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Introduction

The rise of high-throughput technologies in molecular biology has led to a massive amount of

publicly available data. While computational method development has been a cornerstone of

biomedical research for decades, the rapid technological progress in the wet lab makes it diffi-

cult for software development to keep pace. Wet lab scientists rely heavily on computational

methods, especially since more research is now performed in silico. However, suitable tools do

not always exist, and not everyone has the skills to write complex software. Computational

biologists are required to close this gap, but they often lack formal training in software engi-

neering. To alleviate this, several related challenges have been previously addressed in the Ten

Simple Rules series, including reproducibility [1], effectiveness [2], and open-source develop-

ment of software [3, 4].

Here, we want to shed light on issues concerning software usability. Usability is commonly

defined as “a measure of interface quality that refers to the effectiveness, efficiency, and satis-

faction with which users can perform tasks with a tool” [5]. Considering the subjective nature

of this topic, a broad consensus may be hard to achieve. Nevertheless, good usability is impera-

tive for achieving wide acceptance of a software tool in the community. In many cases, aca-

demic software starts out as a prototype that solves one specific task and is not geared for a

larger user group. As soon as the developer realizes that the complexity of the problems solved

by the software could make it widely applicable, the software will grow to meet the new

demands. At least by this point, if not sooner, usability should become a priority. Unfortu-

nately, efforts in scientific software development are constrained by limited funding, time, and

rapid turnover of group members. As a result, scientific software is often poorly documented,

non-intuitive, non-robust with regards to input data and parameters, and hard to install. For

many use cases, there is a plethora of tools that appear very similar and make it difficult for the

user to select the one that best fits their needs. Not surprisingly, a substantial fraction of these

tools are probably abandonware; i.e., these are no longer actively developed or supported in

spite of their potential value to the scientific community.

To our knowledge, software development as part of scientific research is usually carried out

by individuals or small teams with no more than two or three members. Hence, the responsi-

bility of designing, implementing, testing, and documenting the code rests on few shoulders.

Additionally, there is pressure to produce publishable results or, at least, to contribute analysis

work to ongoing projects. Consequently, academic software is typically released as a prototype.

We acknowledge that such a tool cannot adhere to and should not be judged by the standards
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that we take for granted for production grade software. However, widespread use of a tool is

typically in the interest of a researcher. To this end, we propose ten simple rules that, in our

experience, have a considerable impact on improving usability of scientific software.

Rule 1: Identify the Missing Pieces

Unless you are a pioneer, and few of us are, the problem you are working on is likely addressed

by existing tools. As a professional, you are aware of this software but may consider it cumber-

some, non-functional, or otherwise unacceptable for your demands. Make sure that your judg-

ment is shared by a substantial fraction of the prospective users before you start developing a

new tool. Usable software should offer the features needed and behave as expected by the com-

munity. Moreover, a new tool needs to provide substantial novelty over existing solutions. For

this purpose, list the requirements on the software and create a comparison table to set the

new tool against existing solutions. This allows you to carve out the selling points of your tool

in a systematic fashion.

Rule 2: Collect Feedback from Prospective Users

Software can be regarded as providing the interface between wet lab science and data analysis.

A lack of communication between both sides will lead to misunderstandings that need to be

rectified by substantially changing the code base in a late phase of the project. Avoid this pitfall

by exposing potential users to a prototype. Discussions on data formats or on the design of the

user interface will reveal unforeseen challenges and help to determine if a tool is sufficiently

intuitive [6]. To plan your progress, keep a record of suggested improvements and existing

issues.

Rule 3: Be Ready for Data Growth

First estimate the expected data growth in your field and then design your software accord-

ingly. To this end, consider parallelization and make sure your tool can be integrated seam-

lessly in workflow management systems (e.g., GALAXY [7] and Taverna [8]), pipeline

frameworks (e.g., Ruffus [9] and SnakeMake [10]), or a cluster framework (e.g., Hadoop,

http://hadoop.apache.org/). Moreover, make sure that the user interface can scale to growing

data volumes. For example, consider that the visualizations should still be comprehensible for

larger datasets, e.g., by displaying only parts of the data or through aggregation of results.

Rule 4: Use Standard Data Formats for Input and Output

As an expert in your research domain, you know the established data standards and related

programming libraries for reading and writing commonly used data formats. Make sure that

your tool’s output follows standard specifications to the letter, but be as lenient as possible

when users provide non-standard input. Tools that follow this rule are more likely to become

successful. If you are working in an emerging field with no prevalent model for data exchange,

provide data in a structured text file (e.g., tab-separated tables, XML/XSD, or JSON) and aim

for self-documenting output by including header lines and data type descriptions. In this case,

document how users can derive suitable input data for your tool.

Rule 5: Expose Only Mandatory Parameters

Exposing all (possible) parameters to a user can be confusing and carries the risk of nonsensi-

cal parameters settings. When possible, users will thus rely on default parameters. The same

applies to benchmark studies comparing your tool against the state-of-the-art competitors.
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This has three important implications: (i) expose only a small set of parameters by default

whose effects on results can be easily understood by any user, (ii) offer advanced parameters

only in an expert section and describe them thoroughly in the documentation, and (iii) choose

conservatively (and if possible, justify) the default values for parameters such that the tool can

operate in a wide range of scenarios and within reasonable run time.

Rule 6: Expect Users to Make Mistakes

You should never assume that your tool is self-explanatory, that requirements concerning the

input data are obvious, or that the user will immediately grasp all details of the problem at

hand. Ideally, your tool supports the user in using it appropriately, e.g., by checking that data

remain inside required ranges or that identifiers are unique, and provides descriptive error

messages in case of unexpected values. If performance penalties due to such checks are a real

concern (which should be tested), make the checks optional and enabled by default. Finally,

allow users to stop ongoing operations in case they realize they made a mistake.

Rule 7: Provide Logging Information

Two types of logs improve usability and also support the user in making their research more

reproducible. Configuration logs keep track of basic information, such as the time stamp of

the analysis, the version of your tool and of third-party libraries, as well as the parameter set-

tings and input data. Archiving this information is particularly important in long-running

research projects in order to trace irregularities in the results at any later point in time [1].

Technical logs, on the other hand, contain progress messages that help users to pinpoint errors

in the execution flow and allow clear communication of these issues to the developer. As much

as possible, avoid exposing potentially sensitive user information in the logs.

Rule 8: Get Users Started Quickly

Complex setup routines introduce dependency [11] or configuration debt [12]; i.e., the user

has to spend substantial time installing software and learning about the execution parameters

of a tool. These raise the bar for unhindered exploration of software features. Such issues can

be solved by implementing a web application (if feasible with respect to resource demands), by

providing a standalone executable, or by providing a system-specific software package. Alter-

natively, issues of a program’s dependence on third-party libraries can be avoided by encapsu-

lating your tool in a virtual machine image or, e.g., a Docker container (https://docker.com).

Finally, it is imperative to provide demo data that enable users to immediately interact with

the software. A successful test run proves to the user that your software works as expected and

will be essential if you want your tool to be published.

Rule 9: Offer Tutorial Material

Researchers can seldom afford the time to thoroughly read complex user manuals. They will

thus appreciate a number of clearly written code examples, illustrations, or video screen casts

to get started. Most importantly, documented use cases enable users to quickly assess if your

tool is suited for the problem at hand and allow fast learning by doing. Keep in mind that these

materials have to be updated together with your tool.

Rule 10: Consider the Future of Your Tool

For long-term availability of your software, use suitable repositories such as github (https://

github.com) or bitbucket (https://bitbucket.com) throughout the development process.
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Explicitly state under which software license you release your code for third parties (see

https://opensource.org/licenses). Without such a license, using your software might be prohib-

itive for many organizations or companies. More importantly, keeping your code in a public

repository will also allow you to engage with the users through issue tracking (e.g., bugs, sug-

gestions). After releasing your tool, expect support requests and take them seriously. See them

as an opportunity to continuously improve the usability of your tool.

Conclusions

Usability is an important topic in software design, and we would like to provide a few starting

points for further reading [13–18]. In the above ten simple rules, we highlight that software

should not only be scientifically sound but also be perceived as usable for widespread and effec-

tive application. To these ends, developers should also be the first to apply their tool, to reveal

usability issues as early as possible. However, effort is required from both users and developers

to further improve a tool. Even engaging with only a few users (Rule 2) is likely to have a large

impact on usability, since, as Jakob Nielsen put it, “Zero users give zero insights” [19].
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