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It was recently shown that the exact potential driving the electron’s dynamics in enhanced ioniza-
tion of H can have large contributions arising from dynamical electron-nuclear correlation, going
beyond what any electrostatics-based model can provide [1]. This potential is defined via the exact
factorization of the molecular wavefunction that allows the construction of a Schrodinger equation
for the electronic system, in which the potential contains exactly the effect of coupling to the nuclear
system and any external fields. Here we study enhanced ionization in isotopologues of Hy in order to
investigate nuclear-mass-dependence of these terms for this process. We decompose the exact poten-
tial into components that naturally arise from the conditional wavefunction, and also into components
arising from the marginal electronic wavefunction, and compare the performance of propagation on
these different components as well as approximate potentials based on the quasi-static or Hartree
approximation with the exact propagation. A quasiclassical analysis is presented to help analyse the
structure of different non-electrostatic components to the potential driving the ionizing electron.

I. INTRODUCTION

The phenomenon of charge-resonance enhanced ion-
ization (CREI), predicted more than twenty years
ago [2H4], is a prominent example of the complex cou-
pling of electronic motion, ionic motion, and strong
laser fields. At a critical range of internuclear sep-
arations, the ionization rate of a molecule in a laser
field can be orders of magnitude greater than the rate
from the constituent atoms. The ionization rate has
been explained by a quasi-static argument involving in-
stantaneously frozen nuclei in the pioneering works of
Refs. [3H9] for which the time-dependent Schrodinger
equation (TDSE) is solved for various clamped nuclear
(cn) configurations Eo’ ie.,

Ha(r,R))PR (r,t) = ih0,Pg' (r,1), M
LR))Og (& R (L

where
Ho(r,Ry) = TetWee(£) + Wen (£, R ) +V*" (r, ). (2)

Here r and R are used to collectively denote the

electronic and nuclear coordinates, 7. is the elec-
tronic kinetic energy operator, and W,, is the electron-

electron repulsion. Furthermore, Wen(g, EO) contains
the electron-nuclear interaction, which, for a diatomic

molecular ion with one electron, as will be considered
here, has the form —Z;/|r — Ry| — Z2/|r — Ry, i.e. a
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Coulombic double-well. The critical internuclear sep-
aration for CREI can be qualitatively explained by the
following argument: at stretched geometries in a given
static field, the energy levels in the up-field atom Stark-
shift upwards while the inner barrier from the internu-
clear Coulombic potential also grows (Fig. 2 in Ref. [3])).
Provided the field is turned on fast enough such that
any population in the up-field level (LUMO) does not
significantly tunnel back to the down-field atomic level
(HOMO), the molecule can rapidly ionize over both the
inner and outer barriers, which gives rise to the ioniza-
tion rate observed to be enhanced by orders of magni-
tude compared to the atomic rate. By requiring that the
Stark-shifted LUMO level exceeds the top of both the
inner and outer field-modified Coulombic barriers, one
finds R. = 4.07/I, for the critical internuclear separa-
tion for CREL The analysis can be generalized to the
case of a laser field, where the field’s period is shorter
than the tunneling time [2} 3/ [10] [11].

It has been pointed out that, in actuality, the under-
lying assumption in this picture of the electron adiabat-
ically following the field is not quite adequate, as the
ionization tends to occur in multiple sub-cycle ioniza-
tion bursts, not at the peak of the field cycles [10, [11].
Moreover, when applied to an experiment where the
molecule’s initial geometry is far from where the CREI
is expected to happen, the premise of the quasi-static
picture can become a little shaky: in particular, the
molecule must dissociate to the CREI region, which oc-
curs predominantly by Coulomb explosion following
ionization, but to actually observe CREI rapidly enough
that appreciable electron density still remains largely
un-ionized. In fact, in many experiments, CREI is not
observed because too little electron density reaches the
CREI region over the course of the applied field [12H14].
Typically a large fraction of the nuclear density remains
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near equilibrium, while a part of it dissociates. So, (i)
representing its potential on the electron as a Coulombic
double-well is not appropriate, and (ii) the fragment ve-
locities can be comparable to the electronic velocities in
some dissociating channels questioning the very notion
of electrostatic nuclear-electron interactions. In Ref. [1],
it was shown that the nuclear dynamics can contribute
significant components to the exact potential that arise
from dynamical electron-nuclear correlated motion. Ne-
glect of these contributions leads to severe errors in the
prediction of the electronic motion.

In this paper, we analyse the exact potential in more
detail by providing a complementary decomposition to
the one that was studied in Ref. [1]], comparing with dif-
ferent approximations, studying the mass-dependence,
and investigating a quasiclassical treatment. The rest of
the paper is organized as follows: First, a brief review
of the exact factorization approach is presented in Sec[TI}
with a focus on the reverse factorization introduced in
Ref. [15]. This provides us with a TDSE for electrons
evolving on a single time-dependent potential that ac-
counts for the coupling to the nuclear system and any
external field in an exact way. We present two different
ways of decomposing this potential and some approxi-
mate potentials based on conventional approximations.
In Sec. [llll we study a one-dimensional model for the
(a)symmetric isotopologues of Hj subject to a linearly
polarized laser field for two different situations, com-
paring with dynamics on different approximate poten-
tials. In Sec.[[V]we take a first step to analyse quasiclas-
sically the structure of various components of the poten-
tial driving the ionizing electron. Finally, some conclud-
ing remarks are presented in Sec.|[V]

II. EXACT FACTORIZATION APPROACH

The exact factorization of the time-dependent
electron-nuclear wavefunction introduced in Refs. [15-
19] enables the rigorous definitions of exact potentials
acting on the nuclear subsystem and electronic subsys-
tem in coupled electron-ion dynamics. These potentials
follow from writing the full molecular wavefunction
as a single product ¥(r,R,t) = ®r(r,t)x(R,t), or
U(r,R,t) = x:(R,t)®(r, ), where partial normalization
conditions on the conditional wavefunctions ®g(r,t)
and x:(R,t) respectively, render each factorization
unique up to a gauge transformation. In the first
product the equation for the nuclear wavefunction,
X(R,t), follows a TDSE, while in the second product
the equation for the electronic factor ®(r, ) is a TDSE.
When the electronic dynamics is particularly of interest,
as in our present study of ionization, we focus on the
the second factorization, and investigate the potential
that appears in the TDSE for ®(r, ).

If we consider the case of one electron coupled to one
nuclear degree of freedom in one dimension, the equa-

tion for the electronic wavefunction is (in 1D we replace
r and R by z and R respectively.) :

+e(2,t)| P(z,t) =ih 0, D(2,1).

®)

and that for the nuclear conditional wavefunction is:

2me,

[(—ih@/@z +8(2,1))?

[ﬁn(za R7 t) - €E(Z? t)} Xz (Rv t) =ih 8th (Rv t)a (4)

with the nuclear Hamiltonian
H,(z,R,t) = Tp(R) + Wen(2, R) + Wpn(R) + 07 (R, t)
1P4mmf5@m2

2

(FROMO (2, ))(~i0/0. — 8(2,1)

®)

where Tn is the nuclear kinetic energy operator,

Wen(2,R) (Wyn(R)) is the electron-nuclear (nuclear-
nuclear) interaction, and 9%, (R, t) is time-dependent ex-
ternal potentials acting on the nuclei. Here, S(z,t) is the

exact time-dependent vector potential
S(z,1) = (Xz(R, )| —ih0/0. x-(R,t)) g (6)

and e.(z,t) = (x.(t)|H, — ihd;|x.(t))r is the exact time-
dependent electronic potential for electron (see next sec-
tion). In one dimensional models, §(z,t) can be set to
zero as a choice of gauge and we adopt this gauge for
the rest of this paper. In this case, €.(z, t) is the sole po-
tential that drives the electronic motion, which can be
compared with the other traditional potentials that are
used to study electronic dynamics.

A. Decomposition of the exact time-dependent potential
energy surface

The exact time-dependent potential energy surface for
electron (e-TDPES) contains the effects of the coupling
to moving quantum nuclei as well as the external laser
field. It can be written as

ee(z,t) = €PP(2,1) + Tn(2, 1) + KLY (2, 1) + 8% (2, ), (7)
which consists of: the approximate potential

ceP(2,1) = O (B 1) [0 (2, 1) [x= (R, 1)) @®)

+ <Xz (R7 t)| Wen(zv R) + Wnn(R) |Xz (R7 t)>R )

the nuclear-kinetic term

h? 9?
Tn(z,t) = _mb(z(th”@b(z(Rat»Ra )
the gauge dependent part of the potential

Egd(zvt) = h<Xz(R> t)‘ — 0 XZ(R7t)>Ra



and finally the electronic-kinetic-like contribution

ez, 1) =

h? 0 0
s (o (RO E (D)

In Ref. [1], we had found that this exact potential ¢.(z, t),
has significant features that are missing in the tradi-
tional potentials based upon the quasistatic picture de-
scribed above. Neglecting these features led to quali-
tatively incorrect predictions of ionization dynamics in
the H; molecule in strong fields. Ref. [1] found that,
in general, all the four terms above are needed to rea-
sonably reproduce the ionization in CREI processes. i.e.
that propagation on any combination other than the full
sum of the four contributions in Eq.[7]gave qualitatively
poor results. This means that in eventually developing
approximations, all of the four terms must be consid-
ered.

Alternatively, one may instead decompose the e-
TDPES by exactly inverting the TDSE for the electronic
wavefunction. The electronic wavefunction may be
written in polar representation,

D(z,t) = /ne(z,t) exp (ia(z, t)) (10)

with ne(2,1) = [@(2,1)|% and a(z,t) = 2= [*dz/ 0
where

Je(z,t) = i%(<I>*(Z,t)Ve<I>(z,t)), (11)

Me

is the electronic current-density. Inserting this form into
Eq.[3|and setting the time-dependent vector potential to
zero, gives

(o=l lv@\/nxz,t)]_n;e(je(z,t)) bz

Qme ne(z,t) ’I’Le(Z,t)
12)
The first term is what survives in the absence of any
dynamics, and it depends only on the instantaneous
electron density; we denote it “adiabatic” in the spirit
of time-dependent density functional theory. The sec-
ond term, denoted “velocity term”, depends only on
the electron velocity, namely on je(z,t)/n.(z,t), while
the last term, denoted “acceleration term” depends on
the spatial integral of the acceleration. In Section [II B|
and , we consider propagation on different contri-
butions of the exact potential defined by the decompo-
sition of Eq.[12} again with a view to eventually devel-
oping approximations, possibly density functionals (see
Ref. [20]), for the exact e-TDPES.

B. Approximate electronic potentials based on
conventional approximations

The standard approximation for the electronic poten-
tial assumes the so-called quasistatic approximation (qs)

that treats the nuclei as classical point particles with po-
sitions that are either considered fixed , Ry, as in the
majority of studies of CREI [3] 517, 9} 21]], or move clas-
sically with classical trajectories R(t) that are often de-
scribed by mixed quantum-classical algorithms such as
Ehrenfest or surface-hopping algorithms [22]. In these
methods, electrons on the other hand, regardless of
whether the nuclei are frozen or move classically, fol-
low the combined potential from the laser field and the
electrostatic attraction of the nuclei, i. e.,

€ (2, t|R(t)) = Wen(z, R(t)) + V(2,t).  (13)
Considering the exact electronic potential Eq. [} we see
that such approaches completely miss the dynamical
electron-nuclear correlation effects contained in 7,,(z, 1),
Keond(z,t), and €89, and can be viewed as an approx-
imation to €*PP alone: €*PP reduces to the gs approx-
imation when the conditional nuclear wavefunction
is approximated cla551cally as a z-independent delta-
function at R(t) , i.e. n.(R,t) ~ 0(R(t), R(t)) (in this

limit W,,,,(R(t)) becomes purely a time-dependent con-
stant and hence is dropped hereafter).

A step beyond the gs approximation for the electronic
potential that can, in principle, account for the width
and splitting of the nuclear wavefunction is the electro-
static or Hartree approximation [23]

(&

EHartree(Z7t) — ‘};l(z’t) —|—/ dRWen(Z, R)n(R,t), (14)

where n(R,t) is the nuclear density obtained from nu-
clear wavepacket dynamics [24]. It can be easily seen
that if the z-dependence in the conditional nuclear
wavefunction is neglected, i. e., n.(R,t) =~ n(R,t), the
approximate potential simplifies to the Hartree approx-
imation.

To provide a detailed analysis of the exact electronic
potential, we compare the electronic dynamics result-
ing from different approximations. We will consider
combinations of the terms of the exact potential decom-
posed according to Eq. [12| to complement the analy-
sis in Ref. [1] given in terms of the decomposition in
Eq.[7] as well as the electronic dynamics resulting from
the following approximations: i) The gs approximation
for which R(t) = (R)(t) is the average time-dependent
internuclear separation obtained from the exact calcu-
lations. ii) The Hartree approximation for which the
nuclear density in (14) is replaced by the exact time-
dependent nuclear density. Hence we write the corre-
sponding electronic potential as €~ to indicate that
the exact nuclear density is substituted into the Hartree
expression. iii) Due to a considerable loss of norm in the
CREI regime, we normalize the electrostatic part of the
potential in Eq.[14]to obtain normalized Hartree as

[ dRW.,.(z, R)n(R,1)
[ dRn(R)

61[1—Hartree (Z t)
)

=V} (z,t)+ , (15)
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FIG. 1. Laser field as a function of number of optical cycles ¢ /T
The electric field amplitude is divided by the peak amplitude,

Eo = V1.

indicated as ¢*~**~H when the exact nuclear density is
inserted in Eq. iv) the “self-consistent” Hartree ap-
proximation (SCH) in which the full wavefunction is
approximated as an uncorrelated product of electronic
wavefunction and nuclear wavefunction, ¥y (r, R, t) =
#(r,t)x(R,t) that treats the electrons and nuclei on the
same footing: the electronic dynamics is described with
the potential in Eq.[14] that is coupled to the nuclei that
move under the influence of the analogous potential,
ie,

ﬁmwmwzmmm+/wWMamm@m<m

where n.(z,t) is the electron density obtained from the
electronic dynamics. This approach does not involve
the complications of dealing with the conditional nu-
clear wavefunction as in €*PP but it fails to capture major
effects of the correlated electron-nuclear dynamics due
to its mean-field nature. Finally, we point out that e**?
as well as all the approximations (i)—(iii) represent the
electron-nuclear interaction in an electrostatic way only.

II. CREIIN Hf ISOTOPOLOGUES

We utilize a popular one-dimensional model of the
symmetric as well as asymmetric isotopologues of Hy
subject to a linearly polarized laser field. As the mo-
tion of the nuclei and the electron in the true molecule
is assumed to be restricted to the direction of the po-
larization axis of the laser field, the essential physics
can be captured by a 1D Hamiltonian featuring “soft-
Coulomb” interactions [25)} 26]:

A !
e 022 2y, OR? 14 (2 — %R)Q
1 1
- +
\/1 +(z+ Ry V003+R

H(t) = I’

—l—Vg(R, z,t)

17)

where R and z are the internuclear distance and the
electronic coordinate as measured from the nuclear
center-of-mass, respectively. The nuclear effective mass

Hf | HD* |HT(A})| Hx* | HXt | Df xF

918.076|1223.742| 1376.228 |1669.229|1817.973|1834.533

9180.76

TABLE L. Nuclear effective mass corresponding to HJ and its
symmetric and antisymmetric isotopologues in atomic units.
Here, x(X) refers to the 10(100) times heavier fictitious isotope
of hydrogen and Aj is another fictitious isotopologues with
the same effective nuclear mass as HT ™.

is denoted as u,, = M]é[y? while p, = Mﬁ”me is the elec-
tronic reduced mass with M, = M; + M,. The laser
field, within the dipole approximation, is represented by

Vi(R, z,t) = eB(t)(qe 2 — CR), (18)
where E(t) denotes the electric field amplitude and
ge = 1+ M:’j:me is the reduced charge and ( =
(My — My)/M,, is the mass-asymmetry parameter. Such
reduced-dimensional models have been shown to quali-
tatively reproduce experimental results (see Ref. [27] for
example).

We study the symmetric isotopologues, i.e., Hy, A},
Dy, x5 as well as the asymmetric isotopologues HD™,
HT*, Hx™, HX*. Here x(X) stands for the fictitious iso-
tope of hydrogen that is 10(100) times heavier than that
of H, while AJ is another fictitious isotopologue with
the same effective nuclear mass as HT" (See Table.
in which the nuclear effective mass of H; and isotopo-
logues are given.)

A. Comparison of ionization of isotopologues of H with
different effective nuclear mass for a fixed field

We apply a field of duration 50-cycles, wavelength
A = 800 nm (w = 0.0569 a.u.) and intensity I =
2.02 x 10W/cm?, with a sine-squared pulse envelope
(Fig. , to each of the HJ isotopologues. First, we solve
the electron-nuclear TDSE for Hamiltonian of Eq. [17]nu-
merically exactly, beginning in the initial ground-state
of the molecule.

As the Hamiltonian has been obtained after sep-
arating off the center of mass motion and the origin
is set to be the nuclear center of mass the field cou-
ples directly to the nuclear motion only in the asym-
metric cases; in the symmetric case, nuclear motion is
driven purely by the electronic dynamics. This is also
clear from Eq. [18| where in the symmetric case, { = 0.
In Figs. 2] we plot the ionization probability and aver-
age internuclear distance ,(R), as a function of num-
ber of cycles t/T where T' denotes duration of one cy-
cle (T = 2.67 fs) for Hf, HD*, HT+, Hx*, HX* , AJ,
D and xj. Note that, the results are given in atomic
units, e = m, = h = 1, throughout the article, unless
otherwise noted. The ionization probability is defined
as I(t) = 1 — [20_dR [7] dz|¥(z, R, 1)|?, with z; = 15
a.u. As it can be seen in Figs.[?} the ionization and aver-
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FIG. 2. Ionization probability and average internuclear dis-
tance ,(R), as a function of number of cycles t/T where T' de-
notes duration of one cycle (T' = 2.67 fs) of the H;‘, HD,
HT*, Hx" and HXT molecule on the left panels and A5, DF
and xJ on the right panels.
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FIG. 3. The time-resolved, R—resolved ionization probability,
I(R,t), (upper panels) and the nuclear density (lower panels)
as a function of number of cycle for asymmetric case in the left
panels HD™, HT*, Hx' and symmetric case in the right panels
Hi, D and xJ.

age internuclear separation appear to be practically in-
dependent of nuclear mass-symmetry properties: they
are identical for asymmetric case of HT" and symmetric
case of AJ systems with the same effective nuclear mass
pn and very similar in the case of HX* and Dj where
the effective masses are only a little different. One can
understand this from that fact that the ionization probes
the electron density in regions where z > R, where the
nuclear mass-dependence in the Hamiltonian Eq. [17] to
lowest order in R/z is only via p,, and the integrated
nature of the observable reduces its sensitivity to the de-
tails of the distribution which is affected by the symme-
try of the system.

It is also observed that as the nuclear effective-mass
increases, the ionization decreases, with a dependence
that appears to tend to 1/u, for intermediate masses.
Furthermore, the growth over time of the average inter-
nuclear distance is less as the mass increases, suggest-
ing that for larger masses the system reaches the criti-
cal internuclear distance for CREI at later times when
the field has decreased from its peak value significantly,
consequently resulting in lower ionization. To investi-
gate whether the CREI process is still relevant or not
and shed more light on the dependence of the ioniza-
tion on the effective nuclear mass we utilize the concept
of the time-resolved, R—resolved ionization probabil-
ity defined as I(R,t) = [, dz[¥(z, R, t)|?, with L, =

[ 2+ fzolo and z; = 15a.u. [1,27]. This quantity can be
rewritten in terms of the concepts of exact nuclear wave-
function x(R,t) and exact conditional electronic wave-
function ®y(z,t) introduced within the exact factoriza-
tion framework, i. e,,

I(R7 t) = |X(Ra t)|2ICPv (19)
where, I., follows the usual expression of the ioniza-
tion probability but using the exact conditional elec-
tronic wavefunction ®g(z,t) , ie, I,(R,t) = 1 —
[ _dz|®p(z,1)* that is coupled to the exact nuclear
dynamics. Therefore, I(R,t), which is the nuclear density
weighted conditional ionization probability is analogous to the
ionization probability calculated for a given nuclear configu-
ration R in quasi-static picture.

To analyze the dynamics of different cases, in Fig.[Blwe
have plotted (R, t) along with the time-dependent nu-
clear density for different isotopologues. As seen in the
upper three rows of Fig. [3| with increasing the effective
nuclear mass the peak of I(R,t) moves slightly to larger
times and its overall value decreases while remaining
close to the CREI region as predicted by the internuclear
separation of R.. The lower set of panels of Fig.|3|shows
the time-dependent nuclear density in each case. For
the case of x where only an exponentially small frac-
tion of the nuclear density dissociates, the system does
not reach the CREI regime and therefore the ionization is
negligible as seen from the R—resolved, t—resolved ion-
ization probability. Notice the different scale of I(R,t)
for the case of xJ .



HY A Df X3
2.02 x 10'*]2.14 x 10**|2.26 x 10**[3.1 x 10**

TABLE II. The optimized field intensity for different-mass sys-
tems in the unit of W/cm?.

Note that the ionization rate computed at any fixed R
would be identical for all the isotopologues. Their dif-
ferent masses, however, lead to very different ionization
rates when the full electron-nuclear dynamics is consid-
ered with the molecule beginning at equilibrium as we
have shown. Still, there is some validation to the orig-
inal quasistatic CREI prediction that ionization is en-
hanced for nuclear separations around R., as indicated
by I(R,t), however, a modification to the statement is
needed due to the spreading and splitting of the nuclear
wavepacket: the enhancement occurs from electrons as-
sociated with the part of the nuclear density that is in the
R, region. Clearly, treating the nuclei as point particles
will not work even for significant nuclear mass (except
in the large-mass limit) because of this. The question
then arises whether accounting for the nuclear distribu-
tion is enough to capture CREI accurately, for example
using one of the electrostatically-based approximations
of Section[[l], and, whether and how the errors decrease
with the nuclear mass. To this end, we next consider ad-
justing the field strength so that the ionization is similar
for the different isotopologues.

B. Comparison of potentials with similar ionization rates

As discussed in the previous section, the different iso-
topologues of Hy subject to the same field show signifi-
cantly different degrees of ionization, since the different-
mass systems reach the CREI region at different times
with different probabilities. In particular, systems with
larger nuclear masses hardly reach the internuclear dis-
tances for which CREI is expected to occur. Hence, to
study the effect of the nuclear mass in the CREI regime
for different-mass systems, we adjust the field intensity
such that the ionization probability(rate) remains close
to that of Hj . As the asymmetric and symmetric iso-
topologues with the same effective nuclear mass subject
to the same field give almost the same ionization proba-
bility, average internuclear distance and I (R, t) (see sec-
tion [[IT A, from here on we focus only on the symmet-
ric isotopologues of H . The optimized field intensity
for different-mass systems is given in Table. [l while the
other field parameters are kept unchanged.

The ionization probability of the symmetric isotopo-
logues subject to the optimized field is depicted in Fig.
For isotopologues heavier than Hy the ionization starts
to set in about one optical cycle T later than the Hj case.
In order to be able to compare the ionization yield Elate)
of these systems with Hj wvisually better, in Fig. 4 we
have shifted the time-dependent ionization probability

Ionization
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FIG. 4. The field intensity is varied such that the ionization
yield(rate) of different systems remains similar to that of Hy
subject to a 50-cycle pulse of wavelength A = 800 nm (w =
0.0569 a.u.) and intensity I = 2.02 x 10*W/em?2, with a sine-
squared pulse envelope. For the isotopologues of Hy, to view
better how the ionization yield(rate) compares to that of Hy
we have shifted the ionization by one cycle (i.e. I((t-T)/T) is
plotted).
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FIG. 5. The contour plot of the time-dependent nuclear density
for Hf (lower left panel), AJ (upper left panel) , Df (lower
right panel), x§ (upper right panel) subject to the optimized
field given in tableT}

by one optical cycle, i.e. for isotopologues heavier than
Hj , I(t — T) has been plotted.

To analyze the mechanism of ionization in more de-
tail, in Fig. [5| we plot the time-dependent nuclear den-
sity for the various isotopologues. The nuclear density
behaves similarly in all cases, except the heaviest case,
namely x; . That is before the field reaches its maximum
the system becomes slightly ionized hence the nuclear
density slightly spreads. As the field reaches its maxi-
mum a small fragment of the nuclear density starts to
split off and dissociate from Coulomb explosion due to
an increase in the ionization while the rest of the nu-
clear density remains bounded and oscillates around the
equilibrium position. As an appreciable amount of dis-
sociating fragment reaches the internuclear separation
for CREI, the ionization gets enhanced. In the case of
x;r, however, the nuclear dynamics exhibits a more clas-
sical behavior, i. e. during the first half of the pulse,
the heavy nuclei only spreads slightly around the equi-
librium. The stronger field compared to the other cases
enables the system to ionize initially (before the nuclear
density reaches the critical R). This initial ionization
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FIG. 6. The contour plot of I(R,t) for Hf (lower left panel),
AJ (upper left panel) , D§ (lower right panel), xJ (upper right
panel) subject to the optimized field given in table|[[]

will be followed then by a Coulomb explosion toward
the middle of the field, after which the nuclear den-
sity spreads further but it hardly splits. The remain-
ing part of the electronic density undergoes enhanced
ionization as the nuclear density lies in the range of the
internuclear separation associated to CREL In this case,
the average internuclear distance almost coincides with
the peak of the nuclear wave packet and therefore for
systems with very large effective nuclear mass the stan-
dard approximation to describe CREL namely the gs ap-
proximation is expected to perform better compared to
the lighter isotopes. The different nature of ionization
in large nuclear-mass systems, can also be seen from
I(R,t) depicted in Fi% [l While for not too heavy iso-
topologues namely AJ and DJ , the I(R, t) has a similar
structure to Hy, the I(R,t) corresponding to x; man-
ifests a substantially distinctive structure compared to
the lighter isotopologues: the internuclear separation
for which ionization gets enhanced, shifts to smaller val-
ues. In general, the I(R, t) shifts to smaller R for heavier
isotopologues which could be related to the stronger op-
timized field used [5 16].

Now, we investigate the performance of the vari-
ous approximations introduced in Sec. for different-
mass systems. In Fig. [7] the ionization probabilities cal-
culated from propagating the electron on the exact, adi-
abatic(adiab), approximate(app), exact-Hartree(ex-H),
normalized Hartree(n-ex-H), quasi-static(qs) and self-
consistent Hartree (SCH) for various symmetric isotopo-
logues of HJ are plotted.

For all cases presented in Fig. [/} propagation on the gs
potential gives rise to an underestimation of the ioniza-
tion probability. The average (R) entering into the gs po-
tential is always considerably less than the internuclear
separation of the dissociating fragment, and so doesn’t
access the CREI region that long during the duration of
the pulse. The exact-Hartree (which compared to the gs
approximation accounts for the spreading and splitting
of the nuclear wave packet) follows the gs results un-
til the middle of propagation time then overtakes the gs
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FIG. 7. Ionization probabilities calculated from propagating

the electron on the exact, adiabatic, approximate, Hartree like,
normalized Hartree and quasi-static PES for different isomer
of ionic Hydrogen.

ionization and finally gives a rather large overestima-
tion of the final ionization for all cases. This overestima-
tion can be improved significantly by using the normal-
ized Hartree approximation as defined in Eq.|15} In fact,
the n-ex-H approximation performs clearly better than
other conventional approximations (qs, SCH, ex-H) for
Hj, A; and xj. Even the approximate potential that
depends on the more rigorous and complicated concept
of conditional nuclear density rather than the nuclear
density that appears in the Hartree-like approximation,
is considerably worse than n-ex-H. The SCH performs
very poorly with a negligible ionization probability for
not too heavy isomers, and only in the large mass limit
shows some improvement in predicting the ionization
probability, yielding a similar performance to the other
conventional approximations. This very poor perfor-
mance of the SCH stems from the fact that the SCH is
an uncorrelated approach and the splitting of nuclear
wave-packet in the CREI regime cannot be accounted
for. Hence, for the cases where the CREI occurs due to
the splitting of a dissociating fragment of nuclear wave
packet the SCH cannot capture the right physics. In the
large mass limit, however, the CREI mechanism relies
on the spreading of the nuclear wave packet rather than
splitting (see Fig.[5) , therefore the SCH approximation
is not as poor. In general, the approximations do not
perform better with increasing nuclear mass: dynami-
cal correlation effects that are missing in all the poten-
tials shown (apart from adiab and adiab+acc) depend
more critically on the nuclear velocities relative to the
electronic, and adjusting the field to get similar ioniza-
tion results in these being similar (See also Sec[[VA).

The two curves in Fig. [7] remaining to be discussed



are adiab and adiab+acc, which are components arising
from the marginal decomposition (Eq. . The prop-
agation of the electron on the adiabatic potential alone
(adiab), gives rise to the complete ionization of the sys-
tem rather early for all isotopologues, while the prop-
agation on the potential composed of the adiabatic plus
acceleration (adiab + acc) term yields an ionization prob-
ability in a very good agreement with the exact results
with the velocity term adding only a small correction,
expect in the large mass limit. In the following section
by studying the structures of the terms of the marginal
decomposition we try to shed some light on the reason
behind the performance of these potentials.

C. The structure of the dynamical electron-nuclear terms
in e-TDPES: marginal decomposition

We concluded the previous section by briefly
discussing the electron dynamics on different
terms/combinations-of-terms of the marginal de-
composition of e-TDPES (Eq. [[2). In order to better
understand the outcomes, in this section we study
structures of different terms of marginal decomposi-
tions of the e-TDPES for the two radically different
cases of Hy and xj. We refer the readers to Ref. [1]
for a discussion on the components of the conditional
decomposition of e-TDPES. For the sake of simplifying
the discussion, here, we divide the electronic coordinate
into two regions: “inner-region” that refers to the region
with |z| < 5 a.u. and “outer-region” that describes the
rest of the axis for which |z| > 5 a.u.

1. HJ case

In Fig.[8} we present the terms/combinations-of-terms
of marginal decomposition of the e-TDPES for the case
of HJ at four different snapshots in time.

Adiabatic term: the adiabatic term (first term in
Eq. is the main constituent of the e-TDPES when it
is decomposed according to Eq. In this case, as it is
seen in Fig. [§| (upper left panel), it initially follows the
exact e-TDPES in the inner-region and to some extent in
the outer-region while it shows a different behavior in
the asymptotic region (deep in the outer-region). How-
ever, as initially there is a negligibly small amount of
electronic density far from the inner-region, this devi-
ation does not influence the dynamics significantly. As
the field intensity increases, the adiabatic potential starts
to deviate from the exact potential, both in the inner-
region and outer-region. It can be seen in Fig. [§| (lower
left panel) that the shape of the adiabatic potential in the
inner-region (especially the up-field part) and its (aver-
age) slope in the outer-region differ significantly from
the exact e-TDPES. The (average) slope of the exact po-
tential follows the slope of the field in the outer-region
as expected. This feature together with the up-field part

the exact potential are mainly responsible for controlling
the ionization from the up-field direction. Indeed the
over-ionization corresponding to the propagation on the
adiabatic potential discussed in the previous section (see
the lower left panel of Fig. [7), which starts around the
20th optical cycle is associated to the lack of the asymp-
totic slope, and the error in the shape of the up-field
well. In particular, the wrong asymptotic behavior of the
adiabatic potential in the outer region, allows for ioniza-
tion from both sides (up-field and down-field) in each
half cycle, resulting in a huge overestimation of ioniza-
tion probability. However, an important feature of the
exact e-TDPES is captured in the adiabatic potential: the
development of the four wells representing the branch-
ing of the nuclear wavefunction in the inner-region of
the potential which is associated to the correlation be-
tween the electronic and nuclear motions. Towards the
end of the dynamics, where the field intensity is small
again the adiabatic potential follows the exact e-TDPES
closely as can be seen in Fig. 8| (lower-panel, right).

Velocity term: is the second term in Eq. (12| and its
overall contribution to the e-TDPES, in this case, is small
especially in the inner region. As it can be seen in Fig.
it slightly corrects the adiabatic potential in the up-field
(inner-)region as well as the outer-region but not enough
to capture the essential features appearing in the exact e-
TDPES.

Acceleration term: is the last term in Eq. [12| that is
initially very small in the inner-region but as the ion-
ization sets in, the addition of this term to the adiabatic
potential significantly improves the shape of the poten-
tial, particularly when the field approaches the peak-
intensity as evident in Fig. 8| (upper-right and lower-left
panels) in the inner-region as well as the outer-region
(see the “adiab+acc”). The latter is due to the much
better (average) asymptotic behavior of this term in the
outer-region compared to the adiabatic term. On the
other hand, it also improves the up-field/down-field
well in the inner-region when added to the adiabatic po-
tential. As a result propagating on the combination of
adiabatic and acceleration terms leads to an ionization
probability in a good agreement with the exact results
as it is shown in Fig.[7] (lower left panel).

As the structures of the adiabatic, velocity, and accel-
eration terms in the case of A and D] are very similar
to Hy, we do not address them here.

2. xJ case

In Fig. P} the terms/combinations-of-terms of
marginal decomposition of the e-TDPES for the case of
x5 are plotted at four different times.

Adiabatic term: behaves similarly to the case of HJ,
i.e. initially and finally it agrees well with the exact e-
TDPES while when the field intensity is large it fails to
follow the shape of the exact potential. Again, this fail-

ure, in particular the wrong average slope of the adia-
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FIG. 8. The exact e-TDPES and its component from the
marginal decompositions at various snapshots in time of Hy .

batic potential in the asymptotic region, results in a huge
overestimation of the ionization probability.

Velocity term: the velocity term plays a crucial role in
this case as is seen in Fig. f] (lower-panel, left). In par-
ticular, as the field approaches its maximum intensity,
it exhibits more structure in the inner region and con-
tributes more significantly to the overall shape of the e-
TDPES. Specifically, it exhibits a valley in the center that
is completely absent in the case of Hj and lowers the
interatomic barrier when added to the adiab+acc poten-
tial for most of the times between ¢t ~ 28 T'and t ~ 40 T’
in which most of the ionization happens. The more
dominant role of the velocity term in this case, could be
attributed to the increase of ponderomotive (wiggling)
motion of the electron driven by a stronger external laser
field.

Acceleration term: this term has a correct asymp-
totic behavior, similar to the case of Hf but leads to a
wrong estimate for the inner-barrier (see Fig. [0} lower-
left panel,) when added to the adiabatic term. The
wrong estimation of the inner-barrier is exaggerated af-
ter the field reaches its maximum intensity (especially
due to the higher interatomic barrier around zero be-
tweent ~ 28 T and ¢t ~ 40 T') , leading to an inaccurate
ionization probability after ¢ ~ 30 T, as seen in Fig.
(uper right panel). In ref. [15] the importance of the
inner-barrier (peaks) and up-field well (steps) to achieve
the correct electron-localization has been shown.

IV. QUASI-CLASSICAL ANALYSIS

The equations for the electronic wavefunction and
conditional nuclear wavefunction cannot be solved ex-
actly for systems of more than a few degrees of freedom,
just as solving the full molecular Schrédinger equa-
tion exactly for those systems is not possible. In many
cases a quasiclassical treatment of the nuclear dynam-

FIG. 9.

The exact e-TDPES and its component from the
marginal decompositions at various snapshots in time of xJ .

ics should be sensible; by quasiclassical, we mean an
ensemble of classical trajectories, weighted according to
the initial distribution, is evolved for the nuclei, rather
than a single trajectory. This would allow the possibil-
ity to capture spreading and branching of the nuclear
distribution. Such a procedure within the exact factor-
ization in its reverse flavor involves taking the classi-
cal limit of the conditional nuclear wavefunction which
does not satisfy an equation of Schrodinger form. There-
fore, it differs from quasiclassical treatments of usual
Schrédinger equations that have also been discussed
in various forms for the marginal nuclear wavefunc-
tion within the ”direct factorization” framework [28-
33]. Here we begin taking the classical limit of the condi-
tional nuclear wavefunction by representing it in polar
form:

Xz(R,t) = AL(R, t)e’S-(FR0/h (20)
where A, (R,t) and S, (R,t) are both real functions. In-
serting this into the equation of motion for x.(R,t),
Eq. 4} and sorting the terms in orders of #, we find to
O(h):

1 [0S, 2 1 /08, 2
ﬁ (GR) +2Ne ( 92 ) +V(Z,R,t)—€e(z7t)
ﬁe(zat) 8Sz 8SZ .
- e 0z + ot =0

21)

where we define V(z,R,t) = Wyn(R) + Wen(z, R) +
Vi(z, R, t), and p.(z,t) = —ih 0 ®(z,t)/0z (see shortly for
more on this term). Similarly, keeping only O(h") terms
in Eq. [7]for the e-TDPES, we find

i, o 1 (08:\* 1 (8S8.\?
(e, 1) = / R OP (5= (57 ) + 5 (52

08,
i )

+ V(z,R,t) + (22)




The terms on the right-hand-side correspond to
classically evaluating 7,,(z,t), K (2, t), €2PP (2, ) and
€84(z,1) respectively. Notice that the electron-nuclear
coupling operator US2"P has a classical counterpart, as
it contributes already at zeroth-order in 7 with the term

211% (25 )2 in both Eq and .

0z
Eq.2T]would be a standard Hamilton-Jacobi equation
of the form H(q, ‘98% ,t) + 0S5./0t = 0 (where H(q, p,t)
is the Hamiltonian function), for the action S,(R,t) of
two particles, one of mass p,, and the other of mass .
in a potential V(z, R,t) — €.(z, t), if the second-last term
on the left-hand-side was not present. It is perhaps not
surprising that we do not retrieve a standard Hamilton-
Jacobi equation, given that the equation for . is not
a TDSE. Although an i multiplies this term, it does in
fact contribute in the classical limit, as will be discussed
shortly. Still, classical Newton-like equations can be de-
rived from Eq. 21]by defining the velocity fields,

n _ 1 9S,(R,t) . _ 1 98.(R,t)
uZ(R,t) = T OR yand u$(R,t) = 9
(23)
Then, taking 9/9R of Eq.[21]yields
duZ(R, t) o i ~ e
WIEUED — (Ve Bot) (e, 0 (R 1) (29
and
du¢(R,t) 0 ~ .
e = 5 (V(z,R,t) — €c(2,t) + pe(z, t)us (R, 1))
(25)
where d/dt = 0/0t + u$0/0z + u}0/OR is the time-

derivative in the Lagrangian frame defined by the ve-
locities.

A. Quasiclassical analysis of the terms in the e-TDPES

Whether the equations above, together with the so-
lution of the TDSE Eq. |3| could form the basis of a
mixed quantum-classical method remains for future
work. Here, instead we consider how a quasiclassi-
cal analysis of the entire coupled electron-nuclear sys-
tem can shed light on the structure and nuclear-mass-
dependence of the terms in the e-TDPES. Many aspects
of electron dynamics in strong fields can be treated
classically, especially when tunneling and quantization
are not driving the primary physics. Indeed, Ref. [34]
showed that classical trajectory calculations reproduce
the essential features of CREI for both cases of fixed and
moving nuclei.

To this end, we first evaluate p.(z,t) in Eq.
to its lowest-order in &. Inserting ®(z,1)
a(z,t) exp(is(z,t))/h, analogous to Eq. 20} into the TDSE
Eq.[B|for the marginal wavefunction ®(z, ), and keeping
only the term that is lowest-order in £, gives

1
2fte

0s(z,1)
0z

o5 _

ot

2
> +ec(z,t) + 0. (26)
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This is the Hamilton-Jacobi equation for the action s(z, t)

of a classical electron evolving in Hamiltonian T, +

€e(z,t). Here T, = o (%)2 is the electronic kinetic en-
ergy associated with the Hamiltonian in the TDSE for
the electronic wavefunction, Eq. It is important to
note that this is not the same as the true electronic ki-

netic energy (see Eq. 69 in Ref. [17]). The term in Eq.

—ihO®(z,t)/0z thus becomes p,
cal limit.

Next, we note that Eq. for S, is consistent
with the corresponding classical limits taken for the
electronic wavefunction and the full molecular wave-
function: Writing x,(R,t) = ¥(z,R,t)/®(z,t), with
U(z, R,t) A(z, R, t)exp(iS(z, R,t)) and ®(z,t)
a(z,t) exp(is(z,t)), then

v/ 2 ueTe in the classi-

S.(R,t) = S(z,R,t) — s(z,1) (27)

where, in the classical limit, s(z,t) satisfies Eq. 26| and

S(z, R, t) satisfies
L8V L (O5Y v my e (25) 2o
2, \OR 2. \ 0z Y o)
(28)
It is straightforward to check by substitution that
Egs. 26[28[21| and are consistent with each other.
Egs. (26) and are both standard Hamilton-Jacobi

equations, so, for the classical trajectories that they de-
scribe, we readily identify the following;:

0S/OR = P, = un R,

the nuclear momentum;

95/0z = pe,
the electronic momentum,;

05/0t = E(t),

the classical energy; and, as in the earlier discussion,

0s/0z = pe,
and

0s/0t = T, + €.

Now we imagine an ensemble of classical particles with
initial position and momenta distributed according to
the initial wavefunction. We consider evaluating the
various contributions to the classical e-TDPES of Eq.
from these classical trajectories. The integral over R in
that equation then becomes a sum over classical trajecto-
ries which have arrived at z at time ¢, but with differing
R, i.e. one sums over all trajectories that have reached z
at time ¢.



0.15

t=1525T

0.1

FIG. 10. The kinetic term, 7,(z,t), at various snapshots in
time for H and its isotopologues.

For the first term in Eq.[22} 7,,(z, t),

1 s,
20 \ OR

:
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n 1 n ;2

— [arpropPtie = e ST R
z Iz

(29)

where we noted that 05.(R,t)/OR = 90S(z,R,t)/OR
(from Eq.[27), and replaced the integral with a sum over
all N'"% trajectories I, that reach z(t) = z at time ¢; Ry,
is the nuclear velocity along the I.-th trajectory. First, let
us see what this says about the overall structure of this
term. During the dynamics, we observed that part of
the nuclear density oscillates around equilibrium, mov-
ing slower than the dissociating part of the density. This
means that the trajectories for small z are mostly associ-
ated with more slowly-moving nuclear dynamics near
equilibrium, while those with larger z are in the pro-
cess of ionizing, and so are associated with faster nu-
clear speeds due to the net ionic charge they have left
behind. Hence, for small z, there are more trajectories
with smaller R’s than for large 2, and so we expect a
potential that rises as z gets larger. This is indeed what
we see in Fig. Consider first the black curve, H .
At early times, the middle region of 7,,(z,t), where the
bulk of the electron density is, is rather flat and takes its
smallest value: Initially, the conditional nuclear proba-
bility has very little z-dependence in the region where
the electron density is appreciable, i. e., at small times
the classical positions of nuclear trajectories for z in the
region of appreciable electronic density are identical, re-
flecting the broadness of the electron distribution rela-
tive to the nuclei. The small nuclear kinetic energy at
the early times near equilibrium is essentially from zero-
point motion. As the electrons begin to gain energy from
the field and move out from the tails of the electronic
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distribution, the 7,(z,t) grows accordingly since these
tails are associated with trajectories where the nuclei are
beginning to move apart under Coulomb repulsion. The
small middle flat region of 7, (z,t) gets narrower as ion-
ization take away more of the electron density. As the
final distribution sets in, 7,,(,t), one can identify three
regions, reflecting the electronic distribution and the as-
sociated nuclear kinetic energies: an inner region asso-
ciated with the density remaining near equilibrium, ris-
ing to the intermediate region where the shoulders of
the electron density lie associated with the dissociated
nuclear wavepacket, and then rising further out to the
tails of the electron density which continue to oscillate
in the field.

Regarding now the u,-dependence: it might appear
from Eq.29 that 7;,(z,t) grows as the mass ., increases,
in the cases where the field is adjusted so that the aver-
age internuclear distance and speed remains the same.
This is in fact not the case; in fact, the term remains
about the same size, as the nuclear mass increases as is
evident in Fig. This is because, for larger p,,, the nu-
clear density tends to split less (see Fig.[6), i.e. for larger
{in, a larger proportion of the nuclear density moves out
to larger separations rather than remaining near the ori-
gin with small R. Yet about the same (R) is maintained
by design by the different field strengths, which means
that the fastest trajectories in the distribution are slower
for larger masses i, than for smaller x,,. This would
contribute to a smaller rise of 7,(z,t) as one moves to
larger z, as mass increases, compensating the larger fi,.
In Fig. [10]we plot 7, (z, t) for the different isotopologues
at various snapshots in time. We see that the overall size
of this term does not vary much with mass except for
x5 . The exception is for the large mass x5 where there
is comparatively weak z-dependence of 7,(z,t). This
is because the nuclear distribution moves largely as a
whole, showing less difference between nuclear speeds
at different parts of the distribution.

The corresponding analysis for the other three terms
of Eq. 22| is unfortunately not as straightforward, be-
cause the evolution of the relevant classical trajectories
themselves depend on the potential e.(z, t), which is the
very object we wish to analyse! For example, the second
term, K<(z, 1), requires 9S./0z = (vT. — \/T.) but
T.. is the kinetic energy of an electron in the potential e..
Future work along these lines will likely require further,
possibly iterative, approximations to the potential, with
the dual goal of analysing the structure of the terms and
developing mixed quantum-classical schemes.

V. CONCLUSIONS

The exact potential driving the electron dynamics
within the exact factorization of the full electron-nuclear
wavefunction formally exactly accounts for the coupling
to the nuclear subsystem as well as coupling to exter-



nal fields. In order to develop adequate approxima-
tions to treat electronic non-adiabatic processes, it is im-
portant to understand the structure of the exact poten-
tial and pinpoint and analyse its important features in
various situations. In this work, we have presented
a detailed investigation of the exact potential driving
the electron dynamics in isotopologues of H undergo-
ing CREI and studied the dependence of the correlated
electron-nuclear dynamics on the nuclear mass.

The elaborate concept of time-resolved, R-resolved
ionization probability, I(R,t), provides an extremely
useful tool, indicating the internuclear separations as-
sociated with ionization. The concept is analogous to
the ionization probability calculated within the qua-
sistatic picture (with clamped nuclei) but can be used
unambiguously for the fully dynamical case. For the
laser parameters and different isotopologues of Hj dis-
cussed in this work, I(R,t), exhibits only one peak.
This is in agreement with most of the experimental find-
ings [35, [36] and in contrast to the predictions of CREI
based on the standard clamped-nuclei quasistatic pic-
ture. We suggest that I(R,t) would be a very useful
tool in future studies of CREI, for example to resolve the
laser parameters for which double-peak structure could
in fact be observed as in Ref. [37].

We found that for fixed laser parameters, the ioniza-
tion yields rapidly decrease as a function of the mass
of the isotopologue because less of the nuclear density
makes it to the CREI region during the time the laser is
on. For all the isotopologues, I(R,t) indicated that the
ionization is nevertheless dominated by the fraction of
electrons associated with the nuclear density in the CREI
region defined qualitatively by the original quasistatic
argument. This implies that treating the nuclei as clas-
sical point particles will not work; one needs to account
for their distribution, which, away from the large-mass
limit, displays a branched structure with part of the dis-
tribution oscillating near equilibrium separation while
part of it, associated with the CREI electrons, dissoci-
ates.

Still, going beyond the quasistatic point nuclei picture
and accounting for the nuclear distribution in an elec-
trostatic way (as in Hartree-type approximations) is not
adequate in capturing the dynamics accurately. The im-
portance of going beyond an electrostatic description of
electron-nuclear correlation is evident from our studies
of how different approximate electronic potentials per-
form in describing the CREI for isotopologues of Hj .
We have shown that, for the laser parameters used in
this work, one must go beyond any purely electrostatic
treatment of electron-nuclear correlation, and include
truly dynamical aspects of the nuclear distribution and
its coupling to the electronic system to get a good pre-
diction of the ionization. In determining errors from
conventional approximations and deviations of approx-
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imate potentials from the exact potential, what are more
important than the nuclear-to-electronic mass ratios, are
the nuclear velocities in the wavepacket.

There are many different approaches to developing
approximate methods based on the exact factorization.
For example, one may consider the relative importance
of different components of the exact potential when de-
composed in terms of the conditional wavefunction as
in Ref. [1] (there, it was found that generally all terms
were important). One may consider also approxima-
tions based on the marginal decomposition presented
here, where we found that the “adiab+acc” component
of the marginal decomposition describes the electronic
dynamics accurately in all cases we studied here with
the exception of a fictitious isotopologue with an effec-
tive nuclear mass 10 times larger than Hj . Further in-
vestigation of this potential may lead to development
of an adequate approximation for practical purposes ca-
pable of describing the ionization dynamics accurately.
Another approach is to develop quasiclassical approx-
imations, and here we have sketched out a semiclassi-
cal derivation of the electronic and conditional nuclear
equations of the exact factorization in its reverse form
and analysed the structure of the nuclear kinetic term of
the exact potential semiclassically.

This work has highlighted the effect of the complex
interplay of electronic and nuclear dynamics in strong
field enhanced ionization processes by demonstrating
the large differences in the conventional potentials and
the dynamics they cause with the exact potential driving
the electron for systems of varying nuclear mass. The
explorations of the details of the potential and approxi-
mation methods lay the ground-work for future devel-
opment of accurate methods for coupled electron-ion
dynamics in non-perturbative fields. Whether the dy-
namical electron-nuclear effects play as crucial a role for
polyatomic molecules, and the scaling of these effects
with respect to the number of electrons and number of
nuclei, is also an important avenue for future research
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