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Abstract. We consider the nonequilibrium dynamics of an interacting spin-1
2

fermion gas in a one-dimensional optical lattice after switching off the confining
potential. In particular, we study the creation and the time evolution of
spatially separated, spin-entangled fermionic pairs. The time-dependent density-
matrix renormalization group is used to simulate the time evolution and
evaluate the two-site spin correlation functions, from which the concurrence
is calculated. We find that the typical distance between entangled fermions
depends crucially on the onsite interaction strength, and that a time-dependent
modulation of the tunnelling amplitude can enhance the production of spin
entanglement. Moreover, we discuss the prospects of experimentally observing
these phenomena using spin-dependent single-site detection.
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1. Introduction

1.1. Motivation

The tremendous experimental progress with ultra cold atoms in optical lattices makes them
a unique playground for studying nonequilibrium dynamics of many-body systems. The
remarkable features of these systems are the precise and dynamical control of the interparticle
interaction and external trapping potentials, as well as long coherence times [1]. Different
nonequilibrium initial states can be generated by a quantum quench (for a recent review see [2]):
a parameter in the Hamiltonian is suddenly changed such that the system, initially in the ground
state of the Hamiltonian, is afterwards in an excited state of the new Hamiltonian. Quenches
have been experimentally realized, for instance, in the interaction strength [3–5] and in the
additional trapping potential by either switching it off [6] or displacing its centre [7–9]. This led
to observations such as the collapse and revival of the coherence in a Bose–Einstein condensate
after a quench from the superfluid to the Mott insulating regime [3].

New detection schemes [10–12] provide the possibility of observing the many-body
state at the single-site and single-atom level and make these systems even more suitable for
studying the dynamics of (spatial) correlations in nonequilibrium situations. These methods
have already been used to monitor the propagation of quasi-particle pairs [13, 14] and a single
spin impurity [15] in a bosonic gas. They have also inspired theoretical work on many-body
dynamics subject to observations, treating issues such as entanglement growth in a bosonic
system [16], destructive single-site measurements [17] and quantum Zeno effect physics for
spin [18] and expansion [19] dynamics.
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In the present paper, we study a different aspect of these systems: the creation and dynamics
of spin-entanglement during the expansion of a strongly interacting, spin-balanced fermionic
gas in an optical lattice. We find that the expansion out of an initial cluster of fermions can
automatically generate long-range spin-entanglement.

Expansion dynamics of interacting fermions in an optical lattice has been realized recently
in a three-dimensional optical lattice [6]. In that experiment, the authors observed a bimodal
expansion with a ballistic and diffusive part and were able to explain its anomalous behaviour
using a Boltzmann-based approach. In addition, expansion dynamics of this kind has been
studied numerically in one dimension, going beyond a kinetic description. These studies
revealed the dependence of the expansion velocity [20, 21], the momentum distribution function,
and the spin and density structure factors [22] on the onsite interactions and the initial
filling. Furthermore, the effects of the different quench scenarios [23] and of the gravitational
field [24] on the time-evolution of the density distribution have been discussed. The sudden
expansion of a spin-imbalanced fermionic gas has been recently considered for observing Fulde-
Ferrell–Larkin–Ovchinnikov correlations [25–27].

In general, the dynamics is crucially affected by the difference in behaviour between a
single fermion and that of a doublon (i.e. a pair of fermions at the same lattice site). For
large interaction strengths doublons are very stable against decay into fermions (analogously
to the repulsively bound boson pairs [28]) and move slowly. These properties can lead to the
condensation of doublons [29] and a decrease of the entropy [30] in the centre of the cloud
during the expansion. They play also a role in the decay dynamics of doublon–holon pairs in a
Mott insulator [31–33]. In the present work, we will show how spin-entanglement is generated
by the decay of a doublon into single fermions.

While we focus here on the build-up of correlations in a many-body state (which is
mainly driven by the creation of correlated fermions out of doublons), the efficient production
of entangled atom pairs is by itself an important topic, especially in the context of atom
interferometry [34]. Using such nonclassical atom pair sources would allow matter-wave
optics beyond the standard quantum limit. Recent experiments succeeded in generating large
ensembles of pair-correlated atoms from a trapped Bose–Einstein condensate, using either spin-
changing collisions [35, 36] or collisional de-excitation [37]. In the context of such experiments,
detection methods able to image single freely propagating atoms have also recently become
available [38].

The paper is organized as follows. First, we will describe in detail the expansion protocol,
starting from a finitely extended band insulating state, i.e. a cluster of spin-singlet doublons.
Moreover, we give details about the numerical time-dependent density matrix renormalization
group (tDMRG) simulation. Before studying spin-physics, we first discuss correlations in the
density of the expanding cloud (section 2), where the influence of interactions is already
significant. We find that large onsite interactions lead to positive correlations between certain
lattice sites. The dynamics of spin-entangled pairs, the main focus of our work, is then presented
in section 3. First of all, we relate the concurrence to the spin-spin correlation functions. Then
we discuss the propagation of spin-entangled pairs in the cloud. Furthermore, we compare the
cumulative ‘amount’ of spin-entanglement in different regions of the cloud and for various
interaction strengths. We find that spin-entanglement between remote lattice sites is only
found for large interaction strength, while for small onsite-interactions there is entanglement
preferentially only between nearby sites. Moreover, the Pauli-blocked core of the cluster favours
both partners of a spin-entangled pair to be emitted into the same direction when compared to
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Figure 1. Schematic of the expansion from a band insulating initial state into
an empty one-dimensional lattice. (a) Due to the discreteness of the lattice the
velocity of the fermions is bounded. Thus, the fermions emitted from a doublon
move within a light cone (shown for the leftmost and rightmost doublon). (b), (c)
Examples of fermion configurations at different evolution times, where only the
rightmost doublon decayed into single fermions and the other doublons remained
at the original position. (b) A spin up (down) excitation can propagate through
the band insulating cluster as a spin down (up) hole (time evolution from bottom
to top). (c) In this case, both fermions have been emitted to the same direction.

the decay of a single doublon, where they almost always are emitted into different directions. In
addition, we discuss the expansion under the action of a time-dependent (modulated) tunnelling
amplitude. We find that the modulation can enhance the production of spin-entanglement.
Finally, we discuss a possible experimental setup for observing this spin-entanglement dynamics
in the near future using spin-dependent single-site detection (section 4).

1.2. Model

In this paper, we consider an ultracold gas of fermionic atoms loaded into a one-dimensional
optical lattice. The atoms can be prepared in two different hyperfine states, which we label ↑

and ↓, and fermions of different ‘spin’ interact via s-wave scattering. This fermionic mixture
represents a realization of the standard fermionic Hubbard Hamiltonian [39, 40]

Ĥ= −J
L−1∑
i=1

∑
a=↑,↓

{
ĉ†

i,a ĉi+1,a + ĉ†
i+1,a ĉi,a

}
+ U

L∑
i=1

n̂i,↑n̂i,↓. (1)

The first term describes the tunnelling of fermions between adjacent lattices sites with amplitude
J . The second term encodes the effective onsite interaction energy U of fermions with
different hyperfine states, which can be controlled using a Feshbach resonance. The particle
number operator is n̂i,a = ĉ†

i,a ĉi,a, with the creation (annihilation) operator ĉ†
i,a(ĉi,a) satisfying

the fermionic commutation relations.
In the following, we focus on the expansion from a band-insulating state, i.e. the sites in the

centre of the lattice are doubly occupied. Experimentally, this is achieved by using an additional
trapping potential to confine the fermions to a central region of the optical lattice [6]. At time
t = 0 the trapping potential is switched off and the fermions expand into the empty lattice sites,
as depicted in figure 1(a).
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The time evolution of the average fermion density and the average doublon density has
already been studied for this expansion protocol, by numerical simulations for 1D lattices [20].
For large onsite interactions strengths U/J & 4 two wave fronts with different velocities are
visible in the time-dependent density profile, while there is a single wave front for small onsite
interaction strengths. It turns out that the expansion can be basically understood as a mixture of
propagating single fermions and doublons, see also [21]. For small onsite interaction strengths
the initial state quickly decays into single fermions, which move ballistically through the lattice.
Due to the cosine dispersion relation of a single particle in the lattice, εk = −2Jcos(k) with
wavenumber k ∈ (−π, π], its maximal velocity is given by |vmax| = 2J . This fact leads to
light cones in the density distribution, as indicated in figure 1(a). For large onsite interaction
U/J & 4, only a small fraction of doublons decay into fermions, which move away ballistically.
As the effective tunnelling amplitude of a doublon is 2J 2/U , they initially remain in the central
region and then move through the lattice on a much larger time scale.

However, the propagation of the single fermions is highly correlated, as they are always
created as spin-singlet pair when a doublon decays. As sketched in figures 1(b) and (c), the two
particles of such a spin-entangled pair may be either detected on the same side of the initial
cluster or on different sides.

We briefly point out that the dynamics of the spin-entanglement as well as that of the
density-density correlation is invariant under the change of the sign in the interaction strength
U. This is a direct consequence of a transformation property of the (spin- or density-) correlators
and of the initial state under time reversal and π -boost (translation of all momenta by π ). This
dynamical U 7→ −U symmetry in the Hubbard model is discussed in more detail in [6, 41].

1.3. Numerical simulation

For the numerical evaluation of the nonequilibrium time evolution, we employ the tDMRG
method [42–46]. The initial state is a cluster consisting of ten doublons, which are located in
the centre of a lattice of size L = 100 with open boundary conditions. Our tDMRG simulation
uses a Krylov subspace method with time step Jδt = 0.125 and the discarded weight is set to
either 10−5 or 10−6, depending on the interaction strength. For all evolution times shown in the
figures, the density remains negligible at the boundaries of the lattice. We also verified that the
features presented here does not depend on the precise position of the cluster in the lattice nor
change when the truncation error is modified within the given range.

For noninteracting particles, we have used the exact expressions for the time-dependent
correlation functions and concurrence, as given in appendix A.

2. Density–density correlation

Before turning to the spin-entanglement (in the subsequent section), we will first study
the density–density correlation function Di j(t)= 〈n̂i(t)n̂ j(t)〉 − 〈n̂i(t)〉〈n̂ j(t)〉, with n̂i = n̂i,↑ +
n̂i,↓. For the expansion, sketched in figure 1, the density at different lattice sites is expected to
be correlated for several reasons, in particular since the fermions are always created in pairs out
of doublons.

Note that the single-site detection of density correlations (more precisely the parity
correlations) has been very recently used to study the quasi-particle propagation in a
commensurate ultracold bosonic gas after an interaction quench [13, 14]. It has also been
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Figure 2. Off-diagonal density correlations Di j 6=i(t)= 〈n̂i(t)n̂ j 6=i(t)〉 −

〈n̂i(t)〉〈n̂ j 6=i(t)〉 for the expansion from an initial state consisting of a single
doublon (a), (b) and a cluster of ten doublons (c)–(h). For better visibility we
display the values of D1/3

i j as a colour scale and set Di i to zero. (c), (f) Initially all
fermions but the outermost ones are Pauli-blocked. This leads to nonvanishing
density–density correlations only close to the edge of the initial configuration
for small evolution times. (a), (c)–(e) For vanishing onsite interaction U ,
the density–density correlation equals the two-site spin-z correlation and is
always nonpositive, cf equations (A.5) and (A.7). (b), (f)–(h) In the interacting
case, the density–density correlation can be positive. (b) For a single doublon,
Di j 6=i(t) > 0 only for i and j at different sides of the initially occupied lattice
site. Thus, the doublon decays primarily into fermions moving in opposite
directions. (f)–(h) For a cluster of doublons, positive density correlations are
also found for lattice sites i and j that are both located to the left or to the
right of the initial cluster position, or within the initial cluster (indicated by the
dashed square).

employed to study the role of onsite interaction in a bosonic two-body quantum walk,
experimentally realized in a nonlinear optical waveguide lattice [47].

As a point of reference, we first consider the density–density correlations for the initial
state consisting of a single doublon. The fluctuation in the density at a lattice site i , Di i(t),
is the variance of the occupation number n̂i . For the expansion from a doublon, it is maximal
for those lattice sites located at the edge of the single fermion light cone (doublon light cone)
in the noninteracting (strongly interacting) case. In the following we focus on the off-diagonal
density–density correlations Di j 6=i(t), which are shown in figures 2(a) and (b). Most importantly,
we find that the onsite interaction U leads to a positive correlation of those fermions propagating
with almost maximal velocity |2J | in opposite directions, see figure 2(b). On the other hand,
the density–density correlation assumes large negative values between those lattice sites in
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the centre that are most likely occupied by the doublon (and not by single fermions) (central
square region in figure 2(b)). In contrast, the off-diagonal density–density correlations are
always nonpositive for clusters of noninteracting fermions, as detailed in appendix A, see also
figures 2(a) and (c)–(e).

The bunching effect in the interacting case can be understood by writing the motion of
the two fermions in relative and centre of mass (c.o.m.) coordinates, r and R, respectively
(see appendix B for details of the discussion). Note that we assume an infinite lattice for
this argument, which is compatible with the simulation as the boundary conditions do not
play a role for the evolution times considered here. The c.o.m. motion is a plane wave with
total wavenumber K = (k1 + k2)mod 2π , where k1 and k2 are the asymptotic wave numbers
of the single fermions. The relative motion is described by a K -dependent Hamiltonian. For
U 6= 0, the eigenstates of this Hamiltonian are one bound state and scattering states. The
probability for the doublon to decay into one specific scattering state with wavefunction ψK ,k(r)
(where k = (k1 − k2)/2 is the relative wavenumber) is given by the modulus squared of that
wavefunction’s probability amplitude at r = 0: |ψK ,k(0)|2. This decay probability is, up to an
overall normalization constant (see equation (B.5)):

|ψK ,k(0)|
2
∝
[
1 + U 2/

(
16J 2 cos2(K/2) sin2(k)

)]−1
. (2)

For small onsite interactions |U/4J | � 1, the decay probability is almost the same for the
different scattering states, except for K ≈ π or k ≈ 0 where it drops to zero. In the strongly
interacting case, it exhibits a pronounced maximum for K = 0 and k = ±π/2, that is k1 = ±π/2
and k2 = ∓π/2. In other words, for large onsite interaction the doublon decays primarily into
two fermions moving in opposite directions with velocity close to |2J |.

Next we study the density correlations for the expansion from a cluster of several doublons
into an empty lattice. The results are displayed in figures 2(c)–(h). Just as for the single doublon,
the off-diagonal density correlation has regions of positive values in the presence of onsite
interaction. However, in contrast to the case of a single doublon, the existence of other doublons
now leads to positive correlations also at lattice sites located on the same side of the initial
cluster, see figures 2(f)–(h). Positive correlations between sites on different sides of the cluster
are only observed for evolution times larger than the time a hole takes to propagate through the
cluster, cf figure 2(h).

The results suggest that the initially Pauli blocked core of the cluster leads to an enhanced
decay of the outermost doublons into single fermions moving away in the same direction.
However, the alternative case, where the edge doublon decays into a fermion and a hole moving
into the opposite direction close to the maximal velocity |2J | also leads to positive correlations.
Further simulations show that positive density correlations between lattice sites on the same
side of the initial cluster positions are found for clusters of about four and more doublons and
U/J & 2. Note that as the single fermions are created by the decay of an edge doublon, the
situation is different from a free single fermion or fermionic wave packet approaching a cluster
of doublons. In the latter situations, the fermion is almost perfectly transmitted through the
cluster (band insulating state) in the limit of large onsite interaction [48, 49].

In the next section, we discuss the spin-entanglement. This will reveal that the positive
density correlations indeed stem from singlet pairs, which become delocalized by the decay of
a doublon.
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3. Spin-entanglement between different lattice sites within the expanding cloud

In this section, we discuss the entanglement between fermions located at different lattice sites
by means of the concurrence [50]. First, the relation between the concurrence and the spin–spin
correlations is established. Then we use tDMRG simulations to find the regions where fermions
are likely and unlikely to be entangled during the expansion. We examine the role of the onsite
interaction and the core of the cluster on the entanglement dynamics.

3.1. Reduced density matrix and concurrence of two fermions

In this paragraph we derive the reduced density matrix and the concurrence for fermions located
at different lattice sites within the expanding cloud (see [51] for a related discussion in the
context of solid state physics). Given the full many-body wavefunction |9(t)〉, the reduced
density matrix for the lattice sites i and j is ρ̂i j(t)= Trsites6=i, j{|9(t)〉〈9(t)|}, where all other
lattice sites have been traced out. Whenever two fermions are situated at the same lattice site
they form a spin-singlet pair as their spatial degrees of freedom are symmetric under particle
exchange. Thus, entanglement in the spin degree of freedom between fermions at two different
lattice sites can only occur if each lattice site is occupied by a single fermion. Projecting ρ̂i j(t)
onto those states yields

ρ̂s
i j(t)=

1

Tr{ρ̂i j(t) n̂s
i n̂

s
j}

n̂s
j n̂

s
i ρ̂i j(t) n̂s

i n̂
s
j . (3)

Here, n̂s
i = n̂i,↑ + n̂i,↓ − 2n̂i,↑n̂i,↓ is the single fermion number operator at site i , which projects

onto a subspace with exactly one fermion on that site. The normalization factor in the
denominator, Tr{ρ̂i j(t)n̂s

i n̂
s
j} = 〈n̂s

i (t)n̂
s
j(t)〉, is the probability of finding at time t a single

fermion at each of the lattice sites i and j . The state described by ρ̂s
i j(t) is the state obtained

after a successful projective measurement. The reduced density matrix ρ̂s
i j(t) is equivalent to a

two-qubit density matrix, which can be expressed in the form ρ̂ =
∑3

α,β=0 λ
αβ σ̂ α(1) ⊗ σ̂

β

(2), where
σ̂ 1,2,3 are the Pauli matrices, σ̂ 0

= 1, and the factors λαβ are determined by the correlation
functions λαβ =

1
4〈σ̂

α
(1)σ̂

β

(2)〉 [52]. Consequently, the reduced density matrix of single fermions
at lattice sites i and j can be written as

ρ̂s
i j(t)=

1

〈n̂s
i (t)n̂

s
j(t)〉

3∑
α,β=0

〈Ŝαi (t)Ŝ
β

j (t)〉 σ̂
α
i ⊗ σ̂

β

j , (4)

where Ŝ1,2,3
i =

1
2

∑
a,b=↑,↓ ĉ†

i,a(σ̂
1,2,3)abĉi,b is the x-, y-, and z-component of the spin operator and

Ŝ0
i is, for compactness, defined as half the single fermion number operator, Ŝ0

i := 1
2 n̂s

i . Note that

〈Ŝαi (t)Ŝ
β

j (t)〉 is calculated using the full (unprojected) wavefunction since states with vacancies
or doublons at site i or j do not contribute to the expectation value.

Symmetries of the initial state and the Hamiltonian can simplify the form of the reduced
density matrix, such that only a few correlation functions are needed to determine ρ̂s

i j(t).

As detailed now, the reduced density matrix ρ̂s
i j(t) depends only on 〈Ŝz

i (t)Ŝ
z
j(t)〉/〈n̂

s
i (t)n̂

s
j(t)〉

for the cluster initial state shown in figure 1. The Hubbard Hamiltonian (1) preserves the
spin-dependent particle number, i.e. [Ĥ, N̂↑,↓] = 0, N̂↑,↓ =

∑L
i=1 n̂↑,↓. Given an initial state

with fixed number of spin-up and spin-down fermions, which is the usually case in cold
atom experiments, the time-dependent expectation values of operators that do change the
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spin-dependent particle number vanish. This yields 〈n̂s
i (t)Ŝ

x,y
j (t)〉 = 0, 〈Ŝx,y

i (t)Ŝz
j(t)〉 = 0 and

〈Ŝx
i (t)Ŝ

x
j (t)〉 − 〈Ŝy

i (t)Ŝ
y
j (t)〉 ± i[〈Ŝx

i (t)Ŝ
y
j (t)〉 + 〈Ŝy

i (t)Ŝ
x
j (t)〉] = 0. The latter condition comes

from creating two spin-down (spin-up) fermions while destroying two spin-up (spin-down)
fermions at lattice sites i and j and can also be written as 〈Ŝx

i (t)Ŝ
x
j (t)〉 = 〈Ŝy

i (t)Ŝ
y
j (t)〉 and

〈Ŝx
i (t)Ŝ

y
j (t)〉 = −〈Ŝy

i (t)Ŝ
x
j (t)〉. Moreover, the Hamiltonian (1) is fully rotationally invariant,

[Ĥ,
∑L

i=1 Ŝx,y,z
i ] = 0. If the initial state is rotationally invariant, for instance a cluster of

doublons, then the many-body state remains SU(2) spin symmetric during the time evolution. It
follows that 〈Ŝz

i (t)Ŝ
z
j(t)〉 = 〈Ŝx

i (t)Ŝ
x
j (t)〉 = 〈Ŝy

i (t)Ŝ
y
j (t)〉, 〈n̂s

i (t)Ŝ
z
j(t)〉 = 〈n̂s

i (t)Ŝ
x,y
j (t)〉 = 0, and

〈Ŝx
i (t)Ŝ

y
j (t)〉 = 〈Ŝx,y

i (t)Ŝz
j(t)〉 = 0. In summary, the reduced density matrix for the expansion

from a cluster of doublons reads

ρ̂s
i j(t)=

1

4
· 1 +

〈Ŝz
i (t)Ŝ

z
j(t)〉

〈n̂s
i (t)n̂

s
j(t)〉

[
σ̂ x

i ⊗ σ̂ x
j + σ̂ y

i ⊗ σ̂
y
j + σ̂ z

i ⊗ σ̂ z
j

]
=

(
1

4
+

〈Ŝz
i (t)Ŝ

z
j(t)〉

〈n̂s
i (t)n̂

s
j(t)〉

) [
|T 1

i j〉〈T
1

i j | + |T 0
i j〉〈T

0
i j | + |T −1

i j 〉〈T −1
i j |
]

+

(
1

4
− 3

〈Ŝz
i (t)Ŝ

z
j(t)〉

〈n̂s
i (t)n̂

s
j(t)〉

)
|Si j〉〈Si j |, (5)

where |Si j〉 =
1

√
2
(| ↑i↓ j〉 − | ↓i↑ j〉) is the singlet state and |T m

i j 〉 is the triplet state with the m
denoting the spin projection in z-direction.

Instead of 〈Ŝz
i (t)Ŝ

z
j(t)〉 one could in principle evaluate the spin–spin correlation in any

other direction. However, for cold atomic gases in optical lattices the correlation function
〈Ŝz

i (t)Ŝ
z
j(t)〉 =

1
4〈[n̂i,↑(t)− n̂i,↓(t)][n̂ j,↑(t)− n̂ j,↓(t)]〉 seems to be experimentally most realistic

to access as it could be obtained from snapshots of the spin-dependent single-site detection of
the particle number.

The spin-entanglement between single fermions can be derived from the reduced density
matrix. In this work, we use the concurrence C(ρ̂) [50] to quantify the entanglement. Given
the time-reversed density matrix ˆ̃ρ = σ y

⊗ σ yρ̂∗σ y
⊗ σ y , with the complex conjugation ρ̂∗

taken in the standard basis {|↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉}, the concurrence is defined by C(ρ̂)=

max{0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4}, where the λi are the eigenvalues of ρ̂ ˆ̃ρ in descending order.

In our case, the concurrence of the reduced density matrix (5) is given by

Ci, j(t)= max

{
0,−

1

2
− 6

〈Ŝz
i (t)Ŝ

z
j(t)〉

〈n̂s
i (t)n̂

s
j(t)〉

}
. (6)

Spin–spin correlations 〈Ŝz
i (t)Ŝ

z
j(t)〉/〈n̂

s
i (t)n̂

s
j(t)〉>−1/12 result in a vanishing concurrence.

The concurrence approaches 1 as 〈Ŝz
i (t)Ŝ

z
j(t)〉/〈n̂

s
i (t)n̂

s
j(t)〉 ↘ −1/4, i.e. when the two fermions

detected at lattice sites i and j always have opposite spin.
The probability that single fermions at lattice sites i and j form a spin-singlet pair can be

directly read off the reduced density matrix (5):

PSinglet
i j (t)= Tr

[
ρ̂s

i j(t)|Si j〉〈Si j |
]
=

1

4
− 3

〈Ŝz
i (t)Ŝ

z
j(t)〉

〈n̂s
i (t)n̂

s
j(t)〉

. (7)

Each of the spin triplet states is measured with the probability 1/4 + 〈Ŝz
i (t)Ŝ

z
j(t)〉/〈n̂

s
i (t)n̂

s
j(t)〉.
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Jt = 1 Jt = 3.5 Jt = 7.5
U/J = 0

U/J = 3

U/J = 6

j

i

n̂si

Figure 3. Density–density correlation of single fermions 〈n̂s
i (t)n̂

s
j 6=i(t)〉 (i.e.

excluding doublons) for the expansion from an initial cluster of doublons in
one dimension (the initial position of the ten doublons is indicated by the
dashed square). (a)–(c) Without onsite interactions, U/J = 0, the fermions move
ballistically through the lattice. This is reflected by the fourfold symmetry of
the correlation matrix shown here. (d)–(i) When increasing U/J , fermions are
created only rarely by the decay of a doublon at the edge of the cluster. These two
fermions move within the same light cone, cf figure 1. The light cone leads to a
square shape of the correlation function having its centre at the edge of the initial
cluster, shown by the dotted square in panel (i). The dotted lines indicate pairs
of coordinates corresponding to fermions emitted with opposite velocities by a
doublon at the edge of the cloud. Moreover, an increased correlation between
nearest neighbour lattice sites is found for larger evolution times, see (f) and (i).

3.2. Time evolution of the spin-entanglement within the expanding cloud

Spin-entanglement between different lattice sites, which we denote by i and j , requires that both
sites are singly occupied as discussed in section 3.1. The probability for this is 〈n̂s

i (t)n̂
s
j(t)〉,

with the single fermion number operator already defined above (n̂s
i = n̂i,↑ + n̂i,↓ − 2n̂i,↑n̂i,↓).

Figure 3 shows the numerical results for 〈n̂s
i (t)n̂

s
j 6=i(t)〉 for different evolution times J t and

onsite interaction strengths U/J .
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Shortly after the quench, single fermions are created at the edges of the cluster, see
figures 3(a), (d) and (g). For the noninteracting system, the fermions escape the cluster
successively (i.e. starting at the edges, and finally from the centre of the cluster). They move
ballistically and the correlation function displays a fourfold symmetric structure, figures 3(b)
and (c). In the interacting case, in contrast, the decay of a doublon into fermions is heavily
suppressed. This results in a correlation function 〈n̂s

i (t)n̂
s
j(t)〉 that has its main contributions

within two square regions given by the light cones of fermions emitted by the outermost
doublons of the cluster, see figures 3(f) and (i). Within the light cones, single fermions are
more likely to be found at lattice sites corresponding to a motion with almost maximal velocity
|vmax| = 2J into opposite direction. The density correlation between single fermions attains its
largest values for nearest-neighbour lattice sites within the cloud, cf figures 3(e), (f), (h) and
(i). This may be due to virtual transitions between two configurations: either a doublon with
a neighbouring vacancy, or a state of two adjacent single fermions. Note that the mean total
number of single fermions,

∑L
i=1〈n̂

s
i 〉, approaches within a few J t an almost constant value,

cf area under the curves for J t = 3.5,7.5 and U/J = 3, 6 in the last column of figure 3. That
means only the edges of the cluster evaporate for large interactions, releasing a finite number of
single fermions. Moreover, 〈n̂s

i (t)〉 becomes relatively flat in the centre of the cloud for larger
evolution times J t.

Let us now consider the spatial distribution of spin-entangled fermions during the
expansion. For this purpose, the concurrence between two fermions at different lattice sites
is numerically evaluated using equation (6). Figure 4 shows the concurrence for any pair of
lattice sites i and j , at different times J t and onsite interaction strengths U/J .

For the expansion of noninteracting fermions, figures 4(a)–(c), the concurrence is finite
only for nearby lattice sites. It is almost 1 within the outermost wings of the expanding cloud.
This can be physically understood the following way: due to the Pauli principle, fermions
with the same spin become spatially antibunched during the expansion. Thus, fermions at
neighbouring sites are more likely to have opposite spin, cf figures 2(c)–(e). In addition, the
outermost region of the cloud lies only within the light cones of the doublons close to the edge
of the initial cluster. Two fermions detected in this region are almost certainly emitted by the
same edge doublon and in consequence have a high probability to be spin-entangled.

When increasing the onsite interaction U , spin-entangled pairs are formed on remote lattice
sites, too, cf figures 4(d)–(i). Indeed, spin-entanglement is found between lattice sites within and
outside the initial cluster position, figures 4(e) and (h), as well as on different sides of the initial
cluster position, figures 4(f) and (i).

The figures are a fingerprint of the creation of a counter propagating hole and single
fermion by the decay of an edge doublon. When the hole moves through the cluster, the spin-
entanglement with the single fermion outside the cluster is swapped sequentially from one
fermion to the next in the cluster. In this way fermions become entangled that have never been
on the same lattice site and have never directly interacted with each other. At the end of this
process, a spin-singlet pair is created with a fermion at each side of the cluster. The concurrence
for two fermions on different sides of the initial cluster position increases with the interaction
strength, compare figures 4(f) and (i). This can be understood by the suppression of the decay
probability of doublons with increasing interaction strengths. For larger interaction strength, a
hole is more likely to cross the cluster without being disturbed by another hole.

For nearest-neighbour sites, which have a relatively large probability to be simultaneously
singly occupied (see figures 3(f) and (i)), we observe a concurrence close to 1. This implies
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Jt = 1 Jt = 3.5 Jt = 7.5
U/J = 0

U/J = 3

U/J = 6

j

i

Figure 4. Concurrence Ci, j(t) of two (single) fermions located at lattices sites i
and j after different expansion times J t , see equation (6). Initially, ten doublons
are located at the sites indicated by the dashed square. We emphasize that dark
red indicates strictly zero concurrence (also see the cuts displayed to the right).
The black colour code is used whenever the probability of finding fermions at
sites i and j is too small, 〈n̂s

i (t)n̂
s
j(t)〉< 10−5. In those cases, the concurrence is

not computed as it would become susceptible to numerical inaccuracies. (a), (d),
(g) For short evolution times, here J t = 1, single fermions are mainly created
at the edge of the cluster since the central fermions are initially Pauli blocked.
Fermions close to the same edge of the cloud are likely to be entangled as they
are likely to originate from the same doublon. Fermions at opposite edges are
not entangled since they cannot have been emitted from the same doublon. (b),
(c) At larger evolution times and without onsite interactions, the concurrence
is 0 for most sites i and j . However, it is close to 1 when two fermions are
located at the outermost part of the cloud. (e), (f), (h) and (i). By increasing
the onsite interaction U/J , entanglement of fermions across the cluster becomes
possible. In this case, the concurrence is highest when the fermions result from
the decay of a doublon at the edge and escape with opposite velocity, indicated
by the dotted line (see also cut through panel (i)). Moreover, the concurrence
of fermions at neighbouring sites becomes almost 1. Within the central region,
approximately given by the overlap of the light cones shown in figure 1, the
concurrence remains relatively small.
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the creation of vacant lattice sites within the cloud during the expansion. The singlet pairs on
nearest-neighbour sites come from virtual transitions between a doublon with neighbouring
vacancy and a state of two single fermions. We verified this behaviour in addition by numerically
creating an ensemble of snapshots for the distribution of fermions as described in [19].

We emphasize that for inhomogeneous systems, such as the one discussed in this paper,
the spatially resolved measurement of two-point correlations provides more information about
the dynamics than structure factors, such as Sk ∝

∑
lm e−ik(l−m)

〈Ŝz
l Ŝz

m〉. While the latter could be
used to determine the average spin–spin correlation of fermions at fixed distance, it contains no
information where these spin-correlated pairs are located in the cloud.

3.3. Summed concurrences

Above, we examined the spin-entanglement between two lattice sites for fixed time points. In
this subsection we aim to quantify the spin-entanglement for entire regions in the lattice. In
particular, we address the questions Are there sites which share more spin-entanglement with
the rest than other lattice sites? How does the spin-entanglement in different regions built up
as function of time? Which locations are most entangled in the weakly and strongly interacting
case? How does the size of the cluster affect these results?

In the following we discuss the amount of pairwise spin-entanglement of a lattice site or
a region in the lattice in terms of the summed concurrence. We define it as the sum over the
concurrences, Ci, j(t), which are weighted by the probability of detecting a single fermion at
both lattice sites, 〈n̂s

i (t)n̂
s
j(t)〉. The weights are introduced to accommodate for the possibility

of vacant or doubly occupied lattice sites, in contrast to the summed concurrence used in spin
systems [53]. For a system consisting of spin-singlet pairs whose wavefunctions do not overlap,
i.e. Ci, j(t) is either zero or one for all sites i and j , the summed concurrence equals the average
number of delocalized spin-singlet pairs. Note that the summed concurrence is by no means a
measure for the total entanglement of the system. It neither includes multipartite entanglement
nor entanglement in the occupation numbers. For a detailed discussion on entanglement in
many-body systems we refer to [54], see also [16, 55–57] for recent proposals on detecting
entanglement in cold atom systems.

Let us consider the spin-entanglement of a site with all the other lattice sites. The summed
concurrence for site i is defined by

Ctot,i(t)=

∑
j 6=i

〈n̂s
i (t)n̂

s
j(t)〉 Ci, j(t). (8)

The time evolution of Ctot,i(t) is shown in figure 5 for different interaction strengths U/J . For
noninteracting fermions (figure 5(a)), lattice sites close to the edge of the cloud display the
strongest entanglement, while sites in the rest of the cloud are hardly entangled. For increasing
interaction strengths a central region with almost uniform Ctot,i(t) builds up during the evolution,
see figures 5(b) and (c). For large U/J , we find that Ctot,i(t) approaches the expectation value
〈n̂s

i 〉. This turns out to be related to the fact that in this case the probability of having two
doublons decay is negligible, and the contribution comes almost entirely from the decay of a
single doublon.

In figure 4(i) it is apparent that onsite interactions can lead to spin entanglement across
the expanding cluster. In the following we compare the summed concurrences of lattice sites
on the same side and on different sides of the initial cluster location, Css and Cds, respectively.
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Figure 5. Spin-entanglement of a single lattice site i with all the other sites.
The panels show the time evolution of Ctot,i(t), given by equation (8), for
different interaction strengths U/J . (a) In the absence of interaction, it is
primarily the sites at the edge of the cloud which are spin-entangled. (b), (c)
For finite interactions, we observe the following: at larger times Ctot,i(t) is nearly
homogeneous in a central region within the doublon light cones (dotted lines in
(c)). Spin-entanglement for lattice sites removed from this central region is finite
at locations corresponding to trajectories of fermions, which have dissolved from
the edges of the cluster. For the left edge the single fermion light cone is shown
as dashed lines.

They are defined by

Css(t)=

∑
i+1< j<l ∨ i−1> j>r

〈n̂s
i (t)n̂

s
j(t)〉 Ci, j(t), (9)

Cds(t)=

∑
i<l ∧ j>r

〈n̂s
i (t)n̂

s
j(t)〉 Ci, j(t), (10)

where l and r denote the leftmost and rightmost occupied lattice sites of the initial state. Note
that nearest-neighbour lattice sites are excluded from Css(t). That means we do not take into
account contributions from virtual transitions of doublons (decaying virtually into two adjacent
fermions) that move away from the cluster initial position. In addition, we consider the summed
concurrence of sites at fixed distance d , Cd(t)=

∑
i〈n̂

s
i (t)n̂

s
i+d(t)〉Ci,i+d(t), and the summed

concurrence of all sites, Ctot(t)=
∑

i< j〈n̂
s
i (t)n̂

s
j(t)〉Ci, j(t). The time evolution of these summed

concurrences is shown in figure 6.
For noninteracting fermions and small evolution times, the total summed concurrence is

dominated by contributions from nearest-neighbour sites. For larger times more and more spin-
entanglement is transferred to fermions found on the same side of the initial cluster position
(Css), see figure 6(a). The spin-entanglement remains relevant only for small distances, reflected
in C8(t)= 0 for all simulated times, cf figure 6(d).

By contrast, in the interacting case, spin-entanglement is generated via fermions
propagating away on different sides of the cluster. This is seen as a finite value of Cds(t) for
times J t & 5, which is the time a hole needs to propagate through the cluster, cf figures 6(b) and
(c). The total summed concurrence and concurrence between nearest-neighbour sites quickly
settle into a damped oscillation around a constant value. The time evolution of the summed

New Journal of Physics 15 (2013) 053043 (http://www.njp.org/)

http://www.njp.org/


15

Jt

U/J = 0 U/J = 3 U/J = 6

Ctot

C1

Css
Cds

C2

C4 C8
C16 C24

Cds = 0

Figure 6. Time evolution of spin-entanglement in different areas of the
expanding cloud. (a)–(c) We show: the summed concurrence Ctot of all lattice
sites, the summed concurrence C1 between nearest-neighbour sites, as well as
the summed concurrences of all lattice sites at same side (Css) and at different
sides (Cds) of the cloud (see the main text for the definitions). Nonvanishing
Cds is found only for finite onsite interaction. Ctot and C1 quickly settle into a
damped oscillation around a constant value, for U/J & 2. The arrows in panel (c)
show corresponding values of the summed concurrences for the decay of a single
doublon, cf figure 7. (d)–(f) Summed concurrence Cd of lattice sites at distance
d > 2. (d) Without interactions only close lattice sites are spin-entangled. (e),
(f) With increasing interaction strength U/J , Cd(t) equals zero for times up to
J t ≈ d/4, followed by a peak and a decay for larger times. At fixed time Cd is
approximately uniform for the distances d . 4J t .

concurrence of sites at distance d > 2 is displayed in figures 6(e) and (f). Cd(t) remains zero
for small times, peaks at times J t slightly exceeding d/4, and decreases for larger times. This
shows that spin-entangled pairs mainly propagate at almost maximal (relative) velocity 4J . For
large U/J , Cd(t) is approximately uniform for distances d 6 4J t and roughly decays as (J t)−1

for the simulated times. Note that C1(t) plays a special role. Its main contribution does not stem
from ‘free’ fermions. Rather, it is generated by a doublon virtually dissolving into adjacent
fermions.

Let us finally discuss the impact of the cluster size on the spin-entanglement dynamics.
For very weak interactions, a larger number of doublons means that more delocalized singlet
pairs are created shortly after switching off the confining potential. For large interaction
strengths up to U/J = 40, we simulate the expansion and compare the summed concurrences
for different cluster sizes, including the case of a single doublon. We summarize the results
in figure 7. Note that reasonably large evolution times (J t ≈ 20) for the comparison of the
summed concurrences are reached only for U/J & 6. The summed concurrence of all sites, Ctot,
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Figure 7. Summed concurrences for different sizes of the initial cluster. We
compute the values at time J t = 20 (except for U/J = 6, where J t = 13.5),
when they are almost constant as function of time. (a) The total summed
concurrence, Ctot, shows no dependence on the cluster size for large onsite
interaction strengths U/J > 6. The data agrees with the exact result for a single
doublon derived in appendix C, Ctot = 1 − [1 + 16J 2/U 2]−1/2, which is shown as
solid line. (b) The summed concurrences of lattice sites at same side (Css) and at
different sides (Cds) of the cloud (see the main text for the definitions) disagrees
for a single doublon (dots) and a cluster of doublons (squares). Note that clusters
of sizes 4, 7 and 10 give similar values. For strong interactions, a cluster prefers
the emission of (delocalized) singlet pairs into the same direction compared to a
single doublon. The summed concurrence between nearest-neighbour sites (C1)
approaches Ctot/2 in both cases. Solid lines show analytical results for C1 as well
as the contribution of scattering states to Css and Cds for a single doublon (see
appendix C).

agrees for all considered cluster sizes and matches the analytical result for a single doublon, see
figure 7(a). Apparently, the initially Pauli-blocked core has no effect on the number of created
single fermions for the considered times. For Css and Cds, however, we find a clearly different
behaviour for a single doublon and a cluster of four and more doublons (figure 7(b)): a cluster
is more likely to emit (delocalized) spin-entangled pairs into the same direction.

3.4. Expansion with modulated tunnelling amplitude

In the previous section we have seen for the interacting case that total summed concurrence,
Ctot, approaches a fixed value shortly after switching off the potential, via the escape of a few
fermions from the cluster edges. Here, we discuss a way of ‘continuously’ generating single
fermions and enhancing Ctot compared to the free time evolution. We consider an expansion
during which the tunnelling amplitude is repeatedly varied in time, while the interaction strength
is constant. Such modulation may be experimentally realized by either varying the laser intensity
(the tunnelling amplitude decreases much faster with increased laser intensity than the onsite
interaction strength, see e.g. [1]) or by shaking the lattice sinusoidally [58]. We find for certain
values of the tunnelling amplitudes and time intervals between the quenches an increased
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Figure 8. Expansion with time-dependent tunnelling amplitude (modulated in a
stepwise fashion). The tunnelling amplitude is repeatedly switched between the
values J (time intervals marked by grey background in panel (a)) and J ′

= J/2
(white background in panel (a)), while the onsite interaction strength is fixed
at U/J = 6. (a) This dynamics (dashed line) produces a larger total number
of single fermions 〈N̂ s(t)〉 than the free expansion with amplitude J (solid
line). (b), (c) Time evolution of the summed concurrences. In comparison to
the free expansion, cf figures 6(c) and (f), the total summed concurrence as well
as the concurrences Css and Cds are enhanced, while the summed concurrence
at nearest-neighbour sites, C1, is decreased. This is also seen in the enlarged
summed concurrence of sites at distances d > 2.

amount of spin-entanglement as shown in figure 8. For the presented case, the repeated quenches
lead to the generation of more and more single fermions, see figure 8(a). This results in an
enhanced spin-entanglement between distant lattice sites, while the spin-entanglement between
nearest-neighbour sites is suppressed (compare figures 8(b) and (c) with figures 6(c) and (f)).

4. Remarks on observing the spin-entanglement in experiments

In the main part of this article we have analysed the dynamics of the spin-entanglement for the
expansion from a cluster of doublons. As discussed in section 3.1 the concurrence between two
lattice sites i and j can be determined by the single fermion expectation value 〈n̂s

i (t)n̂
s
j(t)〉 and

the spin–spin correlation 〈Ŝz
i (t)Ŝ

z
j(t)〉 =

1
4〈[n̂i,↑(t)− n̂i,↓(t)][n̂ j,↑(t)− n̂ j,↓(t)]〉.

Experimentally, both expectation values could be obtained by averaging over many
snapshots of the spin-dependent single-site fermionic particle number analogous to the already
implemented single-site detection of bosonic particles [11, 12]. Since doubly occupied lattice
sites do not contribute to these expectation values, it would suffice to be able to detect singly
occupied sites. Thus, the loss of atom pairs due to inelastic light-induced collision during the
imaging process, showing up in the bosonic case, would not be an issue.

Measuring correlations of the spin-z component will be sufficient for obtaining the
concurrence under the following assumptions: (i) the initial state is of the type we have described
(total singlet, i.e. total spin 0); (ii) the dynamics proceeds according to the model Hamiltonian,
i.e. a SU(2) symmetric Hamiltonian with no decoherence or entanglement with external degrees
of freedom. A scenario where the initial state violates condition (i) would be a cluster with
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impurity sites that contain only single fermions. If there is only one impurity containing a single
fermion, then the problem can still be diagnosed because the final snapshot will reveal unequal
numbers of spin-up and spin-down fermions. In general, however, if these two conditions are
in doubt, the experiment would have to measure the full spin–spin density matrix of two lattice
sites, by repeated runs and measurements of spin projections in different directions. This could
be done by implementing a rotation in spin space before measurements, in analogy to the state
tomography realized with trapped ions [59]. While being more challenging than measuring the
spin-dependent fermion number, such a kind of coherent spin control seems to be possible in
future experiments. Spin flips at single lattice sites have already been shown experimentally
for ultracold bosons [60]. This setup could be in principle extended to coherent spin control,
replacing the Rabi frequency sweep by driving a Rabi oscillation [61].

5. Summary and outlook

In this paper, we have analysed the creation and time-evolution of spin-entanglement during
the sudden expansion from a cluster of doublons into an empty lattice. Interestingly, remote
spin-entangled pairs are created for large onsite interaction. In addition, an extended cluster
favours the emission of the two fermions of a pair into the same direction when compared
against the decay of a single doublon. Finally, we found that a time-dependent modulation of
the tunnelling amplitude can be used to increase the ‘production’ of spin-entangled pairs. Our
results provide a starting point for studying the spin-entanglement dynamics for more complex
initial states, in different dimensionalities, e.g. the crossover from one to two dimensions, or for
spin-imbalanced fermionic gases.

In the scenario considered here, the spin-entanglement can be extracted from the two-
site spin-z correlation functions. Thus, it will become experimentally accessible once spin-
dependent single-site detection has been implemented.
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Appendix A. Correlation functions and concurrence of noninteracting fermions

In this appendix, we derive analytical formulae for the correlation functions of expanding,
noninteracting fermions. For vanishing onsite interaction, fermions of different species are
uncorrelated and each fermion propagates with the free dispersion. The time evolution of the
annihilation operators is given by

ĉ j,a(t)=

∑
m

G jm(t)ĉm,a, (A.1)

with spin index a =↑,↓ and the free fermion propagator

G jm(t)=

∫ π

−π

dk

2π
exp{i[(m − j)k − 2J cos(k)t]} = i j−mJ j−m(2J t). (A.2)
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Here, J denotes the Bessel function of the first kind and we assumed an infinite lattice. For the
previously discussed initial state of localized doublons, the Green function reads

Gi j(t)= 〈ĉ†
i,a(t)ĉ j,a(t)〉 = i j−i

∑
m∈O

J j−m(2J t)Ji−m(2J t), (A.3)

where the summation is taken over all initially occupied lattice sites O . For both spin species,
the density is given by

Ni(t)= Gi i(t)=

∑
m∈O

J 2
|i−m|

(2J t). (A.4)

When the fermions are initially localized at the lattice sites, equal time, normal ordered
products of operators can be expressed as a Slater determinant of the equal time one-particle
Green functions, Gi j(t), [62]. The correlation function 〈Ŝz

i (t)Ŝ
z
j(t)〉 can be evaluated by writing

it in terms of density–density correlations and making use of 〈n̂i,a(t)n̂ j 6=i,b(t)〉 =Ni(t)N j(t)−

δab

∣∣Gi j(t)
∣∣2 and 〈n̂i,a(t)n̂i,b(t)〉 =N (2−δab)

i . This yields

〈Ŝz
i (t)Ŝ

z
j 6=i(t)〉 = −

1
2

∣∣Gi j(t)
∣∣2 , (A.5)

〈Ŝz
i (t)Ŝ

z
i (t)〉 =

1
2Ni(t) [1 −Ni(t)] . (A.6)

Note that the probability of finding two fermions with the same spin at lattice sites i and j is
by 2|Gi j(t)|2 smaller than the probability for fermions with antiparallel spin. This difference
leads to a nonvanishing spin–spin correlation even in the absence of onsite interactions. For
noninteracting fermions, the spin–spin correlation is related to the density–density correlation
Di j(t)= 〈n̂i(t)n̂ j(t)〉 − 〈n̂i(t)〉〈n̂ j(t)〉 via

Di j(t)= 4〈Ŝz
i (t)Ŝ

z
j(t)〉. (A.7)

Thus, the density–density correlation Di j(t) is smaller or equal to zero for different lattice
sites i and j , cf figures 2(a) and (c)–(e). Analogously, the density–density correlation of single
fermions is calculated using the relations for 〈n̂i,a(t)n̂ j,b(t)〉 given above. We find

〈n̂s
i (t)n̂

s
i (t)〉 = 2Ni(t) [1 −Ni(t)] , (A.8)

〈n̂s
i (t)n̂

s
j 6=i(t)〉 = 4

[
Ni(t)−

(
Ni(t)N j(t)−

∣∣Gi j(t)
∣∣2)]

×

[
N j(t)−

(
Ni(t)N j(t)−

∣∣Gi j(t)
∣∣2)]− 2

∣∣Gi j(t)
∣∣2 . (A.9)

The concurrence Ci, j(t) (defined by equation (6)) can be evaluated using the expressions (A.5)
and (A.9). It approaches one in the limit 〈Ŝz

i (t)Ŝ
z
j 6=i(t)〉/〈n̂

s
i (t)n̂

s
j 6=i(t)〉 ↘ −

1
4 . This is the case

for
∣∣Gi j 6=i(t)

∣∣2 ↗Ni(t)N j 6=i(t) (note that
∣∣Gi j 6=i(t)

∣∣2 can only assume values between 0 and 1/2).

Appendix B. Decay of a doublon into scattering states

This appendix presents the derivation of the decay probability of a fermionic doublon into
different scattering states |ψK ,k〉. In doing so, the wavefunctions of the scattering states are
calculated mainly adopting the procedure for two-particle states in the Bose Hubbard model
presented in [63].
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For one spin-up and one spin-down fermion, and an infinite lattice the Hamiltonian (1) can
be expressed in the form

ĤD = −J
∑

i

{|↑i〉〈↑i+1 | + |↑i+1〉〈↑i | + |↓i〉〈↓i+1 | + |↓i+1〉〈↓i |} + U
∑

i

|↑i ,↓i〉〈↑i ,↓i |.

(B.1)
Analogously, we write the two-fermion states in terms of the basis {|↑i ,↓ j〉}, |9〉 =∑

i, j 9(↑i ,↓ j)| ↑i ,↓ j〉. For the decay of a doublon, the fermions are always in the spin-singlet
subspace. Thus, we can write the two-particle wavefunction as 9(↑i ,↓ j)= ϕs(↑,↓) ·ψ(i, j),
with the spin-singlet wavefunction ϕs(a, b)= δa,↑δb,↓ − δa,↓δb,↑ and a symmetric spatial wave-
function, ψ(i, j)= ψ( j, i). Plugging |9〉 into the Schrödinger equation for Hamiltonian (B.1)
yields(
E − Uδi j

)
ψ(i, j)= −J [ψ(i − 1, j)+ψ(i + 1, j)+ψ(i, j − 1)+ψ(i, j + 1)] . (B.2)

This relation is simplified by introducing c.o.m. and relative coordinates, R = (i + j)/2 and
r = i − j , respectively. The wavefunction factorizes into a plane wave motion of the c.o.m. with
total wavenumber K ∈ [−π, π) and a K -dependent relative motion, i.e. ψ(i, j)= eiK RψK (r).
The relative motion satisfies the recurrence relation

−JK [ψK (r − 1)+ψK (r + 1)] = (EK − Uδr0) ψK (r), (B.3)

with K -dependent tunnelling amplitude JK = 2Jcos(K/2) and energy EK . For vanishing
interaction strength U equation (B.3) is solved by plane waves ψK ,k(r)= e±ikr with
corresponding eigenenergies EK ,k = −2JK cos(k). In the interacting case, we make a scattering
ansatz by writing the wavefunction as a superposition of incoming and reflected plane waves,
ψK ,k(r > 0)= eikr + c e−ikr . Here, k is the relative wavenumber and ψK ,k(r < 0) is determined
by the symmetry condition ψ(r)= ψ(−r). The boundary condition at r = 0 in equation (B.3)
fixes the coefficient c and we obtain

ψK ,k(r)= ψK ,k(0)

[
cos(kr)+

U

2JK sin(k)
sin(k|r |)

]
. (B.4)

Finally, we compare the decay probability of a doublon for different scattering states |ψK ,k〉.
In doing so, we express |ψK ,k(0)|2 in terms of the average density in the relative coordinate, n̄,
which is obtained by averaging |ψK ,k(r)|2 over one period 2π/k. Note that n̄ does only depend
on the systems size and is independent of k, K , and U . We find that the decay probability into
the scattering state |ψK ,k〉 equals

|ψK ,k(0)|
2
= n̄

[
1 + U 2/

(
16J 2 cos2(K/2) sin2(k)

)]−1
. (B.5)

Appendix C. Summed concurrences of a single doublon

This appendix provides the calculation of the summed concurrences for the expansion from a
single doublon. The results are depicted in figure 7. For this initial state, the fermions form a
spin-singlet for all times. Consequently, the concurrence Ci, j(t) (defined by equation (6)) equals
one for all sites i and j , and the summed concurrences simplify to sums over the expectation
values 〈n̂s

i (t)n̂
s
j(t)〉, see section 3.3.

Let us first consider the total summed concurrence for a single doublon Ctot(t)=∑
i< j〈n̂

s
i (t)n̂

s
j(t)〉. This is nothing but the probability of finding the fermions at different
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lattice sites. It can be expressed as 1 − PD(t), with the doublon survival probability PD(t),
i.e. the probability of finding the doublon intact at time t . In the long time limit, only
fermions in a bound state remain localized close to each other. For a singlet pair with
finite onsite interaction U 6= 0 and c.o.m. wavenumber K , it exists one bound state ψb

K (r)
(localized solution of equation (B.3), details are given below), where r is the relative
coordinate. Thus, we obtain PD(∞)=

1
2π

∫ π
−π

dK |ψb
K (0)|

4 in the limit of an infinite lattice,
where ψb

K (0) is the overlap between the doublon and the bound state. Analogously, we
find C1(∞)=

1
2π

∫ π
−π

dK |ψb
K (0)|

2
|ψb

K (1)|
2, where we have used that C1(t)=

∑
i〈n̂

s
i (t)n̂

s
i+1(t)〉

equals the probability of finding the fermions at time t at nearest-neighbour lattice sites.
The bound state can be calculated using the exponential ansatz ψb

K (r)= 1/
√
NK α

|r |

K for
the wavefunction in equation (B.3). This gives αK = U/2JK − sign(U/2JK )

√
1 + (U/2JK )2

and NK = (2JK/U )
√

1 + (U/2JK )2, with JK = 2 cos(K/2). Inserting this solution into the
doublon survival probability yields PD(∞)=

1
2π

∫ π
−π

dK N−2
K = [1 + 16J 2/U 2]−1/2. In the limit

of infinite times, the total summed concurrence and summed concurrence of nearest-neighbour
lattice sites are, hence, given by

Ctot(∞)= 1 − [1 + 16J 2/U 2]−1/2
= 8J 2/U 2 +O([J/U ]4), (C.1)

C1(∞)=
1

2π

∫ π

−π

dK |αK |
2N−2

K = 4J 2/U 2 +O([J/U ]4). (C.2)

In the long-time limit, the summed concurrences of lattice sites at same side (Css(t))
and at different sides (Cds(t)) of initial doublon position can be related to the scattering
states calculated in appendix B. We denote by C (scat)

ds and C (scat)
ss the contributions to the

summed concurrences stemming from the scattering states. C (scat)
ds is the sum of the occupation

probabilities of scattering states corresponding to fermions moving in opposite direction [k1 ∈

(0, π), k2 ∈ (−π, 0) or k1 ∈ (−π, 0), k2 ∈ (0, π)], and C (scat)
ss is the sum of the occupation

probabilities of those states with fermions moving into the same direction [k1, k2 ∈ (0, π) or
k1, k2 ∈ (−π, 0)]. Here, k1 and k2 denote the asymptotic wavenumbers of the two fermions. The
occupation probabilities are the absolute square of the overlap between the doublon and the
scattering state, |ψK ,k(0)|2. The explicit form of |ψK ,k(0)|2 is given by equation (B.5). Taking
the continuum limit we find

C (scat)
ds =

1

(2π)2

[∫ π

0
dk1

∫ 0

−π

dk2 +
∫ 0

−π

dk1

∫ π

0
dk2

]
×
[
1 + U 2/

(
16J 2 cos2([k1 + k2]/2) sin2([k1 − k2]/2)

)]−1
(C.3)

= 4
J 2

U 2
[1/2 + 4/π2] +O([J/U ]4), (C.4)

C (scat)
ss =

1

(2π)2

[∫ π

0
dk1

∫ π

0
dk2 +

∫ 0

−π

dk1

∫ 0

−π

dk2

]
×
[
1 + U 2/

(
16J 2 cos2([k1 + k2]/2) sin2([k1 − k2]/2)

)]−1
(C.5)

= 4
J 2

U 2
[1/2 − 4/π 2] +O([J/U ]4). (C.6)
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The summed concurrences Css(t) and Cds(t) used for the numerical data (equations (9) and (10))
contain additional contributions from bound states. In the definition of Css(t) we excluded
nearest-neighbour lattice sites in order to remove most of these contributions (note that nearest-
neighbour sites do not appear in Cds(t)). From the expression for the bound state given above
follows that all other terms are of the orderO([J/U ]4). Thus, Css(t) and Cds(t) agree with C (scat)

ss

and C (scat)
ds for large J t and U/J , cf figure 7(b).

In conclusion, we find following relations between the summed concurrences for long
evolution times and large interaction strengths U/J � 1: C1 = Ctot/2, Css = [1/4 − 2/π2]Ctot

and Cds = [1/4 + 2/π2]Ctot.
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[10] Würtz P, Langen T, Gericke T, Koglbauer A and Ott H 2009 Experimental demonstration of single-site
addressability in a two-dimensional optical lattice Phys. Rev. Lett. 103 080404
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[46] Schollwöck U 2011 The density-matrix renormalization group in the age of matrix product states Ann. Phys.
326 96–192

[47] Lahini Y, Verbin M, Huber S D, Bromberg Y, Pugatch R and Silberberg Y 2012 Quantum walk of two
interacting bosons Phys. Rev. A 86 011603

[48] Muth D, Petrosyan D and Fleischhauer M 2012 Dynamics and evaporation of defects in Mott-insulating
clusters of boson pairs Phys. Rev. A 85 013615

[49] Jin L and Song Z 2011 Perfect coherent shift of bound pairs in strongly correlated systems Phys. Rev. A
83 052102

[50] Wootters W K 1998 Entanglement of formation of an arbitrary state of two qubits Phys. Rev. Lett. 80 2245–8
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