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Pattern phase diagram for two-dimensional arrays of coupled limit-cycle oscillators
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Arrays of coupled limit-cycle oscillators represent a paradigmatic example for studying synchronization and
pattern formation. We find that the full dynamical equations for the phase dynamics of a limit-cycle oscillator
array go beyond previously studied Kuramoto-type equations. We analyze the evolution of the phase field in a
two-dimensional array and obtain a “phase diagram” for the resulting stationary and nonstationary patterns. Our
results are of direct relevance in the context of currently emerging experiments on nano- and optomechanical
oscillator arrays, as well as for any array of coupled limit-cycle oscillators that have undergone a Hopf bifurcation.
The possible observation in optomechanical arrays is discussed briefly.
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I. INTRODUCTION

Synchronization is an important concept in many branches
of physics, chemistry, biology, and other sciences [1]. Within
the past three years, a number of experiments have demon-
strated for the first time synchronization between two nanome-
chanical oscillators [2,3], two micromechanical oscillators [4],
and in small arrays of the latter [5]. These systems are driven
through a Hopf bifurcation into a limit-cycle oscillation,
where the energy pump is supplied through feedback or an
optical drive. Future, large arrays of synchronized mechanical
Hopf oscillators promise to provide robustness against both
disorder and noise. Considerable theoretical attention has
recently been devoted to the problem of synchronization
in arrays, both on the general level and for predicting the
behavior of specific systems (e.g., in nanomechanics [6–11]
or trapped ion systems [12]). Some progress has also been
made in the quantum regime [13–17]. It is efficient to focus
on the dynamics of the crucial phase degree of freedom,
where the most prominent phenomenological model is the
one introduced by Kuramoto [18,19], which more recently has
been supplemented by so-called reactive terms [7,20].

In the present work, we will explore synchronization and
deterministic pattern formation for a two-dimensional array of
identical Hopf oscillators. We present the complete effective
model for the phase dynamics in Sec. II. Starting from the
widely applicable model of coupled limit-cycle oscillators,
we find that the classical phase evolution is affected by extra
contributions beyond those investigated previously. These can
have a significant impact on the dynamics. Our simulations of
the effective model reveal various stationary and nonstationary
patterns in different parameter regimes. Phase correlators,
length scales, and macroscopic pattern dynamics will be
discussed in Sec. III. These are relevant for determining
whether an array can easily settle into a phase-locked state,
which is important for applications.

There is already a sizable literature on the rich nonlinear
dynamics of pattern-forming systems, including spiral dynam-
ics (see [21,22] and references therein). The main point of
our paper is the presentation and investigation of a model
which will be of importance because it is the model that arises
generically for coupled limit-cycle (Hopf) oscillators. This
comprises a large class of physical systems, including those

studied in the context of the synchronization dynamics of opto-
and nanomechanical oscillators.

In the future, one could couple many of those optomechan-
ical oscillators to build large optomechanical arrays [8,14,23–
25]. The properties of these devices have been investigated
theoretically recently, both for global coupling [9,26–29] and
local coupling [30–34]. Pattern formation in the mechanical
phases can only be observed for locally coupled oscillators,
which would show up naturally in optomechanical crys-
tals [35–37]. In Sec. IV, we will describe optomechanical
arrays in more detail and discuss their relevance as a setup
for the experimental implementation of coupled limit-cycle
oscillators.

II. EFFECTIVE PHASE MODEL

In the system that we study, all oscillators are undergoing
motion on a limit cycle, see Fig. 1. We start with the following
equations (“Hopf equations”), which describe the effective
phase and amplitude dynamics of these resonators close to the
limit cycle [8,14]:

ϕ̇i = − �̄ − (Ai − Ā)
∂�

∂A
(Ā) + Fi(t)

m�(Ai)Ai

cos(ϕi),

(1)

Ȧi = − γ (Ai − Ā) + Fi(t)

m�(Ai)
sin(ϕi).
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FIG. 1. (Color online) (a) A single Hopf oscillator undergoes
dynamics on a limit cycle, with an amplitude set by external
parameters (such as the drive providing the power) and a time-
evolving phase ϕ(t). (b) Array of coupled Hopf oscillators. Often,
the system can be well described with a single degree of freedom per
lattice site, the phase ϕi . Due to the coupling, the phases can lock and
phase patterns can form.

1539-3755/2015/92(1)/012902(8) 012902-1 ©2015 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.92.012902


LAUTER, BRENDEL, HABRAKEN, AND MARQUARDT PHYSICAL REVIEW E 92, 012902 (2015)

Here �̄ = �(Ā) is the frequency at the steady-state amplitude
Ā. The frequency-pull due to amplitude changes has been
kept to leading order in the first line (in contrast to [8])
because it is known that this effect can play an important
role in the synchronization of coupled oscillators [6,7]. γ is
the rate at which the amplitude is forced back to the limit
cycle, and Fi(t) is the total force exerted on resonator i.
For the physically most relevant spring-like coupling between
nearest neighbors, which will be studied here, the force is
given as Fi = k

∑
〈j,i〉 Aj cos(ϕj ). The coupling constant is k,

and 〈j,i〉 indicates nearest neighbor sites. We will see that for
this coupling both the terms already discussed in [8] and the
additional frequency-pulling term are important for the pattern
formation and synchronization properties.

We consider the case of weak coupling k/(m�̄2) � 1 and
assume γ /�̄ � 1, (Ā/�̄)∂�/∂A � 1. Then the amplitude
fluctuations around the steady state value are small and the
amplitude dynamics can be integrated out (for details on
this step, also about disorder, see [8,14] and Appendix A).
We arrive at effective equations for the resonator phases.
Keeping only the slow phase dynamics (and assuming identical
resonators), we get

ϕ̇i = C
∑
〈j,i〉

cos(ϕj − ϕi) + S1

∑
〈j,i〉

sin(ϕj − ϕi)

+ S2

⎧⎨
⎩

∑
〈j,i〉

∑
〈k,j〉

[sin(2ϕj − ϕk − ϕi) − sin(ϕk − ϕi)]

+
∑
〈j,i〉

∑
〈k,i〉

sin(ϕk + ϕj − 2ϕi)

⎫⎬
⎭ (2)

with C = k/2m�̄, S1 = (CĀ/γ )(∂�/∂A)|A=Ā, S2 = C2/2γ .
We will call Eq. (2) the Hopf-Kuramoto model. It has been de-
rived before in the context of optomechanics [8,14], but it holds
generally for a set of weakly coupled Hopf oscillators. Our aim
is to explore the dynamics of this model on a square lattice.

The term sin(ϕj − ϕi) of Eq. (2) is well known from the
Kuramoto model [18], or, equivalently, the XY model [38].
Here the term arises from the amplitude-dependence of the
frequency [6]. Both contributions in the first line of Eq. (2) have
been derived previously for coupled limit-cycle oscillators,
see [20]. They are linear in the coupling k. In contrast, the
prefactor S2 is of second order in k. However, as discussed
in Sec. IV, in realistic scenarios γ and ∂�/∂A can become
small, such that the regime S2 ∼ S1,C is easily reached.
The S2 term can then have a profound influence on the
pattern formation dynamics. The additional contribution also
displays next-to-nearest-neighbor coupling of the phases, in
spite of the underlying intrinsic nearest-neighbor coupling in
the lattice assumed here. With the exception of [8,14] (where
pattern formation was not considered), the S2 term has not
been discussed previously in the literature on models for the
effective phase dynamics of coupled limit cycle oscillators, to
the best of our knowledge.

We will first set the stage by highlighting several limiting
cases of our model, some of which are known already. For
C = 0, Eq. (2) can be rewritten in the form ϕ̇i = −∂U/∂ϕi .
Hence, the system will slide down to a minimum of the

potential U . In contrast, for non-vanishing C, such a po-
tential does not exist and the system may never reach a
stationary state (where ϕ̇i is constant). The limiting case of
Eq. (2) with S2 = 0 has been studied before [39–43]. This
is the Sakaguchi-Kuramoto model, usually written in the
form ϕ̇i = K

∑
〈j,i〉 sin(ϕj − ϕi + α) with tan(α) = C/S1 and

K2 = S2
1 + C2.

The continuum limit of Eq. (2), which is valid for smooth
phase fields, is given by

ϕ̇ = S1�ϕ − 2S2�
2ϕ − C(∇ϕ)2 + 4C, (3)

where S1 = S1a
2, S2 = S2a

4, C = Ca2, with lattice constant
a, and � is the Laplace operator. In this model (with S2 = 0) it
has been found that spirals can develop around singularities in
the phase field [41,44]. Besides, it has been analyzed in con-
nection with chemical turbulence in one dimension [45–47].

III. PATTERN FORMATION

The aim of this paper is to explore pattern formation in the
full model, Eq. (2), in large two-dimensional arrays. Our main
result is the pattern phase diagram discussed further below.
The patterns we find will determine the phase synchronization
dynamics of limit-cycle oscillators.
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FIG. 2. (Color online) Spiral patterns and length scales in the
Hopf-Kuramoto model. (a) Stationary spiral pattern emerging from
random initial conditions for S1/C = 2.0, S2/C = 0 on a N × N

square lattice (N = 128) with periodic boundary conditions. (b)
Vortex–anti-vortex pair (see inset) winding up to a stationary spiral–
anti-spiral pair with a characteristic spiral arm width λ. Parameters are
like in (a). (c) Spatial correlations Re〈exp[i(ϕm − ϕn)]〉 as a function
of the distance |�rm − �rn| (rounded to the nearest integer). To obtain
the data for (d), we extract the first correlation minimum position
from parabolic fits and average over ten runs with different random
initial conditions. (d) The location of the first correlation minimum
[red (light grey)] and the spiral arm width λ from (b) (black), as a
function of the ratio S1/C, in units of the lattice constant. There can
be hysteresis [blue (dark grey)].
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FIG. 3. (Color online) Pattern phase diagram of the Hopf-Kuramoto model, Eq. (2). Different colors indicate different patterns, which
are discussed in the main text. Sharp transitions occur between stationary spirals and pulsating/mobile spirals (for small S2/C), and in the
appearance of “π defects”. Point markers indicate parameters explored by numerical simulation. Some typical phase patterns are shown in the
insets (a) to (f).

Our numerical results are mostly obtained from simulations
with a random initial phase field, since that is the natural
starting point in real systems (e.g., after switching on the pump
laser or the feedback driving the oscillators into the limit cycle).
After some transient dynamics, we often find patterns that
do not change qualitatively any more on longer time scales.
Moreover, in certain parameter regimes, we find nontrivial
stationary patterns.

A typical final pattern of a simulation with large S1/C is
shown in Fig. 2(a). This pattern is stationary. It consists of
many vortex-like “singularities”, where the phase changes by
2π when going around in a closed loop. These points are sur-
rounded by spiral structures. Spiral patterns in general are well
known as a recurring motif in pattern formation [21,22,48].
Since they form an important part of the patterns we observe,
we now briefly discuss the properties of isolated spirals,
produced from an initial condition with a vortex in the phase
field (Fig. 2(b)).

It is known that in related models, there is a transition from
stationary spirals to nonstationary spirals, i.e., a situation when
the spiral centers are no longer phase-locked to the bulk of the
lattice [40,49]. We have discovered that this transition also
gives rise to a jump in the width of the spiral arms, λ (Fig. 2).
Outside of the jump, λ increases with increasing S2/C and
S1/C (black curve in Fig. 2(d)). When sweeping the parameter
ratio S1/C up and down, we find hysteresis in the spiral arm
width (blue line in Fig. 2(d)). The precise value at which the
jump occurs can then depend on the parameter sweep rate. Our
analysis illustrates that the microscopic details of the spiral
center, on the scale of a few lattice sites, influence both the
spiral arm width and the macroscopic pattern considerably.
Because the structure of the spiral core is complicated, we
cannot provide an analytical prediction for λ.

We now turn to the statistical properties of the patterns
which evolve out of random initial conditions (see Fig. 2(a)),
as they are directly relevant for experiments. The spatial
correlations of the phase field are characterized by the
correlator 〈ei(ϕm−ϕn)〉, whose distance dependence is displayed
in Fig. 2(c). We find an oscillatory structure connected to the
presence of spiral arms. On top of that, there is an exponential
decay, due to the presence of many randomly located spiral
centers. The position of the first minimum in the oscillations
indicates the distance approximately set by half a spiral arm
width. The dependence of this position on the parameter
S1/C is shown as the red line in Fig. 2(d). Again, we find a
sudden jump associated with the transition from stationary to
nonstationary spiral centers. We note that the spiral arm width
λ determined for isolated spirals does not agree completely
with the length scale extracted from the oscillations of the
correlator. The difference can be traced back to changes in the
spiral core produced by the presence of other nearby spirals.

There are only two dimensionless parameters, S1/C and
S2/C, that determine the properties of the final pattern.
Therefore, a complete overview of the various regimes in our
model is provided by the “pattern phase diagram” in Fig. 3.
This summarizes the main results of our studies, and we now
explain its features.

The transition discussed above, between stationary and
nonstationary spirals, is sharp and can be traced up to
intermediate values of S2/C. In addition, we find two classes of
nonstationary spirals: “pulsating” spirals, where the core keeps
orbiting in a small circle around a fixed location [49], and truly
mobile spirals that move through the whole lattice. We will
comment on their dynamics later. We have not observed a sharp
transition between the two regimes (Fig. 3). At larger S2/C,
the transition is directly from stationary to mobile spirals.
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When decreasing the parameter S1/C even further, we
find a crossover to “fluctuating” patterns, see Fig. 3(c). These
are nonstationary patterns with a complicated phase structure
on the scale of the lattice. For the special case S2 = 0, the
location of the crossover (around S1/C ∼ 0.8) matches the
result obtained in [42].

The crucial macroscopic length scale of the Hopf-Kuramoto
model, i.e., the spiral arm width, grows with increasing S2/C.
In view of that, it is surprising to see microscopic structures
appearing at larger values of this parameter. Indeed, we find
a sharp transition from the domain of “stationary spirals” to
stationary patterns that contain “π defects”, see Fig. 3(d).
These are point defects which are offset by a phase difference
of roughly π from the smooth surrounding phase field. The
stability of a single π defect on a homogeneous background
can be analyzed by semi-analytical linear stability analysis (in
the limit C → 0; for details, see Appendix B), which gives
the critical value S2/S1 = 0.107. This defines the asymptote
for the transition line in Fig. 3. Above the critical value, the
π -defect patterns form a fixed point of the dynamics and can be
reached from random initial conditions. In contrast to the pure
spiral patterns, these patterns resolve the structure of the lattice
and hence form a fundamentally different phase. Obviously,
they cannot appear in the continuum model, Eq. (3).

When increasing the parameter value S2/C further, the
density of π defects increases until we observe a smooth
transition to “complex” patterns. These are stationary patterns
with a complicated phase structure on the scale of the lattice,
see Fig. 3(e).

In the future, order parameters for the transitions shown in
Fig. 3 could be studied, although this will require larger lattices
and a large number of runs for sufficient statistical precision.
For example, the transition from a vanishing to a finite variance
of the phase velocity field characterizes the transition from sta-
tionary to nonstationary patterns, and we have observed this in
preliminary numerical investigations (not shown here). Simi-
larly, a finite number of π defects signals the transition from the
stationary spiral regime to the “spirals and π defects” region.

For a large region in parameter space, trivial phase-
homogeneous states would also be stable. However, when
starting from random initial conditions in large arrays (which
is what we do here), typically a lot of spiral–anti-spiral pairs
nucleate initially. Not all of these pairs annihilate. This is why
we never observe a phase-homogeneous state in our numerical
simulations. That behavior could change in principle if a small
amount of noise were added, because that would increase the
spiral mobility.

Finally, we note that the white region in the phase diagram
could not be accessed due to the significant increase of
timescales. Apart from that, we have discussed all phases in
the Hopf-Kuramoto model, for positive parameters. Changing
the sign of C or S1 will not give qualitatively different results:
The emerging patterns can be reconstructed from the patterns
discussed above by the transformations ϕm,n → −ϕm,n for a
sign change of C, and ϕm,n → −ϕm,n + (−1)m+nπ /2 for a
sign change of S1. This works because of the symmetries of
the sine and cosine functions in Eq. (2) under a sign change
or a shift by π of their arguments. For example, for a negative
sign of S1, we obtain checkerboard-type patterns that involve
the smallest wavelength allowed by the lattice. Note that in the
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FIG. 4. (Color online) Spiral motion in the Hopf-Kuramoto
model. (a) Instantaneous phase velocity field ϕ̇i after a (long)
integration time T = 1000/C. Mobile spiral centers are visible as
local inhomogeneities in ϕ̇i . Some stationary spirals (not visible)
exist in the uniform regions. Parameters are S1/C = 1.6, S2/C =
0.5, N = 64. The corresponding phase field is shown in Fig. 3(f). (b)
Spiral positions at time T . The lines are the spiral trajectories (from
T − 15/C to T ; the trajectories have been slightly smoothened for
clarity). (c) Spiral dynamics of a single spiral over a longer period of
time. It can be seen that the spiral remains fixed for some time before
starting to move again (this is usually induced via a kick by a nearby
mobile spiral). The spiral preferably moves in the cartesian directions
set by the lattice.

continuum model, Eq. (3), this regime will likely give rise to
phase turbulence. The transformations discussed above work
for all values of S2. However, changing the sign of S2 will
lead to different patterns. These involve structure on the scale
of the lattice, where phase differences of roughly π/2 play an
important role. We will not discuss these patterns, because for
coupled Hopf oscillators S2 is positive.

We now turn to a more detailed discussion of the spiral
motion and interaction (see also [50] for the continuum case,
at S2 = 0. For a more general discussion of spiral motion and
interaction in the related context of the complex Ginzburg-
Landau equation, see the review [22]). We will focus on the
influence of the parameter S2/C, which has not been studied
before. Whenever we observe mobile spirals, a fraction of the
spirals and anti-spirals eventually annihilate. In some cases,
they can also be created dynamically. We observe that the
spirals move through the array almost independent of one
another for small S2/C, whereas they tend to move in pairs
for larger values of this parameter. For large values of S2/C,
mobile and stationary spirals can even coexist, see Fig. 4.
Depending on initial conditions, the final state can then be
nonstationary or stationary (if all mobile spirals annihilate).

There is also a parameter regime where π defects, stationary
and mobile spirals can all be present and interact: Upon the
annihilation of a spiral–anti-spiral pair, a π defect can be left
behind. This happens more often for larger values of S2/C.
When a mobile spiral approaches a π defect, it can induce the
dissolution of the defect into a spiral–anti-spiral pair. However,
the mobile spiral can also move across the defect and make it
vanish. All these interactions play an important role even at
late times.

IV. EXPERIMENTAL IMPLEMENTATION

Experimental studies of the patterns discussed in this work
could be implemented by direct local electrical readout of
the motion in electrically coupled nanomechanical resonator
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arrays [3], or by optical readout of the motion in future
optomechanical arrays based on optomechanical crystals
[35–37] or other platforms. Optomechanical arrays have at-
tracted a lot of attention recently, e.g., with respect to collective
interactions [9,26,27], reservoir engineering [30], many-body
dynamics [8,14], photon propagation [31], topological phase
transitions [32,33], and Dirac physics [34]. These devices
consist of an array of localized mechanical modes, each of
them coupled to one optical mode, driven by a laser. The major
advantage of these systems is their optical tunability, which
allows to engineer the transport of photons and phonons at will,
as well as to read out the dynamics via the light field. More
recently, a very promising tow-dimensional (2D) structure (a
so-called ‘snowflake’ photonic crystal [36]) has been realized,
which shows simultaneously an optical and acoustic bandgap.
This will naturally form the basis of 2D arrays, with an
array of defect modes coupled by nearest-neighbor tunneling
of photons and phonons. 2D optomechanical arrays are a
very promising platform for synchronizing (opto-)mechanical
oscillators, thereby improving their stability against noise.
Pattern formation in this context is crucial in affecting the
synchronization dynamics.

By varying the driving laser power and detuning in
optomechanical arrays, the parameters of the Hopf-Kuramoto
model could be tuned. Simulations of single optomechanical
cells, where we extracted the phenomenological parameters γ ,
Ā and (∂�/∂A)|A=Ā, suggest that all the important regions of
the pattern phase diagram could be explored. Near the Hopf
bifurcation, γ � C can be reached (since γ → 0), so S2 � C.
Furthermore, S2 � S1 holds as well for sufficient coupling k,
when Ā(∂�/∂A)|A=Ā � C. The motion can be read out by
observing the light scattered from the sample. The intensity of
the light scattered with wave vector transfer �q is related to the
structure factor (see Appendix C), i.e., the spatial Fourier trans-
form (at �q) of the phase correlator 〈ei(ϕl−ϕj )〉t . As was discussed
above, this correlator contains information about the phase
pattern, for example about the spiral properties, see Fig. 2.

In a typical experiment, the frequencies will be disordered,
but first simulations with small disorder (where the natural
frequencies in the Hopf-Kuramoto model have been drawn
from a Gaussian distribution with a standard deviation of 0.1C)
do not show qualitative changes of the patterns we discussed.
However, initially mobile spirals could be pinned at sites with
lower frequencies [40]. In simulations with strong disorder,
concentric waves (“target patterns”, as discussed in [51]) can
show up. We did not study the influence of disorder in the more
fundamental Hopf equations (1). In addition to the disorder in
frequencies (briefly discussed here), this would also lead to
disorder in the parameters C, S1, and S2.

V. CONCLUSION

The variety of patterns summarized in Fig. 3 are important
for synchronization dynamics and applications. For example,
finite phase-differences across the array (in stationary pat-
terns) will reduce the total power output of the collective
oscillator, and the mere presence of spirals can reduce the
robustness against noise [10]. Finite frequency-differences (in
nonstationary patterns) reduce the frequency stability. Tuning
the parameters into suitable regions will optimize the array’s

properties. Future theoretical studies of the Hopf-Kuramoto
model could include noise, which may lead to interesting
effects, as discussed for similar models in [19]. In that context,
as well as in the deterministic case, the role of spiral motion
and interaction could be analyzed in more detail.
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APPENDIX A: DERIVATION OF THE
HOPF-KURAMOTO MODEL

In this Appendix, we derive the Hopf-Kuramoto model,
Eq. (2) in the main text, from the following general Hopf
equations:

ϕ̇i = −�̄i − ∂�i

∂Ai

|Ai=Ā(Ai − Āi) + Fi(t)

mi�i(Ai)Ai

cos ϕi,

(A1)

Ȧi = −γ (Ai − Āi) + Fi(t)

mi�i(Ai)
sin ϕi. (A2)

Here, �i(Ai) is the amplitude-dependent frequency of the
oscillator at site i, mi is its mass, Āi is its steady-state am-
plitude, and �̄i = �i(Āi) is the frequency at the steady-state
amplitude. Other symbols have the same meaning as in the
main text. The second term on the right-hand side of Eq. (A1)
arises from the expansion of �i(Ai) around the steady-state
amplitude Āi . For reasons that will become clear later, �i(Ai)
has not been expanded in the force terms in Eqs. (A1) and (A2).
We assume that the oscillators are coupled by spring-like
nearest-neighbor couplings so that the forces Fi(t) are given by

Fi =
∑
〈j,i〉

kij xj =
∑
〈j,i〉

kijAj cos ϕj , (A3)

where 〈j,i〉 denotes the nearest neighbors j of site i and
kij = kji are spring constants.

The derivation of the Hopf-Kuramoto model involves the
adiabatic elimination of the amplitude fluctuations δAi =
Ai − Āi , as well as leading-order expansions in the dimen-
sionless, small parameters kij /(mi�̄

2
i ), (Āi/�i)∂�i/∂Ai , and

γ /�̄i . These parameters and the relative amplitude fluctuations
δAi/Ā are assumed to be of the same order of smallness.
Below, we will also only keep slowly varying terms. The
derivation can also be found in [8]. For some more details,
see the Supplemental Material of [14].

In order to eliminate the amplitude fluctuations, we rewrite
Eq. (A2) in terms of the amplitude fluctuations and formally
integrate the equation

δȦi = −γ δAi + sin ϕi

mi�i(Ai)

∑
〈j,i〉

kij (Āi + δAi) cos ϕj (A4)

to obtain the long-time limit result

δAi(t) = 1

mi�i(Ai)

∫ t

−∞
dt ′ e−γ (t−t ′) sin ϕi(t

′)

×
∑
〈j,i〉

kij [Āi + δAi(t
′)] cos ϕj (t ′). (A5)
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Since the integrand is proportional to kij , to leading order
it suffices to evaluate ϕi(t ′) to zeroth order in the expansion
parameters, i.e., ϕi(t ′) � ϕi(t) − �i(t − t ′). Thus, we find

δAi �
∑
〈j,i〉

Āikij

mi�i(Ai)

∫ t

−∞
dt ′ e−γ (t−t ′) sin[ϕi(t) − �i(t − t ′)]

× cos[ϕj (t) − �j (t − t ′)]. (A6)

The integral can easily be evaluated. To leading order in γ /�̄i ,
the result reduces to

δAi �
∑
〈j,i〉

Āikij

mi�i(Ai)

sin(ϕi − ϕj )

2γ
. (A7)

To first order in the amplitude fluctuations, the equations of
motion for the oscillator phases (A1) can be expanded as

ϕ̇i � − �̄i − ∂�i

∂Ai

∣∣∣∣
Ai=Āi

δAi

+ cos ϕi

mi�i(Ai)

∑
〈j,i〉

kij

(
1 + δAj − δAi

Ā

)
cos ϕj . (A8)

Corrections to �i(Ai) � �i(Āi) = �̄i are proportional to both
(Āi/�i)∂�i/∂Ai and δAi/Āi so that they are of second order.
In the second term on the right-hand side, these are significant,
but, since in the third term they are multiplied by another kij ,
they can be neglected there. Inserting Eq. (A7), again replacing
�i(Ai) in the denominator by �̄i , we finally obtain

ϕ̇i � −�̄i + ∂�i

∂Ai

∣∣∣∣
Ai=Āi

∑
〈j,i〉

Āikij

mi�̄i

sin(ϕj − ϕi)

2γ

+
∑
〈j,i〉

kij cos(ϕj − ϕi)

2mi�̄i

+
∑
〈j,i〉

∑
〈k,j〉

k2
ij

8γm2
i �̄

2
i

( sin(2ϕj − ϕi − ϕk) − sin(ϕk − ϕi))

+
∑
〈j,i〉

∑
〈k,i〉

k2
ij

8γm2
i �̄

2
i

(
sin(ϕk + ϕj − 2ϕi)

)
, (A9)

where we have also only kept slowly varying contributions by
applying the approximations cos ϕi cos ϕj � 1

2 cos(ϕi − ϕj ),
cos ϕi cos ϕj sin(ϕj − ϕk) � 1

4 {sin(ϕi − ϕk) − sin(ϕi + ϕk −
2ϕj )}, and cos ϕi cos ϕj sin(ϕi − ϕk) � 1

4 {sin(2ϕi − ϕj −
2ϕk) − sin(ϕk − ϕj )}. In the special case of identical
oscillators �̄i = �̄, mi = m and Āi = Ā for all i and uniform
couplings kij = k for all neighbors i,j , this obviously reduces
to Eq. (2) in the main text, where we have also neglected the
trivial term −�̄ on the right-hand side.

APPENDIX B: SEMI-ANALYTICAL STABILITY ANALYSIS
OF POINT DEFECTS

In this Appendix, we present the analysis of the stability of
a single π defect on a homogeneous background phase field
for the Hopf-Kuramoto model [Eq. (2) in the main text] with
C = 0. For this case, the aforementioned phase configuration,
which we call ϕ0, is a fixed point of the dynamics, i.e., ϕ̇0

i = 0
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FIG. 5. The eigenvalues λm of the Hessian ∂2U/(∂ϕi∂ϕj ) for
a homogeneous phase configuration with a single π defect, as a
function of the parameter S1/S2 for a lattice of size 20 × 20. Note
the eigenvalue λ− leading to the instability of the π defect. The
zero eigenvalue λT belongs to the translational mode of the phase
configuration.

for all sites i. Besides, the equation of motion can be written
as ϕ̇i = − ∂

∂ϕi
U with the potential

U (ϕ1, . . . ,ϕN2 ) =
∑

i

⎧⎨
⎩

∑
〈j,i〉

S1

2
[1 − cos(ϕj − ϕi)]

+S2

⎡
⎣∑

〈j,i〉
sin(ϕj − ϕi)

⎤
⎦

2
⎫⎪⎬
⎪⎭. (B1)

We calculate the Hessian ∂2U/(∂ϕi∂ϕj ) and evaluate its
eigenvalues for the phase configuration ϕ0 numerically. If at
least one of the eigenvalues is negative, the configuration is
unstable. A single eigenvalue, corresponding to the transla-
tional mode of the system, might vanish without disturbing
our analysis. We always find this zero eigenvalue. For small
values of S1/S2, all the other eigenvalues are positive, which
means that π defects are stable (see Fig. 5). With increasing
S1/S2, the eigenvalues change linearly with this parameter. A
single eigenvalue λ−(S1/S2) has a negative slope, so it becomes
negative at some critical value (S1/S2)c ≈ 9.34, rendering the
phase configuration unstable. This gives the (inverse) value
S2/S1 ≈ 0.107 given in the main text.

APPENDIX C: READ-OUT OF THE MECHANICAL
RESONATOR PHASE FIELD

Here, we will show how the intensity of the light reflected
from an optomechanical array is related to the spatial Fourier
transform of the phase correlator. The intensity of the light
reflected from an optomechanical array with lattice sites at �rj

is given as

|E(�q)|2/|Ein|2 =
∣∣∣∣
∑

j

e−i �q·�rj eiθj

∣∣∣∣
2

. (C1)
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The phase of the light reflected from site j is θj =
θmax cos(ϕj ), where θmax depends on the system parameters.
If the mechanical frequency is much smaller than the cavity
intensity decay rate κ , then θmax = AG/κ , with the mechanical
amplitude A and the optical frequency shift per displacement
G [52]. For small θmax, Eq. (C1) can be expanded and
we get

|E(�q)|2/|Ein|2

≈
∑
j,l

e−i �q·(�rl−�rj )

[
1 + i(θl − θj ) − 1

2
(θl − θj )2

]
. (C2)

We average over time, use 〈θj 〉t = 0 and 〈θ2
j 〉t = (θmax)2/2,

and arrive at

〈|E(�q)|2/|Ein|2〉t =
[

1 − (θmax)2

2

]∣∣∣∣
∑

j

ei �q·�rj

∣∣∣∣
2

+
〈∣∣∣∣

∑
j

ei �q·�rj θj

∣∣∣∣
2〉

t

. (C3)

For large arrays, the first term will only give contributions
very close to �q = 0. For small arrays, these contributions may
have to be eliminated by calibrating the measurement device
with a known phase field. The second term can be evaluated
to give

〈∣∣∣∣
∑

j

ei �q·�rj θj

∣∣∣∣
2〉

t

= (θmax)2

2

∑
j,l

e−i �q·(�rl−�rj )Re〈ei(ϕl−ϕj )〉t . (C4)

On the right-hand side of this equation, the discrete Fourier
transform of the correlations in the system appears. We have
analyzed similar correlation functions in connection with the
spiral length scale, see Fig. 2 in the main text. From Eq. (C4)
we see that we can learn about the correlations by detecting
the intensity of the reflected light. An example for the part of
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FIG. 6. (Color online) (a) Partial intensity 〈|∑j ei �q·�rj θj |2〉
t
of the

light reflected from the phase field given in Fig. 2(a). Parameter
θmax = 0.01. (b) Partial intensity 〈|∑j ei �q·�rj θj |2〉

t
in dependance

on the radial coordinate qr =
√

q2
x + q2

y , averaged over 11 different

random initial phase configurations (black) and for a single phase
configuration as in (a) (blue).

the detected light intensity that is given in Eq. (C4) is given in
Fig. 6.
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