A simple, though phenomenological approach to define an entanglement rate would be to simply
calculate the ratio ttEN .

However, it is clear that this approach is not systematic. In fact, it cannot always cover the full entanglement,
since theremay be entanglement in components of the beam that are orthogonal to the filter functions which are
employed. In addition, there is some arbitrariness in the choice offilter function (and, thus, even in the
definition of τ).Moreover, onemay have situations where there are temporal correlations extending beyond τ.
Then, the entanglement present in the beamsmay be underestimated. If one tries to remedy this problemby
choosing larger τ, then the filter bandwidth shrinks and onemaymiss entanglement present at other
frequencies.

It turns out that an approach based onwave packets can bemade towork, but only if one constructs a
suitable complete basis that has a clear physicalmeaning. It ismore systematic than the naive filtering approach
described so far and it covers all the entanglement. In addition, it can be related to a direct physical prescription,
andwewill see that it leads to the same results as our general, basis-independent definition discussed in the
previous section.

For simplicity, focus on the situationwith only cross-correlations (no intra-beam squeezing) that we
discussed at the end of section 2. Imagine one sends one beam through a frequency filter w w dw+,[ ], where
dw p t= 2 . Likewise, the other beamwill be sent through anotherfilter, at negative frequencies

w w dw- - -,[ ]. Now construct a complete set of orthogonal wave packetmodes (‘Wannier basis’)with a
spacing τ in time, which are able to fully represent the filtered beams (see figure 2). Aswe show in the appendix A,
the logarithmic negativity tEN between two suchwave packetmodes (one in each beam, at equal time-slots) is
related to wE [ ] in the limit t t c:

w=
t

t

¥
E Elim . 11N [ ] ( )

As a consequence, the general definition of the previous section agrees with the entanglement rate calculated
from such awave packet picture. This wave packet approach can also be viewed as representing the following
physical procedure: split each of the two entangled beams intomany frequency-filtered output beams, where the
frequency resolution dw p t= 2 has been chosen fine enough, such that dw t 1 c . The rate GE quantifies the
total entanglement per unit time contained in the sumof those streams (since it was defined that way in the
previous section). Each pair of wave packets (of length τ) can in principle be exploited for an application such as
CVquantum teleportation. A concrete physicalmeasurement of the entanglement between any twowave
packets could be performed in a standardway, using homodynemeasurements. For example, the local oscillator
can provide strong pulses that are shaped in the formof thewave packetmodes that wewant to consider.
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4. A specific optomechanical example, and its implementation

4.1.Model
We illustrate the features of the entanglement rate in amodel describing the effective interaction between two
localized opticalmodes ( +â and -â ) and amechanicalmode (b̂):

 d=-D + +

- + + +

+ + - -

+ - + -

H a a a a b b
g

a a b a a b
2

, 12

ˆ ( ˆ ˆ ˆ ˆ ) ˆ ˆ

{( ˆ ˆ ) ˆ ( ˆ ) ˆ} ( )

† † †

† † †

SimilarHamiltonians have been studied previously in the context of entanglement generation between light
modes [21–31]. For instance,Wang andClerk [28] studied intra-cavity entanglement, while Tian [29]
investigated also the stationary output entanglement.We note that,more recently, an analysis of the output
entanglement in the setupwith dD = = 0 (butwith unequal couplings for up- and down-conversion)was
provided in [30]. The authors gave analytical insights into the spectral density of entanglement wE [ ]. It was
found that equal couplings can lead to amuch highermaximumvalue of wE [ ], which shows up at w = 0. But
the entanglement centered around w = 0 drops rapidly when some finite frequency bandwidth is considered.
To relax the sensentivity to bandwidth, they introduce an optimal delay time between the twofilteredmodes.
Here, we only discuss zero-bandwidth entanglement. To optimize the output entanglement, we therefore choose
equal couplings for the up- and down-scattering.

Before proceeding, we note how to implement thismodel using three equidistant opticalmodes, enhancing
the efficiency beyond previous suggestions. The opticalmode spacing J is nearly resonant with the vibration
frequencyΩ, with a frequencymismatch d = W - J (figure 3(a)). A laser drives the center opticalmode at w0,

with a detuning w wD = -L 0. An optomechanical interaction of the kind  ++g a a b b0 0ˆ ˆ ( ˆ ˆ )† †
, and similarly for

-â , scatters photons up and down, intomodes +â and -â , while simultaneously destroying (creating) phonons.
When a phonon is virtually emitted and re-absorbed, an effective four-wavemixing process is induced,
generating a pair of +â and -â photons out of a pair of a0ˆ photons. Thus, two-mode vacuum squeezing (EPR
entanglement) is produced.We assume that the drive is strong andwe can replace a0ˆ by the coherent amplitude
a = á ña0ˆ . This yields theHamiltonian (12)with aºg g2 0 , providedwe choose frames rotating at w  JL for

themodes â , and at J for b̂ .Moreover, only nearly resonant terms are kept, which is allowed if kW J g, , ,
whereκ is the optical intensity decay rate.

Possible experimental implementations include amembrane-in-the-middle setup tuned to a point with
three equidistantmodes [36–38] (figure 3(b)) or coupled optomechanical cells, e.g. in an optomechanical crystal
[39, 40] (figure 3(c)), see the appendix. Such a triply resonant setup enhances the efficiency: as compared to
previous suggestions with only one resonantly drivenmode, generating entangled Stokes and anti-Stokes
sidebands (similar to [21]), onewins a factor d kW + 2 14 2 2 2( ( ) ) in the intensity of the entangled output
beams, while compared to setupswith two optical ouputmodes (e.g. [28, 29]), onewins a factor kW 2 14( ) ,
forfixed input laser power andD = 0.

We use standard input–output theory[41] for our analysis:





k
k= - -

= -
G

- G

a H a a a t

b H b b b t

i
,

2
,

i
,

2
. 13

j j j j,in

in

ˆ̇ [ ˆ ˆ ] ˆ ˆ ( )

ˆ̇ [ ˆ ˆ] ˆ ˆ ( ) ( )

Figure 2.Wave packet picture that can be used in understanding the entanglement rate. (a) For each of the beams, we imagine to
frequency-filter thefield, with afilter size dw. (b) In time-space, this corresponds towave packets spaced by t p dw= 2 . These form a
complete basis on a time–frequency grid. The use of a wave packet basis on a time–frequency grid in the context of quantumnoise is
reviewd in [35].
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Here Γ is the mechanical damping rate and = j . As usual, dá ñ =b t b n t0in in th
ˆ ( ) ˆ ( ) ( )

†
and á ñ =b t b 0in in

ˆ ( ) ˆ ( )
†

d+n t1th( ) ( ), with = W - -n k Texp 1th B
1( ( ( )) ) the thermal occupation, and likewise for aj,inˆ (but

without thermal noise). Solving equation (13) and employing k= +a t a t a tj j j,out ,inˆ ( ) ˆ ( ) ˆ ( ), we find the
linear relation between output and input fields in terms of a scattering matrix.

Coming back to our general definition of the entanglement rate, wewould consider +a t,outˆ ( ) as thefirst
beam A t1

ˆ ( ) and -a t,outˆ ( ) as the second beam A t2
ˆ ( ). It is not difficult to show (and can be confirmed by direct

calculation) that there is no intra-beam squeezing, i.e. á ñ =w w-A A 01, 1,
ˆ ˆ and likewise for beam2. Thus, wewant

to employ the formulas equations (7) and (9) in order tofind the contributions to the spectral density of
entanglement and the entanglement rate.

To calculate wE [ ], we need the correlators of the two beams. Entangled photon pairs are emitted at physical
frequencies w w JL , corresponding to w in our rotating frame.We have to evaluate correlators like

ò á ñw
-¥

+¥
+ -a t a te 0 dti

,out ,outˆ ( ) ˆ ( ) as shown in appendix E.

4.2. Results
Wefirst address some general features. The systemcanbecomeunstable (figure 4(a)), both towardsmechanical
and optical oscillations. Theoptical stability boundary is approximately given by d kD + D +g 2 22 2( ) ( ) =0.
Eliminating themechanicalmode (for δ?κ,Γ, g, D∣ ∣), we obtain an effective opticalmodel, which yields the

photon pair creation rate
⎡
⎣⎢

⎤
⎦⎥ kG + +

d
k

d=

-
2

g g
pairs 4

2

2
2

2

12 2( ) ( )( ) . This diverges at the optical stability

boundary.
We now focus on the spectral density of entanglement wE [ ] that characterizes the output beams, and

especially the entanglement rate. In contrast to the intra-cavity entanglement (discussed in [28, 29]), wefind that
wE [ ] is not bounded. This is similar to the difference between intra-cavity and output squeezing [42–44].

Numerical plots of wE [ ] for theHamiltonian (12) have been shown so far [29] only for the special case
dD = = 0 and asymmetric optomechanical couplings. Entanglement of temporalmodeswas also discussed

for a pulsed scheme [31] in the case d ¹ 0.
The output entanglement grows significantly at the stability boundary (figure 4(b)), even diverging in the

effective opticalmodel. This is typical near an instability but it comes at the price of linewidth narrowing,
reducing the entanglement rate.

In order to appreciate this, we nowdiscuss the output intensity spectrum, òw = w
+

-S e ti( )
á ñ+ +a t a t0 d,out ,outˆ ( ) ˆ ( )† , infigures 5(a)–(c).We expect that anymechanical noise contributing to the optical
output is deleterious for entanglement, which is confirmed by explicit calculation. Thus, we plot the spectrum in
an instructive way, distinguishing optical andmechanical contributions, as obtained from the linear relation

w w w w= ¼ + ¼ + ¼+ + -a a a b,out ,in ,in inˆ ( ) ˆ ( ) ( ˆ )( ) ˆ ( )† . There are typically two peaks, separated by d = W - J

Figure 3. (a) Level diagram: the optical level distance almostmatches the vibrational frequencyΩ so that phonon-mediated transitions
between the optical levels occur. (b) Schematic for a possible implementation in amembrane-in-the-middle setup; three of the optical
modes constitute an equidistant triplet for a suitablemembrane position and tilt angle. (c) Schematic for the possible implementation
in an optomechanical crystal, with one incoupling and one outcouplingwaveguide.

6

New J. Phys. 18 (2016) 063022 Z JDeng et al



and containing primarily optical ormechanical noise, respectively. Near the optical instability (figure 5(b)), the
optical peak gets strong andnarrow.

When the opticalmode spacingmatches themechanical frequency (d = 0) and the laser is on resonance
(D = 0), the two peaksmerge and have a narrow linewidth set by themechanical damping rateΓ (figure 5(c)). It
will turn out that the entanglement rate ismaximized near this point. This is entirely counterintuitive: One
might expect that at d = 0mechanical noise is injected into the output beams, destroying entanglement.
However, we find that the optical noise can completely overwhelm themechanical noise for strong driving,
when the cooperativity is sufficiently large,  kº G g n2

th.
The spectral density wE [ ] is shown infigures 5(d)–(f). Typically, wE [ ] ismaximal at the optical peak near

w = 0. For the important case dD = = 0, wefind an analytical expression, w h= = - -E 0 ln 2[ ] ( ), where

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠   h = + + + - + + +- n n4

1

2

1

2
2 1 4

1

2
14th th

2

( )

depends on both driving (via ) and temperature.We checked that choosing different optomechanical
couplings for the twomodes â will not increase w =E 0[ ], in contrast to the intra-cavity case [28].

Figure 4. (a) Stability diagramof themodel, versus frequencymismatch δ and laser detuningΔ, for k =g 5 and kG = -10 3.
Stability boundary in the effective opticalmodel: red dashed line. Parameter values corresponding to the (stable) blue points will be
studied below. (b)Diverging entanglement from the effective opticalmodel at the boundary of stability.

Figure 5.The output spectrum w+S ( ) for the beam from the upper opticalmode, plotted for three typical situations (a)–(c) at afixed
temperature ( =n 50th ), with k =g 5 and kG = -10 3. Blue versus browndistinguish optical versusmechanical noise
contributions. (a) resonant drive, off-resonantmechanicalmode ( d kD = =0, 10 ); (b)near the optical instability
( k d kD = - =0.2 , 10 ); (c) doubly resonant ( dD = = 0). Note the differences in vertical and horizontal scales for the peaks. (d)–(f)
The spectral density of entanglement wE [ ], corresponding to (a)–(c). Additional curves in (f) correspond to kG = ´ -5 10 2

(dashed) and kG = -10 3 (solid), for =n 0th (orange) and =n 50th (black), atfixed cooperativity  k= G = ´g 2.5 102 4.
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Infigures 6(a) and (b), we compare themaximumof the spectral density of entanglement, wº wE Emaxmax [ ],
and the entanglement rate ò w w pG = E d 2E [ ] .While Emax becomes large near the optical boundary of stability,

the entanglement rate there remains small, due to the narrowbandwidth. Thiswill be a general feature inmany
similar systems. Rather, GE is optimal near d = D = 0.We found that, as themechanical damping rate increases,
the optimumshifts away from dD = = 0.

The entanglement rate depends on the full shape of wE [ ], in particular the peakwidth(s). Crucially, those
widths are distinct from those in the output spectrum, due to the nonlinear (logarithmic)dependence ofE on
parameters. For example, in the case dD = = 0 of greatest interest, the peakwidth (see figures 5(f) and 6(c)) is
not set by the smallmechanical linewidthΓ, unlike for the output spectrumdiscussed above. Thus, the values of
the entanglement rate GE for the parameters explored here aremuch larger, of the order k wwEmax· [ ]. For
increasing temperatures, GE decreases, but only slowly, indicating robust entanglement in this setup: G µ -nE th

1,
with the prefactor set by the cooperativity  (figure 6(d)).

5. Conclusions

Wehave introduced an entanglement rate as a quantitativemeasure for theCV entanglement production per
unit time in setups involving resonantmodes. The definition is natural, in that it simply characterizes the total
entanglement between two beamswithin a time-interval of sizeT, in the limit  ¥T . In principle, it is also
more general than theGaussianCV case studied in the presentmanuscript.

Moreover, we have studied an optomechanical setupwith onemechanical and three opticalmodes that
allows fully resonant production of optical entanglement. The spectral density of entanglement and the overall
entanglement rate are optimized for different parameter choices. The concept introduced here should be useful
for analyzing setups in other domains, like cavities with a Kerrmedium [12, 13] ormicrowave resonators with
nonlinearities [10, 11].

Figure 6. (a) Spectral density of entanglement, maximized over frequency, wwEmax [ ], and (b) total entanglement rate

ò w w pG = E d 2E [ ] (in units ofκ), both shown as a function of frequencymismatch δ and laser detuningΔ, for k= =n g0, 5th

and kG = -10 3. (c)The full-width-half-maximum (FWHM) of the peak in wE [ ] as a function of kG , for fixed cooperativity
 = ´2.5 104 (solid) and  = 103 (dashed), at d = D = 0. (Blue: =n 0th , red : =n 50th ). (d)Temperature dependence of GE

(d = D = 0 and kG = -10 3.)
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AppendixA.Wave packet basis: general scheme

In themain text, we claimed that our general entanglement rate can be connected to an approach of frequency-
filtering and decomposing the filtered beams intowave packets. The natural way tomake these notions precise is
by using theWannier-basis of wave packets f tm n, ( ) that live on a regular grid both in time, t=t nn , and in

frequency-space, w dw= mm , where dw p t= 2 . The Fourier-transform òw pº wF f t te d 2m n
t

m n,
i

,( ) ( ) of

thesewave packets is nonzero only in the interval ⎡⎣w dw dwÎ - +m m,1

2

1

2( ) ( ) ), where

w w dw=F texp im n n, ( ) ( ) . The wFm n, ( ), and therefore also the f tm n, ( ), form an orthonormal basis. Thatmakes

it possible to decompose uniquely the output field intomodes defined by these wave packets:

= åA t a f ts m n m n
s

m n, , ,
ˆ ( ) ˆ ( )( ) , where *ò=a f t A t tdm n

s
m n s, ,

ˆ ( ) ˆ ( )( ) annihilates a photon inmode m n,( ), and

d d d=¢
¢a a,m n

s
m n

s
m m n n s s, , , , ,[ ˆ ˆ ]( )

˜ ˜
( ) †

˜ ˜ . In a typical applicationwith a stationary-state source producing beams via
parametric down-conversion or four-wavemixing, energy conservation dictates that pairs of frequencies w1 and
w2 are entangled onlywhen they obey w w w= +total 1 2 (in the limit t  ¥). In the rotating frame adopted in
themain text, wtotal would be zero.

We now calculate the logarithmic negativity tEN between twowave packets of the two outputfields, at the
same time slot tn and in suitable frequency slotsω and w- . For simplicity, wewill assume a situationwith purely
inter-beam entanglement (no intra-beam squeezing), as discussed at the end of section 2. A similar construction
would apply to themore general case, even though then it would become necessary to consider the entanglement
between twowave packets atω and w- of beam1with twowave packets atω and w- of beam2.

To prepare for our definition of the entanglement rate, we have to discuss the dependence of tEN on thefilter
time τ, especially for the limit t t c, where τ ismuch longer than the physical correlation time tc of the source
(t-c

1 is thewidth of the spectral peaks). First, this ensures that therewill be no correlations betweenwave packets
located at different time slots, such that we capture the full amount of entanglement. Second, wewill now
explain in this wave packet picturewhy tEN tends to awell-defined limit for t  ¥, which is consistent with
direct calculations [21].

Consider enlarging the filter time τ by a factorM, shrinking thefilter frequency interval by dw dw¢ = M . In
effect, the newwave packets of size t t¢ = M encompassM of the oldwave packets. That this coarse-graining
keeps the correlators, and thus the entanglement tEN , unchanged can be understood already from a very simple

consideration. Take a suitably normalized sumofM operators, = å-
=X M Xn

M
n

1 2
1

ˆ ˆ and likewise

= å-
=Y M Yn

M
n

1 2
1

ˆ ˆ . Then the correlator between these ‘averaged’ operators will equal the original correlator:
á ñ = á ñXY X Yn n

ˆ ˆ ˆ ˆ . This holds provided there have been no cross-correlations and á ñX Yn n
ˆ ˆ is independent of n. The

same logic applies to our case, where the newmodes are properly normalized averages over the oldmodes:
¢ = å - ¢¢ ¢ ¢a K n n M am n n m m n, ,ˆ ( ) ˆ , withK encoding the overlap between the two basis sets. The detailed structure

ofK is not important for our argument, but essentiallyK is nonzero only in a range of sizeM, for

- ¢n n M M∣ ∣ , and it is normalized: å - ¢ =¢K n n M 1n m
2∣ ( )∣ . As shown in the next section, this ensures a

well-defined limit t¥EN .
The entanglement rate for a given frequency slotmmay nowbe defined naturally as ttEN m, , the ratio

between the entanglement tEN m, contained in a pair of wave packets at that frequency and the time τ between
thosewave packets. (Heremwould denote the index for beam1 towhich corresponds uniquely an indexm2 for
beam2, as explained above.)As the logarithmic negativity is additive, itmakes sense to add up tEN m, for all the
small frequency intervals intowhich the emission of the source has been decomposed.

We have checked by direct calculation that t
t

¥ Elim N m, defined here co-incides with the wE [ ]defined in
themain text (where w dw= m is keptfixed in the limit t  ¥, by adjustingm). This is despite the fact that
tEN m, is definedwith respect toWannier basismodes, while wE [ ]was defined from the Fourier components of

thefield on a finite time-interval of length tT c .
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We thus have arrived again (in a different route), at the total entanglement rate:

òå t
w
p

wG º =
t

t

¥ -¥

+¥E
Elim

d

2
. 15E

m

N m, [ ] ( )

Wehave used dw p t= 2 to convert the sum into an integral. In the limit t  ¥, the details of theWannier
basis have become unimportant. wE [ ]can nowbe calculated using anyfilter function.

Appendix B.More details on theWannier basis

In this section, we present somemore technical details on ourwave packet based discussion of the entanglement
rate. As defined in themain text andmentioned in the preceding section, we start from a complete orthonormal
basis of packets that are localized both on a time-grid ( t=t nn ) and a frequency-grid (w dw= mm ), where
t p dw= 2 . In frequency space, these basis functions are defined as

w
dw

= wF
1

e , 16m n
t

,
i n( ) ( )

if dw w dw- < +m m1 2 1 2( ) ( ) , and w =F 0m n, ( ) otherwise. In time–space, this corresponds to the
well-knownWannier-basis of sinc-shapedwave packets

ò w
w
p

= = -w-f t F f t te
d

2
,m n m n

t
m n, ,

i( ) ( ) ( )

where

t
dw

dw
= w-f t

t

t

1
e

sin 2

2
. 17m

ti m( ) ( ) ( )

Upon temporal coarse-graining, we combineM oldwave packets into one new one, and at the same time the
frequency-resolution becomes refined: t t¢ = M and dw dw¢ = M . Thus, the new frequency index ¢m can be
thought of as a combination of the old indexm and another index = ¼ -l N0 1 that splits the old frequency
interval intoM pieces. The interval belonging to ¢m is thus: w dw dw dwÎ - + ¢ - +m l m1 2 , 1 2[( ) ( )

dw+ ¢l 1( ) [. The definition of w¢ ¢ ¢Fm n, ( ) on this interval reads like the old one, except for the obvious
replacements: w dw¢ = ¢w

¢ ¢
¢¢F em n

t
,

i
n( ) , with t t¢ º ¢ ¢ = ¢¢t n n Mn . Both the old and the newbasis are complete.

We nowwant to obtain the overlap integrals that relate the old basis to the newone.Wefind:

*ò w w wá ¢ ¢ ñ º ¢ = - ¢¢ ¢ ¢m n m n F F K n n M, , d , 18m n m n m, ,∣ ( ) ( ) ( ) ( )

with

⎧
⎨⎪
⎩⎪

=
=

¹ -
p

¢
-

p
p

K k
k

k M

0:

0: 1 e .
19m

M

k
k lk

1

e 1

2 i
iM

k

M

i2
2

( )
( )

( )

Note that the overlapK obviously depends on the frequency index ¢m only via the refinement index l in
¢ =m m l,( ), and thatK=0 if wewere to calculate the overlap for any ¢m that is not part of the original

frequency interval defined bym. The shape of the overlap as a function of the temporal distance - ¢n n M is that
of a sinc functionwith a decay scale set byM. One can confirm that the overlapmatrix elements calculated here
are normalized, å - ¢ =¢K n n M 1n m

2∣ ( )∣ .
Whenwe think of the situationwith two entangled beams, we imagine each of them is defined by its own

fluctuating outputfield, sA tˆ ( ), where s = 1, 2 denotes the beam. Each of those can be decomposed into the
kind ofWannier basis defined here, andwe choose the same filter time τ for each of them. Regarding the
frequencies, wewant to exploit the fact that in a typical steady-state situation (like in parametric down-
conversion or four-wavemixing), it is pairs of frequencies that are entangled. Thus, to each frequency w1of
beam1 belongs an entangled frequency w2 of beam2 (with w w w= +total 1 2). To simplify the subsequent
notation, wewant to shift and revert the frequency scale of beam2 such that the twomutually entangled
frequencies are always both denoted by the indexm. In otherwords, while w dw= m1 , we have
w w dw= - m2 total .We note that, after going into a rotating frame thatmakes theHamiltonian time-
independent (as in themain text), we obtain w = 0total . In addition, it turns out that due to thismatching
between opposite frequencies, the basis functions for beam2have to be changed accordingly, and the basis
transformation for beam2 is effected by *K instead ofK.

We nowwant to confirm (as indicated in themain text), that such a coarse-graining does not change the
entanglement E betweenwave packets, providedwe are already in the regime of sufficiently largefilter time,
t t c. To this end, we just have to show that the correlators betweenmodes do not change upon coarse-
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graining, i.e. wewant to show in particular

á ñ = á ¢ ¢ ñ¢ ¢ ¢ ¢a a a a , 20m n m n m n m n,
1

,
2

,
1

,
2ˆ ˆ ˆ ˆ ( )( ) ( ) ( ) ( )

where themodes on the right-hand side are the temporally coarse-grained ones, and w ¢m lies within the interval
defined bym. The precise location of w ¢m within that interval will notmatter, since dw t 1 c , so the spectrum
of the source is alreadyflat on that scale. In addition, we note that, for the steady-state situationwe assume here,
neither the left-hand side nor the right-hand side of (20) actually depend on the time-point n or ¢n , respectively.

Employing the overlap calculated above, wefind:

*å

å

á ¢ ¢ ñ

= - ¢ - ¢ á ñ

= - ¢ á ñ = á ñ

¢ ¢ ¢ ¢

¢ ¢

¢

a a

K n n M K n n M a a

K n n M a a a a . 21

m n m n

n n
m m m n m n

n
m m n m n m n m n

,
1

,
2

,
1 2 ,

1
,

2

2
,

1
,

2
,

1
,

2
1 2

1 2

ˆ ˆ

( ) ( ) ˆ ˆ

∣ ( )∣ ˆ ˆ ˆ ˆ ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

Herewe have used that ¢ = å - ¢¢ ¢ ¢a K n n M am n n m m n,
1

1 ,
1

1 1
ˆ ( ) ˆ( ) ( ) and *¢ = å - ¢¢ ¢ ¢a K n n M am n n m m n,

2
2 ,

2
2 2

ˆ ( ) ˆ( ) ( ) . In going to
the second line, we exploited the fact that different time slots are already uncorrelated (t t c).We also used the
normalization ofK in the last step.

Regarding other correlators, such as á ña am n m n,
1

,
2ˆ ˆ( ) ( ) † , we can say the following: for themodel discussed in the

main text, they can be confirmed to be zero by explicit calculation. Formore generalmodels, where however the
Hamiltonian can still be brought to a time-independent formby a proper choice of rotating frame, wefind that
stationarity dictates that w w d w wá ¢ ñ µ + ¢a a1 2ˆ ( )( ˆ )( ) ( )( ) ( ) † , and likewise for all other correlators. In evaluating a
correlator of amplitudes in theWannier-basis, like á ña am n m n,

1
,

2ˆ ˆ( ) ( ) † , we are effectively looking at correlators of the
type w wá ¢ ña a1 2ˆ ( )( ˆ ( ))( ) ( ) † ,with w w¢ » - [by our definition given above,m enters the frequency w2 with an
opposite sign]. Since w w¢ = - ¢a a2 2( ˆ ( )) ( ˆ )( )( ) † ( ) † , that correlator equals w w d w wá - ¢ ñ µ - ¢a a1 2ˆ ( )( ˆ )( ) ( )( ) ( ) † . By
virtue of w w¢ » - , this is zero automatically. (Note that formally we have to exclude the single point w = 0 in
this argument, whichwould physically equal the incoming laser frequency in the case of four-wavemixing, and
the corresponding small frequency slot.) For the correlators involving quantities of the same beam, it is rather
correlators of the type á ña am n m n,

1
,

1ˆ ˆ( ) ( ) † that are nonzero, while correlators like á ña am n m n,
1

,
1ˆ ˆ( ) ( ) are zero, and the proof is in

analogy towhat was shown above. In summary, the entanglement Ewill go to awell-defined limit as t  ¥
(t t c). (Asmentioned above, in taking this limit, we assume the frequency indexm is re-adjusted such that
the center frequency of the corresponding slot is heldfixed at some givenω, thus arriving at wE [ ] in the limit
t  ¥.)The actual calculation of wE [ ] is discussed below.

AppendixC.Hamiltonian and implementationwith three coupled optomechanical cells

In this section, we give a derivation of theHamiltonian (2) and discuss its implementation.We consider three
equidistant opticalmodes with a splitting J coupled to the samemechanicalmode b̂ with frequencyΩ via
radiation pressure. One of the opticalmodes (here called a0) is driven by an external laser at frequency wL. Such a
setup in general can be described by the followingHamiltonian ( = 1), where for brevity we do not display the
coupling to the dissipative environment:

å åw= + W - + + L +w f

= ¢=
¢ ¢

+H a a b b g a a b b a e h.c. . 22
q

q q q
q q

q q q q
t

,0 , ,0
,

0
0

i Lˆ ˆ ˆ ˆ ˆ ˆ ˆ ( ˆ ˆ ) ( ˆ ) ( )† † ( ) † † ( )

Here w w=  J0 , and ¢g
q q,

0( ) represents the generic (Hermitian) optomechanical couplingmatrix.We now

assume that the frequencymismatch d º W - J ismuch smaller than themechanical frequency, i.e., d W∣ ∣
and that themechanical sidebands are resolved, i.e., k W , whereκ is the optical damping rate. After

transforming to the rotating framewith respect to w w w= + + - + ++ + - -H J a a J a a a a Jb bL L L0 0 0
ˆ ( ) ˆ ˆ ( ) ˆ ˆ ˆ ˆ ˆ ˆ† † † †

,
and neglecting rapidly oscillating terms rotating atJ by a rotatingwave approximation (RWA), wefind

å d= - D + - + + + L +f f

=
+ + - -

-H a a b b g a a g a a b a ah.c. e e , 23
q

q qRWA
,0

,0
0

0 0,
0

0 0
i

0
iˆ ˆ ˆ ˆ ˆ {( ˆ ˆ ˆ ˆ ) ˆ } ( ˆ ˆ ) ( )† † ( ) † ( ) † †

where w wD = -L 0 is the laser drive detuning. For a sufficiently strong laser drive, we can linearize the

dynamics by replacing a0ˆ by a complex number a =
k

- L
- +

f-i e

i 2

i

. Thuswefind theHamiltonian (2) as given in
themain text

 d= - + + - + ++ + - - + -H a a a a b b
g

a a b
2

h.c. , 24linˆ ( ˆ ˆ ˆ ˆ ) ˆ ˆ {( ˆ ˆ ) ˆ } ( )† † † †

provided that the couplings to the ‘+’ and ‘−’mode turn out to be equal, i.e. a aº =+ -g g g2
,0
0

0,
0( ) ( ) .Without

loss of generality, we assume that g is real-valued. The RWAmade above is validwhen Wg∣ ∣ . Itmay be
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unavoidable that there is a small asymmetry in the two optomechanical coupling strengths, but since the
entanglement generation involves both transitions simultaneously this does notmake a crucial difference (we
have confirmed this for the output entanglementwhichwe discuss). Amore detailed account on some further
aspects of asymmetric optomechanical coupling strengths in the context of this kind ofHamiltonianmay be
found in [28, 29], where it is pointed out that for the case of intra-cavity entanglement (which is not our concern
here)having such an asymmetry can actually be beneficial.

We now turn to deriving theHamiltonian (22) for a concrete setup consisting of three coupled
optomechanical cells. In each of the cells, we assume a standard (local) coupling between photons and phonons.
ThemicroscopicHamiltonian reads ( = 1)

å w= + W - + - + +
=

H a a b b g a a b b K a a K a a h.c. , 25
l

l l l l l l l lcell
1

3

0 0 1 1 2 2 2 3ˆ { ˆ ˆ ˆ ˆ ˆ ˆ ( ˆ ˆ )} ( ˆ ˆ ˆ ˆ ) ( )† † † † † †

where the index =l 1, 2, 3 runs over the three sites. The second termdescribes photon tunneling between
different sites. It can be taken into account by introducing optical normalmodes, as defined by

⎛
⎝⎜

⎞
⎠⎟=

+

+
a a 2K a K a

K K
2

1 1 2 3

1
2

2
2

ˆ ˆˆ ˆ , = -

+
a K a K a

K K
0

2 1 1 3

1
2

2
2

ˆ ˆ ˆ with eigenfrequencies w w=  + K K0 1
2

2
2 , w0 respectively. In

terms of the normalmodes, theHamiltonian can bewritten as

å åw= + W - - - +

- + + + + +

- + - + - +

= =
- + - +

+ + - + -

+ + - + -

H a a b b a a a a b b

K a K a K a K a K a K a b b

K a K a K a K a K a K a b b

2 2

2 2 . 26

q
q q q

l
l l

g

g

K K

g

K K

cell
,0 1

3

2 2 2

2 1 1 2 0 1 1 2 0 1 1

2 2 2 1 0 2 2 1 0 3 3

0

0

1
2

2
2

0

1
2

2
2

ˆ ˆ ˆ ˆ ˆ ( ˆ ˆ ) ( ˆ ˆ )( ˆ ˆ )

( ˆ ˆ ˆ ) ( ˆ ˆ ˆ )( ˆ ˆ )

( ˆ ˆ ˆ ) ( ˆ ˆ ˆ )( ˆ ˆ ) ( )

† † † †

( )
† †

( )
† †

ThisHamiltonian takes essentially the same form as theHamiltonian (22) given above.We assume that

d = W - + WK K1
2

2
2 andκ=Ω, transform to a rotating framewith

w w= å - + å += =H a a K K b bq q q q l l l0 ,0 0 1
3

1
2

2
2ˆ ( ) ˆ ˆ ˆ ˆ† †

, and apply a RWA tofind

⎧⎨⎩
⎫⎬⎭å åw d= + -

+
+

-
+

= =
+ -H a a b b g

K K

K K
a a a a

b b

2
h.c. . 27

q
q q

l
l leff

,0
0

1

3

0
1 2

1
2

2
2 0 0

1 3ˆ ˆ ˆ ˆ ˆ ( ˆ ˆ ˆ ˆ )
ˆ ˆ

( )† † † †

After adding an external laser drive for the a0ˆ mode,moving into a frame rotatingwith the drive frequency and
applying standard linearization, thisHamiltonian is identical in form to theHamiltonian (2) given in themain
text. The relevantmechanical normalmode is given by = -b b b 2 .1 3

ˆ ( ˆ ˆ ) Note that the design is quiteflexible
in that it also applies to setupswith unbalanced hopping rates ¹K K1 2 and that, in principle, amechanicalmode
coupled only to either the first or the third site would suffice. The a0ˆ modemay be driven through an additional
channel, provided that the decay rate into this is sufficiently small so as to ensure that the entangled photon pairs
dominantly decay into another, outcouplingwaveguide.

As pointed out in themain text, a similar configuration of levelsmay be realized in optomechanical
membrane-in-the-middle setups. In such setups, the frequencies of the transverse normal opticalmodes of the
cavity depend on themembrane position and tilt angle [38]. These parametersmay be tuned so as to create
triplet equidistant opticalmodes. The frequency separation can be comparable to the frequency of a vibrational
mode of themembrane, which could bematched to the optical splitting by applying the optical spring effect [14].
In such a configuration, the (linear) optomechanical coupling strengths are set by the slopes of the optical bands
[37]. As pointed out above, even if these turn out to be different, that will not impact our scheme in any
important way.

AppendixD. Effective opticalmodel

Next, we derive the effective opticalmodel, i.e. themodel obtained after integrating out themechanics.Wewill
discuss how it captures some essential features of the fullmodel. Assuming a large frequencymismatch
d k G D g, , , ∣ ∣, and low temperatures, i.e., k+ <n g1th , we can adiabatically eliminate themechanical

mode and themechanical bath. This can be accomplished by a polaron transformation = -H He eS S
opt lin

ˆ ˆˆ ˆ with

= - + -
d d+D + + -D - -S a b a b a b a b

g g

2 2
ˆ ( ˆ ˆ ˆ ˆ ) ( ˆ ˆ ˆ ˆ )

( )
† †

( )
† †

. Thus, wefind
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d

d

=- + + - + +

- - - -

»- + + - + + +

d d

d d d d

d

+ + - - + - + - + -

+ + + - - - + -

+ + - - + + - - + - + -

H a a a a b b a a a a

a a a a b b

a a a a b b a a a a a a a a . 28

g g

g g g g

g

opt 8 8

4 4 4 4

4

2 2

2 2 2 2

2

( )
( )

ˆ ( ˆ ˆ ˆ ˆ ) ˆ ˆ ( ˆ ˆ ˆ ˆ )

ˆ ˆ ˆ ˆ ˆ ˆ

( ˆ ˆ ˆ ˆ ) ˆ ˆ ( ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ) ( )

† † †
( ) ( )

† †

( )
†

( )
†

( ) ( )
†

† † † † † † †

where, in the last step, we explicitly used that dD ∣ ∣ . The opticalmodes are nowdecoupled from the
mechanicalmode andwe obtain a closed set of quantumLangevin equations for the opticalmodes









k

k

k

k

= + + - -

=- + - - -

= + + - -

=- + - - -

d d
k

d d
k

d d
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d d
k

+ + - + +

+ + - + +
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- - + - -

a a a a a t

a a a a a t

a a a a a t

a a a a a t

i i ,

i i ,
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i i , 29
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g g

g g
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4 4 2 ,in

4 4 2 ,in

4 4 2 ,in

4 4 2 ,in

2 2

2 2

2 2

2 2

( )
( )

( )
( )

ˆ̇ ˆ ˆ ˆ ˆ ( )

ˆ̇ ˆ ˆ ˆ ˆ ( )

ˆ̇ ˆ ˆ ˆ ˆ ( )

ˆ̇ ˆ ˆ ˆ ˆ ( ) ( )

†

† † † †

†

† † † †

where á ñ = á ¢ ñ =¢a a t a t0, 0q q q,in ,in ,inˆ ˆ ( ) ˆ ( )† , d dá ¢ ñ = - ¢¢ ¢a t a t t tq q qq,in ,inˆ ( ) ˆ ( ) ( )† with ¢ = q q, .The output
fields are related by k= +  a t a t a t,out ,inˆ ( ) ˆ ( ) ˆ ( ). For notational convenience, we introduce the operator
vectors = + + - -A a a a a T( ˆ ˆ ˆ ˆ )† † and = + + - -A a a a ain ,in ,in ,in ,in

T( ˆ ˆ ˆ ˆ )† † . The quantumLangevin equations can be cast
in the following compact form

k= -A MA A , 30in˙ ( )
where

⎛

⎝
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.
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g g
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4 2 4
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2 2

( )
( )

( )
( )

The system is stable only if all eigenvalues ofM have non-positive real parts. The boundary of stability is located

where one of the real parts becomes zero, i.e.,  - + - + =k
d

0
g

2 2

2( ) , or equivalently when

d kD + D + =g 2 4 02 2( ( )) . This corresponds to the dashed line infigure 4(a). Note that the lower quadrants
of the stability diagram are essentially identical due to inversion symmetry with respect to the point d = D = 0.

We can solve the quantumLangevin equations in Fourier space.We define the Fourier-transformed

operators by òw = w
+ -¥

+¥
+a a t te dtiˆ ( ) ˆ ( ) , òw w- º =w

+ -¥

+¥
+ +a a t t ae dtiˆ ( ) ˆ ( ) ( ˆ )( )† † † . In the frequency domain,

the input noise correlation reads w w pd d w wá - ¢ ñ = + ¢¢ ¢a a 2q q qq,in ,inˆ ( ) ˆ ( ) ( )† . For convenience, we define the

vectors w w w w w= - -+ + - -A a a a ain out ,in out ,in out ,in out ,in out
T( ) ( ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ))† † . The solution of the Langevin

equation can bewritten as w w w=A S Aout in( ) ( ) ( )with the scatteringmatrix

⎛

⎝
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w
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=
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, 31
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2

11 22

22 14

11 14

14 22

14 11

( )
( )( )

( )

where I is the 4×4 identitymatrix. The input noise correlations w w w w¢ = á Ä ¢ ñB A A,in in in
T( ) ( ) ( ) are

scattered into w w w w w w w w¢ = á Ä ¢ ñ = ¢ ¢B A A S B S, ,out out out
T

in
T( ) ( ) ( ) ( ) ( ) ( ).

In the effective opticalmodel, photons are only created in pairs. The pair creation rate Gpairs is equal to the
intensity (photons sec−1) in any of the two output streams. Due to the choice of normalization in the input–
output formalism, this is given by:

 

ò òw w w w

d k

k
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=
+ +
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2
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This result shows that, depending on the sign of  +
d

g

2

2( ) , we get an enhanced or decreased photon pair

creation rate comparedwith = 0. In addition, since the denominator vanishes at the boundary of stability, the
photon pair creation rate diverges there.

Appendix E. Calculation of wE [ ]

Here, we review the definition of the logarithmic negativity and apply it to quantify the entanglement of the
filtered optical output fields,first for the effective opticalmodel introduced above, and then for the fullmodel.
By applying narrow frequency filters, we select only single-frequency components of each of the optical output
fields. By energy conservation, correlations only occur between theω-component of one of thefields (say +a ,outˆ )
and the w- -component of the other ( -a ,outˆ ). Thefield operators for these two single-frequency outputfields are

obtained as ò= -w+ -¥ +a t f t s a s sd
t

, ,outˆ ( ) ( ) ˆ ( ) , ò= -w- - -¥ -a t g t s a s sd
t

, ,outˆ ( ) ( ) ˆ ( ) . For convenience, we

nowwill choose Lorentzian filter functions q=
t

w- -tf t t e t2 i1( ) ( ) ( ) , q=
t

w- +tg t t e t2 i1( ) ( ) ( ) with q t( ) the
Heaviside step function, as opposed to theWannier basis used in themain text. In the limit of small bandwidth
t 1 0, which is the only onewe discuss, however, both the basis function probability[densities reduce to

Dirac δ-functions, and the results will co-incide.
We can use the logarithmic negativity [9] to characterize the entanglement for the output light beams [21]. In

order to evaluate it, we define the vector = w w w w+ + - - - -u x t p t x t p t, , , ,
T( ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )) with

= +x t a t a tj j j
1

2
ˆ ( ) ( ˆ ( ) ˆ ( ))† , = -p t a t a tj i j j

1

2
ˆ ( ) ( ˆ ( ) ˆ ( ))† ( j=+,ω or j=−,−ω). The entanglement is

determined by the covariancematrixVwithmatrix elements = á + ñV u u u uij i j j i
1

2
, where the operators

involved in this product are all taken at equal times. Inserting the stationary solution, wefind

⎛
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, 33

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )

where
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†

†

and

òx w w= á ñ = -w

-¥

+¥

+ -a t a t S Se 0 d .ti
,out ,out 11 14ˆ ( ) ˆ ( ) ( ) ( )

The logarithmic negativity is defined as h= - -E max 0, ln 2[ ( )]with h x= - +-
+ -+ - + -n n n n

2 2

2 2( ) ∣ ∣ being

the smaller symplectic eigenvalue of the partial transpose ofmatrixV. Choosing w = 0, we plot w =E 0[ ]as a
function of k infigure 4(b).

To obtain the spectral density of entanglement in the fullmodel, we solve the following systemof quantum
Langevin equations, which derive directly from themodelHamiltonian (main text), andwhere dissipation and
fluctuations have been taken into account using the usual input–output formalism:
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ˆ̇ ˆ ˆ ˆ ˆ ( )

ˆ̇ ˆ ˆ ˆ ˆ ( )
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ˆ̇ ˆ ( ˆ ˆ ) ˆ ˆ ( ) ( )

† † † † †

†

† † † †

†

† † † † †

where, in addition, we have á ñ =b 0in
ˆ , dá ¢ ñ = - ¢b t b t n t tin in th

ˆ ( ) ˆ ( ) ( )
†

, dá ¢ ñ = + - ¢b t b t n t t1in in th
ˆ ( ) ˆ ( ) ( ) ( )

†
,

with = W - -n k Texp 1th B
1( ( ( )) ) . For the logarithmic negativity, we need to evaluate the same optical

correlations as above. The results are analytical, but too complicated to be reported here. Simpler analytic results
can be found for d = D = 0. In this case wefind
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   h w d = = + + + - + + +- n n, , 0 4 2 1 4th
1

2

1

2 th
1

2

2( ) ( )( ) with the cooperativity  =
kG

g 2

. The

entanglement w d =E , , 0[ ] is only determined by  and nth as given in themain text.

Appendix F. Comparison to two- and three-mode schemes

Finally, we compare the efficiency of our four-mode setup (3 optical, 1 vibrational) to two- and three-mode
schemes that have been discussed previously.We show that the four-mode setup ismore efficient than either of
these schemes.

For a two-mode setup (1 optical, 1 vibrational) andwith a resonant laser drive (detuningD = 0), the
Hamiltonian is given by = W - + +H b b g a a b bˆ ˆ ( ˆ ˆ )( ˆ ˆ )† † †

, where â is an optical and b̂ is amechanicalmode
(see [14, 21] for the case of drive at the redmechanical sideband). Thefiltered correlations that quantify the
entanglement between the Stokes and anti-Stokesmechanical sidebands are then given by
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wherewe have assumed that W G . For ourmodel, with resonant driveD = 0, wefind
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In order to evaluate the entanglement between the Stokes and anti-Stokes sidebands, we set w d= . This yields
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By comparing the coherent parts of +n and -n (the terms that do not depend on nth and are useful for optical

entanglement), we find that, in our setup, the photon pair creation rate is enhanced by a factor~
d k

W
+ 2

4

2 2 2( ( ) )
.

Themain benefit of our setup in comparison to three-mode schemes, which involve onemechanical and
two opticalmodes, is that the laser drive is resonant so that, for afixed drive strengthΛ, the effective
optomechanical coupling strength ismuch larger. By contrast, in a three-mode setup, the laser drives are off-

resonant byW so that a =
k

L

W + 22 2
∣ ∣

( )
, whereas in our setup, withD = 0, we have a =

k
L2∣ ∣ . Since the

intensity of entangled photons scales with g 4 and aµg g0, this leads to an enhancement of~
k
W2 4( ) of the

photon pair creation rate.
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