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Abstract
We discuss a simple yet surprisingly effective mechanism which allows the
generation of squeezed output light from an optomechanical cavity. In contrast
to the well known mechanism of ‘ponderomotive squeezing’, our scheme gen-
erates squeezed output light by explicitly using the dissipative nature of the
mechanical resonator. We show that our scheme has many advantages over
ponderomotive squeezing; in particular, it is far more effective in the good cavity
limit commonly used in experiments. Furthermore, the squeezing generated in
our approach can be directly used to enhance the intrinsic measurement sensi-
tivity of the optomechanical cavity; one does not have to feed the squeezed light
into a separate measurement device. As our scheme is very general, it could also
e.g. be implemented using superconducting circuits.

Keywords: squeezing, optomechanics, reservoir engineering, coherent feedback,
measurements, measurement sensitivity, dissipative squeezing

1. Introduction

Among the simplest kinds of non-classical light is squeezed light, where fluctuations in one
quadrature of the optical amplitude drop below the level of vacuum noise. Such light is
interesting from both fundamental and practical points of view. Squeezed light can be used to
improve the measurement sensitivity in applications ranging from gravitational wave detection
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[1–3] to even biology [4]. Squeezed states of light are also a key ingredient for continuous-
variable information processing [5].

While the standard method for generating optical squeezing is to drive a nonlinear optical
medium (see, e.g. [6]), it has long been realized [7] that squeezing can also be realized in
optomechanical systems [8, 9], where cavity photons are coupled to mechanical motion by
radiation pressure. The standard mechanism for such squeezing, termed ‘ponderomotive
squeezing’ [7], relies on the mechanical resonator effectively mediating a (coherent) Kerr-type
(χ )

3
optical nonlinearity [10, 11]; as in a Kerr medium, squeezing is produced by generating

classical correlations between the amplitude and phase quadratures of light leaving the cavity.
This sort of ponderomotive squeezing has recently been realized in experiments [12–14].

In this work, we describe a fundamentally different and potentially powerful new method
for generating squeezed light using optomechanics, cf figure 1(a). Unlike standard
ponderomotive squeezing, our scheme is not based on having the mechanics mediate a
coherent (i.e., Hamiltonian) optical nonlinearity; instead, it uses the dissipative nature of the
mechanical resonator. As we show, by using a (classical) bichromatic cavity drive, the
mechanics can be made to mimic a dissipative squeezed reservoir. By careful tuning of the
cavity laser drives, this effective mechanical reservoir acts as a ‘sink’ for the fluctuations of the
incident light, and imprints its squeezed noise almost perfectly onto the output light (cf
figure 1(b)). We also show that the squeezing generated in our approach can directly be used to
enhance the intrinsic measurement sensitivity of the optomechanical cavity (i.e., to detect a
signal coupled dispersively to the cavity). Note that although we focus on an optomechanical
implementation of our scheme here, we stress that it could also be implemented using
superconducting circuits [15–17] as our scheme relies only on having two modes coupled
parametrically with both, beam-splitter and non-degenerate parametric amplifier terms.
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Figure 1. (a) Basic setup for dissipative generation of squeezed output light: an
optomechanical cavity driven by two lasers on the red and blue mechanical sideband.
By carefully tuning the amplitudes of the lasers, strong squeezing is possible. (b)
Schematic showing the basic idea of the dissipative squeezing mechanism. Optical
vacuum fluctuations (red) entering the optomechanical cavity at a rate κ are perfectly
absorbed by the mechanical resonator. At the same time, the damped mechanical
resonator acts as an effective squeezed dissipative bath for cavity photons (even though
the mechanical resonator itself is in a thermal state). The effectively squeezed
mechanical noise ξ̂ (coupled to the cavity at a rate κ̃) is optimally forwarded to the
cavity output port Ûout, i.e., the output light is maximally squeezed if the cavity decay
rate κ equals κ̃.



Our scheme is well within the reach of current state-of-the-art optomechanical
experiments, some of which have already made use of two-tone driving [18–21]. As we
discuss, it has several advantages over standard ponderomotive squeezing. In particular, our
scheme is efficient in the good-cavity limit commonly used in experiments, and squeezes the
same quadrature of light over an appreciable bandwidth. This is to be contrasted against
ponderomotive squeezing, which is not efficient in the good-cavity limit, and produces
squeezing with a frequency-dependent squeezing angle. In addition, the squeezing generated in
our scheme can be used directly to enhance cavity based measurements; one does not need to
feed the squeezed light into a separate measurement device (see section 5).

Note that the scheme we describe is related to the protocol described and implemented by
Wasilewski et al [22] to generate pulses of two-mode squeezed light. Their approach did not
use mechanical interactions, but rather interactions with two polarized atomic spin-ensembles,
each of which acts as an oscillator. While similar in spirit, there are some important differences:
our scheme generates continuous-wave squeezed light, and makes use of dissipation in a
fundamental way (in contrast, [22] does not treat atomic dissipation as it plays no role in their
approach). Our scheme is also related to our earlier proposal for generating strong mechanical
squeezing in an optomechanical cavity [23] (which in turn is related to [24] and earlier
proposals [25–28]). Unlike that problem, the interest here is on generating squeezing of an
output field (as opposed to an intracavity field); similar to the situation with squeezing via
parametric processes [29, 30], there are crucial differences between these two goals.

2. Model

We consider a standard, single-sided optomechanical cavity, where electromagnetic radiation
couples to mechanical motion via radiation pressure, cf figure 1(a) (non-ideal or two-sided
cavities are discussed in the appendix). The optomechanical Hamiltonian reads [31]

ω Ωˆ = ˆ ˆ + ˆ ˆ − ˆ + ˆ ˆ ˆ + ˆ† † † †   ( )H a a b b g b b a a H . (1)cav 0 dr

where ωcav (Ω) is the cavity (mechanical) resonance frequency, ˆ ˆ( )a b the photon (phonon)

annihilation operator and g
0
the optomechanical coupling strength. αˆ = ˆ +† ( )( )H t a h. c.dr is

the coherent laser driving Hamiltonian where α ( )t describes a general, coherent multi-tone laser

drive. In the following, we decompose the photon annihilation operator ˆ = ¯ + ˆa a d into a

classical amplitude ā and quantum fluctuations d̂ . Treating cavity dissipation via standard
input–output theory [32], the dynamics of the quantum fluctuations is given by the quantum
Langevin equation

κ κˆ̇ = ˆ ˆ − ˆ − ˆ⎡⎣ ⎤⎦
d H d d d

i
,

2
, (2)in

where κ is the cavity decay rate. The equation of motion for the mechanical operator b̂ reads

Γ
Γˆ̇ = ˆ ˆ − ˆ − ˆ⎡⎣ ⎤⎦

b H b b b
i

,
2

,M
M in
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where ΓM is the mechanical decay rate. The non-zero noise correlators read

δˆ ˆ ′ = − ′
†

( ) ( ) ( )d t d t t tin in , δˆ ˆ ′ = + − ′
†

( )( ) ( ) ( )b t b t n t t1in in th and δˆ ˆ ′ =
†

( ) ( )b t b t nin in th

− ′( )t t , where nth is thermal occupancy of the mechanical reservoir.
Our interest is on the noise properties of the light leaving the cavity. The fluctuations in the

output light is described by d̂out, which in turn is determined by the incident noise d̂in and the

intracavity light d̂ via the input–output relation κˆ = ˆ + ˆd d dout in [32]. A general quadrature of
the output light is defined by

ˆ = ˆ + ˆ
φ

φ φ− †( )U d e d e 2 . (3)
out

out
i

out
i

The fluctuations in this quantity are quantified by the (measurable) spectral density:

∫ω τ τ τ= ˆ + ˆ −ωτ
φ φφ

( ) ( )S e U t U t[ ] d 2 2 , (4)U
t

out i out out

where ·
t
denotes a time average over the center-of-mass time t (i.e., we are interested in the

stationary part of the noise).

If the output light is in a coherent state, d̂out will be in its vacuum, and

ω = ≡
φ

S S[ ] 1 2U SN
out out (i.e., the shot-noise value); with the optomechanical interaction, we will

obtain deviations from this result. We will focus on the output quadrature exhibiting the
minimum noise at a given frequency ω, obtained by choosing the optimal angle φ ω[ ] (the

squeezing angle). Defining the orthogonal quadratures ˆ = ˆ
φ=U U1

out

0

out
and ˆ = ˆ

φ π=U U2

out

2

out
, a

straightforward optimization yields that the noise of this optimal quadrature is (see, e.g., [33])

=
−

+ + − +

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

S
S S S

S S S S S

2 2

4
. (5)

U U U U

U U U U U U

opt
out

out out out 2

out out out out 2 out 2

1 2 1 2

1 2 1 2 1 2

Here, the cross-correlator ωS [ ]U U
out

1 2
measures the classical (i.e., symmetrized) correlations

between Û1

out
and Û2

out
, and is defined as:

∫ω τ τ τ

τ τ

= ˆ + ˆ −

+ ˆ + ˆ −

ωτ ( ) ( )

( ) ( )

S e U t U t

U t U t

[ ]
1
2

d 2 2

2 2 .

U U

t

out i
1

out

2

out

2

out

1

out

1 2

3. Ponderomotive squeezing

We begin by quickly reviewing the standard mechanism for optomechanical squeezed light
generation, ponderomotive squeezing [7, 10–14], where one uses the coherent (i.e.,
Hamiltonian) optical nonlinearity induced by the coupling to the mechanical resonator. We
assume a resonantly driven optomechanical cavity, i.e., α α= ω−( )t eL

ti cav , where αL is the laser
amplitude. Going into an interaction picture with respect to the free cavity Hamiltonian and
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performing a standard linearization on (1) (i.e., dropping terms cubic in ˆ ˆ†
d d, ) one finds

Ωˆ = ˆ ˆ − ˆ ˆ + ˆ† †
  ( )H b b GU b b2 . (6)1

where = ¯G g a
0

is the drive-enhanced optomechanical coupling strength; without loss of

generality, we take the average cavity amplitude ā to be real. With this choice, Û1 and Û2

correspond respectively to standard amplitude and phase quadratures. Their fluctuations are
given by [33]

δ= = + +⎡⎣ ⎤⎦S S S S S Sand 2 , (7)U U U U U
out

SN
out out out out 2

1 2 1 1 2

where

δ ω

Ω κ χ κ ω

= ˜ ˜ +
˜ = +



( )
( )

{ }
S S S k T

S G

coth 2 ,

2 Im 4 ,

B

M
2 2 2

and

χ Ω ω ωΓ= − −− i
M M

1 2 2

is the mechanical susceptibility.
Given that neitherU1 norU2 is squeezed, obtaining squeezing will necessarily require non-

zero classical correlations between the amplitude and phase quadrature (i.e., ≠S 0U U
out

1 2
), as

follows from equations (5) and (7). These correlations are created by the mechanical motion.
From the last term of equation (6), we see that the amplitude (U1) fluctuations of the light are a
driving force on the mechanics. The same term tells us that the resulting mechanical motion
modulates the phase of the light leaving the cavity (i.e., the U2 quadrature). One finds that the
amplitude-phase correlator has a simple form which completely reflects this intuitive picture:

ω
κ

Ω
ω κ

χ ω∝
+

{ }
( )

S
G

[ ]
4

1 2
Re [ ] , (8)U U M

out
2

21 2

where ω is measured in our rotating frame (i.e., ω = 0 corresponds to the cavity resonance).
Note that only the real part of χ

M
enters, as only in-phase correlations between U1 and U2 are

relevant to squeezing (i.e., the correlations are induced by a coherent interaction only, since the

dissipative part χ{ }Im
M

of χ
M
does not enter). Such in-phase correlations between amplitude

and phase quadratures would naturally be created if we had a Kerr nonlinearity in the cavity,
i.e., a term ˆ ˆ ˆ ˆ† †a a aa in the cavity Hamiltonian. Thus, ponderomotive squeezing involves the
optomechanical interaction mimicking the effects of a (instantaneous, coherent, Hamiltonian)
Kerr interaction in the cavity. Note that the optomechanical interaction was recently compared
to a Kerr nonlinearity also in [34, 35].

It thus follows that ponderomotive squeezing will be strongest at frequencies ω, where the

correlator SU U
out

1 2
is large; by combining equations (5) and (7) one finds ∝ ⎡⎣ ⎤⎦S S1 U Uopt

out out 2

1 2
for

≫S 1U U
out

1 2
. The correlations will in turn be large when the real part of the mechanical

susceptibility is large. This naturally occurs at the cavity resonance frequency (i.e., ω = 0 in
equation (8)), and also near (but not at) the mechanical sideband frequencies, i.e., frequencies
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ω Ω δ= ± + where δ Γ∼ M. Figure 2 shows this expected frequency dependence of
ponderomotive squeezing.

It is often overlooked that the same intuition used above tells us that ponderomotive
squeezing will be suppressed in the good-cavity limit κ Ω≪ , a limit necessary for ground-state
optomechanical cooling and other desirable optomechanical protocols. At the cavity resonance,

κΩ∝ ( )S G4U U
out 2

1 2
, independent of the sideband parameter κ Ω and mechanical damping rate ΓM.

Thus, in the limit Ω κ → ∞ while κG remains fixed, ponderomotive squeezing disappears at
the cavity frequency. Indeed, we find κΩ≈ − ( )S S G1 16opt

out
SN
out 2 in this limit. The situation is
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Figure 2. Ponderomotive squeezing versus dissipative squeezing spectra in the good
cavity limit (where the impedance matching condition κ κ˜ = is assumed, cf main text).
(a) Output light spectra versus frequency near the cavity resonance frequency ωcav in the
good cavity limit (where κ Ω → 0 for our dissipative scheme and κ Ω = 1 10 for
ponderomotive squeezing). The squeezing bandwidth at ωcav is set by κ for

ponderomotive squeezing. For our dissipative scheme it is set by κ Γ{ }min , M . Both
schemes generate maximum squeezing at ωcav within this bandwidth. However, our
dissipative scheme outperforms ponderomotive squeezing in the good cavity limit. (b)
Output light spectra at the mechanical sideband ω Ω≈ . Our dissipative scheme does
not generate squeezing while ponderomotive squeezing does generate squeezing. (c)
Squeezing angle φ (cf equation (3)) versus frequency. For dissipative squeezing, the
squeezing angle is constant for all frequencies. In contrast, the squeezing angle φ

opt

corresponding to optimal ponderomotive squeezing varies on a scale κ∼ at the cavity
resonance and Γ∼ M close to the mechanical sideband. (Parameters: (a)

Γ κ= × =− n2 10 , 10M
5

th , and = 105. (b) Same as (a), κ Γ κ˜ = =4 M
2 . (c) Same

as in (a).)



different for frequencies close to the mechanical sidebands, i.e., ω Ω δ= ± + with δ Γ∼ M. In

the bad cavity limit κ Ω≫ , ∝ SU U
out

1 2
, where the cooperativity κΓ= ( )G4 M

2 . Thus,

squeezing close to the mechanical sideband and for κ Ω≫ is controlled by the cooperativity

only. In the good cavity limit κ Ω≪ , however, κ Ω∝  ( )SU U
out 2

1 2
. Thus, in the good cavity limit

κ Ω → 0, squeezed light cannot be generated effectively using the standard ponderomotive
squeezing mechanism.

4. Dissipative output light squeezing

Given the general desirability of having optomechanical systems in the good-cavity limit (e.g.
for cooling [36–40], state transfer [41–45], entanglement generation [46–50], etc), it would be
extremely useful to find an alternative squeezing scheme which is efficient in this regime. To
that end, we now introduce an approach which generates squeezed light by explicitly using the
dissipative nature of the mechanical resonator.

4.1. Basic scheme

Unlike ponderomotive squeezing, the dissipative approach to optomechanical squeezing
requires driving the cavity with two lasers, with frequencies corresponding to the red and blue

mechanical sidebands (i.e., α α α= +ω Ω ω Ω
+

− +
−

− −( )t e e( ) ( )t ti icav cav ); the resulting average classical

amplitude is ¯ = ∑ ¯ω
σ σ

σΩ−
=±

−( )a t e a et ti icav . We again write the basic optomechanical Hamiltonian

of equation (1) in an interaction picture, now with respect to both the free cavity and mechanical

resonator Hamiltonians. Introducing mechanical quadrature operators ˆ = ˆ + ˆ†( )X b b 21 and

ˆ = ˆ − ˆ†( )X b bi 22 , and linearizing the Hamiltonian in the usual way, we find

ˆ = ˆ + ˆH H HS CR, where

ˆ = − + ˆ ˆ − − ˆ ˆ
+ − − + ( ) ( )H G G U X G G U X , (9)S 1 1 2 2

ˆ = − ˆ ˆ + ˆ +Ω Ω†
+

−
−

†
 ( )H d G be G b e h. c .. (10)t t

CR
2i 2i

Here = ¯± ±G g a
0

are the many-photon optomechanical couplings associated with each drive tone;

we take ¯ ¯+ −a a, to be real and positive without any loss of generality. The terms in ĤS describe

resonant interaction processes that will give rise to squeezing, while those in ĤCR are deleterious
non-resonant interaction terms. For physical transparency, we will start by discussing the

extreme good cavity limit κ Ω≪ , and thus ignore the effects of ĤCR. We will also take
⩾− +G G , which ensures the stability of the linearized system.

If =+ −G G , ĤS has the form of a quantum non-demolition (QND) interaction, as both the
quadratures U1 and X1 commute with the Hamiltonian; such a regime can be used to make a
back-action evading measurement of the mechanical quadrature X1 [1, 51, 52]. For ≠+ −G G , the

second term in ĤS is non-zero, and the QND structure is lost. As we recently discussed [23], this
regime can be extremely efficient for the generation of mechanical squeezing.
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Given that equation (9) is symmetric under interchange of mechanical and cavity
quadratures, one might naturally suspect that it can also be exploited to generate optical
squeezing. We now show that this is indeed the case, even though in the optical case, we are
interested in squeezing a quadrature of the output light field, not the intracavity field. As is well
known, the relationship between intracavity and output field squeezing can be non-trivial
[29, 30]. We show that this is also the case here.

4.2. Underlying mechanism

We start by describing the basic mechanism which gives rise to squeezing here, considering the
most interesting regime where < − ≪ +− + − +G G G G0 ; for simplicity, we also first consider

the case of a large mechanical damping rate Γ κ≫M . The first term in ĤS (cf equation (9))
causes the mechanical resonatorʼs X2 quadrature to measure the cavity U1 quadrature: in the
relevant low-frequency limit, one finds

Γ Γ
ˆ =

+ ˆ + ˆ+ −X
G G

U X2
2

.
M M

2 1 2

in

Thus, the measurement strength ∝ +− +G G . This also demonstrates that dissipation is a

necessary ingredient for X̂2 to measure the Û1 quadrature. In contrast, the second term in ĤS

perturbs the measured quadrature U1 by applying a weak force ∝ − ˆ
− +( )G G X2. However, as X2

has measured U1, this becomes a weak feedback force.
The result of these two operations is a net additional damping of the cavityU1 quadrature at

rate κ Γ˜ = 4 M
2 due to the optomechanical interaction, where = −− + G G2 2 2. The mechanical

resonator is thus acting like a dissipative bath for the cavity photons. One must also ask about
the extra noise introduced into the cavity quadratureU1 via the optomechanical coupling. As this

only involves the weak second term in ĤS (∝ −− +( )G G , cf equation (9)), this noise is extremely

small, much smaller than the noise we would expect if κ̃ was produced by a zero-temperature
dissipative bath. The net result is that the mechanical resonator acts as a squeezed bath for the
cavity, damping the U1 quadrature while adding almost no fluctuations. This directly causes
optical squeezing. The situation is of course reversed if we now ask about the cavity U2

quadrature. As the measurement and feedback roles of the two terms in ĤS are reversed for U2,
its fluctuations are naturally enhanced by the effective mechanical bath.

4.3. Detailed calculation

The above picture provides intuition for how the combination of the Hamiltonian Ĥs in
equation (9) and mechanical damping gives rise to squeezing of the intracavity field: the
mechanical resonator (via autonomous measurement and feedback operations) mimics the
actions of squeezed dissipative reservoir coupled to the cavity. To understand how this basic
mechanism affects the output noise of the cavity, we simply solve the linearized equations of
motion describing our system (now without any assumption of a large ΓM).

To present the solutions in a transparent manner, we first introduce the self-energy of the
cavity photons due to the optomechanical interaction and the corresponding dressed cavity
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susceptibility:

Σ ω
ω Γ

Σ ω κ ω=
− −
− +

≡ − ˜− +( )G G
[ ]

i

i 2
Re [ ] i [ ] 2.

M

2 2

The corresponding dressed cavity susceptibility (Green function) is then

χ ω
ω κ Σ ω

=
− + +( )

[ ]
1

i 2 i [ ]
. (11)

cav

The output cavity quadrature operators are then found to be

ω κχ ω ω κΓ χ ω κ ω ξ ωˆ = − ˆ − ˜ ˆ( )U U[ ] [ ] 1 [ ] [ ] [ ] [ ], (12)M1

out

cav 1

in

cav 1

ω κχ ω ω κΓ χ ω κ ω ξ ωˆ = − ˆ + ˜ ˆ( )U U[ ] [ ] 1 [ ] [ ] [ ] [ ]. (13)M2

out

cav 2

in

cav 2

These input/output relations have the expected simple form for a cavity which is coupled
both to a coupling port (coupling rate κ) and to an additional dissipative reservoir (coupling rate
κ ω˜[ ]). The coupling to the additional reservoir both modifies the cavity susceptibility, and
results in new driving noises. The first term on the rhs of equations (12)–(13) corresponds to the
contribution to the output field from vacuum noise incident on the cavity from the coupling
port: there is both a promptly reflected contribution, and a contribution where this noise enters
the cavity before being emitted. Note that these terms are completely phase insensitive, i.e.,
identical in form for any choice of optical quadrature.

More interesting are the second terms on the rhs of equations (12)–(13), which represent
the noise contributions from the effective mechanical bath coupled to the cavity. One finds

ξ
κ ω ω Γ

ωˆ =
˜

∓
− +

ˆ− +G G
X

1

[ ] i 2
[ ].

M
1 2 2 1

in

We see immediately that this effective bath seen by the cavity appears squeezed (i.e., the noise

in ξ̂1 is much less than that in ξ̂2) even if the intrinsic mechanical dissipation is in a simple
thermal state.

With these equations, the route towards optimal squeezing at frequency ω is clear: one

needs both to have −− +G G be as small as possible (so that the ξ̂j noises are as squeezed as

possible), while at the same time fulfilling an impedance matching condition that makes the first
terms in equations (12)–(13) vanish, i.e., κχ ω =[ ] 1

cav
. Physically, this impedance matching

simply means that all the incident optical vacuum fluctuations on the cavity are completely
absorbed by the mechanical resonator, cf figure 1(b). At the cavity resonance frequency
(ω = 0), this corresponds to a simple matching of damping rates

κ κ
Γ

κ˜ = ⟺
−

=− +( )
[ ]

G G
0

4
. (14)

M

2 2

We also see that regardless of the frequency we consider, the ωU [ ]1 optical quadrature is the
optimally squeezed quadrature; this is simply because the squeezing angle of our effective
mechanical bath is frequency independent.
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4.4. Results

Having explained the basic dissipative squeezing mechanism, we now present results for the
amount of generated squeezing, again starting with the extreme good cavity limit Ω κ≫ . The
simplest regime here is the weak-coupling regime, where the effective coupling

= −− + G G2 2 is much smaller than Γ κ( )max ,M . The output light is maximally squeezed

at the cavity frequency, cf figure 2; the squeezing remains appreciable away from the cavity
resonance over a ‘squeezing bandwidth’ set by κ Γ{ }max , M . The amount of squeezing at the
cavity resonance is given by

ω κκ κ κ

κ κ

=
=

˜ + + − ˜

+ ˜

−[ ] ( ) ( )
( )

S

S

n e0 4 1 2
, (15)

U
rout

SN
out

th
2 2

2
1

where we have introduced the squeezing parameter r via = + −r G Gtanh , i.e., the ratio of laser
drive amplitudes. Note that this expression is valid in the extreme good cavity limit κ Ω → 0
for all values of κ κ̃, and r. For a fixed squeezing parameter r, the noise in the U1 quadrature
interpolates between three simple limits. For κ̃ = 0 or κ κ˜ ≫ , the noise of the effective
mechanical resonator is completely reflected from the cavity, and hence the output quadrature
noise is the just vacuum noise of the incident field. In contrast, if the impedance matching
condition of equation (14) is satisfied, then the output optical noise is completely determined by
the effective mechanical bath; it thus has the value + −( )n e1 2 r

th
2 , reflecting the effective

temperature of the squeezed ξ̂1 noise associated with the effective mechanical bath.
The above result then implies that for the optimal impedance-matched case (which also

implies being in the assumed weak-coupling regime, cf appendix A.1), the squeezing of the
cavity light at resonance behaves as

= + ≈
+−

( )S S n e
n

[0] 1 2
1 2

4
, (16)U

rout
SN
out

th
2 th

1

where we have introduced the optomechanical cooperativity κΓ= − G4 M
2 , and in the last

expression we assumed ≫ 1.
It is also interesting to consider the purity of the output light generated; not surprisingly,

for the optimal impedance matched case, this purity is completely determined by the purity of
the mechanical noise. Parameterizing the purity of the output light via an effective number of
thermal quanta neff, i.e.,

ω ω ω+ =( )n S S1 2 [ ] 4 [ ] [ ],U U U Ueff

2

1
out

1
out

2
out

2
out

one finds =n neff th at the cavity frequency ω = 0 and for κ κ˜ = .

4.5. Dissipative versus ponderomotive squeezing

Let us now compare our dissipative scheme to ponderomotive squeezing. Ponderomotive
squeezing squeezes light by correlating the incident optical vacuum fluctuations using the
coherent Kerr interaction mediated by the mechanical resonator. In contrast, our approach does
not rely on correlating the incident optical vacuum fluctuation; rather, we replace these
fluctuations by squeezed noise emanating from the mechanical resonator. As discussed, our
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scheme also relies crucially on the dissipative nature of the mechanical resonator, i.e., on the
imaginary part of the mechanical susceptibility χ

M
. In contrast, a non-vanishing χIm

M
reduces

the amount of ponderomotive squeezing, cf equation (7). We also note that our scheme is
efficient in the good cavity limit and generates squeezing with a fixed squeezing angle, in
contrast to ponderomotive squeezing.

Let us now turn to a quantitative comparison of our dissipative scheme to ponderomotive
squeezing in the good cavity limit κ Ω≪ , cf figure 3. We parametrize the red laser strength (or
the resonant laser strength for ponderomotive squeezing) via the cooperativity κΓ= − ( )G4 M

2

(where ↦−G G for ponderomotive squeezing). For our dissipative scheme, we optimize the
blue laser strength for any given cooperativity to fulfill the impedance matching condition (14).

We now compare the amount of squeezing generated by our dissipative scheme at the

cavity frequency, i.e., ⎡⎣ ⎤⎦S 0U
out

1
to ponderomotive squeezing, i.e., to the optimized output light

spectrum Sopt
out at the cavity frequency and close to the mechanical sideband. For small

cooperativities, < < + + ( ) ( )n n1 1 1 2th

2

th , the output light spectrum in our scheme

corresponds to thermally squeezed light (as < +[ ] ( )S S n0 1 2U
out

SN
out

th1
). As the squeeze

parameter is small in this regime (cf equation (16)), SU
out

1
is larger than the shot noise value. In

contrast, the output light spectrum Sopt
out for ponderomotive squeezing in this small- case stays

close to the shot-noise limit as ≈S Sopt
out

SN
out. As soon as ≳ n 2th , our scheme generates quantum

squeezed output light where <[ ]S S0U
out

SN
out

1
. Ponderomotive squeezing, however, still stays

close to the shot-noise limit, ≈S Sopt
out

SN
out. While increasing the cooperativity further,

ponderomotive squeezing also starts to generate strong quantum squeezing, first close to the
mechanical sideband, then also at ω = 0. Thus, when comparing our scheme to ponderomotive
squeezing for a fixed cooperativity, we see that our scheme outperforms ponderomotive
squeezing in the good cavity limit. This can also be seen by studying the minimum
cooperativity min needed to generate a certain amount of squeezing, e.g. 3 dB. For our scheme,
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Figure 3. Dissipative versus ponderomotive squeezing in the good cavity limit. Black
curves: output spectrum for the dissipative squeezing scheme at ω = 0, i.e., at the cavity
resonance frequency (black solid curve for κ Ω = 0 and black dashed curve for
κ Ω = 1 10). White, yellow curves: optimized spectrum for standard ponderomotive
squeezing, for both a frequency ω = 0 and a frequency ω Ω∼ . Note that the value of
the output spectrum for dissipative squeezing for small cooperativities is set by nth

(Parameters as in figures 2(a), (b)).



we find ≳ + ( )n1 2 2min
diss

th . In contrast, for ponderomotive squeezing in the good cavity limit

we find Ω Γ≳ + ( )( )2 4Mmin
ponderomotive squeezing

min
diss . This is typically much larger than diss

since Γ Ω≪M for typical experiments.

4.6. Bad cavity effects on the generation of squeezed output light

Up to now, we have focussed on the extreme good cavity limit, i.e., κ Ω → 0. We now consider
deviations that arise when κ Ω is non-zero.

Thus, we now solve the full quantum Langevin equations including ĤCR (i.e., no rotating-

wave approximation) and analyze the output light spectrum ωS [ ]U
out

1
. We find that the impedance

matching condition κ κ˜ = still maximizes squeezing at the cavity frequency ω = 0. Thus, we
now compare [ ]S 0U

out

1
with and without bad cavity effects, cf figure 3. The amount of squeezing

for moderate cooperativities does not differ from the good cavity prediction (16). As the
cooperativity gets larger, however, the impact of bad cavity effects also becomes larger. As
these terms tend to heat up the cavity quadrature non-resonantly, the maximum amount of

squeezing our dissipative scheme can generate is limited. By taking ĤCR into account up to
leading order in κ Ω, we find that in the large cooperativity limit

κ
Ω

=
S

S

[0]

32
,

U
out

SN
out

2

2
1

where + −G G was again chosen to fulfill the impedance matching condition (14).

5. Increasing the measurement sensitivity of an optomechanical cavity

As we have seen, our dissipative scheme can be used to generate squeezed output light. This
light could then be fed into a separate measurement device to increase its measurement
sensitivity. Such a scenario, however, involves two different devices which have to be coupled.
In order to avoid unwanted coupling losses which could degrade the measurement sensitivity
again or to keep the experiment as simple as possible, one might ask whether the squeezed light
source and the measurement device could somehow be combined. In the following, we show
that this is indeed possible: one could use the optomechanical cavity to both generate squeezed
output light while increasing the sensitivity for measuring a dispersively-coupled signal at the
same time.

5.1. Basic scheme

We now consider an optomechanical cavity which is also dispersively coupled to a signal z we
want to measure (one could e.g. use an optomechanical setup in the microwave regime where a
superconducting qubit is dispersively coupled to the microwave cavity; z would then be a Pauli
operator σz for the qubit). We again assume two lasers driving the cavity on the red and blue
mechanical sideband. As discussed above, the corresponding optomechanical interaction will

cause the Û1

out
-quadrature to be squeezed at the cavity frequency. We now also add a resonant

measurement tone which is used to probe the value of z. Thus,
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ω Ωˆ = ˆ ˆ + ˆ ˆ − ˆ + ˆ ˆ ˆ − ˆ ˆ · + ˆ† † † † †   ( )H a a b b g b b a a Aa a z H ,cav 0 dr

where αˆ = ˆ +† ( )( )H t a h. c.dr and α α α α= + +ω Ω ω Ω ω
+

− +
−

− − −( )t e e e( ) ( )t t ti i
0

icav cav cav . Note that

the measurement tone at frequency ωcav is spectrally very well resolved from the two tones at
frequency ω ω Ω= ±± cav used to generate squeezing. Thus, we expect the measurement tone to
probe z only without strongly degrading squeezing.

We now apply the displacement transformation ˆ = ¯ + ˆ( )a a t d with

¯ = ∑ ¯ + ¯ω
σ σ

σΩ−
=±

−( )( )a t e a e ait ti i
0

cav . We also assume āi to be real. Note that the phase of the

measurement tone is chosen such that the information of z is imprinted in the squeezed
quadrature, as we will see below. This is crucial to enhance the measurement sensitivity of the
optomechanical cavity. We go into a rotating frame with respect to the free cavity and

mechanical resonator Hamiltonian and apply standard linearization. We find ˆ = ˆ + ˜̂H H HS CR

with

ˆ = − + ˆ ˆ − − ˆ ˆ − ˆ ·+ − − +  ( ) ( )H G G U X G G U X A U z2 , (17)S 1 1 2 2 0 2

and

Ω Ω

Ω Ω

˜̂ = ˆ − ˆ + ˆ ˆ

− + ˆ + − ˆ
+ − − +

⎡⎣ ⎤⎦




( )
( ) ( )

H H G X t X t U

z A A U t A A U t

2 cos sin

2 cos sin , (18)

CR CR 0 1 2 2

1 2

where ĤCR is given by equation (10). Here, = ¯G g ai i0
is the driven-enhanced optomechanical

coupling whereas = ¯A Aai i is the driven-enhanced dispersive cavity–signal coupling. As in

section 4.6, ˜̂HCR represents non-resonant interaction terms that will have minimal effect in the
κ Ω → 0 limit.

5.2. Enhanced measurement rate

Let us first focus on the extreme good cavity limit and ignore ˜̂HCR. The last term in

equation (17) implies that the Û1 cavity quadrature measures z. Thus, the value of z can be

inferred by observing the output light quadrature κˆ = ˆI U1

out
by using a homodyne

measurement setup for instance.
As we are interested in a weak coupling between the cavity and the signal z, it will take a

finite amount of time τmeas to resolve the value of z above the noise. This measurement time is
quantified in the standard manner by the measurement time or rate Γ τ= 1meas meas [32]. The

measurement rate is related to the (zero frequency) susceptibility χ ω≡ Î zd [ ] d
meas

and the

symmetrized spectrum S̄II of the homodyne current Î at zero frequency via

Γ
χ

=
S̄2 [0]

. (19)
II

meas
meas
2
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Here, χ [0]
meas

defines how much the average homodyne current changes when z is statically

changed and the symmetrized spectrum S̄II quantifies the imprecision noise.
We now see the route towards an enhanced measurement rate: we simply need to use the

optomechanical interaction and the consequent dissipative squeezing mechanism to squeeze

Û1

out
at zero frequency, and hence reduce S̄II while keeping the measurement susceptibility χ

meas

as large as possible.
As before, the optomechanical coupling in equation (17) generates squeezed output light

where Û1

out
is squeezed at ω = 0, i.e., at the cavity frequency. This directly reduces the

imprecision noise since ω κ ω¯ =S S[ ] 2 [ ]II U
out

1
such that κ¯ = + −[ ] ( )S n e0 1 2II

r
th

2 for the

impedance matching condition κ κ˜ = , cf equation (16). At the same time, the measurement

susceptibility χ κ χ= − [ ]A2 0
meas 0 cav

is not drastically changed. This is because when we
optimally impedance match to maximize squeezing, i.e., choosing κ κ˜ = , the optomechanical
interaction only doubles the effective cavity damping, cf equation (11). Thus, χ κ=[ ]0 1

cav
is

reduced only by a factor 1 2 as compared to the value one would obtain without the
optomechanical interaction. Thus, we finally find

Γ
κ

=
+

A e

n1 2
.

r

meas
0
2 2

th

To quantify the sensitivity of our optomechanical cavity to z, we compare this
measurement rate to the rate Γmeas

lc we expect when z is measured using a linear cavity. This
corresponds to turning off the optomechanical interactions in our scheme (i.e., →g 0

0
). Hence,

this comparison can be understood as being a benchmark for our dissipative squeezing scheme.
We find

Γ
Γ

χ
χ

=
⎛
⎝
⎜

⎞
⎠
⎟

S S

[0]

[0]

1
(20)

U

meas

meas
lc

cav

cav
lc

2

out,diss SN

1

=
+

≈
+


( )
e

n n4 1 2 1 2
, (21)

r2

th th

where the last term is valid in the large  limit. Here, χ
cav

is the dressed cavity susceptibility (cf

equation (11)) and χ κ=[ ]0 2
cav
lc is the susceptibility of a linear cavity at zero frequency. Thus,

our scheme allows for an exponential enhancement of the measurement rate with the squeezing
parameter r (or a linear enhancement with cooperativity) as long as ≳ + n1 2 th. For this
comparison we have assumed equal decay rates κ and the same read-out laser amplitudes.

The above analysis demonstrates that our dissipative optomechanical squeezing scheme
can directly be used to enhance the intrinsic measurement sensitivity. The crucial trick allowing
this direct enhancement is that our scheme generates squeezed output light without lowering the
(dressed) cavity susceptibility drastically. Additionally, the cavity susceptibility is modified in a
phase insensitive way, i.e., it is identical for all quadratures, cf (12), (13).

Note that it would be much more difficult to increase the intrinsic measurement sensitivity
using ponderomotive squeezing: there, the optomechanical interaction effectively generates a
Kerr-type optical nonlinearity [10, 11]. The corresponding linearized dynamics is similar to the
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dynamics of a parametric amplifier. Squeezing is generated by modifying the cavity
susceptibility in a phase sensitive manner: one reduces the cavity response to vacuum noise
for one quadrature while increasing the response for the conjugate quadrature. Reducing the
response of the squeezed quadrature to noise, however, will also reduce its response to the
signal z. Thus, the measurement rate Γmeas could be unchanged.

5.3. Influence of bad cavity effects on the measurement rate

Let us now discuss the influence of bad cavity effects on the measurement rate. Thus, we solve

the quantum Langevin equations including ˜̂HCR numerically and analyze the corresponding
output light spectrum. Note first that the counter rotating terms which are independent of the
mechanical resonator (cf second line of equation (18)) are a deterministic force driving the mean
cavity quadratures only. As our system is linear, they thus have no impact on the noise
properties or dressed cavity susceptibility, and thus play no role in the following discussion.

To gain an understanding of how bad cavity effects modify the measurement rate, let us
first consider a very weak measurement tone, i.e., we focus on the limit ≈G 00 . In this case,

˜̂ ≈ ˆH HCR CR. As discussed above, ĤCR limits the maximum amount of squeezing, cf figure 3.
However, squeezing is still given by equation (16) for moderate cooperativities. Thus, the
measurement rate for weak measurement tones is still expected to scale like ≈ e 4r2 until it is
expected to saturate to Ω κ8 2 2 for larger cooperativities. Note that the assumption of a small G0

does not necessarily imply a weak dispersive coupling A0.
If we, however, were to increase the measurement tone strength further (e.g. to increase the

absolute measurement rate Γ ∝ Ameas 0
2), the additional counter-rotating term∼G0 in equation (18)

becomes more and more important. This term is expected to further degrade the maximum

achievable amount of squeezing, as the cavity Û2 quadrature now gets additionally coupled to

X̂1. In turn, it is expected to further limit the maximal achievable measurement rate. Thus, the

favored strategy to generate an appreciable measurement rate Γmeas (as compared to Γmeas
lc ), hence,

would be to keep G0 as small as possible while aiming for a cooperativity which maximizes
squeezing, and, hence, the measurement rate.

To verify our intuition, let us now focus on figure 4, where we depict the measurement rate
enhancement factor Γ Γmeas meas

lc as a function of the red-laser driving strength and the
measurement-tone strength. We choose the blue driving strength +G to optimize squeezing, i.e.,
to fulfill the impedance matching condition (14). We parametrize the red-laser strength via the
cooperativity κΓ= − ( )G4 M

2 . The measurement tone strength and, hence, also the strength of
the unwanted optomechanical interaction induced by the measurement tone is parametrized via
the measurement cooperativity κΓ= ( )G4 M0 0

2 . Note that as both Γ Γ ∼ A,meas meas
lc

0
2, the

measurement rate enhancement factor Γ Γmeas meas
lc is independent of the dispersive coupling A0.

For a weak measurement tone ≪ 10 we see that the ratio of the measurement rates

Γ Γmeas meas
lc increases linearly with the cooperativity  first until it saturates to Ω κ∼8 2 2 for large

. Thus, as expected, the unwanted optomechanical interaction induced by the measurement
tone is negligible.
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Let us now increase the measurement tone strength (i.e., 0) further. For a fixed 0, the

measurement rate enhancement factor Γ Γmeas meas
lc exhibits a maximum as a function of the

cooperativity  as the unwanted optomechanical interaction due to the measurement tone
becomes important. Thus, an arbitrarily large cooperativity is not optimal in this regime. For
realistic values of 0, however, we still get a large maximum enhancement factor.

6. Conclusion

We have shown that strongly squeezed output light can be generated when an optomechanical
cavity is driven by two lasers on the red and blue mechanical sideband. The output light is
maximally squeezed when an impedance matching condition (cf equation (14)) is fulfilled.
Then, all incident optical vacuum fluctuations are perfectly absorbed by the mechanical
resonator and are replaced by effectively squeezed mechanical noise.

Furthermore, we have compared our dissipative scheme to ponderomotive squeezing and
have shown that our dissipative scheme outperforms ponderomotive squeezing in the good
cavity limit which is commonly used in experiments.

We also have shown that our dissipative scheme can directly be used to enhance the
intrinsic measurement sensitivity of the optomechanical cavity. Thus, our scheme could e.g. be
implemented in optomechanical setups working in the microwave regime to increase the
measurement sensitivity of a dispersively coupled superconducting qubit. Note that although we
have focussed on an optomechanical implementation of our scheme, it could also e.g. be
implemented using superconducting circuits.
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Figure 4. Enhancement Γ Γmeas meas
lc of the dispersive measurement rate by dissipative

squeezing. Γ Γmeas meas
lc (cf equation (20)), i.e., the ratio of the squeezing enhanced

measurement rate to the standard measurement rate (without optomechanical
interaction), as a function of the cooperativity κΓ= − ( )G4 M

2 and the measurement

tone driving strength (parametrized by the cooperativity κΓ= ( )G4 M0 0
2 ). The black

and white lines are contour lines depicting Γ Γ = 1, 10, 100, 1000meas meas
lc . (Parameters:

Γ Ω= × −2 10M
6 , κ Ω= 0.05 , κ κ˜ = and =n 10th ).
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Appendix

A.1. Dissipative squeezing in the strong coupling regime

In this appendix we discuss the regime where the mechanical mode and the cavity are strongly

coupled, i.e., when = −− + G G2 2 is appreciable. In this case, we observe a normal mode

splitting in the output light spectrum, cf figure A.1. It turns out that squeezing is maximized at
frequencies

ω κ Γ= ± − −±  ( )8 2 2 .M
2 2 2

Thus, one enters the strong coupling regime if

κ Γ⩾ +8 . (A.1)M
2 2 2

Note that for impedance matched parameters κ Γ κ˜ = =4 M
2 , the strong coupling

condition (A.1) cannot be fulfilled. Thus, for impedance matched parameters, squeezing is
always maximized at the cavity resonance frequency.

Let us now briefly study how the maximum achievable squeezing at ω± depends on the
damping rates κ Γ, M and the coupling , i.e., we focus on the limit where the squeezing
parameter → ∞r . We find
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Figure A.1. Output light spectrum SU
out

1
in the ‘strong coupling regime’. As the cavity

photons and the mechanical mode are strongly coupled, two distinct minima are

observed in the output light spectrum. Here, Δω ω κ Γ= = − −+ 2 8 2M
2 2 2 .

(Parameters: Γ κ = 0.1M , =n 10th , r = 5 and = 1 2, i.e., ≈ × 5.5 103 and

≈ − ×+ −
−G G 1 9 10 5.)



Γ κ Γ κ

Γ κ Γ κ
=

− + −

+ − −

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦




( ) ( )

( ) ( )
S S

16

16
.U

M M

M M

out
SN
out

min

2 2 2

2 2 21

Thus, in the common limit where Γ κ≪M , one cannot generate squeezing dispersively in the

strong coupling regime as →S S 1U
out

SN
out

min1
. If, however, Γ κ=M , one is able to generate

perfectly squeezed output light (i.e., =S S 0U
out

SN
out

min1
) at frequencies ω±, irrespective of the size

of .

A.2. Effects of intrinsic cavity losses and two-sided cavity

In this appendix we focus on the dissipative generation of squeezed output light using a single-
sided optomechanical cavity in the presence of internal losses. As we will see, internal losses
will degrade the amount of squeezing generated and the state purity. In the presence of internal
losses, the dynamics of the quantum fluctuations of the intracavity light field reads

κ
κ κˆ̇ = ˆ ˆ − ˆ − ˆ − ˆ⎡⎣ ⎤⎦

d H d d d d
i

,
2

,
( ) ( )

O

O

I

Itot
in in

where κ κ κ= +Otot I is the total cavity decay rate, κO is the photon decay rate through the output
mirror and κI is the rate with which photons decay internally (or e.g. through a second,
unobserved mirror). As only the light leaving the cavity through the output mirror is of interest,

we focus on the output light described by ˆ = ˆ + ˆ†( )U d d 2
( ) ( )O O

1

out

in in where

κˆ = ˆ + ˆd d d
( ) ( )O O

Oout in . For physical transparency, we assume the extreme good cavity limit,
i.e., the systemʼs Hamiltonian is given by equation (9). Solving the relevant equations of motion
and calculating the output light spectrum ωS [ ]

U
out

( )O
1

(cf equation (4)) we find that the output light

quadrature Û
( )

1

0
is still maximally squeezed at the cavity frequency if the impedance matching

condition κ Γ κ˜ = =4 M
2

tot is fulfilled. The amount of squeezing at ω = 0 then reads

κ
κ

κ
κ

κ
κ

κ
κ

= + +

≈ +
+

−



( )S S n e

n

1 2

1 2

4
,

( )U

I O r

I O

out
SN
out

tot tot
th

2

tot tot

th

o
1

where the last term is valid in the large  limit. Thus, even if → ∞ , one cannot squeeze the
output light below κ κI tot.

Note that as a part of the light leaves the cavity into an unobserved mode, the purity of the
squeezed output light is not given by =[ ] [ ]n n0 0eff th anymore. Instead, we find

κ κ κ∼ + [ ] ( )n n0 1 2 O Ieff th
2 , i.e., the impurity increases without bound with the

cooperativity .

New J. Phys. 16 (2014) 063058 A Kronwald et al

18



A.3. Effects of laser phase noise on dissipative squeezing of light

In this appendix we discuss the impact of laser phase noise on our dissipative light squeezing
scheme. Note that laser phase noise has already been studied in the context of e.g.,
optomechanical sideband cooling [53, 54], optomechanical entanglement [55, 56], and back-
action evasion measurement schemes [57].

As before, we assume a two-tone driven optomechanical cavity, cf equation (1). However,
we now also take a fluctuating laser phase φ ( )t into account, i.e., the laser drive now reads

α α α= +Ω Ω ω φ
+

−
−

− −( )( )t e e e e .( )t t t ti i i icav

Note that we have assumed a fixed relative phase between the two lasers. This implies that the
maximally squeezed cavity output quadrature is independent of the laser phase noise.

To study the impact of the (global) fluctuating phase φ ( )t on the output light squeezing,
we follow the analysis of laser phase noise presented in [55, 56]. Thus, we go into a fluctuating
frame rotating at the fluctuating frequency ω φ+ ˙ ( )tcav , i.e., we perform the transformation

∫ω τ φ τˆ ↦ ˆ − − ˙
⎡
⎣⎢

⎤
⎦⎥( ) ( )a t a t texp i i d ( ) .

t

cav
0

Note that this means that all optical quadratures have to be measured (e.g. in a homodyne setup)
by using the same random phase noise φ ( )t as the local oscillator [55]. We now also go into an
interaction picture with respect to the free mechanical resonator Hamiltonian. Applying again

standard linearization, assuming φ φ˙ ¯ + ˆ ≈ ˙ ¯± ±( )a d a and applying a rotating wave approximation

we finally find the equations of motion

φ Ω κ κ

Γ
Γ

ˆ̇ = − − ˙ − − ˆ − ˆ + ˆ

ˆ̇ = + ˆ − ˆ + ˆ

− + − +

+ −

( ) ( )

( )

U
g

G G t G G X U U

X G G U X X

2
sin

2
,

2
,M

M

1

0

2 1 1

in

2 1 2 2

in

and

φ Ω κ κ

Γ
Γ

ˆ̇ = + ˙ + + ˆ − ˆ + ˆ

ˆ̇ = − − ˆ − ˆ + ˆ

+ − + −

− +

( ) ( )

( )

U
g

G G t G G X U U

X G G U X X

2
cos

2
,

2
.M

M

2

0

1 2 2

in

1 2 1 1

in

Note that we again take ±G to be real and positive, such that the maximally squeezed cavity

output quadrature is Û1

out
.

As dissipative light squeezing for impedance matched parameters

κ Γ κ˜ = − =− +( )G G4 M
2 2 is strongest at the cavity resonance frequency (cf section 4.3), we

now focus on the output light spectrum at the cavity frequency ω = 0. Assuming (for
simplicity) a flat spectrum for the laser phase noise, i.e., assuming

φ ω φ ω Γ δ ω ω˙ ˙ ′ = + ′[ ] ( )[ ] 2 L where ΓL is the laser linewidth, we find
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ω Γ Γ= = + + −( )S S n g e[ 0] 1 2 . (A.2)U M L
rout

SN
out

th 0
2 2

1

By comparing equation (A.2) to our previous finding (16), we see that (global) laser phase noise
effectively increases the mechanical bath temperature only. Thus, (global) phase noise is
negligible if

Γ Γ≪ g .L M0
2

Note that this condition is equivalent to the one found in [54] which has to be fulfilled to be able
to achieve optomechanical ground state cooling.

Thus, we conclude that (global) phase noise should not pose a strong limitation on our
dissipative squeezing scheme.
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