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Abstract

Recent progress in optomechanical systems may soon allow the realization of optomechanical arrays,
i.e. periodic arrangements of interacting optical and vibrational modes. We show that photons and
phonons on a honeycomb lattice will produce an optically tunable Dirac-type band structure. Trans-
portin such a system can exhibit transmission through an optically created barrier, similar to Klein
tunneling, but with interconversion between light and sound. In addition, edge states at the sample
boundaries are dispersive and enable controlled propagation of photon—phonon polaritons.

Rapid progress is being made in the field of optomechanics, which studies the interaction of light with nano-
mechanical motion (for a recent review, see [1]). Most current achievements are based on a single vibrational
mode coupled to a single optical mode (i.e. a single ‘optomechanical cell’). A logical next step is to couple many
such modes, providing new functionality and generating new physical phenomena. First steps have been taken
using setups with a few modes (e.g. for synchronization [2, 3], wavelength conversion [4, 5], phonon lasing [6],
or cooling [7]). Going beyond this, we can envisage a periodic arrangement of cells. In that case we will speak of
an ‘optomechanical array’. Optomechanical arrays might be realized on a number of experimental platforms:
microdiscs [2, 8] and microtoroids [9, 10] could be coupled via evanescent optical fields [2]. Superconducting
on-chip microwave cavity arrays (of the type discussed in [11]) could be combined with nanobeams [12] or
membranes [13]. Currently the most promising platform are optomechanical crystals, i.e. photonic crystals
engineered to contain localized vibrational and optical modes. Single-mode optomechanical systems based on
that concept have been demonstrated experimentally, with very favorable parameters [14—18]. Ab initio
simulations indicate the feasibility of arrays [19-21]. Given these developments it seems that optomechanical
arrays are on the verge of realization. The existing theoretical work on optomechanical arrays deals with slow
light [22], synchronization [20, 21, 23], quantum information processing [24] and quantum many-body physics
[21,25-28] and photon transport [29]. In this letter, we go beyond these works and illustrate the possibilities
offered by engineering nontrivial optomechanical band structures of photons and phonons in such arrays.
Specifically, we will investigate an array with a honeycomb geometry. This lattice is the basis for modeling
electrons in graphene [30], but it has recently also been studied for photonic crystals [31, 32], exciton-photon
polaritons [33] and other systems [32]. It is the simplest lattice with a band structure showing singular and
robust features called Dirac cones, mimicking the dispersion of relativistic massless particles. As we will be
interested in the long-wavelength properties of the structure, on scales much larger than the lattice spacing, we
may call this an ‘optomechanical metamaterial’. Tunability would be the biggest advantage of optomechanical
metamaterials, rivaling that of optical lattices: the band structure is easily tunable by the laser drive (intensity,
frequency, phases). Moreover, it can be observed by monitoring the emitted light. Using spatial intensity profiles
for driving, one can even engineer arbitrary potentials and hence local changes in the band structure. We predict
that these features could be used to observe photon—phonon Dirac polaritons, an optomechanical Klein
tunneling effect, and edge state transport.

Model—we consider a 2D honeycomb lattice of identical optomechanical cells, driven uniformly by a laser
(frequency wy ). Each cell supports a pair of co-localized mechanical (eigenfrequency £2) and optical
(eigenfrequency w.,,) modes interacting via radiation pressure. This geometry could be implemented based on
optomechanical crystals, see figure 1, but also in other physical realizations such as arrays of microdisks,
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Figure 1. (a) Setup: thin slabs of free-standing dielectric (green) with periodically etched holes (white), so-called optomechanical
crystals [14-17, 34], are know to give rise to an optomechanical interaction of localized optical (~102 THz) and vibrational modes
(~GHz) at engineered defects. The interaction is controlled by a driving laser. When extended to an array, the modes of nearby defect
sites will be connected via phonon and photon tunneling. (b) We consider defects arranged in a honeycomb superlattice.
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Figure 2. (a) Band structure of an optomechanical honeycomb array, featuring fast photons and slow phonons that interact
optomechanically. Detuning the driving laser will shift the photon band up and down. Here, the photon and phonon Dirac points are
chosen resonant, thus photon—phonon polariton Dirac cones emerge in their vicinity for g # 0, see the close-up in (b). (c) Without
optomechanical interaction, g = 0, photon and phonon cones would simply intersect. (d) A cut through the spectrum S (k, w) of the
light scattered by the setup reproduces the band structure, in the presence of dissipation. (e) Detuned case: avoided crossing (arrows)
between bands with equal helicity, see main text. (Parameters: vy = vo/10,¢=J/10,4 = —Q (a)-(d),A = —Q — 3 g (e), (d) and (e):
J=Q/3,x = ]J/100,I" = /10,7 = 5000.)

microtoroids, or superconducting cavities. We adopt the standard approach of linearizing the dynamics around
the steady-state classical solution and performing the rotating wave approximation, valid for red detuned
(A = 0L — Wy < 0) moderate driving [1]. In a frame rotating with the drive, the linearized Hamiltonian reads

Hin= Zgéféj—Aa}aj—gj(éfajm}éj) + Flhop- (1)
j

This Hamiltonian describes the non-equilibrium physics of the array of phonon modes (annihilation operator
b;) and photon modes (4;), interacting via the linearized optomechanical interaction of strength gj. The term

Hhop = Y U;d'a; + K; l;iT b ;) describes the tunneling of photons and phonons between neighboring sites i
and j with amplitudes J;; and Kj;, respectively [19-21]. Here, j = [m, 1, ¢]isa multi-index, where m, nindicate
the unit cell, which contains two optomechanical cells on sublattices A/B (denoted by ¢ = +1).

The interaction strength is g; = g, a;, where gy is the bare optomechanical coupling, i.e. the shift of the local

optical resonance by a mechanical zero-point displacement, and @ is the local complex light field amplitude,

proportional to the laser amplitude [1]. For completeness, we mention that the operators d ; and b jin
equation (1) are assumed shifted, as usual [ 1], by @jand by the radiation-pressure-induced mechanical
displacement 3, respectively. The detuning A = @y — @,y incorporates a small shift in @, due to the static
mechanical displacement.

The eigenfrequencies of Hamiltonian (1) form the optomechanical band structure, shown in figures 2 (a),
(b) for realistic parameters and a translationally invariant system (gj=g). It comprises four polariton bands,
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constructed out of the original two photon and two phonon bands, giving rise to photon—phonon polariton
Dirac cones.

A weak additional probe laser can inject excitations at arbitrary frequency. It can be spatially resolved (via
tapered fiber) or momentum-resolved (extended beam). Even without the probe, the momentum-resolved
band structure is visible in the emitted far-field radiation in the form of inelastically scattered laser-drive
photons, see figures 2 (d) and (e). We incorporate dissipation and noise via the standard input/output theory
[1], taking into account the photon (phonon) decay rate x (I') and the thermal phonon number 7, see appendix.
We emphasize that the band structure (and transport) could be observed in this manner even at room
temperature.

The emergence of the Dirac cones at the Dirac points K and K’ follows from the symmetries of the
honeycomb lattice [35]. Without the drive (g;= 0), the standard scenario for honeycomb lattices applies to
photons and phonons separately: excitations can be on sublattice A or B, corresponding to a binary degree of
freedom, 6, = ¢ = x1. Diagonalizing the Hamiltonian using a plane wave ansatz, one recoversa 2 X 2
Hamiltonian for every wave vector k. Close to a symmetry point, this reduces to the Dirac Hamiltonian for 2D
relativistic massless particles. Around K, it has the form 7vé - 5k, where 5k = k — K and 6 is the vector of Pauli
matrices 6, ,. The photon velocity at the Dirac point, v, will be generally significantly larger than the mechanical
one, v, see figure 2(c). For nearest-neighbor hopping amplitudes J (photons) and K (phonons), we find
vo=3aJ/2,vy;=3aK/2.

We now consider the interacting case (g # 0), turning the Hamiltonian (1) into its first-quantized
counterpart in momentum space and expanding it around a symmetry point. The particle type can now be
encoded in a second binary degree of freedom, 7, = = +1 for photons/phonons (with Pauli matrices z, ;). We
find the optomechanical Dirac Hamiltonian:

Hp/hi = 6wt./2 + (7 + 6vi./2)6 - 6k — giy + . (2)

This Hamiltonian describes the mixing of two excitations of very different physical origin, with properties that
are easily tunable. The terms describe, in this order, an offset between photon and phonon bands, the Dirac part,
and the optomechanical interaction (plus a constant offset). Here we defined v = (vo + var)/2,6v = vo — v,
@ = (2 — A)/2,and 6w = —A — Q. The interaction gis tunable in situ via the drive laser intensity (in contrast,
e.g., to bilayer graphene systems). Photon—phonon Dirac polaritons feature a dispersive spectrum

0.5 (k) = @ — o7 |5k| + T\/g2 + (8w — obv |6k|)*/4, (3)

i. e. the velocity is momentum-dependent and varies on the momentum scale g//a, well within the range of
validity of equation (2),
velocities.

At the Dirac points, the band structure comprises two pairs of cones split by /6w* + 4g2. Sweeping the laser
detuning éw from positive to negative values, the upper cones evolve from purely optical (velocity vo), over
polaritonic (slope 7 = (vo + var)/2) to purely mechanical (velocity vy,). Since the helicity, 6 - §k/|5k|, is
conserved, bands of equal helicity feature avoided crossings, while bands of different helicity cross, see
figures 2(d) and (e).

Edge states—the physics of edge states is significantly modified by inhomogeneous optomechanical
couplings that can be tailored via the laser intensity but also naturally occur in a finite system under uniform
drive. Even though the laser drive itself is assumed to be uniform (which is the experimentally simplest case), the
resulting optomechanical coupling is smaller at the edges than in the bulk, see figure 3(a). The reason for this is
that the extended optical normal modes predominantly driven by the laser have a reduced intensity near the
sample edge for the finite sample (i.e. for open boundary conditions). Note that this is the generic situation, and
only for a very carefully designed spatially inhomogeneous laser driving profile could one return to a spatially
homogeneous coupling. For the generic case considered here, the inhomogeneous coupling leads to physics that
goes beyond what is encountered for electrons in a strip of graphene. In an infinite strip with zigzag edges this
leads to aband of polariton edge modes with tunable velocity. That is because edge states with momenta closer to
the Dirac points have larger penetration lengths (compare figure 3(b)) and thus explore regions of stronger
optomechanical coupling, making their energy momentum-dependent (figure 3(d)). In contrast, no transport
occurs at the edge of graphene since it supports a flat band of edge modes [30].

The photoniclocal density of states (LDOS) is experimentally accessible via reflection/transmission
measurements, e.g. with a tapered fiber probe brought close to the sample. The LDOS onssite j, p; (@),

sk ‘ < a~!. This effect comes from the mixing of two Dirac excitations with different

characterizes the probability to inject a photon with frequency w. Figure 3(c) shows the LDOS for sites in the
bulk (gray) and at the edge (black line). Typical features, like the vanishing DOS at the Dirac points, are smeared
out slightly by dissipation. The edge states show up as two peaks. For weak coupling one would naively expect a
single edge state peak broadened by dissipation. However, figure 3(e) shows a peak with a narrow dip on top.

3
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Figure 3. Polariton edge states of a semi-infinite optomechanical strip (zigzag edge) differ from usual edge states in honeycomb
lattices. (a) Optomechanical interaction strength g(y) of a homogeneously driven strip. (b) Wavefunction of the upper edge state
band. (c) Local DOS (experimentally accessible via a probe laser) in the bulk (gray) and at the edge (black) reveals the existence of edge
states (here for g > «). (d) Corresponding band structure (real part of eigenfrequencies), indicating the dispersive nature of the edge
states (inred). (e) For g < k,asharp dip is observable, due to optomechanically induced transparency (width ~I"). (f) Band structure
for g < «. (Parameters: J=0/6,K=0.1], g, ;. = 0.00722 (e), (f), g, = 0.15 (else),—A = 2,k = 0.042 (e), (f),x = 0.01£2 (else),

'=0.001£.)
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Figure 4. (a) Transport along the edge of a semi-infinite strip. The optical transmission, t(w,x) (color code: Re t (w, x)) of alocally
injected probe laser. (b) Real part of the transmission against the probe detuning (4, = @prohe — @) and the distance x along the
edge. See main text for explanation of features. The mechanical transmission is proportional in magnitude to the optical one. (c)
Close-up of relevant part optomechanical bandstructure. (g=0.167£, other parameters as in figure 3 (d).)

This can be understood as optomechanically induced transparency [ 1], an interference effect visible for I" < «.
We note that the gradient in gleads to the formation of additional bands of edge states, see close-up in
figure 3(d).

Edge state transport—the zigzag edge forms a polariton waveguide for excitations injected by alocal probe at
the edges. Its group velocity is tunable in situ via the laser amplitude. Although the edge states are not protected
by a band gap, the transmission remains mainly along the edge, see figure 4(a). Figure 4(b) depicts the optical
transmission versus the propagation distance and the probe frequency. For small probe frequencies there are no
edge states, thus the response is local and weak. Increasing the probe frequency makes edge states resonant,
leading to transmission along the edge. For a given probe frequency, two edge modes are resonant, with a
quasimomentum difference Ak. This explains the interference pattern, with transmission minima at
x = xnn/Ak. The mechanical transmission mirrors the optical one (|¢p (w, x)| « |to (@, x)|) for strong
coupling, and there is no transport for weak coupling (a flat edge state band).

Optomechanical Klein tunneling—the in situ tunability of optomechanical metamaterials allows to create
arbitrary effective potential landscapes simply by generating a spatially non-uniform driving laser profile. This
can be nicely illustrated in a setup that permits the study of Klein tunneling, the unimpeded transmission of
relativistic particles through arbitrary long and high potential barriers. Electrons in graphene realize a special
variant of this [36]. Here, we show that the backscattering of Dirac polaritons impinging on an optomechanical
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Figure 5. Optomechanical Klein tunneling: (a) a tilted probe laser injects photons at quasimomentum K + q that transmit through a
barrier (green) as photons and/or phonons without any backscattering. Emitted light (red arrows) can be detected experimentally. (b)
Position-dependent profile of the optomechanical coupling g(x), proportional to the light amplitude of the strong drive laser that
creates the barrier, Insets: the local spectrum in each region, and the allowed quasimomenta at the probe frequency. (c) Optical and
mechanical field ({ @; ) and{ b; )). (d) Optical and mechanical transmission against barrier height . (Gray line: optical transmission as

predicted analytically from the optomechanical Dirac equation.) (Parameters: k= 0.005£2, I"=0.001£2, ] = /6, K=J/10.)

barrier is suppressed. Moreover, photons can be converted into phonons (and vice versa) while being
transmitted.

To create a barrier for Dirac photons propagating in the array, we make use of the distinctive in situ tunability
of optomechanical metamaterials. As shown in figure 5(a), when a region of width D is illuminated by a strong
control laser (of detuning A = —€), a position-dependent optomechanical coupling g(x) is created. This region
represents a barrier for Dirac photons injected by a probe laser at another spot. We first solve the scattering
problem within the Dirac Hamiltonian (2) in the presence of a barrier with infinitely sharp edges: g(x) = gfor
0 <x < Dand 0 otherwise. We consider a right-moving photon with quasimomentum perpendicular to the
barrier, |y ) = el%* |6, = 1, 7, = 1). Backscattering is forbidden, because the helicity is conserved and only
the right-moving waves (bold lines in figure 5(b)), have positive helicity o, = 1. Thus, the wave is entirely
transmitted. Beyond the barrier, it is a superposition of photons and phonons:

Vou ) = t0€10% |1, 1) + \fvo/var taret™ [1, = 1), (4)

where qp; = vogo/vas. Note that|ty|? can be interpreted as the probability that the photon is converted into a
phonon, with|tg|?> = 1 — |t)|? ensuring conservation of probability. Matching the solutions of the Dirac
equation in the different regions, we find

ltml? = sinz[(qJr - q_)D/Z]/[l + v3q§/(4ng2)], (5)

where g, are the two momenta of the right-moving polaritons in the interacting region, at the probe frequency.

In amore accurate description, we compute numerically the stationary light amplitude (4 ;) and the mechanical

displacements (b ;) using the full Hamiltonian (1) and including also dissipation, see appendix. We assume the
probe laser to be injected at a finite distance from the barrier, in a Gaussian intensity profile, see figure 5(a). The
solution, depicted in figure 5(c), shows all the qualitative features predicted using the effective relativistic
description of equation (5). Inside the barrier, photons are converted back and forth into photons. Photons
reach higher probabilities, since their speed is smaller (v); < v), and their decay length is shorter (for realistic
parameters /vy > k/vp). We deliberately chose a steep barrier (on the scale of the lattice constant), to illustrate
asmall Umklapp backscattering to the other Dirac point (tiny wiggles for x < 0). The ratio of the photon current

2 2 2 .
to the complete currentatx, > D, vo ‘ ag ‘ / (vir ‘ by ‘ + v | ag ‘ ), serves as an estimate for the photon
transmission probability. Figure 5(d) shows the optical and mechanical transmission against the barrier height,
which can be tuned via the control laser. The fact that the numerical results with dissipation differ from the
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theoretical expectation (gray line:|#o|*) is mostly due to vy, < vo. Having a large mechanical quasimomentum,
4y = Vodo VM > 4> diminishes slightly the quality of the Dirac approximation.

Experimental realizability—the strong coupling regime, g > «, is routinely reached on several
optomechanical platforms, including optomechanical crystals. It is also crucial to avoid a phonon-lasing
instability, which requires | < £2/3 (see appendix). In principle, J can be made small by design (e.g. distance
between sites [19-21]), although disorder effects become more pronounced at smaller J. In 2D, even for
frequency fluctuations of the order of ], the Anderson localization length is several hundred sites, safely
exceeding realistic sample sizes. We note that the edges states are not topologically protected, hence disorder can
lead to back scattering. For Klein tunneling, one has to distinguish between disorder that is smooth on the scale
of the lattice constant and disorder that is not smooth on this scale. Klein tunneling should not be very
susceptible to smooth disorder, because it does not hamper the conservation of helicity. Thus back, scattering
remains forbidden. In the presence of disorder which is not smooth on the scale of the lattice constant, the
helicity is no longer conserved, which might induce Umklapp scattering between different Dirac points.
Numerical simulations indicate that the Klein tunneling is robust against this kind of disorder in the optical
eigenfrequency with a strength of 10% of J. We note that current experiments on photonic crystal structures
show that both mechanical and optical eigenfrequencies of the localized modes have about the same fractional
spread due to slight imperfections of the geometry obtained in the fabrication process. However, since the
mechanical eigenfrequency (~10 GHz) is orders of magnitude smaller than the optical eigenfrequency
(~100 THz), and K= 0.1 ], the mechanical disorder measured in units of Kis 1000 times smaller than the optical
disorder measured in J. Thus, the disorder in the optical frequencies, which was considered in our simulations,
should dominate the transport behavior.

Outlook—optomechanical metamaterials will offer a highly tunable platform for probing Dirac physics
using tools distinct from other systems. Future studies could investigate the rich nonlinear dynamics expected
for blue detuning, which would create novel particle pair creation instabilities for a bosonic massless Dirac
system. Pump—probe experiments could reveal time-dependent transport processes. Novel features can also be
generated by modifying the laser drive, e.g. optical phase patterns could produce effective magnetic fields and
topologically nontrivial band structures [37], and a controlled time-evolution of the laser would allow to study
adiabatic changes, sudden quenches and Floquet topological insulators [38].
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Appendix A. Classical stationary solutions

In a frame rotating with the driving, the equations of motion for the classical fields (averaged over classical and
quantum fluctuations) of an optomechanical array read

) ) . 2,
By= (=2 = I/2)p; + ig, |a| +1 Y, Ky
aj = (iA(O) - ;</2>aj + i2g,aj Re f; + i21 Jion + JVrar. (6)

Here, oy is the laser amplitude and A = w; — o) is the (bare) detuning. Notice that, in deriving the above
equations, we have just incorporated a general coherent coupling Hhop to the standard equations for single
uncoupled optomechanical cells [1]. Implicitly, we have assumed that the dissipation is caused by independent
fluctuations on the different lattice sites. For an infinite array one can readily find a stationary solution of the
classical equation (6) using the mean field ansatz, a; = a and f; = 8. The resulting equations have the same
form as the equations for single-mode optomechanics [39]

a= \/EaL/[A(O) +2g0ﬁ—1/o+i1</2], p=g |a|2/(Q+uM). (7)

Asin the standard case, the radiation pressure induced mechanical displacement f3 translates into a shift of the
optical mode eigenfrequencies, —2g, . In the main text, we incorporate this shift in the effective detuning

A = A" + 2g B. Anadditional shift of the mechanical and optical eigenfrequencies is induced by the coupling
to the neighboring sites, vp = =Y, Jyand vy = =3 Kj; (for nearest neighbor hoppingvo = 3] andvy = 3K).
For afinite array the stationary fields @j and f§; are notindependent of j . In this case, we solve the classical
equation (6) numerically.
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Appendix B. Linearized Langevin equations

In our work, we apply the standard approach of linearizing the dynamics around the classical solutions [40], the
linearized Langevin equations read

by=in [ A, b;] - rby2 + VThy™ = (-iQ = I/2)by + gy + igga] +1 Y, Kybi + J7b;

by =i [, a5 - ka2 + vRA[™ = (ia; - k/2)d; + igj<z;j + z;j*) #1 Y Ty + JRaf ®)
with the noise correlators

(afm (a{™t©0)) =rsps (e, (af™T(a (0)) =0,

<l9j(in) Wb " () > = (7 +1)56(0), <15,-““”(t) b (0)> = I35 (1). 9)

The output fields are related to the fields in the array and the input fields by the input output relations [40]

. i . g o) _ o (n) :
alw = af™ — yRa, b =b; - JTh; (10)

A

Noticethat H' = H + H, contains also counter rotating terms, Hy = Zj 8 (a;’ b; + a; bj).These terms

have been omitted in equation (1). This is the standard rotating wave approximation which applies to any side
band resolved optomechanical system driven by a red detuned laser with a moderate intensity, £ > k and

g% < k2. In an optomechanical array, the laser should be red detuned compared to the lowest frequency optical
eigenmode. Thus, in the regime when Dirac photons and Dirac phonons are resonantly coupled (—4 = £2), we
find the additional constraint J < £/3.

Appendix C. Photon emission spectrum

In figures 2(d) and (e), we plot the power spectrum S (k, ) of the photons emitted by the array (periodic
boundary conditions have been assumed)

Skw) =Y f dt exp liot](a,] (1) o). (11)

Here, d\, are the annihilation operators of the photonic Bloch modes, 4; = (N')7"/2)] ; e*Tidy, (rj is the position

counted off from a site on sublattice A and N is the number of unit cells). In a large array (where finite size
effects are smeared out by dissipation), S (k, ) is proportional to the angle-resolved radiation emitted by the
array at frequency w; — @.

For periodic boundary conditions and nearest neighbor hopping, the Langevin equations (8) can be solved
analytically (including also the counter rotating terms). By plugging the corresponding solutions into the
definition (9) and taking into account the correlators equation (9), we find

4xkgiQ? + I'oy (w, Ak, 0), 2(k, 6))

k’ =
Stow) =2, |N (0, Ak, 0), 2(k, 6))]? -

in terms of the analytical functions
0w, 8, Q)= g* |, (o, A)‘_Z[(ﬁ +1) [y, (-o, _Q)‘_Z + 1l (o, .Q)‘_z],

N(w, A, 2)= [;{O (0, M)y, (0, Qx) (0, Ay (~w, .Q)]_1 + 4g%AQ.

Here, we have introduced the free susceptibilities (@, 4) = [x/2 — i(w + A) ] 'and

X, (0, Q) =2 -i(o - 0)]7!. Moreover,—A (k, 6) and 2 (k, o) are the spectra of tight-binding photons
and phonons on the honeycomb lattice (the photon spectrum is defined in the rotating frame), respectively.
Theyare givenbyA(k, 6) = A + Jf (k, ) and 2 (k, o) = 2 — Kf (k, o) where

f(k, 0) = |1 + ek 4 elka),

Appendix D. LDOS and transmission amplitudes

In figures 3 and 4 of the main text, we plot the local photonic densities of states (LDOS) onssite j, p (@, j) and the
transmission amplitude o (w, 1, j) relating the emission in the output field at site ] to an input probe field at sites

7
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j with frequency w, < ﬁl(o‘") (t) > =to(w, 1, j) < élj(i“) (1) >, where< dj(i“) (1) > = fe™ !, These two quantities are
directly related to the photonic retarded Green’s function

Goo(@, j, 1) = —if_: dteiwf@(t)<[aj(t), af (0)]>. (13)

In fact, the density of state is defined as
P(w» j) = —2Im GO(OO,]', j) (14)

Moreover, using Kubo formula and the input output relation equation (10), we find the photon transmission
amplitude to be

to (w, 1, ]) = (Slj — iK'Goo (o, 1, ]) (15)

For an infinite strip of width M unit cells, it is most convenient to introduce the partial Fourier transform of
G, j,1),

Goo(@, j, 1) = N7'Y° ek Gog (@, ke mj, ojs my, 01). (16)

Here, k. is the momentum in the translationally invariant direction (x-axis). Formally, we have introduced a
finite length of N cells and periodic boundary conditions. However, the spurious finite size effects induced by
this assumption are smeared out by dissipation for an appropriately large N. After taking the partial Fourier
transform of the classical displaced fields(d;) and (b, ), we organize their Fourier components @k, e By, iN 2

2M -dimensional vector ¢ with equation of motion in the formi(¢,) = Ay (&;) (when no probe laser is present).
The2M X 2M matrix Ay is obtained from the Langevin equation (8) by neglecting the counter rotating terms.
Thus, the Green’s function Gog (@, k.; mj, 655 my, op)istheblock of the matrixG (o, k) = (o — A;)~' which
acts on the optical subspace of ¢;. The LDOS and transmission amplitudest (@, i, j) are then readily calculated
from equations (14-16).

Appendix E. Details of the numerical calculation of the Klein tunneling of photons and
phonons

In figure 5, we consider an infinite strip with armchair edges and a width of N = 500 unit cells (in the x-
direction). Notice that the unit cell of an armchair strip is formed by four sites. Thus, the photon and phonon
dynamics is described by the Langevin equation (8) with the multi-index j = [m,, m,, s], wherem, =0, ..., N
,m, € Z,ands = 1, 2, 3, 4. The optomechanical barrier created by the strong control laseris translationally

-1 -1
invariant in the y-direction, g (m,.) = g[eﬁ(’”X""R) + 1] [eﬂ('"""”x) + 1] with # = 2,m; = 200, and
mp = 213 . The probe laser has a Gaussian intensity profile in the x-direction with average inplane momentum

close to theK symmetrypoint,dj(im = exp [—id,t — (m, — mgy)*/6m* + ir; - k]. We choose
k — K = (0.029/a, 0),Ap =Q + vo |k = K|,mg = 90,and dm = 30. The other parameters are given in the
main text. The stationary Langevin equations have been solved by computing numerically the Green’s functions

fork, = 0.
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