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Abstract
Recent progress in optomechanical systemsmay soon allow the realization of optomechanical arrays,
i.e. periodic arrangements of interacting optical and vibrationalmodes.We show that photons and
phonons on a honeycomb lattice will produce an optically tunableDirac-type band structure. Trans-
port in such a system can exhibit transmission through an optically created barrier, similar toKlein
tunneling, but with interconversion between light and sound. In addition, edge states at the sample
boundaries are dispersive and enable controlled propagation of photon–phonon polaritons.

Rapid progress is beingmade in thefield of optomechanics, which studies the interaction of lightwith nano-
mechanicalmotion (for a recent review, see [1]).Most current achievements are based on a single vibrational
mode coupled to a single opticalmode (i.e. a single ‘optomechanical cell’). A logical next step is to couplemany
suchmodes, providing new functionality and generating newphysical phenomena. First steps have been taken
using setupswith a fewmodes (e.g. for synchronization [2, 3], wavelength conversion [4, 5], phonon lasing [6],
or cooling [7]). Going beyond this, we can envisage a periodic arrangement of cells. In that case wewill speak of
an ‘optomechanical array’. Optomechanical arraysmight be realized on a number of experimental platforms:
microdiscs [2, 8] andmicrotoroids [9, 10] could be coupled via evanescent optical fields [2]. Superconducting
on-chipmicrowave cavity arrays (of the type discussed in [11]) could be combinedwith nanobeams [12] or
membranes [13]. Currently themost promising platform are optomechanical crystals, i.e. photonic crystals
engineered to contain localized vibrational and opticalmodes. Single-mode optomechanical systems based on
that concept have been demonstrated experimentally, with very favorable parameters [14–18].Ab initio
simulations indicate the feasibility of arrays [19–21]. Given these developments it seems that optomechanical
arrays are on the verge of realization. The existing theoretical work on optomechanical arrays deals with slow
light [22], synchronization [20, 21, 23], quantum information processing [24] and quantummany-body physics
[21, 25–28] and photon transport [29]. In this letter, we go beyond theseworks and illustrate the possibilities
offered by engineering nontrivial optomechanical band structures of photons and phonons in such arrays.
Specifically, wewill investigate an arraywith a honeycomb geometry. This lattice is the basis formodeling
electrons in graphene [30], but it has recently also been studied for photonic crystals [31, 32], exciton-photon
polaritons [33] and other systems [32]. It is the simplest lattice with a band structure showing singular and
robust features calledDirac cones,mimicking the dispersion of relativisticmassless particles. Aswewill be
interested in the long-wavelength properties of the structure, on scalesmuch larger than the lattice spacing, we
may call this an ‘optomechanicalmetamaterial’. Tunability would be the biggest advantage of optomechanical
metamaterials, rivaling that of optical lattices: the band structure is easily tunable by the laser drive (intensity,
frequency, phases).Moreover, it can be observed bymonitoring the emitted light. Using spatial intensity profiles
for driving, one can even engineer arbitrary potentials and hence local changes in the band structure.We predict
that these features could be used to observe photon–phononDirac polaritons, an optomechanical Klein
tunneling effect, and edge state transport.

Model—we consider a 2Dhoneycomb lattice of identical optomechanical cells, driven uniformly by a laser
(frequencyωL). Each cell supports a pair of co-localizedmechanical (eigenfrequencyΩ) and optical
(eigenfrequencyωcav)modes interacting via radiation pressure. This geometry could be implemented based on
optomechanical crystals, see figure 1, but also in other physical realizations such as arrays ofmicrodisks,
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microtoroids, or superconducting cavities.We adopt the standard approach of linearizing the dynamics around
the steady-state classical solution and performing the rotatingwave approximation, valid for red detuned
(Δ ω ω= − < 0L cav )moderate driving [1]. In a frame rotatingwith the drive, the linearizedHamiltonian reads

∑Ω Δ= − − + + ( )H b b a a g b a a b Hˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ . (1)
j

j j j j j j j j j
† † † †

hop

ThisHamiltonian describes the non-equilibriumphysics of the array of phononmodes (annihilation operator
b̂ j) and photonmodes (â j), interacting via the linearized optomechanical interaction of strength gj. The term

= −∑ +H J a a K b bˆ ( ˆ ˆ ˆ ˆ )ij i j ij i jhop
† †

describes the tunneling of photons and phonons between neighboring sites i
and jwith amplitudes Jij andKij, respectively [19–21]. Here, σ=j m n[ , , ] is amulti-index, wherem, n indicate
the unit cell, which contains two optomechanical cells on sublatticesA/B (denoted byσ = ±1).

The interaction strength is α=g gj j0 , where g0 is the bare optomechanical coupling, i.e. the shift of the local

optical resonance by amechanical zero-point displacement, andα j is the local complex lightfield amplitude,

proportional to the laser amplitude [1]. For completeness, wemention that the operators â j and b̂ j in

equation (1) are assumed shifted, as usual [1], by αj and by the radiation-pressure-inducedmechanical
displacement βj, respectively. The detuning Δ ω ω= −L cav incorporates a small shift inωcav due to the static
mechanical displacement.

The eigenfrequencies ofHamiltonian (1) form the optomechanical band structure, shown infigures 2 (a),
(b) for realistic parameters and a translationally invariant system (gj= g). It comprises four polariton bands,

Figure 1. (a) Setup: thin slabs of free-standing dielectric (green)with periodically etched holes (white), so-called optomechanical
crystals [14–17, 34], are know to give rise to an optomechanical interaction of localized optical (∼10 THz2 ) and vibrationalmodes
(∼GHz) at engineered defects. The interaction is controlled by a driving laser.When extended to an array, themodes of nearby defect
sites will be connected via phonon and photon tunneling. (b)We consider defects arranged in a honeycomb superlattice.

Figure 2. (a) Band structure of an optomechanical honeycomb array, featuring fast photons and slowphonons that interact
optomechanically. Detuning the driving laser will shift the photon band up and down.Here, the photon and phononDirac points are
chosen resonant, thus photon–phonon polaritonDirac cones emerge in their vicinity for ≠g 0, see the close-up in (b). (c)Without
optomechanical interaction, g=0, photon and phonon coneswould simply intersect. (d) A cut through the spectrum ωS k( , )of the
light scattered by the setup reproduces the band structure, in the presence of dissipation. (e) Detuned case: avoided crossing (arrows)
between bandswith equal helicity, seemain text. (Parameters: =v v 10M O , g= J/10, Δ Ω= − (a)–(d), Δ Ω= − − g3 (e), (d) and (e):
J=Ω/3, κ = J 100,Γ κ= 10, =n̄ 5000.)
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constructed out of the original two photon and twophonon bands, giving rise to photon–phonon polariton
Dirac cones.

Aweak additional probe laser can inject excitations at arbitrary frequency. It can be spatially resolved (via
tapered fiber) ormomentum-resolved (extended beam). Evenwithout the probe, themomentum-resolved
band structure is visible in the emitted far-field radiation in the formof inelastically scattered laser-drive
photons, see figures 2 (d) and (e).We incorporate dissipation and noise via the standard input/output theory
[1], taking into account the photon (phonon) decay rate κ (Γ) and the thermal phonon number n̄, see appendix.
We emphasize that the band structure (and transport) could be observed in thismanner even at room
temperature.

The emergence of theDirac cones at theDirac pointsK andK’ follows from the symmetries of the
honeycomb lattice [35].Without the drive (gj=0), the standard scenario for honeycomb lattices applies to
photons and phonons separately: excitations can be on sublatticeA orB, corresponding to a binary degree of
freedom,σ σ= = ±1z . Diagonalizing theHamiltonian using a planewave ansatz, one recovers a 2 × 2
Hamiltonian for everywave vector k. Close to a symmetry point, this reduces to theDiracHamiltonian for 2D
relativisticmassless particles. AroundK, it has the form σ δv kˆ · , where δ = −k k K and σ̂ is the vector of Pauli
matrices σ̂x y, . The photon velocity at theDirac point, vO, will be generally significantly larger than themechanical
one, vM, seefigure 2(c). For nearest-neighbor hopping amplitudes J (photons) andK (phonons), wefind
vO=3aJ/2, vM=3aK/2.

We now consider the interacting case ( ≠g 0), turning theHamiltonian (1) into itsfirst-quantized
counterpart inmomentum space and expanding it around a symmetry point. The particle type can nowbe
encoded in a second binary degree of freedom, τ τ= = ±1z for photons/phonons (with Paulimatrices τ̂x z, ).We
find the optomechanical DiracHamiltonian:

σδωτ δ τ δ τ ω= + + − + ( )H v v gkˆ ˆ 2 ¯ ˆ 2 ˆ · ˆ ¯ . (2)D z z x

ThisHamiltonian describes themixing of two excitations of very different physical origin, with properties that
are easily tunable. The terms describe, in this order, an offset between photon and phonon bands, theDirac part,
and the optomechanical interaction (plus a constant offset). Herewe defined = +v v v¯ ( ) 2O M ,δ = −v v vO M ,
ω Ω Δ= −¯ ( ) 2, and δω Δ Ω= − − . The interaction g is tunable in situ via the drive laser intensity (in contrast,
e.g., to bilayer graphene systems). Photon–phononDirac polaritons feature a dispersive spectrum

ω ω σ δ τ δω σδ δ= − + + −τ σ v g vk k k( ) ¯ ¯ ( ) 4 , (3),
2 2

i. e. the velocity ismomentum-dependent and varies on themomentum scale g/Ja, well within the range of

validity of equation (2), δ ⃗ ≪ −k a 1. This effect comes from themixing of twoDirac excitationswith different

velocities.

At theDirac points, the band structure comprises two pairs of cones split by δω + g42 2 . Sweeping the laser
detuning δω frompositive to negative values, the upper cones evolve frompurely optical (velocity vO), over
polaritonic (slope = +v v v¯ ( ) 2O M ) to purelymechanical (velocity vM). Since the helicity, σ δ δ∣ ∣k kˆ · , is
conserved, bands of equal helicity feature avoided crossings, while bands of different helicity cross, see
figures 2(d) and (e).

Edge states—the physics of edge states is significantlymodified by inhomogeneous optomechanical
couplings that can be tailored via the laser intensity but also naturally occur in a finite systemunder uniform
drive. Even though the laser drive itself is assumed to be uniform (which is the experimentally simplest case), the
resulting optomechanical coupling is smaller at the edges than in the bulk, see figure 3(a). The reason for this is
that the extended optical normalmodes predominantly driven by the laser have a reduced intensity near the
sample edge for thefinite sample (i.e. for open boundary conditions). Note that this is the generic situation, and
only for a very carefully designed spatially inhomogeneous laser driving profile could one return to a spatially
homogeneous coupling. For the generic case considered here, the inhomogeneous coupling leads to physics that
goes beyondwhat is encountered for electrons in a strip of graphene. In an infinite stripwith zigzag edges this
leads to a band of polariton edgemodes with tunable velocity. That is because edge states withmomenta closer to
theDirac points have larger penetration lengths (compare figure 3(b)) and thus explore regions of stronger
optomechanical coupling,making their energymomentum-dependent (figure 3(d)). In contrast, no transport
occurs at the edge of graphene since it supports aflat band of edgemodes [30].

The photonic local density of states (LDOS) is experimentally accessible via reflection/transmission
measurements, e.g. with a tapered fiber probe brought close to the sample. The LDOSon site j, ρ ω( )j ,

characterizes the probability to inject a photonwith frequencyω. Figure 3(c) shows the LDOS for sites in the
bulk (gray) and at the edge (black line). Typical features, like the vanishingDOS at theDirac points, are smeared
out slightly by dissipation. The edge states showup as two peaks. For weak coupling onewould naively expect a
single edge state peak broadened by dissipation.However, figure 3(e) shows a peakwith a narrowdip on top.
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This can be understood as optomechanically induced transparency [1], an interference effect visible forΓ κ≪ .
We note that the gradient in g leads to the formation of additional bands of edge states, see close-up in
figure 3(d).

Edge state transport—the zigzag edge forms a polaritonwaveguide for excitations injected by a local probe at
the edges. Its group velocity is tunable in situ via the laser amplitude. Although the edge states are not protected
by a band gap, the transmission remainsmainly along the edge, see figure 4(a). Figure 4(b) depicts the optical
transmission versus the propagation distance and the probe frequency. For small probe frequencies there are no
edge states, thus the response is local andweak. Increasing the probe frequencymakes edge states resonant,
leading to transmission along the edge. For a given probe frequency, two edgemodes are resonant, with a
quasimomentumdifferenceΔk. This explains the interference pattern, with transmissionminima at

π Δ= ±x n k. Themechanical transmissionmirrors the optical one ( ω ω∣ ∣ ∝ ∣ ∣t x t x( , ) ( , )M O ) for strong
coupling, and there is no transport for weak coupling (aflat edge state band).

Optomechanical Klein tunneling—the in situ tunability of optomechanicalmetamaterials allows to create
arbitrary effective potential landscapes simply by generating a spatially non-uniform driving laser profile. This
can be nicely illustrated in a setup that permits the study of Klein tunneling, the unimpeded transmission of
relativistic particles through arbitrary long and high potential barriers. Electrons in graphene realize a special
variant of this [36].Here, we show that the backscattering ofDirac polaritons impinging on an optomechanical

Figure 3.Polariton edge states of a semi-infinite optomechanical strip (zigzag edge) differ fromusual edge states in honeycomb
lattices. (a)Optomechanical interaction strength g(y) of a homogeneously driven strip. (b)Wavefunction of the upper edge state
band. (c) Local DOS (experimentally accessible via a probe laser) in the bulk (gray) and at the edge (black) reveals the existence of edge
states (here for κ≫g ). (d) Corresponding band structure (real part of eigenfrequencies), indicating the dispersive nature of the edge
states (in red). (e) For κ≪g , a sharp dip is observable, due to optomechanically induced transparency (width Γ∼ ). (f) Band structure
for κ≪g . (Parameters: J=Ω/6,K=0.1J, Ω=g 0.007bulk (e), (f), =g 0.15bulk (else), Δ Ω− = , κ Ω= 0.04 (e), (f), κ Ω= 0.01 (else),
Γ=0.001Ω.)

Figure 4. (a) Transport along the edge of a semi-infinite strip. The optical transmission, t(ω,x) (color code: ωt xRe ( , )) of a locally
injected probe laser. (b) Real part of the transmission against the probe detuning (Δ ω ω= −p probe L) and the distance x along the
edge. Seemain text for explanation of features. Themechanical transmission is proportional inmagnitude to the optical one. (c)
Close-up of relevant part optomechanical bandstructure. (g=0.167Ω, other parameters as infigure 3 (d).)
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barrier is suppressed.Moreover, photons can be converted into phonons (and vice versa) while being
transmitted.

To create a barrier forDirac photons propagating in the array, wemake use of the distinctive in situ tunability
of optomechanicalmetamaterials. As shown infigure 5(a), when a region of widthD is illuminated by a strong
control laser (of detuning Δ Ω= − ), a position-dependent optomechanical coupling g(x) is created. This region
represents a barrier forDirac photons injected by a probe laser at another spot.Wefirst solve the scattering
problemwithin theDiracHamiltonian (2) in the presence of a barrier with infinitely sharp edges: g(x) = g for
0 < x<D and 0 otherwise.We consider a right-moving photonwith quasimomentumperpendicular to the
barrier, ψ σ τ∣ 〉 = ∣ = = 〉e 1, 1q x

x zin
i O . Backscattering is forbidden, because the helicity is conserved and only

the right-movingwaves (bold lines infigure 5(b)), have positive helicity σx=1. Thus, thewave is entirely
transmitted. Beyond the barrier, it is a superposition of photons and phonons:

ψ = + −t v v te 1, 1 e 1, 1 , (4)O
q x

O M M
q x

out
i iO M

where qM= vOqO/vM. Note that∣ ∣tM
2 can be interpreted as the probability that the photon is converted into a

phonon, with∣ ∣ = − ∣ ∣t t1O M
2 2 ensuring conservation of probability.Matching the solutions of theDirac

equation in the different regions, wefind

= − ++ − ( )t q q D v q v gsin ( ) 2 1 4 , (5)M O O M
2 2 3 2 2⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

where ±q are the twomomenta of the right-moving polaritons in the interacting region, at the probe frequency.

In amore accurate description, we compute numerically the stationary light amplitude〈 〉â j and themechanical

displacements〈 〉b̂ j using the fullHamiltonian (1) and including also dissipation, see appendix.We assume the
probe laser to be injected at afinite distance from the barrier, in aGaussian intensity profile, see figure 5(a). The
solution, depicted infigure 5(c), shows all the qualitative features predicted using the effective relativistic
description of equation (5). Inside the barrier, photons are converted back and forth into photons. Photons
reach higher probabilities, since their speed is smaller ( <v vM O), and their decay length is shorter (for realistic
parametersΓ κ>v vM O).We deliberately chose a steep barrier (on the scale of the lattice constant), to illustrate
a small Umklapp backscattering to the otherDirac point (tinywiggles for x<0). The ratio of the photon current

to the complete current at x0 >D, +v a v b v a( )O M O0
2

0
2

0
2
, serves as an estimate for the photon

transmission probability. Figure 5(d) shows the optical andmechanical transmission against the barrier height,
which can be tuned via the control laser. The fact that the numerical results with dissipation differ from the

Figure 5.Optomechanical Klein tunneling: (a) a tilted probe laser injects photons at quasimomentumK+ q that transmit through a
barrier (green) as photons and/or phononswithout any backscattering. Emitted light (red arrows) can be detected experimentally. (b)
Position-dependent profile of the optomechanical coupling g(x), proportional to the light amplitude of the strong drive laser that
creates the barrier. Insets: the local spectrum in each region, and the allowed quasimomenta at the probe frequency. (c)Optical and
mechanical field ( â j and b̂ j ). (d)Optical andmechanical transmission against barrier height . (Gray line: optical transmission as

predicted analytically from the optomechanical Dirac equation.) (Parameters: κ=0.005Ω,Γ=0.001Ω, J=Ω/6,K= J/10.)
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theoretical expectation (gray line:∣ ∣t )O
2 ismostly due to ≪v vM O. Having a largemechanical quasimomentum,

= ≫q v q v qM O O M O, diminishes slightly the quality of theDirac approximation.
Experimental realizability—the strong coupling regime, κ>g , is routinely reached on several

optomechanical platforms, including optomechanical crystals. It is also crucial to avoid a phonon-lasing
instability, which requires Ω≲J 3 (see appendix). In principle, J can bemade small by design (e.g. distance
between sites [19–21]), although disorder effects becomemore pronounced at smaller J. In 2D, even for
frequency fluctuations of the order of J, the Anderson localization length is several hundred sites, safely
exceeding realistic sample sizes.We note that the edges states are not topologically protected, hence disorder can
lead to back scattering. For Klein tunneling, one has to distinguish between disorder that is smooth on the scale
of the lattice constant and disorder that is not smooth on this scale. Klein tunneling should not be very
susceptible to smooth disorder, because it does not hamper the conservation of helicity. Thus back, scattering
remains forbidden. In the presence of disorder which is not smooth on the scale of the lattice constant, the
helicity is no longer conserved, whichmight induceUmklapp scattering between different Dirac points.
Numerical simulations indicate that theKlein tunneling is robust against this kind of disorder in the optical
eigenfrequencywith a strength of 10%of J.We note that current experiments on photonic crystal structures
show that bothmechanical and optical eigenfrequencies of the localizedmodes have about the same fractional
spread due to slight imperfections of the geometry obtained in the fabrication process. However, since the
mechanical eigenfrequency (∼10 GHz) is orders ofmagnitude smaller than the optical eigenfrequency
(∼100 THz), andK= 0.1 J, themechanical disordermeasured in units ofK is 1000 times smaller than the optical
disordermeasured in J. Thus, the disorder in the optical frequencies, whichwas considered in our simulations,
should dominate the transport behavior.

Outlook—optomechanicalmetamaterials will offer a highly tunable platform for probingDirac physics
using tools distinct fromother systems. Future studies could investigate the rich nonlinear dynamics expected
for blue detuning, whichwould create novel particle pair creation instabilities for a bosonicmassless Dirac
system. Pump–probe experiments could reveal time-dependent transport processes. Novel features can also be
generated bymodifying the laser drive, e.g. optical phase patterns could produce effectivemagnetic fields and
topologically nontrivial band structures [37], and a controlled time-evolution of the laser would allow to study
adiabatic changes, sudden quenches and Floquet topological insulators [38].
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AppendixA. Classical stationary solutions

In a frame rotatingwith the driving, the equations ofmotion for the classical fields (averaged over classical and
quantumfluctuations) of an optomechanical array read

∑
∑

β Ω Γ β α β

α Δ κ α α β α κ α

= − − + +

= − + + +( )
g K

g J

˙ ( i 2) i i ,

˙ i 2 i2 Re i . (6)

j j lj l jl

j j j j l jl l

0

2

(0)
0 L

Here,αL is the laser amplitude and Δ ω ω= −(0)
L cav

(0) is the (bare) detuning. Notice that, in deriving the above

equations, we have just incorporated a general coherent coupling Ĥhop to the standard equations for single
uncoupled optomechanical cells [1]. Implicitly, we have assumed that the dissipation is caused by independent
fluctuations on the different lattice sites. For an infinite array one can readily find a stationary solution of the
classical equation (6) using themeanfield ansatz,α α=j and β β=j . The resulting equations have the same

form as the equations for single-mode optomechanics [39]

α κ α Δ β ν κ β α Ω ν= + − + = +( )g g2 i 2 , . (7)O ML
(0)

0 0
2⎡⎣ ⎤⎦

As in the standard case, the radiation pressure inducedmechanical displacement β translates into a shift of the
opticalmode eigenfrequencies, β− g2 0 . In themain text, we incorporate this shift in the effective detuning

Δ Δ β= + g2(0)
0 . An additional shift of themechanical and optical eigenfrequencies is induced by the coupling

to the neighboring sites,ν = −∑ JO l jl andν = −∑ KM l jl (for nearest neighbor hoppingν = J3O andν = K3M ).
For afinite array the stationaryfieldsαj and βj are not independent of j . In this case, we solve the classical
equation (6) numerically.
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Appendix B. Linearized Langevin equations

In ourwork, we apply the standard approach of linearizing the dynamics around the classical solutions [40], the
linearized Langevin equations read

∑

∑

Γ Γ Ω Γ γ

κ κ Δ κ κ

= ℏ ′ − + = − − + + + +

= ℏ ′ − + = − + + + +

−

− ( )( )

b H b b b b g a g a K b b

a H a a a a g b b J a a

ˆ̇ i ˆ , ˆ ˆ 2 ˆ ( i 2) ˆ i ˆ i ˆ i ˆ ˆ ,

ˆ̇ i ˆ , ˆ ˆ 2 ˆ i 2 ˆ i ˆ ˆ i ˆ ˆ (8)

j

j

j j j j j j j j l jl l j

j j j j j j j j l jl l j

1 (in) † (in)

1 (in) † (in)

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

with the noise correlators

κδ δ

Γ δ δ Γ δ δ

= =

= + =( )

a t a t a t a

b t b n t b t b n t

ˆ ( ) ˆ (0) ( ), ˆ ( ) ˆ (0) 0,

ˆ ( ) ˆ (0) ¯ 1 ( ), ˆ ( ) ˆ (0) ¯ ( ). (9)

j l jl j l

j l jl j l jl

(in) (in)† (in)† (in)

(in) (in)† (in)† (in)

The outputfields are related to thefields in the array and the inputfields by the input output relations [40]

κ Γ= − = −a a a b b bˆ ˆ ˆ , ˆ ˆ ˆ . (10)j j j j j j
(out) (in) (out) (in)

Notice that ′ = +H H Hˆ ˆ ˆ
st contains also counter rotating terms, = ∑ +( )H g a b a bˆ ˆ ˆ ˆ ˆ .j j j j j jst

† †
These terms

have been omitted in equation (1). This is the standard rotatingwave approximationwhich applies to any side
band resolved optomechanical systemdriven by a red detuned laserwith amoderate intensity,Ω κ≫ and

κΩ≲g 2 . In an optomechanical array, the laser should be red detuned compared to the lowest frequency optical
eigenmode. Thus, in the regimewhenDirac photons andDirac phonons are resonantly coupled ( Δ Ω− ≈ ), we
find the additional constraint Ω<J 3 .

AppendixC. Photon emission spectrum

Infigures 2(d) and (e), we plot the power spectrum ωS k( , ) of the photons emitted by the array (periodic
boundary conditions have been assumed)

∫∑ω ω≡
σ σ σS t t a t ak( , ) d exp [i ] ˆ ( ) ˆ . (11)k k

†

Here, σâk are the annihilation operators of the photonic Blochmodes, = ∑ σ
−a aˆ ( ) e ˆj j

k r
k

1 2 i · j (rj is the position

counted off from a site on sublatticeA and is the number of unit cells). In a large array (where finite size
effects are smeared out by dissipation), ωS k( , ) is proportional to the angle-resolved radiation emitted by the
array at frequencyω ω−L .

For periodic boundary conditions and nearest neighbor hopping, the Langevin equations (8) can be solved
analytically (including also the counter rotating terms). By plugging the corresponding solutions into the
definition (9) and taking into account the correlators equation (9), we find

∑ω
κ Ω Γσ ω Δ σ Ω σ

ω Δ σ Ω σ
=

+
σ

S
g

k
k k

k k
( , )

4 ( , ( , ), ( , ))

( , ( , ), ( , ))
(12)M

4 2

2

in terms of the analytical functions



σ ω Δ Ω χ ω Δ χ ω Ω χ ω Ω

ω Δ Ω χ ω Δ χ ω Ω χ ω Δ χ ω Ω ΔΩ

= + − +

= − − +

− − −

−

( )g n n

g

( , , ) ( , ) ¯ 1 ( , ) ¯ ( , ) ,

( , , ) ( , ) ( , ) ( , ) ( , ) 4 .

M
2

2 2 2

* *
1

2

O M M

O M O M

⎡
⎣⎢

⎤
⎦⎥

⎡⎣ ⎤⎦
Here, we have introduced the free susceptibilities χ ω Δ κ ω Δ= − + −( , ) [ 2 i( )] 1

O
and

χ ω Ω Γ ω Ω= − − −( , ) [ 2 i( )] 1
M

.Moreover, Δ σ− k( , ) andΩ σk( , ) are the spectra of tight-binding photons

and phonons on the honeycomb lattice (the photon spectrum is defined in the rotating frame), respectively.
They are given by Δ σ Δ σ= + Jfk k( , ) ( , ) andΩ σ Ω σ= − Kfk k( , ) ( , )where

σ = ±∣ + + ∣f k( , ) 1 e ek a k ai · i ·1 2 .

AppendixD. LDOS and transmission amplitudes

Infigures 3 and 4 of themain text, we plot the local photonic densities of states (LDOS) on site j, ρ ω j( , ) and the
transmission amplitude ωt l j( , , )O relating the emission in the outputfield at site l to an input probe field at sites
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jwith frequencyω, ω=a t t a tl jˆ ( ) ( , , ) ˆ ( ) ,Ol j
(out) (in) where = ω−a t fˆ ( ) e t

j
(in) i . These two quantities are

directly related to the photonic retardedGreenʼs function

∫ω Θ= − ω
−∞

∞
G t t a t aj l˜ ( , , ) i d e ( ) ˆ ( ), ˆ (0) . (13)OO

t
j l

i †⎡⎣ ⎤⎦
In fact, the density of state is defined as

ρ ω ω= − Gj j j( , ) 2 Im ˜ ( , , ). (14)O

Moreover, using Kubo formula and the input output relation equation (10), wefind the photon transmission
amplitude to be

ω δ κ ω= −t Gl j l j( , , ) i ˜ ( , , ). (15)O OOlj

For an infinite strip of widthM unit cells, it ismost convenient to introduce the partial Fourier transformof
ωG j l˜ ( , , ),

∑ω ω σ σ= − − ( )G N G k m mj l˜ ( , , ) e ˜ , ; , ; , . (16)OO k
n n k

OO x j j l l
1 i( )

x

j l x

Here, kx is themomentum in the translationally invariant direction (x-axis). Formally, we have introduced a
finite length ofN cells and periodic boundary conditions. However, the spurious finite size effects induced by
this assumption are smeared out by dissipation for an appropriately largeN. After taking the partial Fourier
transformof the classical displaced fields〈 〉â j and〈 〉b̂ j , we organize their Fourier componentsα σk mx , β σk mx

in a

M2 -dimensional vector ck with equation ofmotion in the form 〈 〉 = 〈 〉Ac ci ˆ̇ ˆk k k (when no probe laser is present).
The ×M M2 2 matrixAk is obtained from the Langevin equation (8) by neglecting the counter rotating terms.
Thus, theGreenʼs function ω σ σG k m m˜ ( , ; , ; , )OO x j j l l is the block of thematrix ω ω= − −G k A˜ ( , ) ( )k

1which

acts on the optical subspace of ĉk. The LDOS and transmission amplitudes ωt i j( , , ) are then readily calculated
from equations (14–16).

Appendix E.Details of the numerical calculation of theKlein tunneling of photons and
phonons

Infigure 5, we consider an infinite stripwith armchair edges and awidth ofN=500 unit cells (in the x-
direction). Notice that the unit cell of an armchair strip is formed by four sites. Thus, the photon and phonon
dynamics is described by the Langevin equation (8) with themulti-index = m m sj [ , , ]x y , where = …m N0, ,x

, ∈m Zy , and =s 1, 2, 3, 4. The optomechanical barrier created by the strong control laseris translationally

invariant in the y-direction, = + +β β− − − −
g m g( ) e 1 e 1x

m m m m( ) 1 ( ) 1
x R L x⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ with β = 2, =m 200L , and

=m 213R . The probe laser has aGaussian intensity profile in the x-directionwith average inplanemomentum

close to theK symmetry point, Δ δ= − − − +a t m m m r kˆ exp [ i ( ) i · ¯].p xj j
(in)

0
2 2 Wechoose

− = ak K¯ (0.029 , 0), Δ Ω= + ∣ − ∣v k K¯
p O , =m 900 , andδ =m 30. The other parameters are given in the

main text. The stationary Langevin equations have been solved by computing numerically theGreenʼs functions
for =k 0y .
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