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Abstract. We propose and analyze a nanomechanical architecture where light
is used to perform linear quantum operations on a set of many vibrational modes.
Suitable amplitude modulation of a single laser beam is shown to generate
squeezing, entanglement and state transfer between modes that are selected
according to their mechanical oscillation frequency. Current optomechanical
devices based on photonic crystals, as well as other systems with sufficient
control over multiple mechanical modes, may provide a platform for realizing
this scheme.
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1. Introduction

The field of cavity optomechanics studies the interaction between light and mechanical motion,
with promising prospects in fundamental tests of quantum physics, ultrasensitive detection
and applications in quantum information processing (see [1–3] for reviews). One particularly
promising platform consists of ‘optomechanical crystals’, in which strongly localized optical
and vibrational modes are implemented in a photonic crystal structure [4]. So far, several
interesting possibilities have been pointed out that would make use of multi-mode setups
designed on this basis. For example, suitably engineered setups may coherently convert phonons
to photons [5], and collective nonlinear dynamics might be observed in optomechanical
arrays [6]. Moreover, optomechanical systems, in general, have been demonstrated to furnish
the basic ingredients for writing quantum information from the light field into the long-lived
mechanical modes [7–9]. The recent success in ground state laser cooling [10, 11] has opened
the door to coherent quantum dynamics in optomechanical systems.

In this paper, we propose a general scheme for continuous-variable quantum state
processing [12] utilizing the vibrational modes of such structures. We show how entanglement
and state-transfer operations can be applied selectively to pairs of modes, by suitable intensity
modulation of a single incoming laser beam. We discuss limitations for entanglement generation
and transfer fidelity, and show how to pick suitable designs to address these challenges.

2. The model

We will first restrict our attention to a single optical mode coupled to many mechanical modes,
such that the following standard optomechanical Hamiltonian describes the photon field â, the
phonons b̂l of different localized vibrational modes (l = 1, 2, . . . , N ), their mutual coupling and
the laser drive:

Ĥ = −h̄1â†â +
∑

l

h̄�l b̂
†
l b̂l − h̄â†â

∑
l

g(l)
0 (b̂†

l + b̂l) + h̄αL(â + â†) + · · · . (1)

We are working in a frame rotating at the laser frequency ωL with detuning 1 = ωL − ωcav. Here,
αL denotes the coupling to the drive, which is proportional to the laser amplitude. We omitted to
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Figure 1. Schematic diagram illustrating an optomechanical crystal with
localized vibrational modes, coupled by a common optical mode. The optical
mode is driven by an amplitude-modulated laser beam to engineer frequency-
selective entanglement, squeezing and state-transfer operations of vibrations (see
the main text).

explicitly write down the coupling to the photon and phonon baths, with damping rates κ and 0l ,
respectively, although these will be included in our treatment. The bare (single-photon) coupling
constants g(l)

0 depend on the overlap between the optical and mechanical mode functions and are
of the order of ωcavxZPF/L , where xZPF = (h̄/2ml�l)

1/2 is the mechanical zero-point amplitude.
In photonic crystals the effective cavity length L reaches down to wavelength dimensions (see
figure 1 for the illustration of a setup).

After the application of the standard procedure of splitting off the coherent optical
amplitude induced by the laser, â = α + δâ, and omitting terms quadratic in δâ (valid for strong
drive) to the Hamiltonian, we recover the linearized optomechanical coupling,

Ĥ int = −h̄(δâ + δâ†)
∑

l

gl(b̂
†
l + b̂l) = −h̄(δâ + δâ†)Ŷ . (2)

Here the dressed couplings gl = g(l)
0 α can be tuned via the laser intensity, i.e. the circulating

photon number: |α| =
√

n̄phot (α ∈ R without loss of generality). We can now eliminate
the driven cavity field (noting that δâ is in the ground state) by second-order perturbation
theory: at large detuning |1| � �l the energy scales for phonons and photons separate, and we
retain a fully coherent, light-induced mechanical coupling between all the vibrational modes,

Ĥ eff
int = h̄

Ŷ 2

1
= 2h̄

∑
l,k

Jlk(t)X̂ l X̂ k, (3)

where X̂ l ≡ b̂l + b̂†
l is the mechanical displacement in units of xZPF. For this to be valid, we

have to fulfill κ � |1|, which prevents unwanted transitions. Equation (3) may be viewed as
a ‘collective optical spring’ effect, coupling all the mechanical displacements. The couplings
Jlk(t) = gl gk/21 can be changed in situ and in a time-dependent manner via the laser intensity
or the detuning. In the numerical simulations, we take g(l)

0 = g0x (l)
zpf/x (1)

zpf = g0
√

�1/�l and
assume all modes to have equal masses. This feature will be crucial for our approach described
below. Note that if multiple optical modes are driven, the corresponding coupling constants will
add.

In general, the couplings in equation (3) will induce quantum state transfer between
mutually resonant mechanical modes and entanglement at low temperatures (usually with the
help of optomechanical laser cooling). The generation of entanglement between two mechanical
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modes based on the bilinear interaction, equation (3), has been analyzed in [13–19] or in [19–22]
for entanglement between the light field and the phononic mode. However, these schemes are
not easily scalable to many mechanical modes, mainly because it is not possible to address
the modes that are to be entangled. Moreover, these schemes produce an entangled steady
state that is sensitive to thermal fluctuations. We will describe a different scheme that allows
mode-selective entanglement and is particularly suited for multi-mode setups. Its robustness
against thermal influence is enhanced, since it employs parametric instabilities for entanglement
generation.

3. General scheme

In contrast to the schemes mentioned above, we have in mind a multi-mode situation for
continuous variable quantum information processing and are interested in an efficient approach
to selectively couple arbitrary pairs of modes, both for entanglement and for state transfer. There
are several desiderata to address for a suitable optomechanical architecture of that style: one
should be able to (i) switch couplings in time, (ii) easily select pairs for operations, (iii) get by
with only one laser (or a limited number), (iv) achieve large enough operation speeds to beat
decoherence and (v) scale to a reasonably large number of modes.

3.1. Frequency-selective operations

Static couplings as in equation (3) could be used for selective pair-wise operations if one were
able to shift locally the mechanical frequency to bring the two respective modes into resonance.
In principle, this is achievable via the optical spring effect, but would require local addressing
with independent laser beams. This could prove challenging in a micron-scale photonic crystal,
severely hampering scalability.

Instead, we propose to employ frequency-selective operations, by modulating the laser
intensity (and thus J ) in time. Entanglement generation by parametric driving has recently
been analyzed in various contexts, including superconducting circuits [23], trapped ions [24],
general studies of entanglement in harmonic oscillators [25–27], optomechanical state transfer
and entanglement between the motion of a trapped atom and a mechanical oscillator [28] and
entanglement between mechanical and radiation modes [29]. Parametric driving can also lead
to mechanical squeezing in optomechanical systems [30].

Let us now consider two modes with coupling 2h̄ J (t)(X̂ 1 + X̂ 2)
2. Note that for the

purposes of our discussion we set Jlk = J for the sake of simplicity. The results mentioned
below, however, remain valid for the general case of unequal couplings, which is also
used for the numerical simulations. The time-dependent coupling is achieved by modulating
the laser intensity at a frequency ω of the order of the mechanical frequencies. For
ω � |1| the circulating photon number follows adiabatically |α(t)|2 = |αmax|

2 cos2(ωt), and
we have J (t) = Jcos2(ωt) = J [1 + cos(2ωt)]/2. The resulting time-dependent light-induced
mechanical coupling can be broken down into several contributions, whose relative importance
will be determined by the drive frequency ω. The static terms, h̄ J (X̂ 1 + X̂ 2)

2, shift the oscillator
frequencies by δ� j = 2J , and give rise to an off-resonant coupling that is ineffective for
|�1 − �2| � J , but gains influence for |�1 − �2|. J . In a realistic setup this X̂ 1 X̂ 2 interaction
might be enhanced due to intrinsically present phonon tunneling between distinct vibrational
modes, which could easily be included in the analysis, since it is of the same structure.
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Moreover, the static terms contain single mode squeezing terms b̂†
l b̂†

l + b̂l b̂l that are always off-
resonant and of negligible influence. For the oscillating terms

h̄ J (e2iωt + e−2iωt)(b̂1 + b̂†
1)(b̂2 + b̂†

2), (4)

there are three important cases. A mechanical beam-splitter (state-transfer) interaction is
selected for a laser drive modulation frequency ω = (�1 − �2)/2. In the interaction picture
with respect to �1 and �2, the resonant part of the full Hamiltonian reads

Ĥ b.s. = h̄ J (b̂†
2b̂1 + b̂†

1b̂2).

In contrast, for ω = (�1 + �2)/2, we obtain from equation (4) a two-mode squeezing (non-
degenerate parametric amplifier) Hamiltonian,

Ĥ ent = h̄ J (b̂1b̂2 + b̂†
1b̂†

2),

which can lead to efficient entanglement between the modes. Finally, ω = � j selects the
squeezing interaction for a given mode,

Ĥ sq = h̄(J/2)(b̂2
j + b̂†2

j ),

out of the full Hamiltonian. These laser-tunable, frequency-selective mechanical interactions
are the basic ingredients for the architecture we will develop and analyze here. Furthermore,
combinations of these Hamiltonians can be constructed when the laser intensity is modulated
with multiple frequencies. Note that one has to keep in mind that the modulation also generates
a time-dependent radiation pressure force, h̄g0|αmax|

2cos2(ωt)/xZPF, which leads to a coherent
driving of each of the mechanical modes for ω ≈ �l/2. For the parameters we choose here,
these processes are off-resonant, however.

3.2. Limitations

We now address the constraining factors for the operation fidelity, both for the two-mode and
the multi-mode case. At higher drive powers (as needed for fast operations), the frequency–time
uncertainty implies that the different processes need not be resonant exactly, with an allowable
spread |δω|. J . The parametric instabilities occur for |ω − (�i + � j)/2| < J . Once these
intervals start to overlap, process selectivity is lost and the fidelity suffers. At low operation
speeds, quantum dissipation and thermal fluctuations will limit the fidelity. This is the essential
problem faced by a multi-mode setup, and we will discuss possible remedies further below. The
schematic situation for the example of three modes is illustrated in figure 2.

In order to analyze decoherence and dissipation, we employ a Lindblad master equation to
evolve the joint state of the mechanical modes. The evolution of any expectation value can be
derived from the master equation and is governed by

d

dt
〈 Â〉 =

1

ih̄
〈[ Â, Ĥ ]〉 +

∑
j

(n̄ j + 1)0 j〈R[b̂†
j ] Â〉 +

∑
j

n̄ j0 j〈R[b̂ j ] Â〉.

Here Ĥ describes the vibrational modes and already contains the effective interaction (3), with
modulated time-dependent couplings. 0 j are the damping rates of the vibrational modes, and
n̄ j their equilibrium occupations at the bulk temperature. Note that we effectively added the
light-induced decoherence rate 0

ϕ
opt ≈ g2

0α
2κ/12

= 2J (κ/1) to the intrinsic rate 0n̄ [31]. 0
ϕ
opt
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Figure 2. Schematic diagram of the resonance regions for squeezing and
entanglement operations between vibrational modes (�1, �2 and �3), induced
by harmonically modulating the laser intensity at frequency ω. For too weak
laser intensity (small J ), dissipation prevents parametric resonances (dashed
lines indicate resonance regions without dissipation). With increasing light-
induced coupling J dissipation is overcome and regions of parametric resonance
for entangling and squeezing operations emerge. By adjusting the modulation
frequency ω, these operations can be addressed selectively. When J is further
increased, different regions start to overlap and selectivity is lost. At large
J unwanted swapping processes occur, leading to an off-resonant coupling
between the modes.

is suppressed by a factor κ/|1| and can be arbitrarily small for larger detuning (at the expense of
higher photon number α2 to keep the same J ). In the numerical simulation, we use J and 1 as
independent parameters. Note, however, that the sign of the detuning affects the sign of J. The
first dissipative term describes damping (spontaneous and induced emission), and the second
dissipative term refers to absorption of thermal fluctuations. The relaxation superoperators are
defined by R[b̂†] Â = b̂† Âb̂ − b̂†b̂ Â/2 − Âb̂†b̂/2 (in contrast to the equation for ρ̂). For the
quadratic Hamiltonian studied here, the equations for the correlators remain closed and are
sufficient to describe the Gaussian states produced in the evolution.

We evaluate the logarithmic negativity

EN (ρ̂) = log2

∥∥ρ̂
TA
AB

∥∥
1

(5)

as a measure of entanglement for any two given modes (A and B), where ρ̂ AB is the state of
these two modes, and the partial transpose TA acts on A only. For Gaussian states, EN can be
calculated via the symplectic eigenvalues of the position–momentum covariance matrix [32].

In figure 3, we show the simulation results for entangling two out of three vibrational
modes. The entanglement saturates at later times, while the phonon number grows
exponentially. We plot the results at the fixed time t = 5.6/J , since there the logarithmic
negativity has already saturated. One clearly sees the features predicted above (figure 2), i.e.
the unwanted overlap between entanglement processes at higher driving strengths (figures 3(a)
and (b)). Increasing the vibrational frequency spacing suppresses these unwanted effects
(figure 3(b)). In figure 3(c), the threshold J = 0n̄ for entanglement generation at finite
temperature is evident, as is the loss of entanglement at large J . Finally, figures 3(d) and (e)
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Figure 3. Selective entanglement between two out of three vibrational modes,
produced by an amplitude-modulated laser beam driving a common optical
mode, as sketched in figure 2. All modes are coupled to a thermal bath and
assumed to be cooled to their ground state initially. (a), (b) Entanglement
measure (the logarithmic negativity) between modes 1 and 3, as a function of the
driving strength J and the modulation frequency ω, at time t = 5.6/J . (Contour
lines: entanglement between 1 and 2 or 2 and 3 larger than 0.5, blue arrows at
� j , red line: resonance position as derived in rotating wave approximation). In
(a), the vibrational modes are spaced densely [�i = (1, 1.025, 1.075)�], leading
to overlapping resonance regions (as in figure 2). (b) A larger frequency spacing
increases the selectivity significantly [�i = (1, 1.1, 1.3)�]. (c) Dependence on
driving strength, i.e. cut along dashed red lines in (a) and (b), see the main text.
(d) Dependence on temperature and mechanical quality factor Q. (e) The same
as (d) but starting from thermal equilibrium. (Parameters: n̄ = 100, Q = 106

((a)–(c)), �i = (1, 1.1, 1.3)� ((b), (d) and (e)), J/� = 0.003 ((d) and (e)),
1 = 10�, κ = �/8 ((a)–(e)).)

show the dependence on temperature and mechanical quality factor, indicating that this scheme
should be feasible for realistic experimental parameters (see below).

3.3. Larger arrays

Having evenly spaced mechanical frequencies is impossible, because the state transfers between
adjacent modes would all be addressed at the same modulation frequency. Any simple layout
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Figure 4. (a) Layout for an optomechanical array with an auxiliary vibrational
mode, circumventing the problem of frequency crowding (see the main text).
(b) The corresponding mechanical frequency spectrum. The laser modulation
frequency has to lie within certain intervals to select entanglement or state-
transfer operations between the ‘memory modes’ and the auxiliary mode
(arrows). (c) Extension to a 2D block consisting of three arrays with operations
‘around the corner’.

that offers selectivity and avoids resonance overlap seems to require a frequency interval
that grows exponentially with the number N of modes. Hence, another approach is needed for
large N .

The scheme (figure 4) that solves this challenge involves an auxiliary mode at �aux,
removed in frequency from the array of evenly spaced ‘memory’ modes in [�min, �max]. All
operations will take place between a selected memory mode and the auxiliary mode. Then, the
state-transfer resonances are in the band [(�aux − �max)/2, (�aux − �min)/2], and entanglement
is addressed within [(�min + �aux)/2, (�max + �aux)/2]. To make this work, one needs to fulfill
the mild constraint 2�max − �min < �aux < 2�min, where the upper limit prevents unintended
driving of the modes caused by the modulated radiation pressure force (see above). Starting
with an arbitrary multi-mode state, state transfer between two memory modes is performed
in three steps (swapping 1–aux, aux–2 and aux–1), as is entanglement (swap 1–aux, entangle
aux–2 and swap aux–1). Note that this overhead does not grow with the number of memory
modes. Figure 5 shows the transfer of a squeezed state from the auxiliary mode to a memory
mode.

Several such arrays could be connected in a two-dimensional (2D) scheme by linking
their auxiliaries with an optical mode (figure 4(c)). The spectrum of the auxiliaries can be
chosen as in the introductory example (figure 2), which is allowed by the above constraint and
enables selective operations between the auxiliaries. State transfer between memory modes of
distinct arrays is possible in five steps (swap mem1–aux1, swap mem2–aux2, swap aux–aux,
swap aux1–mem1 and swap aux2–mem2) as well as entanglement (swap mem1–aux1, swap
mem2–aux2, entangle aux–aux, swap aux1–mem1 and swap aux2–mem2). Note that the transfer
from the memory modes to the auxiliaries can be done in parallel; hence the scheme can be
effectively completed in three steps and there is no time delay compared to the single array with
auxiliary. Moreover, one might employ more sophisticated transfer schemes [33–35] to improve
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Figure 5. Transfer of a squeezed state (1x2
= e−2x2

ZPF) from the auxiliary to
the second memory mode (all in their ground state due to prior side-band
cooling). (a) Dependence of the transfer fidelity on driving strength (negative
J due to red detuning 1 < 0) and pulse time (swap pulse ideally at |J |t =

π/2). For long pulse times dissipation hampers the transfer; for large driving
strengths resonances overlap, medium times are optimal. (b) The Wigner density
of the initial squeezed state in the auxiliary mode and (c) after the transfer.
Plotted Wigner density maximizes the transfer fidelity for fixed J = −0.007�.
(d) Maximization of transfer fidelity over parameter ranges used in (a).
(Parameters: � j = (1.0, 1.1, 1.2, 1.8)�, n̄ = 100, Q = 106, 1 = −20�, κ =

�/8, J/� = −0.007 ((b) and (c)).)

the transfer fidelities. Two blocks can be connected by introducing a higher order auxiliary that
couples to both auxiliary arrays. State transfer can then be performed between auxiliary modes
from different blocks. In principle, many blocks can be connected when their auxiliary modes
are stringed together in a chain via higher order auxiliaries.

4. Implementation

Regarding the experimental implementation, in principle any optomechanical system with long-
lived mechanical modes can be used. One promising platform is ‘optomechanical crystals’ as
introduced by Painter and co-workers [4] that feature vibrational defect cavities in the GHz
regime with experimentally accessible Q ∼ 106 [36]. These would be very well suited to the
scheme presented here, owing to their design flexibility, particularly of 2D structures, and the
all-integrated approach, as well as the very large optomechanical coupling strength. Given
the currently achieved coupling strength [11, 36] g0/2π ∼ 1 MHz, a detuning of 1/� = 10
and around 2000 cavity photons (reached in recent experiments), we can estimate the induced
coupling to approach the damping rate, J ∼ 0. This corresponds to the threshold for coherent
operations, provided one were to cool down the bath to kBTbath < h̄�. This is, in principle,
possible (at 20 mK), but will likely run into practical difficulties due to the re-heating of
the structure via spurious photon absorption or other effects. At finite bath temperatures
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corresponding to a thermal occupation n̄ ∼ kBTbath/h̄�, the light intensity must be increased
by a factor of n̄ towards J � 0n̄. Initially, the vibrational ground state would be prepared via
laser cooling, as demonstrated in [11].

In these devices, localized vibrational and optical modes can be produced at engineered
defects in a periodic array of holes cut into a free-standing substrate. Adjacent optical and
vibrational modes are coupled via tunneling. The typical photon tunnel coupling for modes
spaced apart by several lattice constants is [6] in the range of several THz. Thus, hybridized
optical modes will form, one of which can be selected via the laser driving frequency while
the others remain idle. The vibrational modes’ frequencies can be different or equal, in which
case delocalized hybridized mechanical modes are produced. A ‘snowflake’ crystal made of
connected triangles (honeycomb lattice) supports wave guides (line defects) and localized defect
modes with optomechanical interaction [5]. Placing point defects (heavier triangles/thicker
bridges) in the structure, a tight binding analysis indicates that the mechanical frequency
spectrum (figure 4(b)) can be generated.

Utilizing the phononic modes of an optomechanical system for processing continuous
variable quantum information has a number of desirable aspects in comparison to other systems
such as optical modes or cold atomic vapors. First, the phononic modes can be integrated on a
chip and the devices are thus naturally scalable. The Gaussian operations discussed above can
be applied easily, and the decoherence times are already reasonable, although admittedly worse
than for cold atomic vapors.

We mention another option for improving the fidelity: optimal control techniques [25]
could be employed to numerically optimize the pulse shape J (t).

Finally, an essential ingredient will be the readout. We have pointed out [37] how to
produce a quantum-non-demolition readout of the mechanical quadratures in an optomechanical
setup. A laser beam (detuning 1 = 0) is amplitude-modulated at the mechanical frequency
� j of one of the modes. The reflected light carries information about only one quadrature
eiϕ b̂ j + e−iϕb̂†

j . Its phase ϕ is selected by the phase of the amplitude modulation, while the
measurement back-action perturbs solely the other quadrature. Different modes can be read
out simultaneously, and the covariance matrix may be thus obtained in repeated experimental
runs. Taking measurement statistics for continuously varied quadrature phases would also
allow us to perform full quantum-state tomography and thereby ultimately process tomography.
Alternatively, short pulses may be used for readout (and manipulation) [38].

5. Conclusions

The scheme described here would enable coherent scalable nanomechanical state processing
in optomechanical arrays. It can form the basis for generating arbitrary entangled mechanical
Gaussian multi-mode states such as continuous variable cluster states [39]. An interesting
application would be to investigate the decoherence of such states due to the correlated quantum
noise acting on the nanomechanical modes. Moreover, recent experiments have shown, in
principle, how arbitrary states can be written from the light field into the mechanics [7–9].
These could then be manipulated by the interactions described here. Alternatively, for very
strong coupling g0 > κ , non-Gaussian mechanical states [40–42] could be produced, and the
induced nonlinear interactions (see, e.g., [43, 44]) could potentially open the door to universal
quantum computation with continuous variables [12] in these systems.

New Journal of Physics 14 (2012) 125005 (http://www.njp.org/)

http://www.njp.org/


11

Acknowledgments

We acknowledge the ITN Cavity Quantum Optomechanics, an ERC Starting Grant, the DFG
Emmy-Noether program and the DARPA ORCHID for funding.

References

[1] Kippenberg T J and Vahala K J 2008 Cavity optomechanics: back-action at the mesoscale Science 321 1172–6
[2] Favero I and Karrai K 2009 Optomechanics of deformable optical cavities Nature Photon. 3 201
[3] Marquardt F and Girvin S 2009 Optomechanics Physics 2 40
[4] Eichenfield M, Chan J, Camacho R M, Vahala K J and Painter O 2009 Optomechanical crystals Nature

462 78–82
[5] Safavi-Naeini A H and Painter O 2011 Proposal for an optomechanical traveling wave phonon–photon

translator New J. Phys. 13 013017
[6] Heinrich G, Ludwig M, Qian J, Kubala B and Marquardt F 2011 Collective dynamics in optomechanical

arrays Phys. Rev. Lett. 107 043603
[7] Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D and Painter

O 2011 Electromagnetically induced transparency and slow light with optomechanics Nature 472 69
[8] Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L and Wang H 2011 Storing optical information as a mechanical

excitation in a silica optomechanical resonator Phys. Rev. Lett. 107 133601
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