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We study the nonlinear driven dissipative quantum dynamics of an array of optomechanical systems. At

each site of such an array, a localized mechanical mode interacts with a laser-driven cavity mode via

radiation pressure, and both photons and phonons can hop between neighboring sites. The competition

between coherent interaction and dissipation gives rise to a rich phase diagram characterizing the optical

and mechanical many-body states. For weak intercellular coupling, the mechanical motion at different

sites is incoherent due to the influence of quantum noise. When increasing the coupling strength, however,

we observe a transition towards a regime of phase-coherent mechanical oscillations. We employ a

Gutzwiller ansatz as well as semiclassical Langevin equations on finite lattices, and we propose a realistic

experimental implementation in optomechanical crystals.
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Introduction.—Recent experimental progress has brought
optomechanical systems into the quantum regime: A single
mechanical mode interacting with a laser-driven cavity field
has been cooled to the ground state [1,2]. Several of these
setups, in particular optomechanical crystals, offer the po-
tential to be scaled up to form optomechanical arrays.
Applications of such arrays for quantum information pro-
cessing [3,4] have been proposed. Given these develop-
ments, one is led to explore quantum many-body effects
in optomechanical arrays. In this work, we analyze the
nonlinear photon and phonon dynamics in a homogeneous
two-dimensional optomechanical array. In contrast to earlier
works [3–6], here we study the array’s quantum dynamics
beyond a quadratic Hamiltonian. To tackle the nonequilib-
rium many-body problem of this nonlinear dissipative sys-
tem, we employ a mean-field approach for the collective
dynamics. First, we discuss photon statistics in the array, in
particular, how the photon blockade effect [7] is altered in
the presence of intercellular coupling. The main part of the
article focuses on the transition of the collective mechanical
motion from an incoherent state (due to quantum noise) to an
ordered state with phase-coherent mechanical oscillations.
For these dynamics, the dissipative effects induced by the
opticalmodes play a crucial role. On the one hand, they allow
the mechanical modes to settle into self-induced oscillations
[8] once the optomechanical amplification rate exceeds the
intrinsic mechanical damping. On the other hand, the funda-
mental quantum noise (e.g., cavity shot noise) diffuses the
mechanical phases and prevents the mechanical modes from
synchronizing. This interplay leads to an elaborate phase
diagram characterizing the transition. We develop a semi-
classical model to describe the effective dynamics of the
mechanical phases and to study the system on finite lattices.

While true long-range order is prohibited for a two-
dimensional system with continuous symmetry, at least
for equilibrium systems, a Beresinskii-Kosterlitz-Thouless

transition towards a state with quasi-long-range order is
possible. The ordered mechanical phase thus resembles
the superfluid phase in two-dimensional cold atomic gases
[9] or Josephson junction arrays [10]. Notably, optomechan-
ical arrays combine the tunability of optical systems with the
robustness and durability of an integrated solid-state device.
Other driven dissipative systems that have been studied with
regard to phase transitions recently include cold atomic
gases [11–14], nonlinear cavity arrays [15,16] and optical
fibers [17]. In a very recent work and along the lines of [11],
the preparation of long-range order for photonic modes
was proposed using the linear dissipative effects in an
optomechanical array [5]. Our work adds the novel aspect
of a mechanical transition to the studies of driven dissipative
many-body systems.
Model.—We study the collective quantum dynamics of a

two-dimensional homogeneous array of optomechanical
cells (Fig. 1). Each of these cells consists of a mechanical

displacement electric field

0 1 0 1

FIG. 1 (color online). Example implementation of an optome-
chanical array: A two-dimensional snowflake optomechanical
crystal [38,39] supports localized optical and mechanical modes
around defect cavities. Here, we propose arranging them in a
superstructure, forming the array. The insets show electric field ~E
and displacement field ~u of an isolated defect cavity (obtained
fromfinite element simulations). Due to the finite overlap between
modes of neighboring sites [29], photons and phonons can hop
through the array, see Eq. (2). Awide laser beam drives the optical
modes of the array continuously and the reflected light is read out.
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mode and a laser driven optical mode that interact via the
radiation pressure coupling at a rate g0 (@ ¼ 1):

Ĥom;j ¼ ��âyj âj þ�b̂yj b̂j � g0ðb̂yj þ b̂jÞâyj âj
þ �Lðâyj þ âjÞ: (1)

The mechanical mode (b̂j) is characterized by a frequency

�. The cavity mode (âj) is transformed into the frame

rotating at the laser frequency (� ¼ !laser �!cav) and
driven at the rate �L. In the most general case, both
photons and phonons can tunnel between neighboring sites
hiji at rates J=z and K=z, where z denotes the coordination
number. The full Hamiltonian of the array is given by

Ĥ ¼ P
jĤom;j þ Ĥint, with

Ĥint ¼ � J

z

X
hi;ji

ðâyi âj þ âiâ
y
j Þ �

K

z

X
hi;ji

ðb̂yi b̂j þ b̂ib̂
y
j Þ: (2)

To bring this many-body problem into a treatable form, we

apply the Gutzwiller ansatz Ây
i Âj � hÂy

i iÂj þ Ây
i hÂji �

hÂy
i ihÂji to Eq. (2). The accuracy of this approximation

improves if the number of neighboring sites z increases.
For identical cells, the index j can be dropped and the
Hamiltonian reduces to a sum of independent contribu-
tions, each of which is described by

Ĥmf ¼ Ĥom�Jðâyhâiþ âhâyiÞ�Kðb̂yhb̂iþ b̂hb̂yiÞ: (3)

Hence, a Lindblad master equation for the single cell density

matrix �̂, d�̂=dt ¼ �i½Ĥmf; �̂� þ �D½â��̂þ �D½b̂��̂ can

be employed. The Lindblad terms D½Â��̂ ¼ Â �̂ Ây �
ÂyÂ �̂ =2� �̂ÂyÂ=2 take into account photon decay at a
rate � and mechanical dissipation (here assumed due
to a zero temperature bath) at a rate �.

Photon statistics.—Recently, it was shown that the effect
of the photon blockade [7] can appear in a single optome-
chanical cell: The interaction with the mechanical mode
induces an optical nonlinearity of strength g20=� [7,18] and

the presence of a single photon can hinder other photons
from entering the cavity. To observe this effect, the non-
linearity must be comparable to the cavity decay rate, i.e.,
g20=� * �, and the laser drive weak (�L � �) [7,19].

To study nonclassical effects in the photon statistics,
we analyze the steady-state photon correlation function

gð2Þð�Þ ¼ hâyðtÞâyðtþ �Þâðtþ �ÞâðtÞi=hâðtÞyâðtÞi2 [20] at
equal times (� ¼ 0). Here (Fig. 2), we probe the influence of
the collective dynamics by varying the optical coupling
strength J, while keeping the mechanical coupling K zero
for clarity. We note that, when increasing J, the optical
resonance effectively shifts:� ! �þ J. To keep the photon
number fixed while increasing J, the detuning has to be
adapted [21]. In this setting, we observe that the interaction
between the cells suppresses antibunching [Fig. 2(b)]. The
photon blockade is lost if the intercellular coupling becomes
larger than the effective nonlinearity, 2J * g20=�. Above

this value, the photon statistics shows bunching, and ulti-
mately reaches Poissonian statistics for large couplings.

Similar physics has recently been analyzed for coupled
qubit-cavity arrays, [21]. For large coupling strengths,
though, Fig. 2(a) reveals signs of the collective mechanical
motion (hatched area). There we observe the correlation
function to oscillate (at the mechanical frequency) and to
show bunching. We will now investigate this effect.
Collective mechanical quantum effects.—To describe the

collective mechanical motion of the array, we focus on the
case of purely mechanical intercellular coupling (K > 0,
J ¼ 0) for simplicity. Note, though, that the effect is also
observable for optically coupled arrays, as discussed above.
As our main result, Figs. 3(a) and 3(d) show the

sharp transition between incoherent self-oscillations and a
phase-coherent collective mechanical state as a function of
both laser detuning � and coupling strength K: In the
regime of self-induced oscillations, the phonon number

hb̂yb̂i reaches a finite value. Yet, the expectation value

hb̂i remains small and constant in time. When increasing

the intercellular coupling, though, hb̂i suddenly starts
oscillating and reaches a steady state

hb̂iðtÞ ¼ �bþ re�i�eff t: (4)

Here, we introduced the mechanical coherence r and the
oscillation frequency �eff , which is shifted by the optical
fields and the intercellular coupling, cf. Eq. (6).
Our more detailed analysis (see below) indicates

that this transition results from the competition between
the fundamental quantum noise of the system and the
tendency of phase locking between the coupled nonlinear
oscillators. Below threshold, the quantum noise from the
phonon bath and the optical fields diffuses the mechanical
phases at different sites and drives the mechanical motion
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FIG. 2 (color online). Loss of the photon blockade for increas-
ing optical coupling in an array of optomechanical cavities.
(a) The equal time photon correlation function shows antibunch-
ing (gð2Þð0Þ< 1) and bunching (gð2Þð0Þ> 1) as a function of
detuning � and optical coupling strength J. The smallest values
of gð2Þð0Þ are found for a detuning �0 ¼ �g20=�. (b) When

increasing the coupling J while keeping the intracavity photon
number constant, i.e., along the dashed line in panel (a), the
photon blockade is lost (black solid line). For a smaller driving
power (blue solid line, �L ¼ 5� 10�5�), anti-bunching is more
pronounced and the behavior is comparable to that of a nonlinear
cavity (dashed line). The hatched area in (a) outlines a region
where a transition towards coherent mechanical oscillations has
set in. � ¼ 0:3 �, �L ¼ 0:65�, g0 ¼ 0:5 �, � ¼ 0:074 �.
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into an incoherent mixed state. The reduced density

matrix �̂ðmÞ is predominantly occupied on the diagonal, see

Fig. 3(b), and the Wigner distribution, Wðx;pÞ¼ð1=�@Þ�R1
�1hx�yj�̂ðmÞjxþyie2ipy=@dy, has a ringlike shape, reflect-

ing the fact that the mechanical phase is undetermined
[22,23]. Above threshold, the mechanical motion at different
sites becomes phase locked, and the coherence parameter r
reaches a finite value. The emergence of coherence also

becomes apparent from the off-diagonal elements of �̂ðmÞ
[Fig. 3(c)]. The corresponding Wigner function assumes the
shape of a coherent state with a definite phase oscillating in
phase space. Thus, this transition spontaneously breaks the
time-translation symmetry. In a two-dimensional implemen-
tation, true long range order is excluded, but the coherence
between different sites is expected to decay as a power law
with distance.We also note that this transition is the quantum
mechanical analogon of classical synchronization, which
was studied for optomechanical systems in [24–26]. An
important difference is, though, that the classical nonlinear
dynamics was analyzed for an inhomogeneous (with disor-
deredmechanical frequencies) system in the absenceof noise

[24–26], while in our case disorder is only introduced via
fundamental quantum noise. Quantum synchronization has
also been discussed in the context of linear oscillators [27]
and nonlinear cavities [28] recently.
The laser detuning determines both the strength of the

self-oscillations and the influence of the cavity shot noise
on the mechanical motion. It turns out that the diffusion of
the mechanical phases is pronounced close to the onset of
self-oscillations and at the mechanical sideband [29]. As
we will show below, even the coherent coupling between
the mechanical phases (ultimately leading to synchroniza-
tion) is tunable via the laser frequency. As a result, the
synchronization threshold depends nontrivially on the
detuning parameter �, see Fig. 3(a).
Langevin dynamics on finite lattices.—In order to gain

further insight into the coupling and decoherence mecha-
nisms as well as effects of geometry and dimensionality,
we analyze the semi-classical Langevin equations of the
full optomechanical array:

_�i ¼
�
�i�� �

2

�
�i þ ig0j�ij2 þ i

K

z

X
hiji

�j þ
ffiffiffiffi
�

2

s
��

_�i ¼ i�þ ig0ð�i þ ��
i Þ �

�

2

� �
�i � i�L þ

ffiffiffiffi
�

2

r
��: (5)

The fluctuating noise forces ��¼�;�ðtÞ mimic the effects

of the zero temperature phonon bath and the cavity shot
noise, respectively. They are independent at each site and
obey h��i ¼ 0 and h��ðtÞ��

�ðt0Þi ¼ 	ðt� t0Þ. In this con-
text, h. . .i denotes the average over different realizations of
the stochastic terms. This Langevin approach is equivalent
to the truncated Wigner approximation (see [30] for a
review), and it has shown good qualitative agreement
with the full quantum dynamics for a single optomechan-
ical cell [22,31]. It allows us to treat the effects of quantum
fluctuations at all wavelengths on the spatial phase corre-
lations via numerical simulations. At this point, a full
quantum treatment for sufficiently large systems remains
a challenging problem for future studies.
First, we study the onset of quasi-long-range order in a

finite system. To this end we evaluate the correlations
Cðd ¼ ji� jjÞ ¼ hei’ie�i’ji, where ei’i ¼ �i=j�ij.
Numerical calculations on a 30� 30 square lattice [see
Fig. 4(a)] indicate that for weak intercellular coupling the
mechanical phases at different sites are uncorrelated even for
small distances d. When increasing the coupling strength,
however, themechanicalmotion becomes correlated over the
whole array with only a slow decrease with distance. The
coupling threshold, here defined by setting a lower bound of
Cð14Þ> 0:01, varies with the coordination number, see
Fig. 4(b). Within the mean-field approximation, i.e., for a
lattice with global coupling of all sites, fluctuations between
neighboring sites and hence the threshold value are under-
estimated. The coupling threshold grows with the quantum
parameter [22], i.e., the ratio of optomechanical coupling and
cavity decay rate, g0=�, see Fig. 4(c): For g0 � �, single
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FIG. 3 (color online). Transition from the incoherent to the
synchronized (coherent) phase: (a) Mechanical coherence r
[Eq. (4)] as a function of laser detuning� andmechanical coupling
K. At weak coupling, the self-oscillations are incoherent, r ¼ 0,
due to quantum noise. When increasing the coupling strength, the
systems shows a sharp transition towards the ordered regime,
where the mechanical oscillations are phase coherent, r > 0. (b),
(c) Modulus of the density matrix elements (in Fock space) and
Wigner density of the collective mechanical state in the incoherent
(b) and the coherent regime (c), as marked in (a). (d) Mechanical
coherence r as a function of coupling strength K along the dashed
line in (a). The dotted line shows the optical readout of coherence,
i.e., the oscillating component of the photon number hâyâi,
proportional to the intensity of the reflected beam and thus
directly accessible in experiment. g0 ¼ � ¼ 0:3 �, �L ¼ 1:1�,
� ¼ 0:074 �.

PRL 111, 073603 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

16 AUGUST 2013

073603-3



photons and phonons interact strongly and quantum fluctua-
tions hamper synchronization.

Synchronization threshold.—For an analytical approach,
the complexity of the Langevin equations can be reduced
by integrating out the dynamics of the optical modes and
the mechanical amplitudes and by going back to the mean-
field approximation [29]. The resulting equation describes
the coupling of the mechanical phase on a single site, ’, to
a mean field �:

_’ ¼ ��ð �AÞ þ KR cosð�� ’Þ þ K1R sinð�� ’Þ
þ

ffiffiffiffiffiffiffiffiffiffi
2D’

q
�’ þOðR2Þ: (6)

Here, the order parameter is defined as hei’ji � Rei�. The
rate K1 ¼ ðd�� K=2ÞK=
 determines the coupling of
phases mediated by slow amplitude modulations between
neighboring sites. These beatmodes couple back to the phase
dynamics via the amplitude dependent optical spring effect,
�ð �AÞ þ d�ðA� �AÞ= �A, where d� ¼ �Aðd�=dAÞjA¼ �A, and
the bare mechanical coupling K, leading to two opposing
terms in K1. Here, �A denotes the steady state mechanical
amplitude and 
 the amplitude decay rate set by the optical

field. The fluctuating noise force��’ comprises the effects

of mechanical fluctuations and radiation pressure noise and
is characterized by a diffusion constant D’ [29,31].

Equation (6) reveals the close connection to the
Kuramoto model [32] and the two-dimensional xy model.
In the incoherent regime, the order parameter R is zero and
the phase fluctuates freely. In the coherent regime, the
restoring force �K1R leads the phase ’ towards a fixed
relation with �. The cosine term only renormalizes the
oscillation frequency. This statement can be clarified by a
linear stability analysis, see [29,33]. It turns out that the
incoherent phase becomes unstable for

K1 ¼ 2D’; (7)

defining the threshold of the transition. Moreover, if K1

becomes negative, no stable phase synchronization is
possible. This situation arises if d�< 0, or for large
intercellular coupling rates K > 2d�, see Fig. 3(d).
Experimental prospects.—We note that observation of

the mechanical phase transition does not require single
photon strong coupling (g0 * �): The quantum fluctua-
tions of the light field will dominate over thermal fluctua-
tions as long as 4g20j�j2=� > kBT=Q. This is essentially

the condition for ground-state cooling, which has been
achieved using high-Q mechanical resonators and cryo-
genic cooling [1,2], see Table I. In contrast, the photon-
blockade effect (Fig. 2) requires low temperatures T and
g20 * ��, or at least, in a slightly modified setup [35,36],

g0 * �. While still challenging, optomechanical systems
are approaching this regime [37].
Microfabricated optomechanical systems such as micro-

resonators (e.g., [34]), optomechanical crystals (e.g., [2])
or microwave-based setups (e.g., [1]) lend themselves to
extensions to optomechanical arrays. Here, we focus on
optomechanical crystals, which are well suited due to
their extremely small mode volumes. The properties of
two-dimensional optomechanical crystals have been ana-
lyzed in [38]. The finite overlap of the evanescent tails of
adjacent localized modes [29] results in a coupling of the
form of Eq. (2), in analogy to the tight-binding description
of electronic states in solids. Sufficiently strong optical
and mechanical hopping rates are feasible, see [24] for
one-dimensional and [29] for two-dimensional structures.
The simultaneous optical driving of many cells may be
realized by a single broad laser beam irradiating the slab,
see Fig. 1. Alternatively, similar physics may be observed
for many mechanical modes coupling to one extended
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FIG. 4 (color online). Langevin dynamics on finite lattices:
(a) Correlations Cðd ¼ ji� jjÞ ¼ jhei’ie�i’j ij in a 30� 30
optomechanical array. Quasi-long-range order sets in for
sufficiently large coupling strengths. K ¼ f0:09; 0:105; 0:107;
0:12; 0:15g �. (b) Correlations over a distance of d ¼ 14 as a
function of mechanical coupling strength K for a square lattice
(z ¼ 4, squares), a hexagonal lattice (z ¼ 6, triangles) slightly
below the mean-field result (circles). (c) Coupling threshold as a
function of quantum parameter g0=� (squares: square lattice,
empty (filled) circles: semiclassical (quantum) mean-field ap-
proach). �þ g20=� ¼ 0:34, g0 ¼ 0:1� in (a),(b), g0�L ¼ 0:33�
in (c), other parameters as in Fig. 3.

TABLE I. Parameters of optomechanical systems [1,2,34]: Temperature of phonon bath T,
strength of mechanical fluctuations �nth � kBT=Q, strength of cavity shot noise �opt �
4g20j ��j2=�, quantum parameter g0=� and approximate size L.

Setup T½K� �nth=� �opt=� g0=� L½�m�
Microwave based 25 mK 10�4 7� 10�3 10�3 �100
Optomech. crystal 20 K 10�3 4� 10�3 2� 10�3 �4
Microtoroid 650 mK 7� 10�2 6� 10�2 5� 10�4 �30
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in-plane optical mode [6,24,25] (thereby effectively real-
izing global coupling).

The transition towards the synchronized phase can be
detected by probing the light reflected from the optome-
chanical array and measuring the component oscillating at
the mechanical frequency, see Fig. 3(d). To read out corre-
lations between individual sites, the intensities of individual
defect cavities may be analyzed [29], for example by evan-
escently coupling them to tapered fibers or waveguides.

We expect the transition to be robust against disorder
[24]. One may also study the formation of vortices and
other topological defects induced by engineered irregular-
ities and periodic variations, and explore various different
lattice structures or the possibility of other order phases
(e.g., antiferromagnetic order). Thus, optomechanical
arrays provide a novel, integrated, and tunable platform
for studies of quantum many body effects.
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