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Abstract. Optomechanical systems couple light to the motion of nanomechan-
ical objects. Intriguing new effects are observed in recent experiments that in-
volve the dynamics of more than one optical mode. There, mechanical motion
can stimulate strongly driven multi-mode photon dynamics that acts back on
the mechanics via radiation forces. We show that even for two optical modes
Landau–Zener–Stueckelberg oscillations of the light field drastically change the
nonlinear attractor diagram of the resulting phonon lasing oscillations. Our find-
ings illustrate the generic effects of Landau–Zener physics on back-action in-
duced self-oscillations.

The exploration of nanomechanical objects and their interaction with light constitutes the
rapidly evolving field of optomechanics (see [1, 2] for recent reviews). The key element of
any optomechanical system is a laser-driven optical mode whose resonance frequency shifts in
response to the displacement of a mechanical object. The photon dynamics conversely acts back
on the mechanics in terms of a radiation pressure force. These dynamical back-action effects,
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mediated by the light field, can cool or amplify mechanical motion, and even drive the system
into a regime of self-induced mechanical oscillations [3–10] akin to lasing. This regime (called
‘phonon lasing’, ‘parametric instability’ or ‘self-induced oscillations’) constitutes the most basic
nonlinear effect in optomechanical systems. Thus, its exploration is of considerable importance
for several reasons. Not only is it important to map out the instabilities of any optomechanical
system, but it has also been shown that the nonlinear dynamics can be exploited for applications
and fundamental research. For example, it may improve the measurement sensitivity for small
forces [7], and in the deep quantum regime the nonlinear dynamics can generate nonclassical
mechanical quantum states [11]. In addition, nonlinear dynamics in optomechanical systems
may also be exploited for synchronization of mechanical oscillations [12–14].

An exciting new recent development has introduced optomechanical setups with multiple
coupled optical and vibrational modes. For example, two optical and one mechanical mode
(the system to be investigated in the present manuscript) have by now been coupled in
several different experimental setups: (i) inside an optical cavity with a membrane in the
middle [15–17], (ii) in the case of two microtoroids [18] and (iii) in a microsphere with
whispering gallery modes [19]. These systems allow one to realize sophisticated measurement
schemes such as quantum-nondemolition measurements of phonon number [16, 17] or enhanced
position readout [20], novel cooling schemes like ‘Brillouin cooling’ with scattering between
the two optical modes [19] and they can also show phonon lasing behaviour [18]. In addition, the
two-mode setup to be investigated here could be used to mechanically drive nontrivial coherent
photon dynamics between the two modes [21, 22], or to enhance quantum nonlinearities and
thus observe nonlinear effects even on the level of single photons and phonons [23, 24].

Other novel multimode setups feature two mechanical modes coupled to a single
optical mode, where optomechanical synchronization of mechanical self-induced oscillations
has been studied recently [13, 14]. It is to be expected that the near future will see a
largely increasing variety of optomechanical multimode setups, not least due to the powerful
platform of optomechanical crystals [25–29], where optical and vibrational defect modes in
photonic/phononic crystal structures may get coupled. These and similar setups [30, 31]
have stimulated prospects of integrated optomechanical circuits. Ultimately, this could lead to
optomechanical arrays, i.e. arrangements of many such coupled modes. These are currently
inspiring a range of theoretical proposals, such as slow light [32], quantum information
processing [33], synchronization of mechanical oscillations in arrays [12] and various versions
of quantum many-body physics of photons and phonons [34–36].

Given the impact of nonlinear dynamics on applications of optomechanical systems, as
well as the recent surge in multimode optomechanical platforms, it seems timely to ask about
the simplest of all nonlinear optomechanical effects (i.e. self-induced oscillations) in the context
of multimode setups. This will be the subject of the present paper.

As pointed out above, phonon lasing for an optomechanical setup involving a tunable
optical two-mode system has already been demonstrated experimentally [18]. Hence,
implementing a nanomechanical analogue of a laser (as originally envisioned in a slightly
different setting [37]) has finally been achieved. Here, we develop the fully nonlinear theory of
phonon lasing (self-induced mechanical oscillations) in such multimode optomechanical setups.
‘Nonlinear’ here implies that we are able to treat not only the onset of oscillations in the small
amplitude regime, but cover the highly nonlinear dynamics at arbitrary amplitudes. In particular,
we will point out that the mechanical oscillations may induce Landau–Zener (LZ) physics with
respect to the optical two-level system, and that this has a strong effect on the dynamical
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back-action. The resulting phenomena drastically change the nonlinear attractor diagram,
i.e. the relation between the mechanical lasing amplitudes and the experimentally tunable
parameters. Changes in the attractor diagram could become important for applications like
more sensitive measurements [7]. In addition, the rather complex attractor diagram can be used
for a more detailed characterization of the system than would be possible in the purely linear
regime.

Our analysis will exploit the insights we have gained in our previous study of the dynamics
of the light field in such a system [21]. In that study, we assumed some prescribed mechanical
oscillations and found the resulting LZ physics for the driven optical two-level system. It is,
however, far from clear what the impact of this would be on the nonlinear dynamics, when
back-action is included and light and mechanics evolve as a coupled system. That is what we
will explore here.

We will refer to an existing optomechanical setup, i.e. a membrane in the middle of an
optical cavity [15, 17], where our predictions could be verified experimentally. In particular,
we will argue that the more recent version of the experiment [17], with its smaller splitting
in the optical two-level system, would readily give rise to the phenomena to be predicted
here.

However, most of our analysis and discussion are in fact applicable to the quite generic
situation where self-induced oscillations are pumped by a parametrically coupled, driven two-
level system. Our findings thus are also relevant for nanomechanical structures or microwave
modes whose oscillations are amplified by coupling to, e.g. current-driven double quantum dot
setups, superconducting single-electron transistors, or Cooper-pair boxes [38].

We consider the system depicted in figure 1(a). A dielectric membrane is placed in the
middle between two high-finesse mirrors [15]. Transmission through the membrane couples
the optical modes of the left and right half of the cavity, respectively. Focusing on two nearly
degenerate modes, the Hamiltonian of the cavity reads

Ĥ cav = h̄ω0

[
1 −

x̂

l

]
â†

LâL + h̄ω0

[
1 +

x̂

l

]
â†

RâR + h̄g
(

â†
LâR + â†

RâL

)
. (1)

Here, â†
LâL (â†

RâR) is the photon number operator of the left (right) cavity mode, ω0 is the modes’
frequency for x = 0 (where the two modes are degenerate) and 2l is the length of the full
cavity. The membrane’s displacement x̂ linearly changes the modes’ bare frequencies, while
the optical coupling g leads to an avoided crossing for the system’s two optical resonances,
ω± = ±

√
g2 + (ω0x/ l)2 (figure 1(b)). Thus, mechanical oscillations x̂(t) periodically sweep the

system along the hyperbola branches ω±.
We focus on the experimentally accessible, nonadiabatic regime [17, 21] where fast

periodic sweeping through the avoided crossing results in consecutive LZ transitions [39, 40].
For a photon inserted into the left mode, the first transition splits the photon state into a
coherent superposition, the two contributions gather different phases and interfere the next time
the system traverses the avoided crossing (figure 1(c)). For a two-state system, the resulting
interference patterns are known as Landau–Zener–Stueckelberg (LZS) oscillations [41]. These
have been demonstrated in many setups, ranging from atomic systems [42–44] to quantum dots
and superconducting qubits [45–48]. In all of these situations, LZS effects are produced by a
fixed external periodic driving. In contrast, here we address the case where LZS oscillations act
back on the mechanism that drives them (i.e. the mechanical motion), via the radiation pressure
force. We will see that LZS interference strongly influences this back-action force and thereby
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Figure 1. (a) Setup. A moveable membrane, placed inside a cavity, couples two
optical modes aL, aR via transmission. (b) Optical resonance frequencies versus
displacement. The membrane’s displacement linearly changes the bare modes’
frequencies (dashed). Due to the photon coupling g there is an avoided crossing
for the resonance frequencies ω± (black). Mechanical oscillations x(t)=

Acos(�t)+ xa periodically sweep the system along the photon branches (red).
(c) Cavity resonance frequency ω±(x(t)) depending on time. For nonadiabatic
sweeps through the anti-crossing, repeated LZ transitions (highlighted regions)
split the photon state. After each passage, the two contributions gather a phase
difference that leads to subsequent interference. The resulting LZS oscillations in
the light field act back on the mechanics via the radiation pressure force. (d) For
sufficiently large back-action-induced anti-damping, the system enters a regime
of mechanical self-oscillations (phonon lasing).

drastically affects the mechanical self-oscillations that occur when this force overcomes the
internal friction (figure 1(d)). More generally, the following discussion thus illustrates the effect
of LZS dynamics on back-action induced instabilities.

Given the radiation pressure force F̂rad = −∂ Ĥcav/∂ x̂ , the coupled equations of motion for
the displacement x̂(t) and âi(t) (i = L,R), read

¨̂x =A0(â
†
LâL − â†

RâR)−�
2(x̂ − x0)−0

˙̂x + ξ̂ (t), (2)

˙̂ai =
1

ih̄

[
âi , Ĥ cav

]
−
κ

2
âi −

√
κ b̂i

in(t), (3)

where we used input–output theory for the light fields and set A0 = h̄ω0/ lm. The membrane
has a mechanical frequency�, an intrinsic damping rate 0 and a rest position x0. Photons decay
at a rate κ out of the cavity. We assume the left mode âL to be driven by a laser at frequency
ωL; the input fields b̂i

in(t) contain this contribution. In the following, we will consider purely
classical (large-amplitude) nonlinear dynamics and replace the operators âi(t) by the coherent
light amplitudes αi(t). The classical input fields then read βR

in = 0, βL
in = e−iωLt

√
Pin/h̄ωL where

Pin is the laser input power and the mechanical Langevin force will be neglected (ξ ≈ 0). For
convenience, we define the laser detuning 1L = ωL −ω0.
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Figure 2. (a) Effective optomechanical damping 0opt for given mechanical
oscillations x̄(t)= Ā cos(�t)+ x̄a as a function of mean position x̄a and laser
detuning 1L. Parameters: Ā/�= 0.5, g/�= 0.2, κ/�= 0.1. Mechanical
sidebands (dashed), displaced by multiples of �, show cooling (blue; 0opt > 0)
and amplification (red; 0opt < 0).

∣∣0opt

∣∣ is largest if the optical modes’ frequency
difference is in resonance with the mechanical frequency�; position (b) and (c).
For finite amplitude, this yields an AT splitting (see circled regions). 0opt in units
of 2ω0 Pin/m�3l2. (b) Creation (amplification) or (c) destruction (cooling) of a
phonon upon transferring a photon from left to right. (d) At the degeneracy point,
the bare optical frequencies are swept past each other in an oscillatory fashion
(cf figure 1(b)).

The radiation pressure force gives rise to a time-averaged net mechanical power input
〈Frad ẋ〉. In analogy to the intrinsic friction 0, see equation (2), we can define 〈Frad ẋ〉 =

−m0opt〈ẋ2
〉 such that we obtain an effective optomechanical damping rate

0opt = −
A0

〈ẋ2〉
〈
(
|αL(t)|

2
− |αR(t)|

2
)

ẋ〉. (4)

For 0opt > 0 (0opt < 0) the light-field interaction damps (anti-damps) the mechanics. For given
oscillations x(t)= A cos(�t)+ xa, 0opt can be calculated via the periodic light field dynamics
αL(t), αR(t) that is found by solving equation (3); see also equation (6) further below. Note that
our 0opt is amplitude-dependent, and the usual linearized case [16, 49] is recovered for A → 0.
In the following we will express displacement in terms of frequency, x̄(t)= (ω0/ l)x(t) (see
equation (1)); likewise for Ā, x̄a.

Figure 2(a) shows results for 0opt in this setup, at moderate amplitudes A. Optomechanical
damping and amplification is largest if the optical modes’ frequency difference is in resonance
with the mechanical frequency � [10, 18]. In this case, photon transfer from the laser-driven
left mode into the right one involves absorption (or emission) of a phonon, that yields strong
mechanical amplification (or cooling), see figures 2(b) and (c). For finite amplitudes, we observe
an Autler–Townes (AT) splitting [50] that scales as 2g Ā/� [21]. Given 0opt, we now turn to
discuss back-action driven mechanical self-oscillations (phonon lasing) of the membrane.

For suitable laser input powers, the radiation pressure force only weakly affects the
mechanics over one oscillation period and the mechanics approximately performs sinusoidal
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Figure 3. Attractor diagram for phonon lasing oscillations (regime �> 2g).
(a) Effective optomechanical damping 0opt as a function of laser detuning 1L

and oscillation amplitude Ā, for a membrane positioned at the degeneracy
point x̄a = 0; other parameters as in figure 2. For sufficiently large (but not too
large) mechanical oscillation amplitudes, the interference between consecutive
LZ transitions (figure 1(c)) leads to LZS oscillations. They result in ridges of
high 0opt, whose oscillatory shape can be understood via the Floquet eigenvalues
ε± (middle panel) for the periodic light field dynamics. The ridges are located
at 1L = m�+ ε j( Ā), where ε±( Ā)≈ ±g J0(2 Ā/�) involves a Bessel function.
Dashed lines indicate |1L| = Ā. (b) Blow-up of framed region in (a). The
contour lines at 0opt(A, xa)= −0 (equation (5)) denote possible attractors
(allowed amplitude values: solid—stable/dashed—unstable) for the mechanical
self-oscillations generated by back-action; plotted for two different values of −0,
as indicated. (0, 0opt in units of 2ω0 Pin/m�3l2)

oscillations at its unperturbed eigenfrequency �; x(t)= A cos(�t)+ xa. The possible attractors
of the dynamics (A, xa) have to meet two conditions [7, 8]. Firstly, the time-averaged total force
must vanish: 〈ẍ〉 = 0. Secondly, the overall mechanical power input due to radiation pressure
must equal the power loss due to friction, 〈ẍ ẋ〉 = 0. From equation (2), the power balance
〈ẍ ẋ〉 = 0 is equivalent to

0opt(A, xa)= −0. (5)

The force balance 〈ẍ〉 = 0 yields 〈Frad(t)〉 = m�2 (xa − x0), i.e. the radiation pressure force
displaces the membrane’s average position xa from its rest position x0. In general, one solves the
force balance to find xa = xa(A, x0) and uses this to calculate 0opt(A, xa) [7, 8]. For high quality
mechanics (�/0 � 1), the power balance (equation (5)) is met for weak radiation pressure
forces where xa ' x0. For clarity, we will focus on this case. Otherwise, attractor diagrams get
deformed slightly [7].

Figure 3(a) displays the effective optomechanical damping 0opt depending on laser-
detuning 1L and amplitude A. The structure of this diagram is drastically different from the
standard case with one optical mode [7, 8]. There are ‘ridges’ of high 0opt which display an
oscillatory shape (clarified in the inset).

A physical understanding of figure 3 can be found from the general structure of the light
field dynamics that enters the optomechanical damping, equation (4). For given mechanical
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oscillations x(t)= Acos(�t)+ xa, the formal solution to equation (3) can be expressed as

|αi(t)|
2
=
κPin

h̄ωL

∣∣∣∣∫ t

−∞

G i(t, t ′) e−κ(t−t ′)/2e−i1Lt ′ dt ′

∣∣∣∣ , (6)

where the Green’s function G i(t, t ′) describes the amplitude for a photon entering the left
mode at time t ′ and to be found in the left or right one (i = L,R) at time t . From equation (3)
G i(t, t ′) is found to be G i(t, t ′)= ãi(t, t ′)e−iφ(t ′) where φ(t ′)= ( Ā/�) sin(�t ′) and ãi(t, t ′) is a
solution to

i
d

dt

(
ãR

ãL

)
=

(
x̄a ge+2iφ(t)

ge−2iφ(t)
−x̄a

)(
ãR

ãL

)
(7)

with t > t ′ and initial condition ãR(t ′, t ′)= 0, ãL(t ′, t ′)= 1. Thus, the internal photon dynamics
between the two modes ãi(t, t ′) is expressed in terms of a two-level system with a time-
dependent coupling ge2iφ(t). With ψ = (ãR, ãL)

T, equation (7) is the Schrödinger equation
including a time-periodic Hamiltonian, H(t + T )= H(T ). In this case it is appropriate to
consider the time-evolution operator for one period, ψ(t ′ + T )= U (T )ψ(t ′), and its two
eigenvalues, the so-called Floquet eigenvalues ε±: U (T )χ± = exp(−iε±T )χ±. U (T ) is obtained
by integrating equation (7).

Using Floquet theory [51], we find the general structure of the Green’s function
G i(t, t ′)=

∑
j,n,n′ Cn,n′, j

i e−i�(nt−n′t ′)e−iε j (t−t ′), where Cn,n′, j
i are time-independent coefficients.

Then, via equation (6) we obtain pronounced resonances in 0opt located at 1L = m�+
ε±( Ā), corresponding to the ridges in figure 3. The interference between consecutive LZ
transitions renormalizes the coupling between modes in terms of Bessel functions Jn: ge2iφ(t)

=

g
∑

n Jn(2 Ā/�)ein�t (equation (7)). This results in an oscillatory modulation of the Floquet
eigenvalues ε±( Ā). At certain amplitudes, these vanish due to total destructive interference, see
figure 3(a). The oscillatory shape of the ridges in 0opt then directly determines the attractor
diagram for the self-induced oscillations, via the power balance equation (5), see figure 3(b).

Regarding the global structure of figure 3(a), 0opt tends to be large near 1L = ± Ā (dashed
lines). This is because then the left mode gets into resonance with the laser at the motion’s
turning point. For larger amplitudes, we recover the predictions for the standard optomechanical
setup [7] (checkerboard in figure 3(a)).

So far, we discussed dynamical back-action effects for parameters where the mechanical
frequency is larger than the optical splitting,�> 2g (figures 2 and 3). In general, the parameter
space can be subdivided as shown in figure 4(a). Multimode dynamics that goes beyond
the standard scenario [7, 8] can only be observed if the photon lifetime inside the cavity
is larger than the timescale for photons to tunnel between modes, 2g > κ (colored region,
figure 4(a)). Otherwise, photons inserted into the left mode decay before the second mode affects
the dynamics and we recover the standard results [7, 8]. Within the new region (colored in
figure 4(a)), the most interesting regime is where mechanical sidebands can in fact be resolved,
i.e. κ < �.

Above, we had focussed on the sector 2g <� within this regime. Now figure 4(b)
displays 0opt in the opposite sector where 2g >�. This is important, as experimental setups
will presumably first detect the effects described here in that regime (see our discussion on
experimental parameters below).
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Figure 4. (a) Overview of the parameter space. Multimode dynamics leads to
effects beyond the standard scenario when the optical splitting can be resolved:
2g > κ (colored region). Parameter set (1) corresponds to the one in figures 2
and 3; set (2) is considered in (b) and (c). (b) Effective optomechanical damping
0opt for given mechanical oscillations x̄(t)= Ā cos(�t)+ x̄a, as a function of
mean position x̄a and laser detuning 1L (compare figure 2). Parameters: Ā/�=

1.5, g/�= 2.3, κ/�= 0.2. (c) Attractor diagram. Effective optomechanical
damping 0opt as a function of laser detuning 1L and oscillation amplitude Ā
for a membrane positioned at the degeneracy point, x̄a = 0. Further parameters
as in (b). The solid contour line 0opt(A, xa)= −0 indicates the stable attractors
for self-induced oscillations. Green (thick) lines show the asymptotic behavior.
(0opt in units of 2ω0 Pin/m�3l2).

When 2g >�, several mechanical sidebands lie within the avoided crossing. With respect
to self-induced mechanical oscillations, these sidebands and their interaction yield an intricate
web of multistable attractors, see figure 4(c).

Provided the setup is sideband-resolved (i.e. κ < �), then one can imagine that during
one cycle of oscillation the optical field accumulates a phase that is the time-integral over
the (changing) instantaneous optical frequency ω+(t). Since κ < �, the driving laser field will
actually see an effective optical frequency which is the time-average of ω+(t). This picture
immediately suggests that the intracavity power (and all effects on the nonlinear dynamics)
will be largest when the laser is in resonance with that time-averaged frequency. Therefore,
the global asymptotics of these resonant structures (green lines in the attractor diagram,
figure 4(c)) can be found from the condition: 1L = 2〈ω+(t)〉 = 4

√
g2 + Ā2 E(π/2, k)/π , where

k =

√
Ā2/

(
g2 + Ā2

)
and E(π2 , k) turns out to be the complete elliptic integral of the second

kind.
Apart from these asymptotes, the attractor diagram in that regime is dominated by

sidebands which are removed from these asymptotic lines by integer multiples of �,
corresponding to multi-phonon absorption/emission.

We now turn to a brief discussion of the required experimental parameters. Since we
are interested in nonadiabatic dynamics of the light field, the splitting g should not be too
large. In the original membrane-in-the-middle setup [15], the splitting was proportional to the
transmission amplitude for photons to pass through the membrane. There, due to a membrane
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reflectivity in the range of about 1/2, the splitting was comparable to the free spectral range
of the optical cavity, i.e. roughly 2g ∼ 2π × 2 GHz. This would still be far larger than the
membrane oscillation frequency of about �∼ 2π × 100 kHz, making it difficult to observe the
effects discussed here. In addition, at these levels of reflectivity, the two-mode approximation
used here would not be very good, and the optical spectrum should rather be treated with a
cos-type dependence on the membrane position.

However, a more recent version [17] of that setup features far smaller splittings. This is
due to the fact that now another effect is exploited to couple two optical modes: the modes
in question are now cavity modes of different transverse mode profile, and the photon tunnel
coupling between them is due to slight asymmetries of the membrane alignment. Thus, the
coupling strength g is no longer tied to the membrane reflectivity. Indeed, splittings down to
2g/2π ∼ 0.2 MHz have been reported, 10 000 times smaller than what was available in the
original setup. Decreases in g are required to increase the curvature of the optical dispersion
(∂2ω+/∂x2 in our notation) and thereby increase the quadratic coupling (desired for future
applications such as single-phonon or phonon shot noise measurements). Thus, future setups
will tend to operate in such a regime. This is the parameter regime that we need for our approach
to be applicable and for the predictions here to become relevant. Note that for us it is only
necessary for g to be comparable to � (say, within an order of magnitude), not necessarily
much smaller. This is demonstrated especially in figure 4. In addition, future applications may
increase the mechanical frequency by either turning to a smaller membrane or to higher-order
mechanical flexural modes of the membrane, which sometimes have better damping properties
as well. This would also go into the direction of g ∼�. In fact, the discussion of future setups
in [17] envisions having �∼ 2π × 1 MHz.

The finesse of the cavity is sufficient also in the more recent version of the experiment, i.e.
κ is small enough to resolve the splitting g. In addition, future experiments on the applications
mentioned above will also require the sideband-resolved regime κ < �, such that this can be
assumed to be attained. We conclude that future investigations of phonon lasing in such a setup
will be able to show the features predicted here, as all requirements will be met.

The ansatz adopted here, i.e. of sinusoidal mechanical motion, will break down at very
large laser powers, when the system can become chaotic (which has also been seen in
standard optomechanical setups [52]). We have checked by direct numerical simulations of the
original equations of motion (see equations (2) and (3)) that, for the typical parameters of the
experiments using this kind of setup, this occurs at far larger powers than the ones discussed
here. In our dimensionless units, these powers are about Pin/h̄ω0�∼ 104 for g/�= 0.2,
κ/�= 0.1, 0/�= 0.01 and A0ω0/ l�3

= 5 × 10−6.
To conclude, we have investigated self-induced mechanical oscillations (phonon lasing) in

a multimode optomechanical system. The mechanical motion drives Stueckelberg oscillations in
the light field of two coupled optical modes, and this drastically modifies the attractor diagram.
The additional influence of quantum (and thermal) noise could be analyzed along the lines
of [7, 8]. Our example, which can be realized in present optomechanical setups, illustrates the
potential of LZ physics to appreciably alter lasing behavior.
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