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Abstract

Biological materials, in addition to having remarkable physical properties, can
also change shape and volume. These shape and volume changes allow organisms to
form new tissue during growth and morphogenesis, as well as to repair and remodel old
tissues. In addition shape or volume changes in an existing tissue can lead to useful
motion or force generation (actuation) that may even still function in the dead organism,
such as in the well known example of the hygroscopic opening or closing behaviour of
the pine cone. Both growth and actuation of tissues are mediated, in addition to
biochemical factors, by the physical constraints of the surrounding environment and the
architecture of the underlying tissue. This habilitation thesis describes biophysical
studies carried out over the past years on growth and swelling mediated shape changes
in biological systems. These studies use a combination of theoretical and experimental
tools to attempt to elucidate the physical mechanisms governing geometry controlled
tissue growth and geometry constrained tissue swelling. It is hoped that in addition to
helping understand fundamental processes of growth and morphogenesis, ideas
stemming from such studies can also be used to design new materials for medicine and
robotics.






Zusammenfassung

Biologische Materialien verfligen nicht nur tiber auf3ergewohnliche physikalische
Eigenschaften, sie konnen auch ihre Form und ihr Volumen verandern. Erméglicht
werden diese Anpassungen wahrend der Morphogenese und des Wachstums sowohl
durch die Bildung neuer Gewebe, als auch die Umformung und/oder Reparatur alter
Gewebe. Zusatzlich fiihren Form- oder Volumendnderungen in Geweben haufig zur
Generierung von Kraften (Aktuation) und daraus resultierenden Bewegungen. Ein
bekanntes Beispiel dafir ist der feuchtigkeitsgetriebene Offnungs- und
Schliefmechanismus der Schuppen von Kiefernzapfen, die ausschliefRlich aus totem
Gewebe ohne aktiven Metabolismus bestehen. Bestimmend fiir Wachstum und
Aktuation sind dabei nicht nur biochemische Faktoren sondern auch physikalische
Randbedingung definiert durch die Umgebung und die Gewebearchitektur. Die
vorliegende Habilitationsschrift basiert auf biophysikalischen Arbeiten der Gruppe
,Biomimetic Actuation and Tissue Growth“ zu wachstums- und quellungsbedingten
Formanderungen  biologischer = Systeme. Physikalische = Mechanismen von
Gewebewachstum und Quellprozessen unter dem kontrollierenden Einfluss von
geometrischen Randbedingungen werden mit theoretischen und experimentellen
Methoden untersucht und erklart. Die gewonnenen Ergebnisse tragen nicht nur zum
Verstindnis grundlegender Wachstums- und Morphogeneseprozesse bei, sie kdnnten
zukiinftig auch fiir die Entwicklung neuer Materialien fiir die Medizin und Robotik von
Nutzen sein.
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1 Introduction

This short introduction should provide a background for the reader about research into
shape changes in biology due to growth and swelling, the focus of this habilitation thesis.
It turns out that even historically, research in this field has demonstrated the
importance of physical principles on biological shape changes, especially through
signalling via mechanical forces. By understanding such shape changes, one can not only
learn about the formation of external structures and shape, but also the development of
internal tissue microstructures, which has an important role on function.

The ability of biological tissues to grow and change shape has long fascinated us.
Throughout the centuries, scientists such as Galileo, Trembley, Haeckel, Darwin and
many others, have worked on understanding how new tissues in Nature form, as well as
how they change shape, or actuate, after growth is complete. In his classic book, “On
Growth and Form”, D’Arcy Thompson (1942) argues that the development of form in
biology, is controlled by the application of physical forces during growth, implying that
an understanding of physical principals is necessary to understand morphogenesis (See
also Gould (1971)). Amongst many examples linking physical laws and organic forms, he
showed that simple geometric rules could describe the shape, and growth of shells
(Figure 1-1a). With the advent of modern computing, these geometric ideas have been
tested systematically (Raup 1962), compared to real shell geometries (Meinhardt 2009),
and even linked to physical mechanisms behind shell growth (Chirat et al. 2013).
Thompson’s thesis, that as biological organisms grow and act in a physical world they
therefore can be described by equations from physics, is perhaps too strong considering
recent advances in evolutionary and molecular biology, however there is still much to
learn about the link between physics, biology and geometry, as will be seen in the
following.

Thompson’s connection between physics and biology, although ground-breaking,
was based on earlier work going back at least as far as Galileo (1638). An example is
shown in Figure 1-1b, an image from Galileo’s “Dialogues concerning two new sciences”
(1638), that illustrates his argument of how the long bones of animals should scale with
body size. If an animal’s volume and hence mass scale to the cube of its linear dimension,
but the ability of a bone to resist load scales only with the square of the linear
dimension, then in order to withstand the increasing load with larger body size, the ratio
of length to thickness of long bones should scale with a power of two thirds. It turns out
this power law is largely supported when real bones are measured, e.g. (Currey 2002);
see also (Gould 1966), (Schmidt-Nielsen 1984) or (Niklas 1994) for other applications of
allometric methods in biology.



Figure 1-1: Some historical examples of studies of shape changes in biology

Tissue shape and its changes have been studied for centuries, with some illustrative examples given above. a)
Thompson (1942) analysed the geometry of the shell of the chambered nautilus, Nautilus pompilius, , showing that the
shell shape could be described by an equiangular spiral (image from Chenu (1842)), b) the role of mechanics on the
unequal scaling of thickness and length in long bones was discussed by Galileo, (1638), in his Dialogues concerning
two new sciences, c) the possibility of tissue and organ regeneration was discovered in hydra, the image shows
different stages of regeneration in the species Hydra vulgaris as studied by Trembley (1744) d) projectile motion used
for spore dispersal in the fruit bodies of some fungi (left, Pilobolus longpipe, middle, Ascobolus immersus, and right,
Sphaerobolus stellatus) studied by Buller (1958), e) hygroscopic motion in pine cones as studied by Shaw, (1914),
image shows an opened cone of Pinus acayahuite, f) dissected scale of the same species showing movement from wet
(below) to dry (above), image also by Shaw, (1914), g) the snapping motion of the Venus fly trap, Dionaea muscipula,
as studied by Darwin (1875).

This link between loading and shape was observed prior to Thompson not only in
the external shape of bone (due to development), but also inside it (due to adaptation),
within the cancellous or trabecular bone present in vertebra or in the end of long bones.
This porous structure was seen to be strongly anisotropic, with individual trabeculae
oriented along the directions of principal stresses (Ward (1876), but see also (Lee and
Taylor 1999) for a historical perspective). Upon observing these structures, Roux (1885)
and Wolff (1892), came to the conclusion that bone adapts its architecture dynamically
with respect to changes in the applied loading. This implies that bone cells can sense and
respond to physical forces by specifically removing or producing new bone, thus
modifying the local mechanical stress state. Research into bone remodelling, or the feed-
back between physical loading and bone cell behaviour, has accelerated in recent years
due to the use of modelling methods from physics, for some examples see e.g. (Frost
1987, Huiskes et al. 2000, Ruimerman et al. 2003, Tsubota and Adachi 2004, Weinkamer
et al. 2004, van Oers et al. 2008, Dunlop et al. 2009, Hartmann et al. 2011). In addition to
its application to bone, an understanding of the physical basis of morphogenesis is
fundamental in the field of tissue regeneration. This field of research was pioneered by
Trembley (1744), with the observation that damaged or even missing tissues and organs
can regenerate in Hydra (Figure 1-1c) (Dinsmore 1991). In the last century it has
become clear that in addition to biochemical and genetic factors physical forces also play
an important role regeneration such as in wound healing (Gurtner et al. 2008), limb

1'To improve the clarity of the figure captions all sources and permissions for
images used are listed in detail at the end of this thesis in Section 5.2.
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regeneration (Calve and Simon 2010), and bone healing (Vetter et al. 2011), to name
only a few examples.

Of course cells and tissues not only can respond to force but can also generate it
as exemplified in the spectacular spore dispersal mechanisms (Figure 1-1d) seen in the
fruiting bodies of some fungi (Buller 1958) or in the closing mechanism of the Venus fly
trap (Darwin 1875)(Figure 1-1g). Other examples of the utility of force generation in
tissues, include the hygroscopic movements found in plants, as seen in the way a pine-
cone opens to release its seeds (Figure 1-1e and f). Although these movements are
perhaps not as spectacular as those of the fungi, they are more interesting from a bio-
inspired materials perspective. As the responsive components of these tissues are dead,
they operate without any complex metabolic machinery. This means that in principle if
we can understand how the internal structure of such tissues controls motion, we can
copy this in synthetic systems (Burgert and Fratzl 2009, Fratzl and Barth 2009, Martone
et al. 2010). More examples of such work will be discussed in more detail in Chapter 3 of
this habilitation thesis.

The main focus of interest of the research summarised in this thesis are dynamic
shape changes due to growth or swelling of a tissue. Before going into more detail it is of
course necessary to understand the microstructure of a static tissue. On one hand this
tissue microstructure arises as a consequence of growth, but on the other hand,
microstructure controls function as will be seen in examples in Chapter 3. Although a
large range of types and forms of tissues can be found in Nature, it is somewhat
surprising that the majority of structural tissues in biology are made of only a limited
range of components, or “chemical building-blocks” (Fratzl 2007). This could potentially
be related either to limitations in the availability of different chemical elements in the
environment, or perhaps due to evolutionary restrictions. Interestingly these different
building blocks can be observed throughout almost all kingdoms of life as illustrated in
Figure 1-2. which shows a simple phylogenetic tree on which is marked the occurrence
of major materials components in biological materials including fibrous polymers such
as cellulose, chitin, collagen, and minerals such as calcite, calcium phosphate and silica
(Knoll 2003).
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Figure 1-2 : Map of major constituents of biological tissues.

Phylogenetic tree with the occurrence of some major building blocks (Calcium Carbonate, Silica, Calcium Phosphate,
Cellulose, Chitin and Collagen) highlighted. The spread of symbols highlights that basic materials building blocks can
be found throughout almost all kingdoms. Modified with permission from (Knoll 2003).

Despite the apparent paucity in available of constituent materials, Nature is still
capable of producing materials with a wide range of properties (Ashby et al. 1995,
Wegst and Ashby 2004) as illustrated in the materials property chart for a selection of
natural materials in Figure 1-3. This map shows that natural materials can span at least
3 orders of magnitude in strength and 5 orders in magnitude in Young’s modulus.



10000

Spider Organics
drag-line silk AP T
Corticle building blocks
) Silkworm bone (L) s
Natural fibers silk Kenad p
1000 hute
Sisal
Spider O Cellulose
viscid silk
(- Wool Dentlne
preme ydroxyapatite
E Lignin Aragonite
= 190 AT catcie
Mt Hide (leather) ; _ ' ~Bio-ceramics
= Soft Tissue Ligament AKX Bio-silica
‘.5) 290 shar~Mineralized
- Cartilage "“;\; P Corals tissue
QO idn Trabecular g 7 %14 v Sgrigce:e
o Enamel
- Palnt bone (HD)\, v Bamboo
o Cortical bone (T)

_Willow
Lignum vitae

’t/ /

Iriartea Palm ;/-'
Trabecular L ,)
{7, Oak
(LD) }/ 0,/ Balsa Woods
Resilin
: ) Spruce
@‘Abductl

w Pine Trabecular bone
illow
Corks e
Natural cellular
Parenchyma materials
0.1
0.001 0.01 0.1 1 10 100 1000

Young's modulus (GPa)

Figure 1-3 : Properties of a sample of biological materials.
A so-called Ashby map showing the strength and Young’s modulus of a range of biological materials. Based on data in
(Wegst and Ashby 2004).

This wide range of properties in biological tissues comes from the fact that they
are composite materials (Neville 1993) combining different physical properties from
each of the constituent building blocks (Fratzl and Weinkamer 2007, Dunlop and Fratzl
2010). By just controlling the architecture or microstructural arrangement of the
constituents at different length scales (Dunlop and Fratzl 2013), as well as the
composition and structure of internal interfaces (Dunlop et al. 2011) Nature can achieve
a wide range of different properties with the same components and in addition may also
achieve novel functionalities not possible in a single constituent. This concept of multi-
scale tissue architectures is illustrated in Figure 1-4 with two examples: bone (left) or
wood (right), although similar observations can be made in many other biological
materials such as: the lobster cuticle (Fabritius et al. 2009), the skeleton of Euplectella
(Aizenberg et al. 2005), or the abalone shell (Lin and Meyers 2005). See also
(Wainwright et al. 1982, Vincent 1990, Niklas 1992, Currey 2002, Gibson et al. 2010) for
more examples or the citations in the following review articles (Weiner and Wagner
1998, Fratzl and Weinkamer 2007, Meyers et al. 2008, Meyers et al. 2011, Speck and
Burgert 2011, Wang and Gupta 2011, Meyers et al. 2013).
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Figure 1-4: Multi-scale composite architectures in Bone and Wood

Both bone (left) and wood (right) can be viewed as fibre reinforced natural composites. Bone (left: a-g) consists of
collagen molecules (a) in highly ordered arrays reinforced by plate-like mineral particles (b): Mineralised fibrils are
held together by non-collagenous proteins (NCPs) (c) making up mineralised fibre bundles (d) arranged into lamellae
(e). Cortical bone seen in the image of the human femoral head (g), consists of osteons (f) arranged in concentric
layers of lamellae. The remaining bone (g) consists of porous trabecular bone (from (Fratzl et al. 2004) and (Fratzl
and Weinkamer 2007), see also (Weiner and Wagner 1998)). Wood (right h-0): The wood cell wall is made of stiff
crystalline cellulose fibrils (h) embedded in a softer matrix of hemicelluloses, pectins and lignin (i). A single wood cell
consists of multiple layers of more or less ordered cellulose microfibrils spirally wound around the lumen (j). The
thickest layer, the S2 layer is the major contributor to the mechanical properties of the cell, determined by the
microfibril angle p. At larger length scales, trees can control the microfibril angle (MFA) and the cell geometry, as seen
in the SEM images (courtesy M. Eder) and sketch of opposite wood (k and 1) and compression wood (m and n) in
spruce. In a spruce branch (o) these angles are distributed to have stiff cells with low MFAs on the upper side and
compression resistant cells on the lower side with larger MFAs (Farber et al. 2001). Schematics adapted from (Dunlop
and Fratzl 2010) and (Dunlop and Fratzl 2013).

Bone (Figure 1-4a-g) is a particle reinforced fibre composite, consisting of
collagen, hydroxyapatite, some non-collagenous proteins and water (Weiner and
Wagner 1998). These components are arranged in complex ways over multiple length
scales starting from mineral reinforced collagen fibrils at the nanometre scale being
arranged into micron scale fibre bundles. These bundles in turn form sheets or lamellae,
stacked in layers which make up osteons which are some of the major structural units
inside the outer cortex of the macroscopic bone. The mechanical properties of the main
components, collagen and hydroxyapatite are either too flexible or too brittle when used
by themselves as structural materials, it is only through the multi-scale architecture
shown in Figure 1-4a-g, that bone can be both stiff and tough enough to be used as
skeletal elements.

Wood, also displays a hierarchical architecture (Figure 1-4h-o0). At the length
scale of the cell wall, it can be viewed as a fibre reinforced composite consisting of stiff
cellulose microfibrils embedded in a soft matrix of hemi-celluloses and lignin (Figure 1-
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4h-j). At intermediate length scales, within a growth ring (Figure 1-4k and m) it can be
seen as a honeycomb like material and at the scale of the branch it can be viewed as a
functionally graded composite (Figure 1-41, m and o). It is interesting that although the
components remain the same, by modifying architectural parameters, such as cellulose
microfibril angle, cell size, at these different length scales during growth, mechanical
properties can be optimised for changing conditions during a plants life (Burgert et al.
2007). One key architectural parameter, the microfibril angle, and its role on mechanical
response of tissues will be described in more detail later in this thesis.

The concept illustrated by these two natural examples of “architectured” or
hybrid materials, has been gaining more attention from materials scientists in recent
years (see (Ashby and Bréchet 2003, Ashby 2005, Ashby 2011, Bréchet and Embury
2013)). This is motivated by the observation that by controlling the geometric
arrangement of constituents in a material at different length scales it is not only possible
to simply improve an existing property but it is possible even to gain novel ones not
possible in the bulk material. One simple illustration of this, is the “fragmented” design
of wire cables that allow for high tensile strength but a high flexibility that doesn’t exist
in the bulk (Ashby and Bréchet 2003). Due to the environmental and evolutionary
constraints mentioned above, Nature has already explored many such architectures
providing an interesting range of potential designs for the development of bio-inspired
materials. As part of this process it is important not only to understand structure
function relationships in such biological materials, it is also fundamental to understand
how such structures are formed during the process of growth.

To do this it is important to define several key points illustrated schematically in
Figure 1-5. Firstly we need to define what exactly is a “tissue”. A simple collection of
adherent cells are often considered to be “tissues” (Figure 1-5a), this describes well
early stages in embryogenesis, but very soon extracellular matrix can be formed (Figure
1-5b), whose architecture plays an important role in further function. In the case of
plants, and some components of animal organs (such as hair, feathers, bone, or nails), it
is possible for the remaining extracellular matrix (and intracellular matrix in the case of
keratin containing cells), to retain a particular function for the organism even after cell
death. This question of how ECM is formed and oriented during growth is a fundamental
one, and many research questions still remain open. Secondly it is useful to distinguish
between two possible ways in which a tissue can grow, appositional growth or
volumetric growth. During appositional growth (Figure 1-5d), the next layer of tissue is
added on top of a previous static or non-growing layer. The simplest and perhaps the
earliest example of such growth can be seen in the growth of the microbial mats known
as stromatolites (Dunlop et al. 1978, Grotzinger and Rothman 1996, Cuerno et al. 2012).
More complex examples include the formation of bark on trees (Federl and
Prusinkiewicz 2002, Stiven 2013) the layer by layer growth of wood, and at certain
length scales even the growth of new unmineralized bone within bone resorption
lacunae during bone-remodelling may be viewed as appositional growth (Robling et al.
2006). Appositional growth need not be uniform and interesting feedback mechanisms
can lead to branch formation as seen for example in the growth of corals (Merks et al.
2004, Dullo 2005, Kaandorp et al. 2005, Chindapol et al. 2013). The other way growth
can occur is through volume changes in the bulk (Figure 1-5e) for examples in tumor
growth (Roose et al. 2007, Ambrosi et al. 2012). Such bulk volume changes of course can
become transport limited for large volumes when nutrients need to be transported from
an external source. Another example of bulk growth would be in the swelling of tissues
due to changes in water content (Burgert and Fratzl 2009). One subtle consequence of
the nature of growth on modelling or rather on the mathematical description of growth



is that it is important to decide on an appropriate coordinate system (Figure 1-5f). This
seems trivial, but there are intrinsic differences in the equations for growth whether one
looks at it in a global Cartesian system attached to the laboratory coordinates, or
whether one describes growth by the motion of materials points attached to the tissue
itself. The second version has advantages in that many equations become simpler,
however there is an issue related to bulk growth in that new materials points can appear
inside the material. This is a subtle problem still under discussion by mathematical
biologists today (Ambrosi et al. 2011, Prusinkiewicz and Runions 2012).
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Figure 1-5: Describing shape changes of biological tissues

It is possible to view the growth of biological tissues from a variety of viewpoints. Firstly tissues can be defined in a
variety of ways, as collections of cells (a), as a collection of cells surrounded by extracellular matrix (ECM) consisting
of biopolymers and/or minerals (b) or as dead tissues (c) in which cells are no-longer living. Growth can occur (d)
through apposition of new layers on an inert substrate or (e) via growth due to volume changes in the bulk of the
tissue. This has consequences on the choice of coordinate system (f) used to describe growth mathematically with
both Eulerian and Lagrangian viewpoints having advantages and disadvantages. The physical description of how
tissues grow or swell can also be viewed in different ways, (g) as an interfacial process, (h) at a continuum level or (i)
at the level of the single cell.

The final point to think about when dealing with processes of growth and
swelling in tissues is at what length scale, or coarseness the processes will be modelled.
It is possible for example to simplify the problems of growth and look only at the motion
of the interface of a growing tissue (Figure 1-5g). Such an approach is equivalent to
models of phase transformations in metal physics such as in crystal growth (Kardar et
al. 1986) which has incidentally also been used to describe layer formation in
stromatolites (Cuerno et al. 2012). Such descriptions have the advantage of being
relatively simple to model, but unfortunately they lose all information about the
structure of the bulk. Although these models allow macroscopic shape changes to be
described their simplicity makes it very difficult to understand the development of the
complex hierarchical structures (Figure 1-4). To get a deeper understanding of
growth/swelling, especially the coupling between mechanics and growth, it is necessary
to model tissues in more detail. One way is to have suitable constitutive laws describing
the 3D stress strain response of tissues coupled with suitable laws of growth (Figure 1-
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5h). These then need to be applied together with appropriate boundary conditions and
then solved, analytically or using finite element techniques (Ambrosi et al. 2011). A third
way to look at tissues, especially when tissues are considered as collections of cells is to
develop cell-based or agent based models that describe the local behaviour of each of
the cells (Figure 1-5i). Such cell based models, like the Cellular Potts model (Graner and
Glazier 1992, Glazier and Graner 1993) have been very successful in describing
problems of morphogenesis in a variety of systems see e.g. (Krieg et al. 2008).

Regardless from which point of view or length scale one views shape changes of
tissues, one common feature is the importance of geometric constraints. The shapes of
surfaces upon which tissues grow, or the spatial arrangement of swellable and non-
swellable tissues all play a fundamental role on the macroscopic shape changes of a
material or structure, and to understand this role of geometric constraints is the key
research aim guiding the work that is described in this habilitation thesis.

This thesis is based on research done over the past years within the Department
of Biomaterials, at the Max Planck Institute of Colloids and Interfaces, Potsdam, and
most of it was performed while the author led the research group Biomimetic Actuation
and Tissue Growth. As suggested by the name of the research group, there are two main
research directions that we have been working on. Firstly we have been working on
trying to understand growth processes in living systems and especially the role of
geometric constrains upon growth (See Chapter-2). Secondly we have also been
interested in researching the role of the geometric arrangement of active tissues on
actuation or swelling induced shape changes such as those observed in seed structures
in plant tissues (See Chapter-3). Despite the differences in focus, with one topic dealing
with living and growing tissues through the “creation” of new matter, with the other
dealing with volume changes in dead “static” matter, they both can be described using
very similar mathematical tools and physical descriptions. Furthermore they both fit
within the general framework of understanding the overriding role of geometric
boundary conditions on macroscopic shape changes and eventually the internal
organisation of tissues.

This thesis is presented as a cumulative thesis and the majority of research
results presented have been already published (See Chapter 6.1 for a list of the papers
which are reproduced in Section 7). The following two chapters will summarise firstly
some of the results of the group on the topics of Tissue Growth (Chapter-2) and then
Actuation (Chapter-3). The key outcomes of the groups work will be summarised in the
final chapter, together with an outlook describing potential new directions of research
arising from this thesis.






2 Tissue Growth

In order to understand how developmental/genetic disorders give rise to
physical deformities, how healing of damage in wounds can be accelerated or is
hindered, or how to engineer replacement tissues in the lab, it is of course necessary to
gain a fundamental understanding of the biochemical and biophysical mechanisms that
control the formation of new tissues. The research presented in this chapter uses a
variety of experimental and theoretical model systems to learn about the role that
physical boundary conditions have on the kinetics of tissue growth and eventually on
the resultant structure of the tissues formed. The chapter starts with a short
background, illustrating firstly the importance of mechanical signalling for cell and
tissue behaviour. This is then followed by a discussion of the role of geometric boundary
conditions on tissues and cells at different length scales both in-vitro and in-vivo. It
turns out that cell collectives and tissues can display emergent behaviours, allowing
them to be described by macroscopic physical parameters such as surface tension or
liquid crystal ordering. These two examples will be followed with an overview of some
selected research highlights coming from the group, described in full detail inside the
publications attached at the end of this thesis (See Section 7).

2.1 Background

Cells not only have a sense of “smell/taste”, in that they can monitor and respond
to their biochemical environments, they are also able to “touch” and can sense physical
features of their surroundings (Figure 2-1) see e.g. (Discher et al. 2005,
Kollmannsberger et al. 2011). Cells can sense the mechanical properties of the substrate
they are in contact with as well as the surface topology, and respond with modified cell
behaviour in terms of differentiation, proliferation and the production of extracellular
matrix.

Cell
Shape gz ", Stiffness
" Response ™,
- " 4 Proliferation S =
Adhesion Differentiation %, Alignment
== Matrix Production gy e
--"'-—-._______-._ " Force Generation & Sensing E
? —— g . = 2 _.
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Roughness Rigidit
. Substrate oy

Figure 2-1: Physical interactions between a cell and its environment

Cells attached to a substrate respond to its physical properties via the generation of forces applied by the cytoskeleton
to the focal adhesions. These mechanical signals give rise to responses in cell behaviour for example with changes in
proliferation, differentiation and extracellular matrix production. From (Kollmannsberger et al. 2011).

Perhaps the most prominent example of such physical sensing is the ability of
cells to sense the elastic properties of their substrates, see (Discher et al. 2005) for a
review. Using polyacrylamide gels with different cross-linking densities, coated with
type I collagen, Pelham and Wang (1997) produced substrates with similar chemical
properties but varying stiffness. Epithelial and fibroblast cells cultured on these
substrates showed a decreased ability to spread, coupled with an increased motility
with increasing substrate stiffness. The same types of substrates were used by Engler et
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al. (2006) who demonstrated that the fate of mesenchymal stem cells was modified with
stiffness. On stiffer substrates cells tended to differentiate and express bone-like
markers, but on softer substrates cells expressed markers indicating differentiation
along the neuronal direction. The fact that cells can sense the mechanical properties of
their environment arises because they can actively contract via actin-myosin complexes,
thus applying forces on their surroundings.

In addition to being able to apply forces, cells can sense externally applied forces,
as is illustrated by the process of bone remodelling (Robling et al. 2006). This process
firstly allows for old damaged bone to be replaced by new defect free bone (Taylor et al.
2007), and also has the consequence that the structure of bone can adapt to changing
external loads (Eriksen 1986, Currey 2002, Robling et al. 2006). Bone remodelling is
mediated through the action of three cell-types; osteoclasts, which remove bone,
osteoblasts that produce new un-mineralised bone, and osteocytes, which are former
osteoblasts that become embedded inside the new bone matrix. The osteocytes are
thought to act as mechanosensors (Bonewald and Johnson 2008), signalling osteoclasts
and then osteoblasts to start removing or adding bone upon mechanical stimulation. The
complex interplay between the cell-responses results in bone being produced where it is
mechanically needed and removed where it is not see e.g. (Frost 1987). A striking
example of the consequences of this can be seen in the asymmetry found in the bones of
greyhounds arising from the different loading experiences as the dogs race and train in
only one direction around the racing track (Johnson et al. 2000). Other examples include
bone loss after extended bed rest (Thomsen et al. 2005) or after space flight (Carmeliet
etal. 2001).

One of the consequences of the ability of cells to physically sense and probe their
mechanical environment is that external boundary conditions become important, even if
the physical boundaries are relatively speaking a long way from the cell. This means that
the shape of the physical environment surrounding cells and tissues may have a strong
influence on how mechanical signals are produced, transmitted and sensed. Indeed such
observations have been made in-vitro on single cell and tissues (Figure 2-2) as well as
in-vivo (Figure 2-3), hinting that the geometry of the environment around cells is an
important factor. The role of the surrounding geometry on collective cell behaviour
within tissues, is an important focus of the research group and will be outlined in section
(2.2) and in the relevant publications from the group (Section 7).

Indeed much work has been done in the last years on the role of geometric
features on cell and tissue behaviour. For two recent reviews see for example (Zadpoor
2015) which focuses on macro scale features and (Dalby et al. 2014) which focuses on
the response of cells to nano-scale features. Due to the ease of visualisation, and the
possibilities opened by soft lithography or micro-contact printing (Xia and Whitesides
1998, Alom Ruiz and Chen 2007) most work has been done on flat surfaces. Some
examples from the literature that explore the role of 2D geometric features at different
length scales on cell and tissue behaviour are illustrated in the top part of Figure 2-2.
Cells have been shown to respond to geometric features at the nanoscale (Figure 2-2a),
as illustrated using gold nano-dot arrays functionalised with integrin receptors
(Selhuber-Unkel et al. 2010). Cell adhesion strength was shown for example to depend
strongly on the receptor spacing at length scales in the order of 50-90nm. Numerous
other studies show other size dependent cell responses at these length scales, one
example being the observation that the spacing of nanotubes can control stem-cell
differentiation (Oh et al. 2009). See also (Dalby et al. 2014) for a more detailed review.
At length scales comparable to the size of a single cell, significant geometric effects have
also been observed, mainly through the use of patterned adhesive fibronectin patches
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(Alom Ruiz and Chen 2007). The shape of these patches has been shown to have a strong
influence on the internal environment of the adhered cell, with both the arrangement of
actin stress fibres (Figure 2-2b), and the resultant forces exerted by the cells being
influenced by the geometric boundary conditions (Théry et al. 2006, Théry et al. 2006).
The probability of cell death or apoptosis has also even been shown to depend on the
size of these adhesive patches (Chen et al. 1997) (Figure 2-2c). Staying in 2D, but at
length scales much larger than the size of a single cell, similar studies using adhesive
patches with different shapes show that collections of many cells will also respond to
geometric features in 2D (Figure 2-2d and e). When such patches are covered with a
confluent layer of cells, cell-contractility leads to variations in the local stress states as a
function of location on the patch. Such stress variations lead to differences in
differentiation illustrated in (Figure 2-2d) with adipocytic differentiation being
localised in concave regions of the patches (in red) (Ruiz and Chen 2008). Similar work
has also demonstrated that high cell proliferation correlates with locally high stresses
found on the external boundary of these patches (Nelson et al. 2005).

(a)

2D

200nm

Figure 2-2: Cells interact and respond to geometric features in 2D and 3D over many length scales

The central cartoon illustrates how cells respond to topologies at different length scales ranging from the nanometre
up to the millimetre scale in 2D (a-e) and 3D (f-j). On flat 2D surfaces single cells respond to a) the spacing of gold
nano-dots (Selhuber-Unkel et al. 2010), b) the shapes of adherent fibronectin patches (Théry et al. 2006), and c) the
size of fibronectin patches (Chen et al. 1997). The interaction of cells with 2D shapes also extends to collections of
multiple cells which gives rise to d) spatially dependent differentiation (Ruiz and Chen 2008), and e) spatially
dependent cell proliferation (Nelson et al. 2005). Attempts have been made to study such behaviour in 3D, for
example by presenting nano-structures on curved surfaces f) (Sjostrom et al. 2013) , or g) the interaction of cells with
micron sized posts (Hohmann and von Freymann 2014) and h) with holes of different 3D shapes (Ochsner et al.
2007). At the multicellular level controlled geometries have been investigated for example on 3D printed zero mean
curvature surfaces i) (Rajagopalan and Robb 2006) or in complex deformable honeycomb structures to mimic the
function of heart tissue j) (Engelmayr et al. 2008).
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The ability to control shapes and geometry in 3D is perhaps less well studied than
the work done in 2D, most likely due to the technical difficulties in visualising and
following cell behaviour in 3D. This being said a variety of studies have been done
looking at the role of geometric features on cells and tissues at multiple length scales in
3D as illustrated in the bottom half of Figure 2-2. Much effort is being focussed on
creating controlled nano-structures on curved substrates (Figure 2-2f) with the goal of
improved osteoinduction especially on titanium substrates (Sjostrom et al. 2013). At
length scales comparable to a single cell, micropost arrays (Hohmann and von Freymann
2014) and 3D shaped holes (Ochsner et al. 2007) have been used for example to
investigate cell behaviour with the aim of getting a better idea of how cells interact with
a 3D environment that at least approaches structures found in in-vivo (Figure 2-2g and
h). Recent advances in additive manufacturing or 3D printing technologies (Melchels et
al. 2012) means that it is now possible in principle to design and print almost arbitrary
structures in 3D however with length scales much larger than the single cell (Zadpoor
2015). Although this has been extensively studied, the focus of most studies is more on
the potential applications in tissue engineering rather than on the detailed biophysics
controlling the behaviour of cells. One example is the use of 3D printing to produce zero
mean curvature surfaces (Figure 2-2i) for tissue engineering purposes as they mimic
geometries seen in trabecular bone (see Figure 2-3 g and h), although interestingly they
observed no significant tissue growth on these surfaces (Rajagopalan and Robb 2006).
Other studies using less rigid materials, use geometric features to create a mechanically
anisotropic environment for contractile cardiomyocytes, with the goal of providing
functional scaffolds for heart regeneration (Figure 2-2j) (Engelmayr et al. 2008).

The previous discussion has focussed entirely on in-vitro studies on the role of
geometric constraints on cell and tissue behaviour, but what happens in the living
organism? Despite the difficulties in performing clean and controlled in-vivo
experiments, an influence of geometric features on tissue behaviour can be found in a
variety of examples as illustrated in Figure 2-3. All examples are taken from the field of
bone regeneration which lends itself well to such studies, mainly due to the high
stiffness of bone with respect to other tissues giving rise to a relatively stable geometric
features. Early examples investigated the healing of circular defects drilled into the
cortex of rabbit femurs (Figure 2-3a), and showed a strong correlation between the
internal microstructure (i.e. collagen alignment) with the orientation of the walls of the
hole (Shapiro 1988). More recent work on bone fracture healing shows that also here,
tissue organisation is strongly correlated with geometry. When no geometric signals are
present (at the start of healing) very porous disorganised bone is formed and it is only
after this endogenous scaffold is formed that organised aligned bone will be produced
(Kerschnitzki et al. 2011) (Figure 2-3b and c). Similar observations have also been
observed during the growth of another somewhat exotic bone type, the antler of deer
(Figure 2-3d) where organised bone is only formed after a fast porous scaffold is
deposited (Krauss et al. 2011). In addition to just looking at the internal arrangement of
tissues as a function of geometry, the amount of tissue growth has been shown to
depend on the local curvature as illustrated in (Figure 2-3e and f) by the differences in
the amount of tissue (brown) formed on the implants (black) with different shapes (van
Eeden and Ripamonti 1994, Ripamonti et al. 2012). A final point coming from the field of
bone is the observation that trabecular bone (Figure 2-3e and f) has close to a zero
mean surface curvature indicating a strong control by cells of the surface geometry of
bone (Jinnai et al. 2001, Jinnai et al. 2002). Despite the obvious interest in understanding
the role of 3D geometries on tissue behaviour and structure much remains to be
understood, especially in the context of evaluating and predicting cell responses to
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surfaces with highly controlled 3D geometries, and especially to understand how cells
can collectively sense geometries much larger than the size of the single cell.

Figure 2-3: The geometry of substrates play an important role on in-vivo tissue behaviour

a) Polarised light microscopy image of disordered bone (blue) formed after 8 weeks healing in a 2.4mm defect drilled
into the more aligned cortex (orange) of a rabbit femur (Shapiro 1988). b) Back scattered electron image of fast
forming disordered bone (2 weeks after osteotomy) that is first formed in the fracture gap of the sheep femur
(Kerschnitzki et al. 2011) c) This substrate then appears to act as a “scaffold” for further ordered tissue growth, here
shown in a similar region 9 weeks after osteotomy (Kerschnitzki et al. 2011). d) Back scattered electron image of a
cross section of mature antler showing darker regions of younger ordered bone being formed inside the tubular
network of fast growing disordered bone (Krauss et al. 2011). Substrate geometry also influences bone growth
(brown) seen in the 800 pm deep cavities (f) compared to none on smooth surfaces (e) on titanium implants
implanted in the tibia of Chacma Baboons (Ripamonti et al. 2012). Analysis of the 3D tomographic images of
trabecular bone, g) shows narrow mean curvature distributions, h) localised at zero mean curvature highlighting the
ability of cells to also control geometric features of bone (Jinnai et al. 2002).

Although the mechanisms controlling the ability of tissues to sense large scale
geometric features is not fully clear, the following example gives an illustration of one
mechanism by which local interactions between many cells can give rise to a collective
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response that can be described by simple physical laws. The fact that cells are motile,
can be adherent to each other and also contract implies that cell collectives can display
liquid like properties such as displaying an effective surface tension (Lecuit and Lenne
2007). The origins of tissue surface tension can be understood by comparing the
molecular origins of surface tension in a liquid ( Figure 2-4a) with that of a tissue (
Figure 2-4b). Molecules (or cells) within the bulk of the fluid will experience maximal
cohesive forces from the surrounding molecules. Compared to the bulk, those on the
surface experience a net inward force giving rise to an energetic cost of producing extra
surface area, appearing as a surface tension. Such surface tissue tensions are in fact
measurable, as demonstrated by Foty and co-workers (Foty et al. 1994, Foty et al. 1996).
Another consequence of the ability cells to adhere to each other and contract, is seen in
the spontaneous phase separations observed in mixtures of two cell-types with
differences in the amounts of the molecule N-Cadherin responsible for cell-cell adhesion
( Figure 2-4c and d) (Foty et al. 1996, Foty and Steinberg 2005). The green-stained cells
with the higher expression of N-Cadherin, cluster preferentially in the centre of the
spheroid, expelling the red-stained cells to the exterior. Another similar observation can
be made, when different cell types are mixed, with cells of the highest surface tension
clustering in the inside of the spheroids (Foty et al. 1996) ( Figure 2-4e). This view of
tissues as liquids is of course simplistic and doesn’t take into account the complex effects
of the contractile cytoskeleton of cells, and the extracellular matrix, however has proved
to be useful to describe some phenomena in living tissues. For more details on the
discussion of surface tension on cell-sorting and morphogenesis see e.g. (Foty and
Steinberg 2005, Steinberg 2007, Manning et al. 2010).
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Figure 2-4: The collective interactions of cells leads to fluid like behaviour of tissues

A comparison of the “atomistic” model for the development of surface tension for a molecular fluid a) and a cell based
fluid b) after (Lecuit and Lenne 2007). c) Phase separation seen in L-clones with differencing amounts of the molecule
N-Cadherin vital for cell-adhesion (Foty and Steinberg 2005) d) Sketch of the phase separation seen in c) after (Lecuit
and Lenne 2007). e) The final results of a series of different cell-sorting experiments using different cells with
different surface tensions (Surface tension in dyne/cm in brackets). Image from (Foty et al. 1996)

As highlighted in the introduction (see Figure 1-4), the wide range of
functionality achieved in biological materials stems from the way in which the
component materials are combined together in complex ways (Weiner and Wagner
1998, Fratzl and Weinkamer 2007). The question arises how is this tissue architecture
controlled during growth over such large length scales? One elegant model arising from
the pioneering work by Bouligand (Bouligand 1972, Bouligand 2008), and Giraud-Guille
(Giraud Guille 2001) stems from the observation that many tissues display structures
that are reminiscent of cholesteric liquid crystal phases (Figure 2-5a-c) (see also
(Neville 1993)). Banding patterns found for example in wood, bone or arthropod match
cholesteric phases found in other materials. Furthermore when the fibrous bio-
polymers of collagen or cellulose are properly treated in-vitro they can also
spontaneously form such long range complex structures (Reis et al. 1991, Giraud Guille
et al. 2003) (Figure 2-5d and e). Although liquid-crystal like ordering can explain some
of the long-range organisation of the extracellular matrix components, the precise
arrangement certainly requires some active control by cells. Much work is still needed to
understand the mechanisms controlling this, although the fact that fibroblasts for
example can use their contractile machinery to organise collagen (Harris et al. 1981)
hints towards the important role of mechanics, and implicitly the role of the external
boundary conditions on tissue organisation.
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Figure 2-5: Liquid-crystal-like order in biological tissues and synthetic counterparts
Examples of liquid-crystal like ordering by; a) collagen in bone (Giraud Guille et al. 2003), b) the chitin in stomatopod
cuticle (Weaver et al. 2012), and c) cellulose in the cell-wall of compression wood in spruce (lumen ~10um wide)
(image courtesy of Michaela Eder). In-vitro experiments show similar structures spontaneously forming in d)
solutions of fibrillar collagen (Giraud Guille et al. 2008) and cellulose (Reis et al. 1991).

-

This brief introductory section has given a brief overview into some important
concepts necessary to understand the research presented in the following section. From
this short discussion, it is clear that mechanical forces play an important role controlling
a variety of processes in cells and tissue behaviour. As mechanical perturbations
propagate at the speed of sound and over long distances, an understanding of
mechanical signalling is fundamental to understand self-organising behaviour seen in
tissues at length scales much larger than the size of cells themselves. As a consequence
of these long range interactions, the shape of the external environment plays a
fundamental role in tissue growth, something that will explored in more detail in the
following.
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2.2 Results and Discussion

The key results of the author’s publications related to tissue growth are
reproduced and discussed in the following section. A detailed publication list is given in
Section 6.1, and each publication is indicated by its number, i.e. [TG1] or [TG2] and
reproduced in Section 7.

It is clear that both single cells and tissues (cells and extracellular matrices) react
to geometric features both in 2D and 3D (see Figure 2-2 and Figure 2-3), however till
recently it was difficult to quantify and predict this behaviour. One of the major
limitations of previous studies was the difficulty to produce 3D surfaces with controlled
surface topologies. An initial advance was made through the development of rapid
prototyping or 3D printing technology (Woesz et al. 2005, Zadpoor 2015) which could
produce scaffolds with defined pore sizes and shapes in the range of hundreds of
microns. Previous studies in the department perfected the technique and its application
for producing hydroxyapatite scaffolds consisting of a regular lattice of large
interconnected pores (Woesz et al. 2005, Rumpler et al. 2007). Despite demonstrating
that tissue produced by pre-osteoblast cells could grow in-vitro inside these scaffolds it
is difficult to follow the growth of tissue inside such complex structures. This led to the
simplification used in (Rumpler et al. 2008) in which tissue growth inside individual
pores was investigated. This paper was the first on Tissue Growth in which the author of
this thesis made a contribution, specifically in the theoretical interpretation of the
experimental results, and inspired the later work discussed in this section.

Observations of the role of pore-shape on the Kinetics of tissue growth [TG1]

By observing tissue growth inside large well-defined pores with dimensions of
several cubic millimetres, it was possible to quantify the role of pore geometry (shape
and size) on the kinetics of tissue growth for the first time (Rumpler et al. 2008). These
experiments are illustrated in Figure 2-6a which show phase contrast microscopy
images as a function of cell-culture time of two pores in hydroxyapatite plates with
circular (top) and square (bottom) cross-sections. MC3T3-E1 cells (known to produce
collagen (Choi et al. 1996, Rumpler et al. 2007)), are seeded onto the scaffolds and
images in transmission were taken at regular intervals during growth. Such images
show that with time tissue (brown) forms on the HA scaffold (black) leading to curved,
circular layers that get more and more circular with time. Tissue forms more readily in
the corners than the flat surfaces of the square pores, but is uniformly distributed over
the surface of circular pores. It can be seen that the amount of tissue measured from
these images in the pores increases steadily with time, even though these 2D images are
only a proxy for the total 3D tissue formed (NB: pores are 3mm deep). Such images can
be quantified as seen in Figure 2-6b which shows the projected tissue area (the area of
brown tissue in Figure 2-6a) as a function of time for a set of different pores with
different sizes (blue, green and red symbols) and shapes. The shape of the symbols
(triangular, square, hexagonal, and circular) corresponds to the 2D shape of the pore
cross section. Pore size is given by the perimeter of the pore cross section meaning that
each pore in the same size-class has the same available surface area for cells to colonise.
For a given pore size (i.e. a given colour in the graph), the growth curves are linear, and
there is no effect of the pore shape on the growth rate. Pore size seems to delay the
onset of growth, although the rates, after the initial phase of growth are also the same.
This is better illustrated in Figure 2-6d in which the data from in Figure 2-6b is shifted
by subtracting a constant value of t, from the data for each size class. Once this is done

the data all falls on one master curve.
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Figure 2-6: Experiments and simulations of tissue growth in convex pores

a) Phase contrast microscopy images of 2 pores within hydroxyapatite (HA) scaffolds, during MC3T3-E1 cell-culture
experiments. Tissue appears brown, scaffold is black, and medium appears white (Images produced by C. Bidan). b)
Projected tissue area as a function of culture time for four different pore cross-sections (circular, hexagonal, square
and triangular) and 3 different pore perimeters (3.14, 4.71 and 6.28mm). Error bars indicated standard error (n=10).
(Data from (Rumpler et al. 2008)). c) Laser scanning confocal microscopy images of four different HA pores
containing tissue produced by MC3T3-E1 cells in which actin has been stained (green) with phalloidin-FITC. The
image of the circular pore contains tissue grown for 30days the other pores show images after 21days of culture. d)
The data from b) is re-plotted as a function of culture time minus lag time to' which is the time taken for linear

growth to start. The red dotted line indicates the linear growth of tissues on hydroxyapatite scaffolds in convex
shaped pores. e) Predicted tissue geometries according to the curvature driven growth model (Rumpler et al. 2008) at
3 different time points. Each shape has the same starting perimeter. f) Calculated remaining pore area (white) as a
function of time for the simulations shown in e).
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The increasing value of t, with increasing pore surface area, can be interpreted

as the increasing time taken to colonise (through migration and proliferation) a larger
area. This highlights that at least in the pores analysed the kinetics of tissue growth was
independent of both the pore size and shape. Although the macroscopic rate of tissue
growth is independent of pore geometry a closer look at the spatial distribution of tissue
shows something else (Figure 2-6c¢). In these confocal stacks it appears that more tissue
is formed in the corner of the pores than on the flat surfaces. Furthermore it seems like
the amount of tissue formed is related to the angle (or curvature) of the corners with
more tissue formed in the corners of the triangle vs the square vs the hexagon. This
indicates that the local surface curvature controls the rate of growth.

2D modelling of the role of curvature on the kinetics of tissue growth [TG1]

To test the role of pore curvature on tissue growth we developed a simple 2D
geometric model for curvature controlled growth. In this model the interface between
tissue and medium is taken to move normal to the tissue surface at a rate proportional
to the local curvature:

O kn Eq. 2.1

dt
where x is the local 2D curvature, t is time, n is the normal vector to the tissue
interface at position r and A is a rate constant. The qualitative results of this model,
that is the predicted shapes of the tissue-medium interfaces in the four different pores
(Figure 2-6e), agree surprisingly well with the experimental tissue morphologies
(Figure 2-6¢). Furthermore the calculated projected tissue area as a function of
simulation time shows no difference in the growth rates between the different pore
shapes (Figure 2-6f) even though each of the pores start with different areas, which also
is in agreement with the experimental observations. This linear macroscopic growth
rate can be readily understood in terms of a microscopic curvature dependent growth
rate by the following argument. Consider a circular pore, of radius r, with a tissue-

medium interface located at radius, r. If the area of tissue, A, (equivalent to the
projected tissue area) is given by:

A=nrr?—nr?, Eq. 2.2
then the rate of change of total tissue area is:
A r
A o™ Eq.2.3
at at

Combining (Eq. 2.3) with (Eq. 2.1) and introducing the surface curvature xk =1/r, the
macroscopic growth rate now becomes:

9A o, Eq. 2.4

at
which is linear in time and also independent of the starting pore size. A similar analysis
can be made for polygons with rounded corners taking the limit as the radius of
curvature at the corners tends to zero.

The next question about why the growth rate is independent of shape, at least for
the pore cross sections chosen, can be understood through the work of the German
mathematician Fenchel (Fenchel 1928). He demonstrated that for convex shapes in the
plane, the curvature averaged over the length of the perimeter, P, is simply equal to
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(K)o :%r, (Fenchel 1928). If the local growth behaviour of a tissue can indeed be

described by curvature driven growth, then the growth rate averaged over the
perimeter will be simply proportional through (Eqg. 2.1) to the average curvature over
the perimeter. As all pore cross sections in this study had convex shapes and were
chosen (within a given size class) to have the same perimeter it is clear that the growth
rate would then be the same. Despite the simplicity of the model of curvature driven
growth, being 2D and describing only geometric changes and nothing about the
mechanisms responsible for growth, it is still remarkably successful in describing the
experimental results both locally and macroscopically.

The role of substrate stiffness or chemistry on 3D tissue growth [TG2]

Arising from Figure 2-6d is the observation that regardless of the starting size
and shape (at least for convex pores), the rate of growth is independent of geometric
factors after the first period of growth has occurred (i.e. after the lag time t,). Motivated

by the observation that cells behave differently on surfaces with different stiffnesses
(e.g. (Engler et al. 2006)), we performed a similar set of 3D tissue growth experiments to
those shown in Figure 2-6d, however with transparent polyurethane scaffolds with
differing stiffnesses rather than hydroxyapatite. In addition to varying the stiffness (and
substrate material) we also tested the role of seeding on the kinetics of growth (Figure
2-7a). After the initial phase of growth, the growth rate was the same as that found for
hydroxyapatite scaffolds (red-dashed line in Figure 2-7a), meaning that the material
properties of the scaffold, at least in this stiffness range, do not affect the rate of growth
once the first layer of tissue has formed. This being said, seeding methods and material
properties play a strong role in the value of the lag time, t, (Figure 2-7b). One potential

reason for the differences in lag-time could be related to the differences in the ability for
cells to adhere and migrate along a surface. This idea was tested using the Cellular Potts
model (Graner and Glazier 1992, Glazier and Graner 1993) as implemented in the
computational framework CompuCell3D (Swat et al. 2012). The model has been tested
extensively by other groups (See e.g. (Krieg et al. 2008, Marmottant et al. 2009)) and
provides a useful tool to discuss the experimental results shown in Figure 2-7a and b.
This work was performed in my group by Philip Kollmannsberger and the results are
awaiting publication. The model essentially refers to a large number q Potts model on a
discrete lattice in 2D, where sites with identical spins belong to the same cell (or region,
i.e. medium or substrate). The substrate is constrained such that it cannot change, acting
as a fixed geometric boundary on which cells can move and proliferate. The Hamiltonian
function with the following form is used:

H= 2 JijPij"'Z)“A(A\_Abi)z- Eq. 2.5

interfaces cells

Here, the first term gives the sum of the energy over all the interfaces B;, between
regions i and |, related to cell-cell adhesion and cell-substrate adhesion and cortical
tension (the cell-medium interface), where J; is the energy per interface (Figure 2-7e).
The second term gives the elastic energy of a cell due to a deviation in the actual cell
area A to some target area A, , where 1, is somewhat akin to a bulk modulus. Cell

proliferation is driven by tension such that a given cell will divide when above a certain
threshold. The dynamics of the system is modelled using the Metropolis Monte-Carlo
algorithm.

22



(:>10'*cells.cm-2 3 x 10° cells cm* 8 x 10* cells cm™

i 50 (aspiration)
- A [ ]
1.2 = 1 40 -h_ _;_ . \
7 © H | i
™Y L]
1.0 4 s aA 30 - \2
= ' - 1y A—l
£ i ®
£ 08 o = 20 * o A\
e .3 o . A &
IE &v 4 = . ‘ 2 ¥ A
o 0.6 4 ﬁ‘ £ 10 * L ] ] ™
, = * N A
) o 1] Materials ~
e HA ~
= PU 320
-10) = PU 120 4
mPUTS A
T — T T T T T : -2
-30 -20 -10 O 10 20 30 40 50 60 70 3 4 5 6 73 4 5 8 7 3 4 5 6 7
tt, [days] pore perimeter [mm]

Cadherin Integrin
7000 steps | 10000 st
12000
10000
v
vy acn
8000 Yoo L s
v R
v u® .
e > S 0 .
ey B ‘
z 8000 <Y & ‘ 3
‘o V' q e E 25
[ = E
£ v [ ] A =
© 6000 - : A S
v - A =
v " A k=]
k4 > " 15
4000 5 et
hd rY
o 10
,.' . Ak
W a® “‘A s
"':‘%““ --u--n.UI--"""' .
wliantees
1] o -
0 5 10 15 20 25 30 70 72 74 2 = i3 )

simulation time [a.u] Adhesion strength (-J ) [a.u.]

Figure 2-7: Effect of the substrate on experimental and simulated tissue growth

a) Projected tissue area as a function of culture minus lag time for MC3T3-E1 cells cultured in polyurethane scaffolds
(inset) with different stiffnesses and different cell seeding methods, (data and image from (Kommareddy et al. 2010)).
The symbol colour corresponds to stiffness, Green (320 MPa) Red (120 Mpa) and Black (75 MPa) and the symbol
shape corresponds to the cell density used, circles - 105 cells cm2, square - 3 x 105 cells cm-2, triangles 8 x 104 cells
cm-2 with aspiration. The red line has the same slope as the red line for the hydroxyapatite data in Figure 2-6d. b) lag
times for the data shown in a). ¢) Sketch of the important parameters in the Cellular Potts (CP) Model. d) results of the
CP model simulated using the CompuCell software (Swat et al. 2012) e) Simulated growth curves for different
adhesion energies.
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Although the results are somewhat difficult to relate directly to the kinetics of the
cell cycle, one can see that the surface tension mediated spreading leads to proliferation
in the corners of square pores (Figure 2-7d), leading to similar geometries as predicted
by Eq. 2.1. When the cell-substrate adhesion energy is varied, the shape of the simulated
tissue growth curves (Figure 2-7e) remains the same but is shifted by a value t,, that

decreases with increasing adhesion energy (Figure 2-7f). This corresponds closely with
the shapes of the experimental growth curves and highlights the important role of
substrate adhesion on the initial parts of growth. This has an important implication the
design of scaffolds for tissue engineering in that surface properties appear to be mainly
important only in early stages of growth and colonisation of the surface by the cells, and
less important at later stages in growth, where macroscopic geometric constraints
become more important.

The role of convexity on tissue growth [TG3]

One important corollary of Fenchel’s theorem (Fenchel 1928) is the observation
that in general the curvature averaged over the perimeter for any closed planar curve is

2
given by <K‘>P > ?ﬂ This means that in principle by producing pores with non-convex

shapes it may be possible to accelerate growth by playing with convexity and geometry
of the pore cross-section (Figure 2-8). An indication of the possibilities of controlling
growth by geometry is highlighted by the observation that tissue growing on a wave-like
surface grows asymmetrically (Gamsjager et al. 2013),with only a thin layer forming on
the convex side of the waves and thick tissue growing on the concave portion (Figure 2-
8a). This indicates that cells can sense the sign of curvature. To investigate the role of
convexity pores with square and cross shaped cross-sections and the same surface area
were seeded with pre-osteoblast cells and the tissue growth kinetics observed over 25
days (Figure 2-8b and c) (Bidan et al. 2013). At early stages only the concave regions of
the pores filled with tissue, only a mono-layer of tissue was observed on the flat and
convex surfaces. Tissue grew over the convex regions only when the concave regions in
the arms of the pores became filled thus changing the local curvature. The curvature
driven growth model was applied to the experimental images and gave excellent
agreement to the experiments in terms of predicted tissue shape (Figure 2-8c), and
curvature (Figure 2-8d and e), and this with only one fitting parameter (1 in Eg. 2.4).
The predicted growth curves (Figure 2-8f and g) also agree with the experimental data
in the first 14 days of growth. These results highlight that just by changing the pore
geometry, for the same surface area, it is possible to double the rate of tissue growth
inside a pore. At later stages however the measured growth slows down compared to
the theoretical predictions. There are a variety of potential reasons for this, see (Bidan et
al. 2013) for a more detailed discussion. One potential reason for the slow down in the
rate of growth is that the MC3T3 pre-osteoblast cells studied are becoming more mature
at later stages, as supported by the increased production of alkaline phosphatase, and
hence do not proliferate as strongly. Another potential reason is that our curvature
driven growth model is in 2D and doesn’t take into account the changes in curvature
within the depth of the pore. Due to growth the surface becomes more convex in the z-
direction which implying that the mean curvature under certain circumstances could
decrease with growth thus slowing down the growth rate. Our model has since been
extended to 3D (Bidan et al. 2013) and indeed displays this slow down in predicted
growth for certain geometries. Current work is underway to test the models predictions
experimentally both in-vitro and in-vivo.
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Figure 2-8: The role of pore convexity on tissue growth

a) An example of the growth of tissue by pre-osteoblasts on a wave like substrate (medium above, scaffold below),
stained for actin (Gamsjager et al. 2013). b) Phase contrast images of tissue grown in pores with convex (square) and
non-convex (cross) geometries with the same surface area. ¢) A comparison of the measured tissue-medium
interfaces from b) (above) to the simulated tissue-medium interfaces (below). d) measured curvature in square (left)
and cross (right) pore geometries, and e) predicted curvatures in ideal square (left) and cross (right) pore geometries.
f) comparison between experimental and simulated tissue growth Kinetics between square and cross shaped pores of
different sizes (large left and medium right). g) A comparison between simulated and experimental growth rates
measured from day 4 to day 14 between square and cross shaped pores of different sizes (large left and medium
right). Images (b-g) come from (Bidan et al. 2013).
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The model of curvature controlled growth can also be used as a design tool to
predict optimum scaffold geometries for tissue regeneration (Figure 2-9). Pore shapes
can be defined by a combination of circularity, which defines how much a shape differs
from a circle, and by the non-convexity which gives a measure for the average positive
curvature over the perimeter of the pore (Figure 2-9a). This then can be used to plot
design maps of the average growth rates as a function of pore size, and geometry for a
given scaffold with defined porosity (Figure 2-9b).
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Figure 2-9: Curvature driven growth model as a scaffold design tool

a) The shapes of prismatic pores in a scaffold can be classified according to their circularity which is related to the
ratio of the pore area to the area of a circle which has the same perimeter as the pore, and the non-convexity which is
the positive curvature of a pore averaged over the perimeter. b) A map of predicted growth rates for a scaffold
containing prismatic pores with a given porosity (0.90) as a function of pore size and pore geometry (defined by the
ratio of non-convexity to circularity) (Bidan et al. 2013).

Possible role of geometry on bone-remodelling [TG4]

The ideas presented previously of the role of geometry on the behaviour of tissue
forming cells may also have implications on the understanding of the process of bone
remodelling (Robling et al. 2006). During bone remodelling, bone material is
continuously renewed during an organisms lifetime, by the action of osteoclasts
resorbing bone on its surface followed by the deposition of new bone on the new surface
by osteoblasts. This process of resorption and deposition directly implies a local change
in the bone surface geometry during remodelling, with the creation of concave regions
on the surface by osteoclasts (Figure 2-10a and b). Two types of remodelling can be
observed; osteonal remodelling (Figure 2-10a), which occurs in the dense cortical bone
and hemi-osteonal remodelling which is found in trabecular bone (Figure 2-10b).These
processes differ essentially in the topology of the resultant lacunae. Osteonal
remodelling results in the formation of a cylindrical channel (Figure 2-10a) which then
is filled by concentric layers of unmineralised new bone (and a blood vessel in the
centre). Hemi-osteonal remodelling results in a hemi-cylindrical channel on the surface
of trabecular bone which then slowly fills in with layers of osteoid. As an osteon fills in,
it’s surface curvature increases until growth is halted by the closure of the pore and the
presence of the Haversian canal, however as a hemi-osteon fills in the surface curvature
decreases with time.
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Inspired by the in-vivo geometries of osteoclast resorption lacunae found in bone
(Figure 2-10a and b), we investigated tissue growth in circular and semi-circular pores
both of the same curvature (Figure 2-10c). No growth was observed on the convex
corners of the semi-circular pores, with tissue appearing to be “pinned” on the corners.
There was excellent agreement between the simulated tissue-medium interfaces and
those measured experimentally (Figure 2-10d). Circular pores filled with tissue faster
than in the semi-circular pores (Figure 2-10e and g) with the surface curvature
increasing for circular pores and decreasing for hemi-circular pores as growth proceeds
(Figure 2-10f). Again we see the general slow down in growth after about 15-20 days of
culture which could be due to the development of convex curvature in 3D (see also the
previous section).
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Figure 2-10: Growth in pores mimicking bone-like structures

a) An example of an osteon taken from a polished transverse cross-section of cortical bone in a horse radius, b) An
scanning electron microscopy image of hemi-osteonal resorption lacunae in human trabecular bone (Gentzsch et al.
2004). c) Phase contrast images of MC3T3-E1 cells cultured on circular and semi-circular pores of the same curvature
d) A comparison of the location and shape of experimental tissue-medium interfaces with those predicted using the
curvature driven growth model. e) Experimentally measured and simulated growth kinetics for the circular and semi-
circular pores in terms of projected tissue area vs pore area f) Simulated and experimentally measured curvatures as
a function of culture time, g) Simulated and experimental growth rates from day 7 to day 14 for circular and semi-
circular pores compared to predicted growth rates in pores of ideal geometry.
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There may also be interesting consequences of our in-vitro experiments and
simulations on the understanding of bone remodelling, where it has been observed that
the rate of bone formation in trabecular bone (in hemi-osteons) is slower than that in
cortical bone (osteons) (Agerbaek et al. 1991, Eriksen 2010). Based on our results the
observed difference in in-vivo growth rates may not be due to an intrinsic difference
between osteoblasts in trabecular bone versus osteoblasts in cortical bone, but rather
just be due to fundamental differences in the geometry of the lacunae (closed versus
open). Furthermore our results suggest a simple solution to the question of how
osteoblasts in trabecular bone know when to stop filling the osteoclast lacunae. Instead
of requiring complex signalling pathways between osteocytes (embedded in the bone
matrix) and the bone forming osteoblasts, all that is necessary is that osteoblasts
produce new bone on the surface at a rate proportional to the local curvature. This
means that growth will stop when hemi-osteons become filled and the curvature tends
towards zero. This would suggest that the steady state surface curvature of trabecular
bone would be close to zero as is observed experimentally (Jinnai et al. 2001, Jinnai et al.
2002).

Substrate geometry controls the microstructures of tissues [TG4]
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Figure 2-11: The microstructure of different tissue components as a function of geometry

a) Confocal images of a tissue produced by MC3T3-E1 cells, stained for actin (green) and myosin IIb (red) showing a
co-localisation of actin and myosin at the tissue medium interface. b) (top) Confocal image of tissue in a circular pore
stained for actin (green), (middle) nuclei staining (red) and (bottom) polarised transmitted light microscopy image of
the same pore (crossed arrows indicates the polarisation direction). c) zoom of b-middle showing the uniform density
of cells throughout the tissue, d) quantification of cell density as a function of distance. ) Phase contrast microscopy
image of a convex region in a pore showing only limited growth on the surface.
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The microstructure of tissue formed in the pores was studied using laser
scanning confocal microscopy and polarised light microscopy (Figure 2-11). These
measurements help to give some insight into the mechanisms that give rise to curvature
driven growth. In all tissues a higher concentration of actin is observed at the tissue
medium interface, with actin stress fibres aligned parallel to the interface (Figure 2-
11a). Tissues stained for Myosin IIb, show a colocalisation with actin. This highlights the
contractile nature of these surface regions, in many ways similar to the “purse-string”
contractile structures observed in two-dimensional wound-healing. Cell-nuclei (Figure
2-11b top) are oriented along the direction of the actin fibres (Figure 2-11b middle).
Interestingly the density of cell nuclei (Figure 2-11c and d) is independent of the
position through the tissue thickness. Collagen fibrils produced in older tissue by the
cells appear also to be aligned with the actin as seen in polarised light microscopy
(Figure 2-11b bottom), and this has been confirmed by second harmonic generation
microscopy (data not shown). This co-orientation of ECM and cells implies a
fundamental role in the pre-organisation of cells on the later organisation of collagen
and other ECM components. Recent studies indicate similar co-orientation of another
ECM component, fibronectin, with cell and collagen organisation (data not shown).

Linking curvature driven growth to tissue structure [TG4]

Figure 2-12: Tissues modelled as stacked “chord-like” elements
Confocal images of tissues stained for actin (green) and nuclei (red), after 2 days (a) and 35 days (b) of culture

Comp. Chord
Model Model

—— 100 steps
200 steps
300 steps

indicating cells stretched over large distances. These cells can be simplified as chords c) spanning a distance | giving
rise to a tissue thickness & which is a function of the radius of curvature R of the underlying surface. By stacking
such elements over the surface similar tissue geometries can be formed as those observed in d) circular and e) semi-
circular pores (see Figure 2-10) and in fact can be proven to be completely equivalent to the curvature driven growth
model as seen in g).
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Confocal images of the structure of tissues grown inside our pores indicate
another way to understand and even model the growth of our in-vitro tissues. High
magnification images of the pores indicate that cells are stretched over long distances
and take on the appearance of elongated linear tensile elements, much like chords
(Figure 2-12a and b). Such a stretched element when placed on a concave surface will
enclose a region between it and the substrate (Figure 2-12c) which will be related to the
radius of curvature of the underlying substrate. In (Bidan et al. 2012) we demonstrated
that the layering of a collection of such chord-like elements onto a surface gives rise to
tissue geometries identical to those predicted from the curvature driven growth model
(Figure 2-12e and f) and furthermore we could show that with an appropriate
calibration constant, our chord-model was mathematically identical to the curvature
driven growth model. This highlights the importance of the tensile elements of cells and
ECM in producing and organising tissues.

The role of mechanics on tissue growth [TG5, TG6 and TG7]

It is clear that mechanical signalling plays an important role in cell proliferation
and may potentially be responsible for the macroscopic growth responses that we
observe experimentally. In the three previously described modelling approaches
(curvature driven growth, chord model and Potts model) none of them explicitly
included the role of mechanics. It turns out however that there is an extensive
theoretical framework developed by the continuum mechanics community to describe
phase transformations (Fischer et al. 2008) that is ideally suited to describe mechanical
problems coupled to growth, and has also been used by a variety of groups to describe
biological growth, see e.g. (Garikipati 2009, Cowin 2010, Ciarletta et al. 2012). We thus
extended the formulation of Ambrosi and co-workers (Ambrosi and Guana 2005,
Ambrosi and Guillou 2007, Ambrosi et al. 2012), in collaboration with Dieter Fischer
(Montan Universitat Leoben), in order to understand the role of mechanics on the
confined tissue growth observed in our experiments. This approach relies on the
assumption that it is possible to decompose the deformation of a volume element of
tissue into two independent components, the growth strain and the elastic strain
applied to the tissue due to mechanical constraints. See also (Ambrosi et al. 2011) for a
more detailed discussion. We first focussed on developing a thermodynamically
consistent equation to describe growth based on energy and mass balance
considerations see (Dunlop et al. 2010) for details. In a small strain setting this equation
takes the form:

g=f(oc-M) Eq. 2.6

where ¢ is the growth strain rate, f is a mobility coefficient, ¢ is the stress tensor and

M is the chemical potential tensor. This equation implies that growth stops when the
local stress state of a volume element of tissue is equal to the biochemical driving force,
equivalent to the concept of stress homeostasis used to describe cell responses in bone
remodelling (Frost 1987, Huiskes et al. 2000, Robling et al. 2006). Assuming the
mechanical properties of the tissue can be described by Hooke’s Law we investigated the
response of tissues growing on a cylindrical surface in two directions, inward growth
(corresponding to a cylindrical pore with concave curvature) or outward growth
(corresponding to a convex solid cylinder) (Figure 2-13a and b) (Gamsjager et al. 2013).
To account for the tension developed in the outer surface of our tissues (as observed
experimentally in Figure 2-11), we applied a curvature dependent surface stress to the
tissues according to the Laplace law. The consequences of this surface stress can be seen
on the predicted growth curves (Figure 2-13c and d) which show that growth only
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occurs on convex surfaces when the biochemical driving force [i can overcome the

surface tension 7 (Figure 2-13e).
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Figure 2-13: Continuum mechanics model of tissue growth
This growth model was applied in two axi-symmetric geometries, that of a) inward growth corresponding to the

filling of a cylindrical pore, and b) outward growth corresponding to the growth of a tissue on the exterior of a
cylinder. Predicted position of the tissue medium interface as a function of time for increasing values of the driving

force for growth ﬂ for inner growth c) and outer growth d). e) A comparison of the time for a 10% radius change for

inner and outer growth for different values of the ratio of the driving force ﬂ to the surface tension }7 . f-h) three

different configurations of predicted 3D growth on hollow cylindrical geometries that mimic the shape of a simulated
bone fracture or osteotomy.
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A further extension of the model was recently performed where we investigated
the consequences of such a growth law in more realistic 3D geometries (Fischer et al.
2015) instead of the 2D geometries looked at previously. This allows us to test such
models in geometries that become closer to the in-vivo situation. The model in its
simplest form when applied to geometries reminiscent of fracture defects in bone
healing, displays features also observed experimentally, and gives a biomechanical
explanation for why there is a critical fracture gap size above which no bone healing can
occur (Figure 2-13f-h).

2.3 Summary

In this chapter we have described some of the key results coming from work that
has been done in our group towards understanding the process of tissue growth and the
influence of geometric constraints on this growth. By using advanced 3D printing
technology we can produce substrates of controlled geometries that can be seeded with
tissue producing cells. A combination of different microscopy techniques leads us
towards an understanding of the link between geometry and underlying tissue
microstructure. Surprisingly simple geometric models (related to surface curvature) are
remarkably successful in describing tissue shapes and kinetics of growth. Two other
theoretical models have been developed: an agent based model based on the cellular
Potts model, and a continuum mechanics model. Each of these models have different
strengths and of course weaknesses. With appropriate descriptions of cell behaviour,
agent based models have the advantage about being able the to describe self-organising
behaviour of cells in developing large scale patterns within tissues, however cannot
describe the mechanical state of the system as well as continuum mechanics approaches.
One potential direction of future would be to couple such models as has been
demonstrated in bone remodelling (see e.g. (van Oers et al. 2008)). Further work in the
group is now focussed on trying to understand the behaviour of different tissue forming
cell types, the role of cells on the organisation of ECM and to visualise the processes of
growth in 3D.

Four key outcomes of our research with important implications for tissue
engineering are:

* The observation that the rate of tissue growth in-vitro in osteoblast cell-
culture is proportional to the local concave curvature meaning that by
controlling the pore shape in scaffolds tissue growth can be accelerated.

* A model based on tissue geometry that helps us understand the difference
in in-vivo bone remodelling rates in cortical versus trabecular bone.

* Anunderstanding of the importance of geometry on cell arrangement
inside a growing tissue which in turn controls the arrangement of the
extracellular matrix.

* The development of a continuum mechanics model for growth that
predicts the formation of a critical gap size as observed in bone fracture
healing.
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3 Actuation

The previous chapter has focused on the biophysics of how tissues change form
and shape during growth. The chapter highlighted that the geometry of the external
boundaries of a growing tissue has important consequences not only on the local rate of
growth of a tissue but also upon its microstructure. As emphasized in the introduction of
this thesis (Figure 1-4), the microstructure of a tissue controls function, with plants for
example, being able to change the physical properties (stiffness and swellability) of their
tissues simply by modifying the orientation of cellulose microfibrils within the cell wall.
This localised microstructural control within a tissue in turn allows tissues to change
shape in a controlled way through differential or localised swelling as a response to
changes in the environment even after the tissue is no longer metabolically active, which
leads to the second major research topic presented in this thesis.

The current chapter focuses on actuating structures (or materials) that change
shape due to localised swelling. More specifically it describes investigations into how the
geometric arrangement of swellable and non-swellable materials inside a structure
controls macroscopic shape changes. This work is motivated by studies carried out
within other research groups of the Department of Biomaterials (Together with Peter
Fratzl, Ingo Burgert, Luca Bertinetti and Michaela Eder) on hygroscopic actuators from
the plant world. In the first part of this chapter a short introduction into natural
hygrosopic actuators is given, with examples coming from the literature as well as from
some of the research the author has participated in within the Biomaterials Department.
The second part of the chapter, gives an overview of a selection of the research results
coming from the group on generalised concepts about actuation and their
implementation in synthetic systems. These results are described in full detail inside the
publications attached at the end of this thesis (See Section 7).

R -

Figure 3-1: Examples of natural actuators powered by water
a) The fruiting body of the fungus Astraeus hygrometricus opens when wet and closes when dry (curiously another
species Gaestrum campestris shows the opposite behaviour) (Brand and Finlay 1996) b) The filaree, Erodium
cicutarium, coils upon drying (Evangelista et al. 2011), and c) the seed pod of Bauhinia variegate opens in a chiral
fashion upon drying (Armon et al. 2011).
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3.1 Background

Many examples of hygroscopic actuators exist in Nature, with examples ranging from
the fruiting body of the fungus Astraeus hygrometricus (Brand and Finlay 1996), which
closes upon drying and closes upon wetting (Figure 3-1a), to the twisting awns of
Erodium cicutarium (Figure 3-1b) (Evangelista et al. 2011, Abraham et al. 2012,
Abraham et al. 2012, Abraham and Elbaum 2013), to the chiral twisting seed capsules of
Bauhinia variegate (Figure 3-1c) (Armon et al. 2011). What all of these systems have in
common is the presence of a controlled geometric arrangement of different tissues
within an organ that swell in different amounts giving rise to macroscopic motion. Such
movements have provided inspiration for the development of synthetic actuators and
have been discussed in numerous reviews see e.g. (Fratzl et al. 2008, Fratzl and Barth
2009, Martone et al. 2010, Speck and Burgert 2011, Elbaum and Abraham 2014, Studart
and Erb 2014). The following section gives a short introduction into the mechanics of
the plant cell wall, and importantly the role of the cellulose microfibril angle (MFA or p)
on the mechanical properties and ability for the tissue to swell. This will be followed by
several examples of different plant tissues that use materials architecture in the cell wall
components to control hygroscopic actuation.

As highlighted in Figure 1-4 the plant cell wall consists of long stiff crystalline
cellulose microfibrils wrapping around the axis of the cell embedded in a soft
hydroscopic swellable matrix (Figure 3-2a). The average cellulose microfibril angle
(MFA), with respect to the axis of the cell predominantly determined by the microfibrils
in the secondary cell wall plays a fundamental role on the mechanical and swelling
properties of the plant cell (Burgert et al. 2007, Fratzl et al. 2008, Gibson 2012). This can
be seen in the measured tissue stiffness (Young’s modulus) both in single wood fibres
and thicker tissues containing many cells as a function of MFA (Figure 3-2b) (Cave 1969,
Wimmer et al. 1997, Reiterer et al. 2001, Eder et al. 2013). The highest stiffness is
achieved for cells with low MFAs, in which case the stiff microfibrils are loaded almost
directly in tension, and the lowest stiffness for microfibrils oriented at larger angles to
the cell axis. This has the consequence that just by controlling the simple architectural
parameter of the MFA, plants can achieve a large range of mechanical properties, using
the same cell wall components (Burgert and Fratzl 2009, Burgert and Dunlop 2011). The
same principle also applies for the role of MFA on the swelling behaviour of plant
tissues. This can be understood by a simple thought experiment illustrated in (Figure 3-
2c) which displays 3 schematic cells or cylinders with different MFAs (Burgert et al.
2007, Burgert and Fratzl 2007). These cylinders can be virtually cut along their length
and unfolded (second column) such that one microfibril (in red) spans the diagonal of
the resultant rectangle. When the cylinders swell, i.e. the green region representing the
soft swellable matrix increases in area, the presence of the stiff fibrils will constrain the
resultant deformation. For low MFAs an increase in rectangle area for fixed length of the
diagonal, means the rectangle will shorten and increase in width. The inverse occurs for
high MFAs (Figure 3-2c bottom) which will lengthen upon swelling. For MFAs around
45° increase in area can only occur upon changes in the length of the diagonal. Such
observations have been experimentally verified in swelling experiments of high and low
MFA wood tissues (Burgert et al. 2007).

A more realistic model to describe the role of microfibril angle on the swelling of
the cell-wall was developed by Fratzl and co-workers (Keckes et al. 2003, Fratzl et al.
2004, Burgert et al. 2007, Fratzl et al. 2008, Bertinetti et al. 2013), using theoretical tools
from composite mechanics see e.g. (Chou 1992, Hull and Clyne 1996), for a full
derivation and description of the model see (Fratzl et al. 2008)). The model can be
briefly summarised as follows. Plant cells are approximated as perfect cylinders with a
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cell-wall consisting of stiff non-swellable fibrils oriented at an angle u to the cell axis

(Figure 3-2a). These fibrils are assumed to be embedded in an isotropic soft matrix,
with Young’s Modulus E and Poisson ratio v, that swells isotropically an amount 7,

upon changes in moisture content. Assuming sufficiently thin cell-walls, the 3D problem
can be simplified to 2D.

The equations for elastic equilibrium of the matrix can be readily formulated in a local
coordinate system oriented along the fibril direction (direction 1 being along the fibrils,
and direction 2 perpendicular to the fibrils) giving:

E E
o,—E;g = W(Sl_n)'klij(gz _77)

E
P 81_77)+1_v2 (82_77) Eq.3.1

where 0,, 0,, and 7,, are the normal stresses and shear stress in the matrix and ¢, &,,
and 7,, are the normal strains and shear strain in the matrix in the 1 and 2 directions.
The second term on the left hand side of the top equation, describes the role the stiff
fibrils have in stress shielding the matrix, where the parameter E, is equivalent to the
Young’s modulus of the fibril multiplied by the fibril volume fraction. By rotating the
coordinate system by an angle u it is straightforward to write the equations in a
coordinate system oriented parallel to the cell-axis. By then summing the results over all
fibril orientations (as described by the MFA orientation distribution function as given by
p(/.l) ) it is possible to derive:

1) the stress, 7,, exerted by a swelling cell when it is constrained along its axis,

2) the strain, €, produced by a swelling cell along its axis when it is free to expand,

and

3) Y, the effective modulus in the axial direction,
as a function of (i) microfibril angle u and (ii) the ratio between microfibril stiffness and
matrix stiffness f = (l—vz) E:/E.

The results of such an analysis for a unidirectionally oriented microfibril angle
distribution are plotted in (Figure 3-2d-f) as a function of microfibril angle u for
different values of f in comparison to randomly oriented fibrils (for the full equations
see (Fratzl et al. 2008)). What is intriguing is that by simply tuning the angle of the
reinforcing fibres with respect to the cell axis, tissues can be turned into compressive or
tensile stress generators, or can be used to achieve large deformation in expansion or
contraction due to an isotropic matrix swelling strain, and this with the same chemical
composition. For example in (Figure 3-2d-f) for the highest stiffness contrast of 100

(dark green line) gives maximal tensile stress for MFAs ~20°, maximal tensile strain for
MFA ~40° and starts developing compressive stress/strains for MFAs above 45°.
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Figure 3-2: The cellulose microfibril angle controls the mechanics and swelling of the plant cell wall
a) Schematic of a simplified cell wall, consisting of a soft swellable matrix reinforced by stiff fibres wrapped at an
angle p around the cell b) A collection of literature data of the stiffness of different wood tissues and single fibres
plotted as a function of the MFA (Eder et al. 2013) c) A schematic of how cells with different MFAs will respond to
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model of Fratzl and co-workers predicts d) the axial stress produced by a cell swelling upon constraint e) the axial
deformation developed upon swelling an amount and f) the Young’s modulus as a function of microfibril angle for
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These concepts of using the microfibril angle as a way to control tissue function are
commonly used by plants in the context of seed dispersal. Two well-known examples in
which plants use the MFA to control function are: the hygroscopic opening mechanism
of the pine cone (Figure 3-3, See also Figure 1-1e and f) and the hygroscopic
“swimming” motion of the wheat awn (Figure 3-4). In addition plants have two other
mechanisms in which they can use cell wall architecture to modify mechanical function,
by filling the lumen with a so-called g-layer as is found in the example of tension wood
(Figure 3-5) or by modifying the cell cross section as seen in the tissues of the ice-plant
seed capsules (Figure 3-6). These examples highlight how through the simple control of
local tissue architecture (through the cellulose MFA), plants can develop highly complex
functions that operate long after the tissue itself is dead.
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decreasing water content

Figure 3-3: Hygroscopic opening of pine cones

Pine cones are well known examples of natural hygroscopic actuators whose scales are a) closed when wet b) and
open when dry for seed release. c) Longitudinal section, and d) Transverse section of a scale illustrating the two tissue
types found in the cross section (Harlow et al. 1964). These layers have different microfibril angles as illustrated by
the X-ray scattering patterns in the upper e) and lower f) portions of the scales and the associated cell wall models
(Allen and Wardrop 1964). SEM images of close ups of the scale tissues in the inner fibrous region i) and outer active
j) portions of the scales show large differences in MFA (Dawson et al. 1998). The differences in MFA in the upper and
lower portions results in a bi-layer giving rise to bending of the tissue upon drying as illustrated schematically in k)
(Dunlop etal. 2011).
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The opening mechanisms of pine cones have been well-studied, with some of the
earliest research going back a century (Shaw 1914). Pine cones in the wet or green state
have closed scales (Figure 3-3a), but upon drying (Figure 3-3b) the scales bend
outwards opening the cone, allowing for seed release. Cross sections through scales in
the longitudinal (Figure 3-3c) and transverse directions (Figure 3-3d), indicate the
presence of at least two distinct tissue layers; one layer towards the innermost side of
the scale consisting of thick fibrous or woody tissue and an outer layer consisting of
shorter thick-walled cells (Harlow et al. 1964). This outer layer was found to change
length considerably upon drying-wetting cycles, contracting almost 30% upon drying in
some species (Harlow et al. 1964). Initial electron microscopy work (Harlow et al.
1964), and X-ray diffraction (Allen and Wardrop 1964) on the two tissues (Figure 3-3e
and f) indicated the presence of very high MFAs in the outer tissue layer and much lower
angles in the inner tissue. In more recent electron microscopy studies this difference in
MFA can be clearly seen on the tissues (Figure 3-3i and j) (Dawson et al. 1998). The
difference in cell-wall organisation between the two layers is well illustrated in the
structural models of the cell walls developed by (Allen and Wardrop 1964) showing the
organisation of inner (Figure 3-3g) and outer tissues (Figure 3-3h) respectively. From
the previous discussion about the role of MFA on tissue contraction/expansion (see
Figure 3-2e), the scales of the pine cones can be viewed as being essentially bi-layers,
that change in curvature due to the differential strains developing in the two tissues
with low and high-microfibril angles (Figure 3-3Kk). Such structures can be readily
mimicked using paper and adhesive tape (Reyssat and Mahadevan 2009) and using
advanced ceramic templating methods (Fritz-Popovski et al. 2012) it has even been
possible to create active ceramic replicas of pine-cone scales (Zollfrank, pers. comm.).

Another example of hygroscopic actuation controlled by the microfibril angle of
the cell walls, can be found in the hygroscopic motion of the awns of wild wheat,
Triticum turgidum ssp. Diccocoides (Figure 3-4a) (Elbaum et al. 2007). Wheat seeds are
attached to long “antenna-like” awns (Figure 3-4b and c) that move apart when dry and
close when wet. In modern varieties, in which the wheat seed remains on the plant
before harvest, these awns are much less-well pronounced. This hygroscopic motion
comes about again due to the presence of two different tissue types in the cross section
of the awn (Elbaum et al. 2007). Although no chemical difference between tissues in the
cross-sections could be observed, these tissues become readily visible in acoustic
microscopy images (Figure 3-4d) showing the presence of a layer of stiff tissue on the
outside and softer tissues on the inside. This indicates local structural differences that
become apparent from X-ray diffraction experiments of the two tissues (Figure 3-4e, f
and g for the integrated images), which indicate very low microfibril angles for the outer
tissue (Figure 3-4e) and a more random orientation for the inner tissue (Figure 3-4f).
Although the outer tissue layer will not contract, the randomly oriented tissue will
giving rise to differential swelling in the two layers and result in a hygroscopic bending
of the awns (see Figure 3-2e). The awns also are covered on the outside by silica spikes
(Figure 3-4h) that allow sliding of the awns with respect to a substrate only in one
direction (see also (Kuli¢ et al. 2009)). This has the consequence that upon cyclic
humidity changes as found between day and night, wheat seeds will move their awns,
with the silica spikes allowing them to “swim” away from the mother plant (Elbaum et
al. 2007). A closer look at the cell-walls of the active tissue with randomly oriented
MFAs (Figure 3-4i) indicates the presence of alternate high and low angle MFAs in the
cell wall. Using simple FE models we showed that radial tensile stresses would develop
at the interface between the layers upon swelling that could lead to crack opening and
therefore faster water absorption (Zickler et al. 2012).
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Figure 3-4: Hygroscopic motion in the awns of wheat
a) Image of wild wheat (Triticum turgidum ssp. diccocoides) (Elbaum et al. 2008), Image of the wheat awns when
wet b) and dry c) (length of an awn ~10cm). (images courtesy of M. Eder) d) Acoustic microscopy image of a cross-
section through a wheat awn. A lighter colour indicates a higher acoustic impedence (higher stiffness for the same
density), which indicates different mechanical properties of the tissues (Elbaum et al. 2007). e) f) show X-ray
scattering patterns of the two tissues (Elbaum et al. 2007), radially integrated in g) (the red curve being from e) and
the blue curve from f) (Elbaum et al. 2008). h) False coloured SEM image of the siliceous hairs on the outside of the
awns (image courtesy of M. Eder). that act to allow it only to be propelled in one direction upon changes in humidity
as illustrated schematically in i) (Elbaum et al. 2007). j) SEM image of a cross section of one of the actuating cells
showing multi-laminate structure (Zickler et al. 2012). A simple finite element model consisting of alternate layers of
0° and 90° MFAs with varying thickness (k), illustrates that upon swelling it is also possible to open up cracks
between the layers as indicated by the tensile stresses shown in1) (Zickler et al. 2012).
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Trees control the arrangement of cellulose microfibrils not only for purposes of
actuation, but also to develop large active stresses in their tissues through the
production of reaction wood (see e.g. (Wilson and Archer 1977)). These stresses are
used to solve the problem that trees face of having branches that get heavier and heavier
as they grow longer and longer (Figure 3-5a and b), and to change the orientation of
leaning stems for example (Farber et al. 2001, Reiterer et al. 2004). Reaction wood is a
specialised tissue grown by a tree that either pushes, in the case of compression wood,
or pulls in the case of tension wood branches upright (Figure 3-5c). Compression wood
can have large cellulose MFAs of around ~45° and it has been shown through swelling
experiments of spruce tissues that these tissues indeed elongate significantly upon
swelling, (Burgert et al. 2007), see also the previous discussion (Figure 3-2). In tension
wood, a tissue found in about 50% of deciduous trees, an additional microstructural
feature to the microfibril angle has evolved, that creates tensile stresses of up to 70 MPa
(Okuyama et al. 1994) on the upper side of branches (Mellerowicz and Gorshkova
2012). In these tissues, the lumens of the wood cells (Figure 3-5d) are filled with a so
called gelatinous layer (G-layer) consisting of cellulosic material that can be readily
removed with enzymatic treatment (Figure 3-5e) (Goswami et al. 2008). X-ray
scattering measurements before (Figure 3-5f) and after (Figure 3-5g) this treatment
indicate that this G-layer has a very low cellulose MFA with the remaining cell-wall
having a structure similar to normal wood (Goswami et al. 2008). From the previous
discussion it is clear that a G-layer with longitudinally oriented cellulose microfibrils
cannot change dimensions significantly in the longitudinal direction of the cells, but only
transverse to the cell axis, i.e. within the plane of the image in Figure 3-5d. These
observations led us to develop a simple model to describe the development of tensile
stresses in the tissue (Figure 3-5h and i) (Goswami et al. 2008). Any swelling of the G-
layer would impart a pressure p on the cell wall, giving rise to radial stresses

o, = pR/t, where, R and ¢, are the cell radius and wall thickness respectively. For a cell-
wall reinforced with stiff microfibril angles oriented at an angle y it is possible using

the same composite mechanics models of Fratzl and co-workers (Fratzl et al. 2008), to
predict the relationship between axial stress ¢, and radial stress o, :

s 2
:v+fm§usn M

Eqg. 3.2
1+ fsin®*u q

a r

where v is the Poisson ratio, and f = " is the stiffness contrast between fibrils

(1-v?)E
E
and matrix introduced in Eq. 3.1 (Goswami et al. 2008). This simple model predicts
positive tensile stresses being developed for high stiffness contrasts (Figure 3-5j) for
MFAs close to those found in the cell wall. Although this is just one hypothesis about the
mechanism behind stress generation in tension wood, (see (Mellerowicz and Gorshkova
2012) for a recent critical review), it highlights again the importance of the geometric
arrangement of tissues on cell function both inside the cell-wall and inside the lumen. In
addition to being found in tension wood, G-layers are found in many other active plant
tissues including tendrils (Bowling and Vaughn 2009, Gerbode et al. 2012) and roots
(Schreiber et al. 2010) (Figure 3-5kJ)). In Trifolium pratense, the observation of the
formation of g-layers in the root is thought to be responsible for the mechanism by
which roots contract pulling the plant into the ground (Figure 3-5m) (Schreiber et al.

2010).
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Figure 3-5: Gelatinous layers as alternative structures for stress generation in plant cells

A schematic of a growing tree branch: as a given branch a) grows it gets longer and thicker b). In order to compensate
for the increasing bending moment, trees generate so-called reaction wood which can create active stresses to keep
branches upright. An example of such tissue is given in d) which shows an SEM image of tension wood in poplar (note
the filled lumens of the cells) e) the same tissue after cellulase treatment highlighting the g-layer is mainly cellulose.
X-Ray scattering images before f) and after g) enzymatic treatment show that this g-layer consists of low MFA fibrils,
whereas the cell-wall has a similar structure to normal wood (Goswami et al. 2008). This leads to a model (h and i) by
which the g-layer upon hydration swells and applies a pressure on the cell-wall causing contraction due to the high
MFA in the secondary cell wall (Goswami et al. 2008). j) Predicted tensile stress generation as a function of MFA of the
secondary cell wall for different values of the stiffness contract parameter f (increasing values indicate higher cell wall
anisotropy) (Goswami et al. 2008). In addition to tension wood, G-layers have also been found in the contractile roots
of Trifolium pratense, as shown in the Raman-images (Schreiber et al. 2010). Upon growth these roots contract pulling
the plant into the ground as illustrated schematically in m) (Dunlop et al. 2011).
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In addition to controlling the microfibril angle within the cell-wall or the content
of the cell-lumen, another geometric feature that plants can use to control function is the
shape of the cell-cross section. One example of this mechanism can be found in a
specialised tissue within the seed capsules of the ice-plant (Delosperma nakurense)
(Harrington et al. 2011, Razghandi et al. 2014) (Figure 3-6). These plants occur near
coastlines around the world in typically quite arid areas. After flowering, a protective
seed capsule is formed (Figure 3-6a) which holds seeds back only opening when the
capsule comes in contact with sufficient rain (Figure 3-6b and c). Upon contact with
further raindrops these seeds can then be splashed out into the surroundings (Parolin
2006). Interestingly these capsules are not responsive to changes in humidity, common
in the regions where they are found, meaning seeds are only released into a wet
environment suitable for germination.

— .

= Protective -
valve ////

Hygroscopic keel

.

. Hygroscopic keel
longitudinal cell plane

Figure 3-6: Hygroscopic opening of the ice-plant seed capsule is controlled by tissue microstructure
[llustration of the different levels of architectural complexity in the ice-plant seed capsule at different length scales (a-
k). On the left hand side, images show the different tissue structures in the dry state and on the right hand side in the
wet state. The central column gives schematic illustrations of the different tissues. Scale bars are defined as: a and c =
2 mm; b, e and j*1 mm; d and f=1mm; g and h=0.5mm; i and k=0.1mm. (Harrington et al. 2011)

The protective valves holding the seeds back inside the seed capsules are
actuated by a tissue called the hygroscopic keel, which when dissected away from the
backing shows large displacements upon wetting (Figure 3-6d, e and f). The backing
itself is passive, although it changes curvature slightly upon wetting of the keel tissue
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(Figure 3-6g, and h). The microstructural features of the plant cells responsible for the
large swelling of the keel tissue are illustrated in (Figure 3-6 i, j and k), which show keel
cross sections in the dry and wet state respectively. In the dry state cells are collapsed,
making it somewhat difficult to visualise their shape, but when swollen an array of cells
with diamond shaped cross-sections can be seen. The lumens of these cells are filled
with a cellulose-like material, akin to a G-layer, that swells upon wetting as
demonstrated by enzymatic treatments (Harrington et al. 2011). The mechanics of such
honeycomb-like structures is well known (Gibson 2005, Gibson et al. 2010), and from
this it is intuitive that such a structure will swell along the short or soft direction of the
honeycomb (vertical direction in(Figure 3-6 I and k). This being said it is curious that
despite the huge amount of literature available on the mechanics of cellular solids, there
is still a lot to be learnt about these structures their behaviour under pressure.

This brief overview has given an insight into some of the design principles
controlling hygroscopic actuation in the plant world. In particular we have focussed on
the concept of the microfibril angle, as this allows plants to modify greatly the
mechanical and actuation response by just changing one simple geometric parameter,
while keeping the chemistry of the cell-wall essentially constant. Actuation responses
can be also amplified through the presence of a swellable medium inside the lumens of
plant tissues as well through the tight control of cell-shape. All of this highlights the
important role that the geometric arrangement of swellable and non-swellable tissues
has on resultant tissue deformations, something that will be explored in more detail in
the following.
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3.2 Results and Discussion

The key results of the author’s research related to actuation are reproduced and
discussed in the following section. A detailed publication list is given in Section 6.1, and
each publication in this list is indicated in the text by it’s number, i.e. [AC1] or [AC2] and
is reproduced in Section 7.

From the previous discussion of the mechanics of natural actuators, it is clear that
the geometric arrangement of swellable and non-swellable components in a tissue
controls the macroscopic shape change observed. In some situations, such as the simple
bi-metallic beam used in thermostats (Timoshenko 1925), the macroscopic response is
perhaps quite intuitive. If one side of a beam swells in the direction of the long axis of
the beam and the other one doesn’t then it is clear the beam will bend in order to
minimise the elastic energy arising from the different strains on each side. This being
said, great complexity in the resultant motion can arise due to the presence of free
boundaries, or due to the actuating system having several (meta)stable minimal energy
configurations that can be reached when swelling is non-uniform. In the following,
several examples are presented of more general studies on the role of geometric
constraints on actuation of 1D and 2D structures. Although our work here is mainly
done from a theoretical perspective, collaborations with polymer chemists enabled us to
compare simulations with experiments, allowing us on one hand to understand
interesting phenomenon observed in polymeric actuators, but also to predict new
behaviour not yet observed in these systems. The experimental work on patterned bi-
layers was done in the group of Leonid Ionov (Leibniz Institute, Dresden) and the
graded porous actuators was done in the group of Jiayin Yuan (Colloids Department,
MPIKG, Potsdam). The 3D printing of the swellable honeycombs was done by James
Weaver (Wyss Institute, Harvard) although the swelling experiments were performed in
our group.

The role of symmetry on 1D actuators [AC1]

Inspired by work done that we did together with Rivka Elbaum on the awns of
Erodium (Abraham et al. 2012), that twist and coil upon drying (Figure 3-1b), and the
awns of wheat (Zickler et al. 2012) that bend, we started investigating the role of
internal and external geometry on “pseudo” 1D actuators (Turcaud et al. 2011). The
analysis is simplified by reduction to one dimension i.e. we focus on long beams that in
principle could be manufactured by extrusion. We therefore assume that the shape of
the cross section, and the arrangement of the swellable/non-swellable components
within a cross section, is invariant along the beams length. Starting with perhaps the
simplest section geometry of a square, at least with respect to the restrictions of the
discrete nature of finite element simulations, we investigated how the symmetry of the
arrangement of swellable (blue) and non-swellable (red) materials controlled actuation
(Figure 3-7a). According to Curie’s principle (Curie 1894) which states that the
symmetry of the effects should at least have the same symmetry as the causes, we would
expect that as long as we remain in a regime of linear elasticity then the resultant
deformation of a beam should respect the symmetry of the distribution of the swellable
and non-swellable components. This has the consequence that, of the cross sections
illustrated in (Figure 3-7a), those that have mirror symmetries will bend in the mirror
plane, and those with rotational symmetries will twist around the rotational axis. If
combinations of symmetries occur then this results in “symmetric locking” as bending or
twisting would break remaining symmetries. To test this we performed finite element
simulations on beams consisting of these structures (Figure 3-7b and c), and indeed
structures with cross sections such as the second line and fifth line of (Figure 3-7a),
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twist and rotate respectively, although the twisting was minimal. In order to increase
the twisting of these structures we also investigated the role of changing the external
cross section (Figure 3-7d, e and f), and showed that by increasing the distance of the
swelling contrast from the rotation axis we could achieve greater actuation. More recent

experimental work using 3D printing supports these ideas and highlights the important
role of internal material symmetry on actuation.

Figure 3-7: Extrudable bi-material actuators

a) Examples of cross sections of extrudable bi-material actuators with their respective rotational R and mirror M
symmetries. From the Curie principle these symmetries will have a consequence on the resultant motions available. b)
example images of finite element simulations of 1D extrudable actuators consisting of a swellable (blue) and non-
swellable (red) phase giving rise to bending or even twisting. (Turcaud et al. 2011)
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Spatio-temporal control of actuating bi-layers [AC2, AC3]

Leonid Ionov and co-workers had previously demonstrated the possibility of
using bi-layer structures of PolyNIPAM and PMMA patterned on silicon wafers using
photolithography to generate self-rolling structures that actuate upon changes in
temperature (Zakharchenko et al. 2010, Stoychev et al. 2011). These structures can find
potential application in the producing devices for the encapsulation of cells and drugs.
Upon heating the PNIPAM layer absorbs water and swells, giving rise to local bending
and therefore actuation. Although this sounds rather straightforward a certain amount
of complexity can arise as the PNIPAM layer is attached to the substrate, which means
swelling and therefore bending starts at the edge of the patterns (Figure 3-8a,b). Our
group joined the project in order to help provide a theoretical understanding of the
complex actuation behaviours observed. We investigated the rolling behaviour of
rectangular bi-layers of different aspect ratios, using finite element simulations, where it
was found that there was a change in rolling behaviour from diagonal to long side rolling
(Figure 3-8c and d). (Stoychev et al. 2012). This behaviour was unusual, as free
rectangular bi-layers are expected to roll along their short sides from energetic
considerations (Alben et al. 2011), however we could demonstrate the importance of the
spatial control of the kinetics of actuation (due to the diffusion front) in driving
actuation into alternative minimum energy configurations. Further work with different
patterns of circular, elliptical and star like patches, showed that upon edge actuation the
boundary would start to wrinkle (Figure 3-8e). This is similar to what has been
observed (and modelled) in the edge growth of leaves (Liang and Mahadevan 2009) or
flowers (Liang and Mahadevan 2011) or in the patterns observed during tearing of
polymer membranes (Audoly and Boudaoud 2002). Our simulations predicted that the
number of wrinkles would be inversely proportional to the length of the diffusion front
(or actuation depth) (Figure 3-8f) and this was confirmed experimentally (Figure 3-8g-
j). Eventually as wrinkling progresses, tubes form on the sides of these membranes
creating local stiffening elements that block the bi-layers from completely rolling forcing
the bi-layer to fold in complex ways (Stoychev et al. 2013).
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Figure 3-8: Spatial control of actuation fields in patterned bi-layers

a) Predicted concentration profiles due to edge diffusion patterns as a function of time (top) and for different shapes
(bottom) b) Actual diffusion profiles observed in membranes c) Simulated actuation of the bi-layer due to swelling
induced by the predicted concentration profiles d) Observed long-versus short rolling as a function of bi-layer
geometry (Stoychev et al. 2012) e) Circular patches develop wrinkles with a number of wrinkles being inversely
proportional to actuation depth f), Such wrinkling is indeed observed with the number of wrinkles decreasing as
actuation proceeds (g-j) (Stoychev et al. 2013).

Ultrafast actuation of poly-ionic liquids [AC4, AC5]

One challenge in designing actuating devices that operate due to local swelling, is
the inherently slow kinetics of the diffusion of solvents into the swellable material. In
the example of the wheat awn (Elbaum et al. 2007, Elbaum et al. 2008, Zickler et al.
2012) this appears to be controlled by the plant by actively creating new porosity by
controlled cracking during the swelling process itself (Figure 3-4). By developing poly-
ionic liquid membranes with high porosity the group of Jiayin Yuan has have recently
developed actuating membrane materials that respond almost instantaneously to
changes in concentrations of a variety of different solvent vapours (Zhao et al. 2014,
Zhao et al. 2015). Our group’s role is to interpret the mechanical data in order to
understand the role of the gradient in electrostatic complexation through the cross-
section of the membranes upon actuation. This gradient is thought to result in a change
in swellability and stiffness giving rise to bending upon contact with solvents,
potentially minimising the development of large interfacial stresses. Current work is
being done to control the orientation of bending, by incorporating stiff fibres in defined
orientations into the membrane.
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Figure 3-9: High speed porous actuators

a) SEM image of porous poly-ionic liquid actuator (scale bar 30 pm) close up of b) top surface (scale bar 3 pm) and c)
bulk (scale bar 1um). d) Measurement of the gradient in the degree of electrostatic complexation (DEC) throughout
the thickness of the membrane. e-f) reversible actuation due to changes in humidity of a star-shaped membrane (Zhao
etal. 2014)

The mechanic response of swellable honeycombs [AC6, AC7]

Inspired by the structures of the tissues found in the ice plant (Figure 3-6), we
started investigating the mechanical response of swellable honeycombs using finite
element (FE) simulations and simple micromechanical models (Guiducci et al. 2014).
These 2D simulations were used to determine the role of internal pressure on the elastic
deformation of the honeycomb as a function of wall stiffness and other geometric factors
(Figure 3-10). Upon pressurization the honeycomb deforms first anisotropically, with
large contraction in the short cell-direction, as observed in the ice-plant (Figure 3-10a,
and b). After a certain pressure the cells are square and the swelling behaviour becomes
isotropic (Figure 3-10c). Parametric simulations enabled maps of actuation strains and
effective honeycomb modulus to be produced as a function of pressure and wall-
stiffness (Figure 3-10d and e). Although FE simulations enable realistic swelling
behaviour to be accurately modelled, it is difficult to extract the key architectural
parameters that control the observed behaviour. It is known that the energy of
stretching or bending of the cell-walls dominates the in-plane tensile and compressive
response of honeycombs (Gibson 2005, Gibson et al. 2010). To test this we developed a
simplified bead-spring model, that gave actuation behaviour matching well the FE
simulations (Figure 3-10f and g). This bead-spring model highlights the importance of
the ratio of the energies of wall-stretching to wall bending on the actuation behaviour of
swellable honeycombs. Such structures can also be printed using advanced multi-
material 3D printing, which allow for the printing of polymers with different cross-
linking densities. Upon immersion in a suitable solvent the polymer with the lowest
cross-linking density will swell the most allowing us to test actuation behaviour (Figure
3-10h). See also (Ge et al. 2013) for one of the first publications on this so-called “4D
printing”.
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Figure 3-10: The mechanics of swellable diamond-cell honeycombs

Finite element simulations of diamond honeycombs with a wall-modulus of 1GPa for different actuation pressures a)
0, b) 0.3 and c) 7.5 MPa. Maps of d) actuation strain and e) effective modulus in the vertical direction as a function of
actuation pressure and wall stiffness. These maps can be collapsed to master curves f) and g) which match well to the
results of a simplified bead-spring model (Guiducci et al. 2014). h) Rapid prototyped specimens of diamond
honeycombs printed with a swellable (clear) and non-swellable (white) material as a function of swelling time.

One of the consequences of developing the bead-spring model is that we started
wondering how one could change the effective wall stiffness (thus reducing the wall
stretching energy) without making the walls too thin. Using similar approaches (FE-
simulations and 3D printing) we came up with the idea of introducing kinks into the
walls of the cells creating local flexible links in the structures (Guiducci et al. 2015)
(Figure 3-11). What quickly became apparent is that by simply controlling the shape
and the arrangement of the cells it was possible to generate a wide range of actuation
behaviour, converting isotropic swelling in the pores to deformations ranging from
uniaxial to shear deformations.
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Figure 3-11: Complex honeycombs with more complex shapes

Finite element simulations of three different honeycombs a) before and b) after swelling. c) Normal and shear strains
plotted as a function of the uniform swelling strain for the three different honeycombs (FE Simulations). D) 3D
printed models of the honeycombs (cell size ~cm) consisting of swellable (clear) and non-swellable (white) polymers
before swelling and e) after swelling in isopropanol (Guiducci et al. 2015).

51



3.3 Summary

In this chapter we have highlighted the importance of geometric constraints on
actuation. Much of this work is inspired by observations of hygroscopic actuation from
the plant world, where plants encode the ability to actuate in complex ways inside their
tissues, and surprisingly keep this function long after the tissue is no longer
metabolically active. In our work we have shown for 1D actuators the importance of the
symmetry of the cross-sections.

Key outcomes of this combination of theoretical and experimental research are:

* The important role of the symmetry of the distribution of swellable
components on the symmetry of deformation. This was observed in 1D
actuators but also similar effects can be found in the tiling of pores in the
honeycomb based actuators

* The possibility of controlling the time of actuation, for example due to the
diffusion controlled swelling from the edges of bi-layers, in order to get
systems to actuate into metastable intermediate states.

* The use of pore shape to modulate wall stretching energies, in order to
control actuation behaviour in swellable honeycomb actuators.

In the group we have only started investigating synthetic and theoretical systems.
However our results support the importance of understanding geometric boundary
constraints in the design of novel actuating materials. A promising direction is that of
investigating the mechanics of porous actuators, of which we have only scratched the
surface and not yet even looked at 3D.

The following section will give an outlook of the sort of research that can be done
next based on the outcomes of this thesis.
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4 Conclusions and Outlook

This cumulative habilitation thesis has provided a short overview of selected
research done inside the group “Biomimetic Actuation and Tissue Growth”. This
research is reported in more detail in the attached full papers (see Section 6.1 for a list
and Chapter 7 for the manuscripts). The group has focussed on two different research
topics, that of shape changes in biology due to the processes of growth and shape
changes due to local swelling in response to changes in the external environment. In
both research directions we have used a combination of theoretical approaches together
with experiments supported by advanced 3D printing technologies. The use of 3D
printing allows for accurate spatial control of structures for cell-culture or even to
directly print actuators. Despite the differences in the two topics they both share
important commonalities in that the outcome of localised growth and localised swelling
is a macroscopic shape change. As such similar theoretical tools, especially those
developed in the continuum mechanics community can be used to describe both
processes. Our work has demonstrated clearly the importance of geometric constraints
via mechanics on both growth and actuation, and although we have made progress in
quantifying and modelling both processes, there is much still to be done. Some key
directions that are promising are as follows:

e The role of 3D surface curvature on tissue growth. One perhaps glaring omission in
the research presented in this thesis is that we have till now only investigated pores
with straight sides (i.e. zero Gaussian curvature). Although we have shown that
curvature in these pores controls growth, due to experimental limitations we have
not been able to observe surfaces with arbitrary principle curvatures, to work out
what curvature (mean, Gaussian or principle curvatures) truly controls growth.

e The role of mechanical signalling on growth. We are now getting much closer to
understanding some of the biophysical mechanisms behind tissue growth. It is clear
that mechanical signalling is fundamental to long-range cell communication and
organisation, and likely to be responsible for some of the behaviours described in
this thesis. To test this it would be useful to mechanically perturb a growing tissue
locally, either by local application of a force or by biochemical methods.

e Influence of geometry on extra-cellular matrix organisation. Still unclear are
biophysical principles behind the long-range organisation seen in the extra-cellular
matrix. One problem is that although cell or agent based models can describe cell
patterning, they are very limited when it comes to combining cell-behaviour with the
formation of structured extracellular matrix. Such work also requires advanced 3D
visualisation techniques for example light sheet microscopy to observe cell motion
and ECM structure in large volumes in a time resolved way.

* The role of cell-type or state on geometry sensing. The data discussed in this thesis
has mainly dealt with one single osteoblast cell line and it is unclear how general the
observations are. In recent work we applied our experimental approach to a
fibroblast cell line as well as mesenchymal stem cells in a collaboration with the
group of Carsten Werner, Dresden (Herklotz et al. 2015). This early work suggests
that the behaviour observed in our osteoblasts is generalizable, however a more
systematic study is required to confirm this.

* How timing of actuation can be used to control shape changes. We have shown
experimentally that by controlling the location and timing of the actuating field we
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can force actuators to undergo metastable shape changes, that may not be the global
elastic energy minimum. Currently we have no theoretical framework that can
predict such behaviour ad-hoc, and further work is required to develop models to do
this.

e Exploring the possibilities of actuating honeycombs. The honeycombs actuators we
have looked at until now have been rather simple. Although our most recent paper
highlights the role of cell shape and tiling on actuation, this has not yet been looked
at in a systematic manner and it is still not clear what are the physical limitations in
possible actuation behaviours observed in such structures.

* Exploring the possibilities of 3D porous actuators. The honeycomb actuators have an
advantage as they can be readily modelled in 2D and visualised. The principles that
control the behaviour of such structures are of course also valid in 3D. In order to
solve this however one needs to overcome issues of visualising deformation in 3D,
and ensuring that swelling is uniform throughout the interior of a swelling structure.

* Combining actuation and tissue growth. A final promising direction is to combine the
work done on actuating structures with the work on tissue growth. As cells are
contractile, it could be that they develop sufficient forces to be able to deform the
substrate giving rise, potentially to large scale macroscopic shape changes.

The work presented in this thesis into the biophysics of shape changes in tissues
and actuating structures is basic research, however its outcomes may have important
implications to society in the fields of medicine and engineering. An understanding of
the role of shape on tissue behaviour, for example, could help biomedical engineers
design more efficient scaffolds for tissue repair. One point that is still not clear how
much biology should a scaffold provide? Scaffolds with zero mean surface curvature
certainly mimic the surface topology of trabecular bone, but they may not be a good
solution as cells are not stimulated sufficiently to allow for growth. The development of
extensive geometric design rules for actuators for example would have applications in
the developing field of soft robotics, or in the development of low-energy sensors
operating autonomously with changes in environmental conditions. Although interest in
these research topics is not new, as highlighted by the many historical examples cited in
the introduction, the combination of modern analytical techniques with advanced
numerical modelling and the possibility of collaborating with people over many
disciplines, suggests a richness in potential that will be keeping scientists excited and
busy for many years to come.
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7.1 [TG1] The effect of geometry on three-dimensional tissue growth
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Reprinted with permission from the Royal Society (Open Access CC licence)

Abstract: Tissue formation is determined by uncountable biochemical signals between cells, but also physical
parameters have been shown to exhibit significant effects on the level of the single cell. Beyond the cell however there
is still no quantitative understanding of how geometry affects tissue growth, which is of high significance for bone
healing and tissue engineering. In this paper it is shown that the local growth rate of tissue formed by osteoblasts is
strongly influenced by geometrical features of channels in an artificial three-dimensional matrix. Curvature driven
effects and mechanical forces within the tissue may explain the growth patterns as demonstrated by numerical
simulation and confocal laser scanning microscopy. This implies that cells within the tissue surface are able to sense
and react to radii of curvature much larger than the size of the cells themselves. This has important implications for
the understanding of bone remodelling and defect healing as well as for scaffold design in bone tissue engineering.

1. Introduction

Cells react to the chemistry, geometry (Chen et al,
1997) and mechanics (Discher et al., 2005) of their
local environments. In addition to the well studied
response of cells to biochemistry, the influence of
mechanical parameters is well described for
mesenchymal stem cells where it is possible to control
the differentiation of these cells through substrate
stiffness. Neuronal cells for example are formed on
soft substrates, muscle cells on stiffer substrates and
osteonal cells on more rigid matrices (Engler et al,
2006). Focal adhesion sites of cells become more
stable and the cell cytoskeleton more organised with
increasing substrate stiffness, enabling larger forces
to be transmitted (Discher et al.,, 2005). Cells appear
to probe their local environment through the
transmission of forces from the environment via focal
adhesion sites attached to the cytoskeleton (Balaban
etal, 2001) and seem to be able to sense and transmit
forces over long distances relative to their size
(Bischofs and Schwarz, 2003). The geometric
arrangement of the local environment is also a critical
factor in determining cell behaviour. It has been
shown, for example, that both the chemical
composition and sub-cellular organization of focal
adhesion molecules differs for cells grown in a three-
dimensional matrix compared to those grown on a flat
plate in two dimensions (Cukierman et al, 2001,
Cavalcanti-Adam et al., 2007). On the micron scale, the
geometry of adhesive regions controls cell shape and
the spreading of cells across a substrate (Chen et al,,
1997). Cells also respond to variations in geometry on
the nano-scale, and substrates patterned with
different densities of integrin coated nano-dots show
differences in the dynamics of focal adhesion and cell
motility (Cavalcanti-Adam et al., 2007).

The influence of surface geometry is well studied for
the behaviour of single cells, but no data are available
for the collective behaviour of groups of cells, namely
at the tissue level. Such data are essential in tissue
engineering to optimise the support for new tissue
formation in artificial replacement materials.
Scaffolds for tissue engineering act as a physical
support structure to replace tissue removed after
injury or cancer ablation, and ideally should regulate
biological events such as cell proliferation, viability

and intra-cellular signalling (Geiger and Bershadsky,
2002, Geiger et al, 2001). Bone replacement
materials, for example should have an open porosity
with channels in the order of a few hundred microns
diameter. This not only allows for the migration of
single cells into the scaffold but also provides
sufficient space for the formation and growth of new
tissue with a cellular and structural organisation
similar to that seen in vivo (Rumpler et al., 2007,
Woesz et al., 2005). Studies investigating the effect of
pore size at the micrometer level have focused on cell
attachment, migration and cell division with respect
to biocompatibility (van Eeden and Ripamonti, 1994).
Pore channels in scaffold materials can vary between
round and irregular cross sections (Jin et al, 2000,
Habibovic et al., 2005) but the effect of pore shape on
tissue formation has not yet been systematically
investigated. An understanding of the effect of
geometry on tissue growth could assist in the
optimisation of porous scaffolds for tissue
engineering as well as help improve understanding of
the processes of bone remodelling and healing.

This paper investigates a model system for
tissue growth consisting of three-dimensional
hydroxylapatite (HA) plates of controlled architecture
placed within a culture of murine osteoblast-like cells.
These cells are known to undergo differentiation from
an immature pre-osteoblastic to a mature osteoblastic
phenotype in vitro, accompanied by the expression of
characteristic marker proteins at each stage of
development (Quarles et al., 1992). Furthermore, they
are capable of building an extracellular matrix
consisting of densely packed and well organised
collagen fibrils with representative non-collagenous
matrix proteins known from bone tissue (Rumpler et
al,, 2007, Choi et al,, 1996). The aim of this paper is to
investigate the impact of geometrical features
(channel shape and size) on new tissue formation in
vitro.

2. Materials and Methods

Production of the hydroxylapatite (HA) plates. HA
plates (2mm thick) containing four channel shapes
(triangular, square, hexagonal and circular) and three
channel sizes (perimeters P = 3.14, 4.71 and 6.28 mm)
were produced by slurry casting. Casting moulds were
designed with computer-aided-design (CAD) software
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Figure 1. Upper images: New tissue formed in three-dimensional matrix channels. Actin stress fibres are stained with
phalloidin-FITC and visualized under a confocal laser scanning microscope. Here the tissue formation is shown after 21 days (A -
D) and after 30 days (D) of cell culture in the channels of a triangular (A), square (B), hexagonal (C) and round (D) shape
introduced into a HA plate in vitro. Lower images: Numerical simulation of tissue formation within channels of various shapes.
The lines (early time point 1, ongoing times 2 and 3) mark the simulated development of tissue formation due to ongoing culture
time, which corresponds closely to the observed development of new tissue formation in vitro.

(Pro/Engineer PTC, USA) and produced using a 3D
wax printer (Solidscape, Model Maker II) as described
in Manjubala et al. (2005). The moulds were then
filled with a slurry of hydroxylapatite particles, dried
in air and then heated to 600°C to remove the wax
moulds. A final sintering treatment was performed at
1300°C for 1 hour (Woesz et al., 2005).

Cell culture. Murine pre-osteoblastic cells, MC3T3-E1,
were seeded with a density of 80,000 cells/cm? on the
surface of the HA plates and cultured in a-MEM
(SIGMA) supplemented with 10% FBS, 30 pg/ml
ascorbic acid and 30 pg/ml gentamicin in a humidified
atmosphere, 5% CO2 at 37°C.

Visualisation of actin stress fibres. Cell cultures were
washed with PBS, fixed with 4% paraformaldehyde,
permeabilised with 0.1% Triton-X100 and incubated
with 4x10-6¢ M phalloidin- fluoresceinisothiocyanate
for 30 min at 4°C. Images of the stress fibres were
obtained with a confocal laser scanning microscope
(LEICA).

Quantification of the tissue area. The projected tissue
area was determined by transmission light
microscopy in combination with image analysis for
each channel and time point.

pO2 measurements. Oxygen concentrations were
measured using a fibre optic oxygen micro-sensor
with a tip diameter of approximately 30 pm
(MicroxTX2, Presens, Regensburg, Germany) (van
Dongen et al,, 2003). The sensor tip was positioned
within the channel closely against the growing tissue
using a micro-manipulator (M3301, World Precision
Instruments, Berlin Germany) and a stereo-
microscope (MZ6, Leica Microsystems, Bensheim,
Germany). Measurements were done in a clean-bench
(Herasafe KS12, Heraeus, Germany) under sterile
conditions and the same tissue was used for repeated
oxygen measurements at a later time point. These
values, expressed as a percentage of air-saturated
buffer were plotted against the free area of the central
channel.

Modelling curvature driven tissue growth in 2D.
Tissue growth is modelled by the motion of the tissue-
fluid interface in two dimensions. The initial tissue
interface corresponded to the shape of the channel
cross section, with all distances being normalised by
the initial channel perimeter. The interfaces were
discretized by a set of 90 equally spaced points on the
channel surface. The local curvature «;, at a point i,

is estimated from the inverse of the radius of
curvature of the circle (circumcircle) that passes
through this point and its two immediate neighbours,
points (i —1) and (i +1). The tissue at point i on the
interface is then taken to grow only if k; <0 (concave

surface). It is assumed that no tissue can be lost,
meaning that if x, >0 (convex surface) at point i

then the tissue is taken to be quiescent. The tissue at
point i grows at a rate linearly proportional to the
local curvature ie. ds/dt=-Akx;, where A is a

constant giving the growth rate, with the direction of
growth being towards the centre of curvature.
3. Results
The impact of three-dimensional geometrical features
on new tissue formation in vitro was studied in HA
plates perforated with channels of different shapes
(triangular, square, hexagonal and round) and sizes.
HA was chosen as the substrate material, since HA
supports the formation of bone tissue rather than
other tissue types (Kuboki et al., 1998).
3.1 Tissue formation in vitro

After seeding, the MC3T3-E1 murine
osteoblasts adhered to the surface of the HA-plates,
they started to proliferate, covering the surface of the
HA plate and the inner surface of the channels. With
ongoing culture time the multicellular network
further amplified and formed new tissue within the
channels of the artificial HA plate. The tissue consists
of embedded cells and a collagen extracellular matrix.
The advantage of the cell line used is that it is able to
synthesize collagen fibrils and to build up a
collagenous tissue matrix in the presence of ascorbic
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Figure 2. Three-dimensional fluorescence images. The cytoskeleton of the cells within the tissue is visualized by FITC staining
and serial 2-dimensional sections were obtained with a confocal laser scanning microscope. Three-dimensional pictures were
then stacked from all single pictures. In A to C three examples of the serial pictures obtained from the tissue formed in a squared
channel are shown at depth 0 (C), -135 pm (B) and -470 pm (A), as well as the combination of all single pictures (D). In E to G
three examples of the serial pictures obtained from the tissue formed in a hexagonal channel are shown at depth 0 (E), -260 pm
(F) and -485 um (G), as well as the combination of all single pictures (H).

acid completely autonomously (Rumpler et al., 2007).
The formation of new tissue started in the corners of
the polygonal channels, while cells on the faces were
initially resting. Tissue grew uniformly on the surface
of the round channels. The tissue thickness in the
corners was greater in the triangular channel
followed by the square and then the hexagonal
channel, that is, in order of decreasing local curvature.
Tissue amplification on the channel faces however
was greater for the hexagonal channel than the square
and then the triangular channel. This growth
behaviour led to a rounding of the corners and the
formation of a round central opening, regardless of
the original shape (Fig. 1, upper images). The round
opening of tissue is maintained even into the depth of
the channels, as verified by confocal laser scanning
microscopy (Fig. 2). With time the remaining space
reduces in diameter, gradually becoming filled by
tissue.

3.2 Tissue formation Kinetics

Quantitative data on tissue formation kinetics were
obtained from two cell culture experiments over more
than 37 days with HA plates containing three channel
sizes (perimeters P = 3.14, 4.71 and 6.28 mm) and
four different cross-sectional shapes (triangle, square,
hexagon, circle). Tissue formation as a function of
culture time was estimated by measuring the
projected tissue area A (Fig. 3) using transmission
light microscopy. The amount of tissue within a given
channel is roughly proportional to the project area, A,
at any time point. An effect of pore size on tissue
growth has been previously observed and was
attributed to the increased surface area available to
cells (O'Brien et al,, 2005). This area dependence can
be removed from the data by simply normalizing the
projected tissue area A by the initial channel
perimeter P, giving a mean layer thickness of tissue
growing on the channel wall. The measured
dependence of A/P on culture time is given in Fig.
4A. There is a significant difference between the mean

layer-thickness due to channel size (perimeter), with
more tissue being deposited at any time point in the
smaller compared to the larger channels. However, as
the mean layer thickness is normalized by the initial
perimeter, accounting for the difference in initial
surface areas, the effect of channel size implies that
other geometric factors control the tissue growth,
such as curvature. Although the local tissue formation
was different in regions of different curvature
(corners versus faces), no significant difference was
seen in the total amount of tissue produced as a
function of channel shape. This leads to the general
effect that the mean layer thickness is similar in the
different geometries despite the local variation in
tissue distribution within the channels themselves.

Figure 3. Sketch of two channels in a HA plate (dark
grey). The figure illustrates the definition of the initial
perimeter of the of channel cross-section P and of the
projected tissue area A (light grey) with transmission
light microscopy in each channel, which was used to
calculate quantitative data for tissue formation Kkinetics.

3.3 Mechanisms of tissue growth

The observations made above illustrate that tissue
growth depends on the geometry. One potential
mechanism that would give such a behaviour is the
generation of hypoxia due to respiratory activity of
the cells. It is known for example, that an exogenous
hypoxic state can induce proliferation in mammalian
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Figure 4. Quantitative tissue formation and kinetics. (A) Mean tissue layer thickness (calculated by the normalisation of the
projected tissue area to the perimeter) as a function of culture time in different shapes (illustrated by the appropriate
symbols) and different channel perimeters P = 3.14 mm (black), 4.71 mm (grey) and 6.28 mm (white). Data represent the
mean value +/- stderr; n=10. (Ba) Projected tissue area as a function of culture time minus lag time, which is the time that is
needed until cells start curvature driven growth. (Bb) The lag time is given as a function of initial channel perimeter.

endothelial cells (Schafer et al., 2003). A higher
growth rate would therefore be expected in the
smaller channels. In order to test this hypothesis, the
oxygen content was measured in selected channels
throughout the whole culture time. No significant
correlation was found between the decrease of the
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Figure 5. pO: measurements. MC3T3-E1 cells were
seeded onto the HA and tissue formation was running
over a time period of 43 days. At distinct time points, 25d
(red symbols), 32d (green symbols) and 43d (yellow
symbols), the oxygen concentration inside the central
channel was measured in the direct vicinity of the
growing tissue. These values, expressed as percentage of
air-saturated buffer were, plotted against the free area of
the central channel. The size of the triangle indicates the
hole size (small: P = 3.14 mm, middle: P= 4.71 mm and
large: P=6.28 mm); n=5

central opening and the relative oxygen concentration
value during culture time (Fig. 5) thus excluding the
involvement of this mechanistic pathway.

The sub-cellular organization of the tissue-like
network in the corners suggests another mechanism
behind the geometric control of tissue growth. The
orientation of the actin stress fibres within cells
neighbouring the tissue border shows a strong
parallel alignment to the tissue-fluid interface (Fig.
6A). This is contrasted with the situation on the top of
the HA plates outside the channels, where actin stress
fibres in the cells show a completely random
orientation within the multicellular network (Fig. 6B).
It is known that amongst other factors, internal
and/or external forces can trigger the assembly of

filamentous stress fibres (Nelson et al., 2005, Putnam
et al.,, 1998). This might hint towards a mechanism, in
which mechanical forces arise in cells predominantly
in regions of high curvature i.e. the corners, which in
turn stimulates tissue growth.

As a general rule physical systems containing
interfaces for which surface tension is important,
evolve in such a way that the local motion of the
interface is controlled by the local curvature
(Pimpinelli and Villain, 1999). The main driving force
behind this is the minimisation of interfacial energy
via the minimisation of interfacial area. A simple two
dimensional mathematical formulation of this
assumes that any position on the tissue surface moves
normal to it by a distance ds during a time step dt,
according to ds/dt=-Ax , where x is the local
curvature and A a constant of proportionality. Fig. 1
(lower images) shows the numerical solution of this
differential equation for the different channel
geometries studied. Despite its simplicity, growth is
controlled by only one parameter and one
proportionality constant, the model gives exactly the
results obtained from cell culture experiments shown
in the upper images in Fig. 1. In particular, the corners
are rounded first (because they have the largest
curvature) and the diameter of the central opening
then reduces. In the latter stages of tissue growth, the
holes become circular, meaning the growth rate can
be expressed as dR/dt=—-A/R, where R is the
radius of the opening. This implies that the mean
tissue thickness A/P will increase linearly with time
as A/P=2rAt/P . The growth rate is larger for small
perimeters, which is in agreement with the
experimental observations (Fig. 4A). The model also
predicts that the total tissue area should increase
linearly with time at a rate 224 which is independent
of the starting perimeter. For comparison A is plotted
as a function of time for all the experiments (Fig. 4B).
However, the experimental data will only
superimpose as suggested by the theory, if a lag-time,
t, is introduced and the tissue area A is plotted

versus (t—to). This means that in the cell culture
experiments the area increases as A= 27r/1(t—t0) for

t>t, (Fig. 4B inset). t, is an increasing function of
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Figure 6. Fluorescence microscopic images of the stained cytoskeletal stress fibres within the new formed tissue. (A) A zoom into
the corner of a triangular HA channel shows show a strong orientation of the stress fibres parallel to the tissue surface. (B) An
image of the cell network on the external flat surface at regions in-between the channels show a completely random orientation

the initial perimeter (Fig. 5B inset). This lag-time can
be understood as the time taken for cells to coat most
of the inner channel surface integrating as a coherent
network. This happens faster for smaller channel
perimeters, corresponding to smaller inner channel
surfaces.

4. Discussion

Murine osteoblasts are shown to proliferate
and form a tissue-like network into the depth of the
HA channels, as verified by confocal laser scanning
microscopy. Quantitative analysis of tissue growth
within different well-defined channel geometries
allowed the evaluation of the effect of geometrical
features (channel size and channel shape) on the
tissue formation rate. The total quantity amount of
new tissue formed in artificial three-dimensional
substrates in vitro is surprisingly independent of the
shape. It is dependent rather on the channel
perimeter with the result, that the shorter the
perimeter, the more tissue is formed at any time
point. Measurements of the oxygen concentration
taken over the course of the tissue growth periods
illustrate that differences in oxygen deficiency
between the channels is not a major factor. As the
tissue thickness A/P is a value that is normalised by
the perimeter this implies that other geometrical
factors control tissue growth.
The simple model for curvature driven growth can
describe the experimentally observed growth
behaviour remarkably well, considering it uses just
one known, geometric variable (the surface
curvature) and one unknown parameter of the growth
rate (Fig. 1). Tissue growth always started in the
corners of the channels (large local negative
curvature), while cells on the channel faces (zero
curvature) produced tissue only when their
neighbourhood became curved from tissue growing
outward from the corners. Curvature driven tissue
growth is also consistent with the experimentally
measured independence of the average tissue
thickness to the channel shape at constant perimeter
length. If the assumption that the local growth rate is
proportional to local curvature is correct, then the
rate of change of average tissue thickness will be
proportional to the average curvature. Following
Fenchel's theorem (Fenchel, 1929), the average

curvature, K ,of any closed convex plane curve is
2r /P where, P , is the perimeter. All the shapes
investigated can be described in two dimensions by
closed convex plane curves, meaning at fixed
perimeter the average tissue thickness should be the
same, as observed experimentally. In addition this
also implies that smaller channels, which have higher
average curvatures, will have a higher tissue
thickness, as is observed. The preceding discussion
clearly shows that curvature driven growth
corresponds well with the experimental results. The
physics behind curvature driven growth is well
understood for membrane mechanics, crystal growth,
and phase transformations. The driving force in these
physical systems is the surface tension, which tends to
reduce the surface (and therefore its curvature) as
much as possible for a given volume. It is not obvious
how to link this to the behaviour of cells and their
cytoskeletons, but the observation of stress fibres
provides a hint. The strong alignment of the stress
fibres with the tissue interface, as well as their high
concentration in the corners, suggests that
mechanical forces may develop within in the tissue. If
there is tensile cell-cell interaction between
neighbouring cells in the tissue growth front, this
could simulate a physical surface tension as in the
physico-chemical systems mentioned above. Of
course, this idea is still quite speculative, and requires
further work to be ascertained.

Curvature driven growth is a process which leads to
self organisation, in that tissue amplification creates a
local change in curvature which then in turn feeds
back to the cells themselves. As a consequence,
curvature driven growth will cause channels or holes
to be filled which has implications in many areas of
bone biology and medicine. This effect may be the
driving force of the filling mechanism of resorption
lacunae by osteoblasts after osteoclastic bone
resorption by reducing the curvature of the lacunae to
zero (Robling et al.,, 2006, Seeman and Delmas, 2006).
The size dependence of the lag-time in the tissue
growth process, as well as the size dependence of
curvature, points towards a critical size above which
closure of the gap would take too long to occur on a
physiological timescale. For example, the channels
with a diameter of two millimetres showed a strongly
reduced tissue growth within five weeks. This is
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reminiscent of the existence of a critical defect size in
bone above which defect healing no longer occurs
(Goldstein, 2000, Weinkamer et al., 2004).

Another aspect of our results is that single cells with a
size in the order of a few tens of microns can “feel”
radii of curvature on the scale of millimetres. Where
cells were stained for actin, it becomes apparent that
cells interact through their cytoskeleton. Actin stress-
fibres between neighbouring cells in the tissue border
are aligned parallel to the tissue-fluid interface in
such a way as they appear as a single ring-like
structure (Fig. 6A). However, on the top of the HA
plates outside the channels, actin stress fibres are
randomly oriented (Fig. 6B), suggesting the absence
of directed mechanical forces. Even before the ring-
like structure is formed, actin stress fibres aligned
parallel to the inner tissue surface can be seen in the
channel corners. The high concentration of stress
fibres in the surface layer as well as their well defined
orientation suggests a relation to the development of
mechanical forces within the tissue itself allowing
curvature driven growth. Such stress fibres indicate
that neighbouring cells interact via mechanical forces
(Chen et al, 2004, Kaunas et al, 2005). A growing
body of evidence suggests that mechanical events, in
addition to molecular biological and chemical ones,
play a central role in the process where cells explore
and react to their neighbourhood. Even in 2-
dimensional multicellular systems local mechanical
forces appear in defined regions where cell
proliferation is also increased compared to the
neighbourhood (Nelson et al., 2005, Stegemann and
Nerem, 2003). Following this mechanism, cells lying
on the faces of the channels start proliferating only
when they get a mechanical stimulus from being
integrated into the tissue network growing out from
the corners. In addition, the dihedral corners may not
only be spatially optimised for force generation, as it
is known that cells more closely mimic the in vivo
environment when they are able to develop focal
adhesion sites in three-dimensions as opposed to flat
substrates (Beningo et al, 2004, Cukierman et al,
2001, Cukierman et al, 2002, Geiger, 2001).
Mechanical equilibrium requires that stress fibres are
either attached to the wall (corners) or form closed
loops (as observed in the ring-like structures). These
rings are also reminiscent of the “purse strings”
reported in embryonic tissue healing, in the form of
actin bundles aligned with the wound margin
(Bement et al., 1993). Thus the wound is closed
partially by active mechanical contraction (Jacinto et
al, 2001, Martin and Lewis, 1992). It seems that
connective tissues may use a highly conserved set of
signals and cytoskeletal-based mechanisms to close
holes in artificial systems.

5. Conclusion

In this paper quantitative measurements were made
of the growth kinetics of collagenous tissue in an
osteoblast culture for different three-dimensional
channel geometries. Parameters describing channel
geometry, namely the channel surface area (related to
perimeter) and local curvature have been shown to
strongly influence the tissue growth rate. Simple two
dimensional simulations support the idea of curvature
driven tissue growth, that is, the amount of tissue
deposited is proportional to the local curvature. The

awareness that a basic geometrical parameter,
namely channel curvature, affects tissue formation
kinetics in a 3-dimensional environment has far
reaching implications in the understanding of bone
remodelling and defect healing as well as for scaffold
design in bone tissue engineering.
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Abstract: Bone regeneration is controlled by a variety of biochemical, biomechanical, cellular, and hormonal
mechanisms. In particular, physical properties of the substrate such as stiffness and architecture highly influence the
proliferation and differentiation of cells. The aim of this work is to understand the influence of scaffold stiffness and
cell seeding densities on the formation of tissue by osteoblast cells within polyether urethane scaffolds containing
pores of different sizes. MC3T3-E1 preosteoblast cells were seeded on the scaffold, and the amount of tissue formed
within the pores was analyzed for culture times up to 49 days by phase contrast microscopy. The authors show that
the kinetics of three-dimensional tissue growth in these scaffolds follows two stages and can be described by a
universal growth law. The first stage is dominated by cell-material interactions with cell adherence and differentiation
being strongly dependent on the polymer material. After a delay time of a few weeks, cells begin to grow within their
own matrix, the delay being strongly dependent on substrate stiffness and seeding protocols. In this later stage of
growth, three-dimensional tissue amplification is controlled rather by the pore geometry than the scaffold material
properties. This emphasizes how geometric constraints may guide tissue formation in vitro and shows that optimizing
scaffold architectures may improve tissue formation independent of the scaffold material used.

L. Introduction

Porous three-dimensional scaffolds with
interconnected pore channels are used extensively in
the field of bone tissue engineeringl2 The
interconnected pore channel network and pore
architecture allows cells to penetrate into the scaffold
and be supplied with nutrients, enhancing new tissue
growth by the cells34. Previous reports have shown
that a variety of physical parameters of the scaffold
influences the behaviour of osteoblast cells,
specifically the local surface chemistry56, physical
characteristics such as material topography?-9,
roughness0.11 as well as stiffness12-14. The mechanical
properties of the substrate, namely stiffness, influence
cell differentiation and proliferation2. Mesenchymal
stem cells for example were shown to differentiate
into neurogenic lineages on soft substrates (0.1-1
kPa), myogenic lineages on stiffer substrates (8-17
kPa) and osteogenic lineages on relatively rigid
substrates (25-40 KkPa)15. It has also been
demonstrated that cell adhesion depends on
roughness and the nanostructure of the surfacel6-20
with a higher differentiation potential and lower
proliferation rate being observed on rougher
surfaces16. In addition to geometric features at the
nanoscale, the topology of the local environment, at
length scales larger than the cell size, also affects the
behaviour of cells®. These larger length scales, such as
the pore size of scaffolds significantly influences cell
adhesion, migration and growth?1-23, but the extent of
tissue formation by the cells in these pore channels
has been rarely studied.

In our earlier study, we designed a simple model
system to investigate the effect of pore shape and size
within hydroxyapatite (HA) scaffolds (stiffness in GPa
range) on the tissue formation by murine pre-
osteoblast cells24. In the initial phase of tissue
formation in the scaffold, cells migrate, adhere and
proliferate within the pore structure, a process which

is strongly influenced by the material properties and
later with ongoing culture time, cells synthesize
sufficient amounts of matrix to proliferate inside their
own extracellular tissue2526, In the present study
polyether urethane (PU) polymers, which exhibited
good cell compatibility in in vitro tests 27.28 and
biocompatibility in in vivo studies as artificial heart
valve and wound dressings?9 or as a potential dialysis
catheter3o, with stiffnesses lower than HA, were
selected to produce scaffolds with different pore sizes
and shapes. The scaffold stiffnesses were controlled
by modifying the multiblock copolymer segment ratio
of the PU3132, (Cell culture experiments were
performed on the scaffolds using MC3T3-E1 pre-
osteoblast cells, a well established cell line for bone
biology studies33-35 known for lineage differentiation
into mature osteoblasts. These experiments enabled
the influence of stiffness and different cell seeding
protocols on the Kkinetics of tissue formation to be
investigated and compared to the results from the
earlier HA scaffolds24.

IL Materials and methods

A. Materials

Aliphatic polyether urethanes (PU) supplied by
Noveon (Wilmington, MA) with the trade name
Tecoflex®, were used directly without further
purification. The mechanical properties of the
polymer sheets were determined from tensile tests at
ambient temperature and at 37 °C in water. Tensile
tests were carried out on a Z005 tensile tester (Zwick,
Ulm, Germany) at ambient temperature and on a Z1.0
tensile tester equipped with a temperature controlled
liquid chamber at 37 °C in water, with a strain rate of
5 mm/min. For each PU composition 5 measurements
were conducted. The selected polymer samples are
named PU75, PU120 and PU310 according to their
elastic modulus (E-Modulus) determined at ambient
temperature.

87



Figure 1. Representative image of PU120
scaffolds with round and square pores of
different perimeters (p). S: p =3.14 mm, M: p =
4.71 mm, L: p = 6.28 mm. The thickness of the
scaffolds is 2 mm.

B. Scaffold processing

HAAKE Minijet-Micro injection moulding machine
(Thermo Electron GmbH, Karlsruhe, Germany) was
applied to prepare 2 mm thick polymer scaffolds with
square-shaped pores. The mould temperature was
maintained at 25 °C with a pressure of 8 bar. The
extrusion cylinder temperature was 190 °C for PU75,
200 °C for PU120 and 210 °C for PU310. The round
pores were drilled mechanically into the injection
moulded chips. Three different pore sizes were
produced in the scaffolds. The perimeter of the small,
middle and large pores was 3.14 mm, 4.71 mm and
6.28 mm respectively (Fig. 1).

C. Cell culture experiments

The pre-osteoblastic mouse calvariae MC3T3-E1 cell
line (generous gift from Dr. F. Varga, Ludwig
Boltzmann Institute of Osteology, Vienna, Austria)
was used for in vitro experiments. For seeding on
scaffolds, near confluent cells during fourth passage
treated with Pronase (Roche diagnostics GmbH,
Mannheim, Germany) and EDTA (Sigma-Aldrich, St.
Louis, MO) were used. These cells were suspended in
a culture medium of a-MEM (Sigma-Aldrich, St. Louis,
MO) supplemented with 10% foetal calf serum (FCS)
(PAA laboratories, Austria), 50 pg/ml ascorbic acid
(Sigma-Aldrich, St. Louis, MO) and 30 pg/ml
gentamicin (Sigma-Aldrich, Steinheim, Germany). The
cell seeded scaffolds were incubated in a humidified
atmosphere with 5% COz at 37 °C up to 49 days, while
changing the medium twice a week. Three different
cell seeding protocols were followed in cell culture
experiments. In the first protocol, 1x105 cells/cm?
were suspended in 3 ml of medium and poured on the
scaffolds with round pores. In the second protocol,
3x105 cells/cm2 were suspended in 3 ml of medium
and poured on the scaffolds with square pores. In
both protocols, the cells initially attach on the surface
of the scaffold and then migrate into the pores. In the
third protocol, 8x104 cells/cm2 were suspended in a
minimal amount of medium and dropped on surface
of the scaffold with square pores, leading to aspiration
of cell suspension by the pores, which enables
complete covering of pores with cells from the very
beginning. All the experiments were performed twice
under identical conditions.

D. DAPI staining and visualization of cell
shape

Sample E-Modulus at E-Modulus at 37°C

RT [MPA] [MPA]
PU310 312+53 208 +29
PU120 12027 7+2
PU75  74+7 6+3

Table 1. Mechanical properties of polyether
urethane (PU) polymer materials determined by
tensile tests.

To analyse the initial cell attachment on the surface of
PU scaffolds, about 1x105 cells/cm2 were suspended
in medium and seeded on the scaffolds. Initial cell
attachment and distribution on the surface, after 6 h
of incubation, were studied by DAPI staining (4’,6-
diamidine-2’-phenylindole dihydrochloride, Roche
diagnostics GmbH, Mannheim, Germany). Briefly, after
6 h the cell-culture medium was removed and the
cells were washed with DAPI-methanol solution (1 u
g/ml) and incubated in fresh DAPI-methanol solution
for 15 min at 37 °C. The staining solution was
removed and the samples were washed in phosphate
buffered saline (PBS) and observed under
fluorescence microscope (Leica DM RB, Germany).
The cell shapes were visualized using DAPI-
flourescent iso-thiocyanate (FITC) staining. After 6h
cells were briefly washed twice with PBS, and fixed in
a 4% paraformaldehyde (PFA, Fluka, Steinheim,
Germany) solution for 15 min at room temperature.
Unreacted PFA was washed off with PBS. Cells were
then permeabilized with 0.1% Triton-X100 (Sigma-
Aldrich, Steinheim, Germany) for 2 min, PBS washed
and stained with phalloidin-FITC (Invitrogen, Oregon,
USA) for 1h. Later samples were washed several times
with PBS and stained with DAPI for 15 min at 37 °C.
Finally the samples were washed in PBS and observed
using a fluorescence microscope (Leica DM RXA2,
Germany) with an oil immersion objective and
appropriate filters.

E. Alkaline phosphatase staining

The MC3T3-E1 osteoblast-like cells have the potential
to undergo differentiation into mature osteoblasts33.
Alkaline phosphatase (ALP) activity is an early
differentiation marker of pre-osteoblastic cells to
mature osteoblasts. After 21 days of -culture,
localization of ALP activity was qualitatively
performed with the azo-dye method36. The cells were
fixed in 4% PFA in PBS for 10 min, intensively rinsed
with PBS and then with 0.9% w/v NaCl (Roth,
Karlsruhe, Germany). Afterwards the cells were
incubated at 37 °C with napthol AS-MX phosphate
disodium salt (Sigma-Aldrich, St. Louis, MO) and fast
blue RR salt (Sigma-Aldrich, Steinheim, Germany) in
5% sodium tetra borate (Sigma-Aldrich, Steinheim,
Germany) buffer containing 0.9% NaCl and MgS04
(Sigma-Aldrich, Steinheim, Germany). Later the
samples were placed in PBS and observed under an
optical microscope in transmission mode (Leica DM
RXA2, Germany).

F. Confocal microscopy

The alignment of the cells and actin cytoskeleton in
the newly formed three-dimensional tissue network
was investigated with a confocal laser scanning
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Figure 2. (a) DAPI staining of cells (nuclei) seeded at
105 cells/cm?, 6h after cell seeding (Scale 20um). (b)
FITC-DAPI staining of MC3T3-E1 cells showing the
spreading of cytoskeleton on PU75, PU120 and
PU310 respectively. (Scale 10pm). (c) Alkaline
phosphatase enzyme staining of PU75, PU120 and
PU310 respectively after 21 days of culture (Scale
100um).

microscope (Leica TCS SP, Germany), 488 nm laser
excitation was used and emission measured at 514
nm. Cells were fixed in 4% PFA in PBS for 10 min;
permeabilized with 0.1% Triton-X100 (Sigma-Aldrich,
Steinheim, Germany) and later stained with FITC-
conjugated-phalloidin  (4x106 M, Sigma-Aldrich,
Steinheim, Germany) for 30 min at 4 °C.

G. Phase contrast microscopy and analysis
of tissue formation

An inverted phase contrast microscope (Nikon Eclipse
TS100 F, Germany) was used to monitor the cell
distribution and tissue formation within the pores.
Images were captured at least once a week over the
culture period of 49 days. The amount of tissue
formed within the pores by the cells was estimated
from the projected tissue area as seen in the phase
contrast images?4. This projected tissue area was
calculated from the area between the inner tissue-
medium boundary and the original pore boundary
imaged at the start of the experiment. This calculation
was performed using Image ] software (NIH Image
analysis software, USA).

H. Statistical analysis

The delay times (to) of tissue formation in all the
experiments were analysed for statistical significance
using three way ANOVA, performed to compare the
interdependency of pore size, material and seeding
methods. All pair-wise multiple comparison was done
by Holm-Sidak method and p values of less than 0.05
were considered significant.

IIL. Results

A. Scaffold properties

The PU polymers used were aliphatic multiblock
copolymers synthesized from methylene bis(p-
cyclohexyl isocyanate) (Hi12MDI), poly(tetramethylene
glycol) (PTMEG, Mn = 1000 gmol!) and 1,4-
butanediol (1,4-BD)3132, The thermal and mechanical
properties of these PU polymers can be adjusted by
variation of H12MDI / 1,4-BD to H12MDI / PTMEG
segment ratio. The composition, i.e,, H12MDI / 1,4-BD
to Hi2MDI / PTMEG segment ratio analyzed by H-
NMR spectroscopy showed that for PU310 a H12MDI /
1,4-BD segment content was about 58 wt% while the
values for the PU120 and PU75 were around 45

Figure 3. Two dimensional stack projections of FITC-
Phalloidin staining of actin filaments in (a) small
round pore (z-stack projection is 76um thick
consisting of 10 sections with a 8um step size) (b)
small square pore of PU120 scaffolds after 49 days of
culture (z-stack projection is 100um thick consisting
of 100 sections with a 1pm step size).

wt%32. Mechanical properties of the PU materials
were investigated by tensile tests at ambient
temperature, as well as under physiological
conditions at 37 °C in water (Table 1). The elastic
modulus was found to increase with increasing
content of Hi2MDI / 1,4-BD segment from 75 MPa to
310 MPa at ambient temperature. In addition, the
mechanical properties explored under physiological
conditions showed that all PU samples are
significantly softer than at ambient temperature. For
PU310 an elastic modulus of 208 MPa was observed,
while PU120 and PU75 exhibited lower values around
6 MPa to 7 MPa. The softening of the PU samples in
water at 37 °C can be explained by approaching the
temperature of the glass transition associated to the
mixed phase in combination with a softening effect
induced by a water uptake of 2 wt%.

B. Cell adhesion and cell shape

Adhesion of MC3T3-E1 pre-osteoblast cells on the
surface of polyurethane scaffolds was studied in
terms of adhered number of cells and cell shape. On
the polymer scaffold made from PU75, the softest
polymer substrate used, a smaller number of cells
were seen to adhere compared with PU120 and
PU310 (Fig. 2a). The individual cells observed by FITC
staining showed many broad lamellipodia structures
with less actin organization on PU75 with a smaller
cell size (Fig. 2b). Whereas on PU310 scaffolds, the
stiffest polymer substrate used, the cells developed
highly directional lamellipodia with more actin
organization, formation of stress fibres and cells were
stretched more.

C. Alkaline phosphatase enzyme activity

Alkaline phosphatase is an early marker for
differentiation of pre-osteoblasts to mature
osteoblasts. The ALP activity of the cells was observed
on the surface of the scaffolds, positive cells showed a
violet coloration. By comparing the ALP pattern on
the three substrate, cells on PU310 exhibit a strong
staining for ALP, whereas cells on the other two
polymers, PU120 and PU75, were negative (Fig. 2C).
This suggests that the stiffer polymer substrate
supports differentiation of osteoblast precursor cells.
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D. Confocal microscopy

The confocal microscope images of the pores after 49
days of culture showed that cells adhered to the
surface of the scaffold after seeding and migration
into the pores. Within the pores they proliferated and
formed a tissue-like network. In the square pores cells
predominantly started to proliferate in corner
regions, as shown in Fig. 3 whereas in the circular
pores tissue proliferation occurred uniformly across
the surface. Within this tissue-like network cells built
multilayers and actin-stress fibres of the cells in the
tissue were aligned parallel to the internal tissue-
medium border.
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Figure 4. Exemplary data of measured projected
tissue area formed as a function of time tissue growth
experiment made using different cell seeding
protocols (a) 105 cells/cm?, (b) 3 x 105 cells/cm?, and
(c) aspiration of cells into pores. The symbols indicate
the polyurethane polymer used, PU75 (Black), PU120
(White) and PU310 (Crossed) and the size of the
symbol indicates pore size. The inset images are
micrographs of the pores at example time points
illustrated by arrows in the graphs.

E. Tissue formation

The amount of tissue formed in the pores was
analyzed from phase contrast microscopy images. At a
seeding concentration of 105 cells/cm?, the tissue
growth started earlier on PU310 compared to PU120
and then PU75 (in order of decreasing stiffness) as
seen from Fig. 4a. This difference in the early stage of
tissue formation can be related to the active reaction
of cells to the mechanical properties of the PU
substrates (Fig. 2). Further we found that tissue
growth started earlier in smaller pores compared to
middle and larger pores and were the first to be filled
with tissue (images not shown). At a seeding density
of 3x105 cells/cm?2, where the cells are confluent on
the scaffolds after the initial cell attachment phase,
the tissue growth rate was independent of channel
size, however tissue growth begins earlier for the
highest scaffold stiffnesses (Fig. 4b). For the
experiments, in which cells are aspirated into the
channels (8x104 cells/cm?), neither the substrate nor
channel size influenced the start of tissue growth
although larger amounts of tissue was formed in the
large pores compared to the smaller pores (Fig. 4c).
F. Tissue growth Kinetics
The tissue growth kinetics were analysed using the
same procedure reported for tissue growth on HA
scaffolds, by determining the projected tissue area as
a function of time within each pore24. The tissue
growth in terms of projected tissue area, A, can be
described in the form:

A=K(t-t,) (@
where K is the growth rate in the later stages and t,

a delay time needed to reach this stage of tissue
growth. The delay time (t, ) was determined

empirically by shifting the tissue area data (initially
plotted as a function of culture time t) along the
horizontal axis until the graphs nearly coincided as
shown in Fig. 5a. Fig. 5b summarizes all the data
obtained with the PU samples for the projected tissue
area plotted as a function of (t—t,). Altogether 54

data sets are superimposed obtained from six
experiments with three seeding procedures, each
repeated twice, and where each experiment had
simultaneously three pore sizes and three materials in
the culture medium. The Fig. 5(c-e) give the delay
times (t,) for the three types of seeding procedures

respectively, as a function of the pore size.

IV. Discussion

This paper investigates the growth kinetics of three-
dimensional tissue formation within the pore channel
of polymeric scaffolds. The influence of mechanical
properties (stiffness) of the polymer scaffold with
square and circular pore channels and different cell
seeding densities on the kinetics of tissue growth was
observed and compared to a previous study on HA
scaffolds24.

The cell culture experiment on these PU scaffolds
were carried out using three different cell seeding
protocols. The first protocol, being similar to that
previously reported on HA scaffolds24, showed a low
proliferation rate of cells on the polymers (Fig. 4a).
Therefore, the seeding density was increased in two
ways. First, the same protocol was conserved but the
cell density was increased by a factor 3. Using this
seeding protocol the cells adhere to the surface of the
scaffold after seeding. Afterwards cells proliferate and
actively migrate into the pores, followed by tissue
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formation. Secondly, 8x104 cells/cm? were initially
dispersed into a small amount of medium and
dropped onto the scaffolds. The consequence was that
the medium highly enriched with cells was sucked by
capillary forces into the pores and cells attach to the
inner wall of the pores from the beginning.

During the initial period of cell culture on the surface
of the scaffold, fewer cells were observed on PU120
and PU75 compared to PU310. This shows that
substrate stiffness has an impact on cell adhesion, cell
spreading and cell proliferation (Fig. 2a, b).
Furthermore, differentiation of osteoblast precursor
cells seems to be accelerated by a stiffer substrate, as
observed in case of PU310 (Fig. 2c). This is consistent
with the known influence of substrate stiffness on cell
behaviour and differentiation known from other cell
types 12-14,

Cells seeded on the scaffolds adhered initially to the
surface of the pore channel, then started to proliferate
and produce extracellular matrix forming a tissue
layer. Cells at the corner of the square pores showed
higher proliferation rates and by this behaviour
formed a network leaving a round central canal open,
regardless of the original pore shape. Due to culture
time, this central canal decreased in diameter, but
kept its shape until complete closure. There is no
initial specificity of the cell location in the circular
pores (Fig. 3a), and this resembles the fourth stage of
new tissue formation by osteoblast-like cells
described as an “osteon-like” structure by Frosch et
al3’.

Several remarkable observations can be made based
on Fig. 5.

1. The raw data (Fig. 4a-c) obtained from the
microscopy observations during the culture period
agree remarkably well after the time scales are shifted
by an empirical delay time to (Fig. 5a).

2. The late stage growth is linear and the slope
agrees perfectly with what was found for tissue
growth on HA. This slope is independent of the
seeding procedure and of the material, indicating that
the late stage tissue growth kinetics is universal for
the type of cells considered (Fig. 5b).

3. The delay time before this universal growth
behaviour is reached can be substantial (in the order
of a month) and varies strongly with material type
and with cell seeding density.

4. For all PU materials, the delay time (at
similar cell seeding conditions) is larger than for HA
(Fig. 5¢).

5. There are only small differences between the
PU materials. Only with the softest material PU75
there is somewhat longer delay time (full symbols) at
all cell seeding densities.

6. The cell seeding density has a dramatic effect
on the delay time before the onset of universal three-
dimensional growth. Indeed, at normal seeding
densities, the delay time slightly increases with pore
perimeter (Fig. 5c), at higher densities there is
virtually no dependence on pore perimeter (Fig. 5d),
and when the cells are sucked directly into the pores
the delay time decreases substantially with pore
perimeter (Fig. 5e).

The progression of new tissue formation shows a time
dependent development and follows two main steps,
which can be described as an early and a late stage in
growth. Firstly, cell-material interactions play a
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Figure 5. a) Description of the delay time (to)
determination in one of the experiments performed
with PU310 with square shaped pore channels.
Projected tissue area was moved horizontally along
the X-axis (time) so that they coincide with data of
HA. The shift gives empirically the delay time (to). (b)
All data (three different seeding protocols performed
twice, each with three pore sizes and three material
types) plotted on top of each other. The full line is the
late stage growth kinetics obtained earlier on
hydroxyapatite (HA) scaffolds. (Symbols represent
the different seeding methods: O - 105 cells/cmz?, OJ -
3x105 cells/cm? and A - aspirating cells 8x10*
cells/cm? into the pores and the black, white and
crossed symbols represent PU75, PU120 and PU310
materials respectively). The three graphs (c-e) show
the delay time (to) for three cell seeding procedures
as a function of the pore perimeter. The colours of
symbols indicate the type of PU material. The stars in
‘c’ shows the values obtained in previous tissue
growth experiments on HA for comparison. The
values of to significantly varies due to the effect of
pore size and seeding method (P<0.001) and there is
no difference between PU120 and PU75 (softer
material) compared to PU310 (harder material).
Note: Circular data points represent the round pores
and the square and triangular data points represent
the square pores.

crucial role at the very beginning and determine cell
attachment and proliferation. This is seen clearly in
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the strong dependence of the delay time to on the type
of material with the delay time being longer for tissue
growth on PU than on HA. This difference can amount
to several weeks, which is crucial from a tissue
engineering point of view. The critical initial step, cell
attachment to the scaffold, involves the formation of
focal adhesions, those mediate cell anchoring by
physically coupling integrin receptors to the
contractile actin cytoskeleton. The pattern of focal
adhesions expressed is highly dependent on surface
properties, such as chemistry and topographical
featurest7.2038, HA and PU materials provide
differences in surface chemistry. This may result in
the creation of different focal adhesion molecules. It is
known that patterns of vinculin and focal adhesion
kinase expression differ strongly when osteoblasts
are seeded either onto HA or onto titanium or glass
surfaces3940, We speculate that cell adhesion is more
efficient on HA than on PU, which gives a higher initial
cell number on HA after seeding, confluence is
reached sooner and multilayer tissue formation starts
earlier in HA.

Cells were seeded using three protocols allowing for
the formation of a confluent cell layer between one or
three days. The cell seeding density has a dramatic
effect on the delay time. This is not unexpected as the
cell seeding density influences the time until a
confluent cell layer is formed on top of the material
and growth into the third dimension can start*l. With
the lowest cell seeding density, cells need time to
proliferate before they can migrate from the flat
substrate surface into the pores perpendicular to it.
Given that the larger pores have larger surface areas,
it takes longer for the larger pores to form a confluent
cell layer, hence a longer delay time (Fig. 5c). When
the cell seeding density is increased by 3 fold, cells
take a very short time to reach confluence and the
migration can start much earlier resulting in little
dependence of the delay time on pore perimeter is
seen (Fig. 5d). When a concentrated cell suspension is
sucked into the pores (as for Fig. 5e), many more cells
end up in larger pores than in smaller ones. In fact, the
number of cells in a pore scales with the square of its
radius, while the pore surface is only proportional to
the radius. This would explain why the delay time is
much shorter in the larger pores (Fig. 5e), since the
number of cells per unit surface increases with the
radius.

In late stages of tissue formation by the osteoblast-
like cells, attachment and proliferation was followed
by the autonomous synthesis of a collagen matrix.
Once sufficient tissue is formed cell-scaffold
interactions become irrelevant and the multilayer
network of the extracellular matrix (ECM) overtakes
the part of the scaffold material as the main controller
of cell response. Ongoing three-dimensional
amplification of the new tissue now follows new rules
and boundary conditions, namely pliability of the
extra cellular matrix, the development of forces
within the matrix and the local geometry (curvature)
of the tissue surface itself2442, The late stage growth
kinetics in the PU scaffolds were observed to be
exactly the same that of HA and the growth kinetics is
again consistent with a growth law in which the local
growth rate is proportional to the local curvature of
the tissue layer previously produced by the cells, as
shown in HA24. The fact that the slope of the late

growth curve does not depend on cell seeding density
nor on the type of material and is even the same for
polymer and HA (observations 1 and 2) indicates that
at these late stages of tissue growth the supporting
material plays little role. At this stage, the
extracellular tissue layer is thick enough to support
the cells independent of the scaffold and the growth
kinetics depends only on the interaction between the
cells and their own ECM. This is not unexpected but
demonstrates the importance of the millimetre-size
architecture of the scaffold because this is what
determines the shape of the tissue layer and, hence,
the late stage growth Kinetics. In summary, the
architecture of the scaffold is more important than its
chemical nature for supporting the late stages of
tissue growth.

V. Conclusions

In this paper, a model scaffold with round and square
pore channels made of polyether urethane (PU) with
different stiffness (in the MPa range) was used to
investigate the tissue formation by osteoblast cells
inside the channels. We showed that three-
dimensional tissue growth by MC3T3-E1 pre-
osteoblast cells in the polymer scaffolds can be
roughly divided into two stages. In the early stage,
cells form a confluent layer on top of the scaffold
where cell-material interactions, such as cell adhesion
which is dependent on the stiffness of the three
dimensional scaffolds and inner surface roughness of
the pores, have a strong influence on the growth
kinetics. In the late stage, cells grow within their own
matrix and further three-dimensional tissue
amplification depends only on geometry but not on
the scaffold material. A universal growth law identical
to what was found on HA scaffolds was found which
depends on scaffold architecture only. The delay time
(to) to reach the late stage is strongly dependent on
the seeding protocol and can become so long (month
or longer) in unfavourable cases that the system
never reaches the late stage of three-dimensional
growth. This systematic analysis provides insights
into how geometric constraints may guide tissue
formation in vitro and shows that optimizing scaffold
architectures may improve tissue formation
independently of the scaffold material.
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Abstract: Scaffolds for tissue engineering are usually designed to support cell viability with large adhesion surfaces
and high permeability to nutrients and oxygen. Recent experiments support the idea that - in addition to surface
roughness, elasticity and chemistry - the macroscopic geometry of the substrate also contributes towards the control
of tissue deposition. In this study, we use a previously proposed model for the behavior of osteoblasts on curved
surfaces to predict the growth of bone matrix tissue in pores of different shapes. These predictions are compared to
in-vitro experiments with MC3T3-E1 pre-osteoblast cells cultivated in two-millimeter thick hydroxyapatite plates
containing prismatic pores with square- or cross-shaped sections. The amount and shape of the tissue formed in the
pores measured by phase contrast microscopy confirms the predictions of the model. In cross-shaped pores, the
initial overall tissue deposition is two times faster than in square shaped pores. These results suggest that the
optimization of pore shape may improve the speed of ingrowth of bone tissue into porous scaffolds.

Introduction

Three-dimensional scaffolds are needed for tissue
engineering applications and may also help to study
the effect of the physical environment on tissue
growth in-vitro. The material used,[!] the fabrication
process(?] and the architecture of the scaffold[3 4l are
known to influence the biological interactions with
the host organism. Although all these parameters are
difficult to decouple, quantifying their effects in-vitro
is necessary to understand the nature of cell and
tissue responses and to design optimal scaffolds for
in-vivo experiments and applications.

Cells are known to adapt to the physical properties of
their surroundings by integrating the mechanical
equilibrium established at their adhesion sites.[51 The
resulting mechanical cue is translated into a
biochemical signal that triggers biological decisions of
the cells.l6] As cells are mechanically attached to each
other, either directly or via their extracellular matrix,
they are able to synchronize their response on a

(a) (b)

larger scale. For example, patterning in cell
differentiation arises as a response to stiffnessl?l or
strainl8] patterns, and the distribution of proliferation
activity also correlates with the stress distribution in
a layer of cells.[9]

Cell fate has also been investigated in three-
dimensional artificial scaffolds. Adhesion,
proliferation, differentiation and mineralization of
cells and tissues have been compared in several
scaffolds with varying structures.[10. 111 Recently,
Kumar et all12l showed that the effect of the structural
properties of a substrate on gene expression, and thus
cell differentiation, can overcome those induced by its
composition. Furthermore, pore size and porosity
need to satisfy the compromise between a high
permeability that enables cell migration and nutrient
diffusion within the scaffold, and a large surface area
for cell adhesion and extracellular matrix
production.3] Many fabrication processes produce
structures with random pores in a large range of sizes
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Figure 1. The computational simulation of curvature-driven growth was run on artificial images representing square-, star- and

cross- shaped pores of medium size ( P,

medium

=4.71mm ). (a) The interface tissue/medium evolves toward a circular shape (b)

Initial kinetics of growth are significantly affected by the geometry of the pore section before reaching a circular interface (c)
Initial growth rates calculated on the 40 first steps of the simulation suggest that a two fold increase in tissue deposition can be
expected in cross-shaped pores compared to square-shaped pores. (Adapted from Bidan et al(29].)
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Figure 2. Tissue growth in square- and cross-shaped pores. (a) Phase contrast images of the pore taken 2, 7, 14 and 21 days
after seeding the MC3T3-E1 on the scaffolds. (b) The superposition of the interfaces obtained experimentally is compared with
the predictions of the curvature-driven growth simulation applied to the actual geometry of the experimental pore at D2. 7, 14
and 21 days of experiments are obtained with 36, 120 and 204 steps of simulation with » =8.5pxl, a =12steps, t, =4d . (c)

Curvature profiles of the interface tissue-medium measured at D2, D7, D14 and D21 in a square- (i) and a cross-shaped pore
(ii). (d) Curvature profiles are measured on the interfaces predicted by the curvature-driven growth model after 7, 14 and 21
days of culture in ideal square- (iii) and cross-shaped pores (iv). The curvature measurements were smoothed using a mask

sizeof r=14.5pxl .

and interconnectivities which are difficult to control.
Rapid prototyping techniques are much more
accurate in that respect.[!3] By printing the scaffold,
the architecture and thus many mechanical properties
of the structure can be carefully controlled.

Rumpler et alll4l used rapid prototyping to build
artificial macro-pores of different controlled
geometries and showed that cells locally respond to
high curvature by producing tissue. Their hypothesis
that the local tissue growth rate was proportional to
curvature was confirmed experimentally, not only in
pores but also on open surfaces(!5], however with the
additional observation that tissue does not grow on
convexities. The interfacial evolution derived from a
two-dimensional curvature-driven tissue growth
model matched the experimental observations as well
as the in-vivo expectations when comparing with the
typical geometries involved in bone remodeling
(osteonal and hemi-osteonal lacunae).ll6] An
interesting consequence of curvature-driven growth
was also observed by Rumpler et all4l. Despite seeing
local differences in growth rates in prismatic pores
with different convex sections (circlular, square and
triangular) but identical surface areas, the total tissue
growth rate was found to be independent of shape.
This could be understood using Fenchel’s lawl(l7],
which states that the average curvature in a convex
shape, is inversely proportional to the perimeter. This
would imply the average growth rate, if curvature
controlled, would also be the same.

In previous work(15], we proposed a biological
explanation for the geometry dependence of tissue
growth. The tissue is built by contractile cells which,
after adhesion to a curved substrate, span convex
parts of the surface in a way similar to a chord . A

model of tensile elements deposited as layers on a
surface was shown to give rise to a curvature
dependent growth of the tissue. This simple
geometrical construction not only justifies the
patterns and Kinetics of growth observed during the
experiments but also the orientation of the collagen
fibrils produced by the cells.

This paper aims at understanding how tissue
production can be enhanced simply by controlling the
geometry of the surface by exploring non-convex pore
geometries. The model of curvature-driven growth as
implemented in a previous workl(15] was first used to
predict growth in pores with cross-, star- (non-
convex) and square- (convex) shaped sections. The
simulations predict higher initial growth rates in non-
convex shapes and even a two fold increase in growth
rate for a cross-shaped pore compared to a square-
shaped one.

To verify the predictions of the two-dimensional
model, scaffolds with straight sided pores with cross-
and square-shaped sections were produced in
hydroxyapatite and incubated with MC3T3-E1 pre-
osteoblast cells for in-vitro tissue culture. Not only the
motion of the tissue-medium interfaces and the
evolution of their curvature profiles compare well to
the model, but the quantitative analysis of tissue
production also matches the outcomes from the
curvature-controlled growth model. Moreover,
analyzing the internal structure of the tissue
produced provides an additional support to the chord
model presented in [15] and constitutes a further step
in the understanding of the mechanisms involved in
the curvature dependent behavior. Such knowledge is
of high interest for developing tools to design
scaffolds with the optimal geometry and meeting the
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Figure 3. (a) Whatever the geometry of the pore, cells
are homogeneously distributed in the tissue (nuclei in
red) but actin concentration is much higher at the
interface which tends to be circular. (b) Polarized
microscopy reveals collagen fibers having the same
orientation as the cells, i.e. parallel to the interface
tissue/medium. (c) The geometrical construction that
considers tissue as an assembly of tensile elements
representing contractile cellsls] applies to convex and
non-convex geometries. (d) Tissue stained for actin
fibers reveals stretched cells organized along the
interface as predicted by the chord model.

numerous criteria for tissue engineering and clinical
applications.

Results

As a first step, we applied the previously proposed
model of curvature-controlled growth to non-convex
geometries. The idea was to predict potential changes
of growth behavior in comparison to the simple

shapes used up to now.[1% 15] Figure 1 shows the
growth behavior expected in square-, star- and cross-
shaped pores normalized with respect to the
perimeter ( Pym=4.71mm ) of their section.

Although the interface between tissue and medium
tends to adopt a circular shape in all cases (Figure
1(a)), the initial kinetics of growth is expected to be
significantly affected by the geometry of the section of
the straight sided pore (Figure 1(b)). For example,
tissue is predicted to grow twice as fast in a cross-
shaped pore compared to a square-shaped pore or
any other convex shape (Figure 1(c)). In order to
verify these predictions, tissue was cultured in 2 mm
thick hydroxyapatite (HA) plates containing straight
sided pores of square (convex) and cross (non-
convex) shaped sections. The size of the pores was
chosen so that they all had the same initial surface
available for cells to adhere to (i.e. the same perimeter
for prismatic pores). Once seeded on the top of the
scaffolds, the MC3T3-E1 pre-osteoblasts proliferate,
migrate and start to produce collagenous extracellular
matrix (ECM). Tissue deposition was followed in each
pore by phase contrast microscopy over 28 days and
quantified in terms of projected tissue area (PTA). As
the pores are designed with straight walls, i.e. no
difference in curvature along the vertical direction,
the PTA is considered to be a relevant proxy to
quantify the amount of tissue produced in the pores.
Three sets of 5 pores of each size (P, =4.71mm,

Rage = 6.28mm) and each shape (Sq stand for square

ium

and Cr for cross) were independently seeded and
showed similar results. As an example, Figure 2(a)
shows phase contrast images of the same pore taken
at 4 different time points during culture (D2, D7, D14
and D21). As already observed by Rumpler et al in
convex shapesll4], tissue deposition starts in the
corners whereas no growth occurs on flat surfaces
until the surrounding tissue deposition modifies the
local geometry. In cross shaped pores, the concave
regions of the branches are also quickly filled with
tissue. However, the 4 convex points (indicated by red
circles on the figure) seem to act as flat surfaces since
no growth occurs until the local curvature becomes
positive through the global interfacial evolution. This
effect of the sign of curvature has already been
pointed out in previous studies.[15] In both cases, the
interface tissue/medium evolves toward a circle, as
predicted by the model of curvature-driven growth
applied to the actual geometry of the pore, derived
from the experimental images (Figure 2(b)).

The evolution of the geometry in the projection plane
was quantified in terms of curvature. Figures 2(c)
presents the curvature profiles measured on
experimental images taken at different time points.
Their behavior compares well with the interfacial
curvature profiles measured on images obtained with
the curvature-driven growth model applied to ideal
square and cross shapes (Figures 2(d)). The 4 peaks
of curvature characterizing the corners of a square-
shaped pore vanish as the tissue grows; the curvature
profile of the interface flattens and becomes
characteristic of a circle. In a cross-shaped pore, 8
peaks correspond to the 8 concave corners and 4
regions of highly negative curvature are related to the
4 convex corners. As in the square, all the peaks -
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Figure 4. Growth kinetics measured in square- and cross-shaped pores of large (a) and medium (b) size. Experimental and
simulated growths are reported in terms of projected tissue area (PTA) (o =12steps, t, =4d ). Growth rates are calculated

between D4 and D14 with experimental and simulated data in large (c) and medium (d) pores. ANOVA analysis shows no
significant differences between the methods used (Exp, Sim) but a significant difference in the tissue growth rates achieved in
square and cross ( p < 0.05 ). Dots and error bars represent mean values and standard errors respectively (n=15).

whatever their sign - tend to vanish and curvature
profiles become smooth as tissue is deposited. Note
that differences in curvature values are due to the
imperfections of the HA scaffolds, and that the final
profiles are not totally smooth due to the discrete
character of the binarized images.

To obtain a systematic classification of the effect of
non-convex shapes on tissue growth, we approximate
the local growth rate in non-convex-shaped pores as
following:

%: AxT k>0
dt 0 ,k<O0

This gives rise to a simple global growth law in terms
of projected tissue area:

(1

dPTA .
——P =2k 2
dt
with &« a constant dimensionless value

characteristic of the “non-convexity” of the shape.
k™ =1 for convex shapes and k™ >1 for non-
convex shapes (Figure 3(a)). Details of the derivation
and precise definitions can be found in the supporting
information. In cross-shaped pores, the curvature is
negative in 4 points, positive in the 8 right angle
corners and null elsewhere. In squares, the curvature
is positive in the 4 right angle corners and null
elsewhere. If the negative curvature plays no role in
the growth rate, then the positive curvature averaged
on the perimeter in the cross (k™ =2 ) is twice the
one of a square (k™ =1) and growth should be twice
as fast. Both simulation and experiments meet this
prediction.

The organization of the cells and collagen fibers
within the newly formed tissue was investigated

qualitatively using immunofluorescence methods. On
Figure 4(a), nuclei staining (red) reveals the
homogeneous distribution of cells within the tissue as
well as a similar density of cells in both the square
and cross shaped pores whereas actin fibers (green)
are mostly concentrated and highly oriented along the
interface tissue/medium.

In larger pores, polarized microscopy enables to
image the preferential orientation of the fibrous
extracellular matrix deposited by the cells. As shown
on Figure 4(b), collagen fibers deep in the tissue are
oriented parallel to the substrate, whereas those at
the interface have a direction similar to the cells.

The kinetics of new tissue formation within the pores
of the scaffolds was followed in the in-vitro system by
measuring the projected tissue area (PTA) on phase
contrast images taken twice a week. As predicted by
the model of curvature-driven growth in ideal shapes
(Figure 1), Figures 5(a) and 5(b) reveal that after any
time of culture, more tissue has been produced in the
cross- than in the square-shaped pores, and this for
two different pore sizes ( RB,,.=6.28mm and
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Preium = 4.71mm  respectively). Reporting tissue

growth rates calculated between D4 and D14 (Figure
5(c) and 5(d)) also confirms that initial growth rates
are almost twice as fast in cross- than in square-
shaped pores, independent of the size. Additionally,
Figure 5 shows that the model of curvature-driven
growth applied to the actual geometry of the pores,
also predicts quantitatively the growth behavior for
the first two weeks of cell culture. The model is fitted
with a single parameter which sets the time scale of
the simulation and is calculated with the experimental
tissue growth rate in a square-shaped pore. For this
set of experiments, 12 steps of simulation represent 1
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Figure 5. The effect of the curvature in the third dimension may be partly responsible for the slowdown of growth observed
experimentally. (a) Schematic representation of tissue repartition in the pore with the associated geometrical descriptors. (b) A

numerical derivation was done with A =0.01lmm?*s™", h=2mm in pores of medium and large sizes. The dashed line indicates a

linear growth.

day of culture ( o=12steps). A lag time t,=4d

accounting for the time that cells need to settle was
incorporated to overlap the curves.

As the predictions on influencing growth kinetics are
confirmed by the experiments in single pores, the
analytical investigations are extended to scaffolds
with multiple pores. One has now to consider that
geometry also determines the number of pores which
fit in a scaffold with defined size A, and porosity ¢

. The circularity is the dimensionless shape factor
(independent on the size) used to characterize the
ratio perimeter to area:

A

C= 47r? (3)

which relates to the (maximum) number of pores in
the scaffold. As mentioned above, Figure 3(a)
classifies pore shapes with respect to their “non-
convexity” and their “circularity”, two geometrical
parameters that influence respectively tissue growth
rate in an individual pore and the global porosity of a
scaffold made of those pores. The global tissue growth
rate can then be expressed as a function of the
scaffold and the pore characteristics:

esseilona 35 o

Equation (4) shows that the global tissue growth rate
in the scaffold is a product of independent terms
characterizing i) cell activity, ii) scaffold properties,
iii) pore size and iv) pore geometry. The details of its
derivation are available in the supporting
information. Figure 4(b) shows how the total tissue
growth rate depends on the size and the geometry of
the pores. The initial tissue growth rate is considered,
i.e. the growth rate achieved until the interface
becomes convex. In a plate-like scaffold of a given
area (20 mm?) and given porosity (0.9), small and
non-convex pores give rise to higher growth rates
(white areas on the bottom right).

i

dPTA,, _ K
t

Discussion
In this study, a curvature-driven growth modell14 15]
was applied to different (non-convex) geometries. The

growth behaviors obtained by computational
simulations were verified experimentally using an in-
vitro tissue culture system that offers the possibility
to vary the geometry of a substrate in a controlled
way, independently of the chemistry. Not only the
qualitative and quantitative geometrical evolution of
the interface tissue/medium, but also the faster tissue
generation by MC3T3-E1 cells in non-convex shaped
pores (cross) could be derived from the simple
hypothesis that the local growth rate is locally
proportional to the curvature (if it is positive).

Despite a well-defined experimental protocol, some
limitations remain. The hydroxyapatite scaffolds
produced by casting and sintering present the
expected geometry on the millimeter scale, but the
roughness of the surfaces is difficult to control,
especially in non-convex shapes. This drawback also
justifies the necessity of a computational tool able to
quantify the geometry in terms of curvature profile
and apply the curvature-controlled growth model
directly on experimental images, and therefore take
into account the interfacial defects.

The patterns obtained with the curvature-controlled
growth model and the ones observed in the
experiments can also be derived from the simple
geometrical construction using tensile elements
presented previously.[15] In essence, this model
represents a cell by its internal actin filaments (stress
fibers) connecting adhesion sites of the cell. This
“chord model” explains intrinsically not only the
absence of growth on convexities but also the faster
tissue growth and the higher tissue organization in
non-convex shapes (Figure 3(a)). This approach is
further supported by actin stained tissues showing
cells locally oriented parallel to the interface tissue-
medium (Figure 3(a) and 3(d)). Considering that this
preferential organization is also followed by the
collagen fibers synthesized by the cells during tissue
growth (Figure 3(b)), one could transfer the
geometrical construction to the tissue level in a
similar way to the cable model of Bischof et al.[18]

Some other mechanisms involved in tissue growth
might also be geometry dependent. For example, cell
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migration is known to be faster on curved surfaces
than on flat surfacesl!9l. Such contact guidance would
result in a higher number of cells reaching the corners
compared to the flat surfaces. Although this could be a
possible mechanism for the tissue response to
geometry, previous work suggests that this would
only affect the early stages of growth up until a tissue
mono-layer is formed[20l. Growth rates later than this
early stage were shown to be independent of
substrate properties as well as the seeding method,
both of which would affect migration. Moreover, the
concept of contact guidance into the depth of the pore
does not provide any clear explanation for the
presence of cells but absence of growth on convex and
flat surfaces.

An accumulation of nutrients in confined regions of
the pores (close to the concave surfaces) could also be
suggested to explain the local dependence of cell
proliferation on the curvature, which results in the
homogeneous distribution of nuclei throughout the
tissue (Figure 3) as already showed in [15]. However,
in such pores of millimeter size, diffusion is expected
to be sufficient to result in homogeneous composition
of the medium. For example, oxygen potential has
been shown to be independent of the size of the
pore.14 151 On the other hand, the ECM proteins
secreted by the cells might be more likely to
accumulate in the cell network build in the corners
due to spatial diffusion constraints and be
incorporated into ECM fibers, as opposed to flat of
convex surfaces where cells are more exposed to the
medium. In that case, the pattern of growth and the
organization of the tissue produced would still be a
consequence of the spatial arrangement of the chord
like contractile cells and be responsive to the
substrate curvature.

The curvature-driven growth model predicts a
decrease in tissue growth rate in cross shaped pores
as soon as the interface tissue-medium becomes
convex. However, as already observed in similar
experiments, the tissue growth slows down after 18
days of culture, independently of the shape of the
pore. Three main hypotheses have been proposed to
explain this phenomenon.[151 i) Ageing and
differentiation affect the proliferative activity of the
cells and thus their ability to produce tissue. ii) Not
only cells mature, but also the ECM they produce.
With maturing collagen cross-links the matrix could
become locally denser, which may be implemented
into the model as a gradual reduction of growth rates.
iii) Considering the projected tissue area to quantify
growth supposes that tissue grows homogeneously all
along the height of the three-dimensional pore, which
is unlikely. Therefore, one needs two principal
curvatures to describe the geometry of the interface
along the vertical axis, and they are likely to be of
opposite sign. To discuss this last point further, one
can analytically estimate the impact of the convexity
appearing in the third dimension in a cylinder of

radius RO' As depicted Figure 6(a), if the inward
curvature is approximated by a circle (red), the two
principal curvatures at the point M are:
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Figure 6. (a) Pore shapes can be classified using the “non-
convexity” which determines tissue growth rate in the
pore and the “circularity” which influences the number of
pores fitting in a scaffold. (b) Contour plot representing
the influence of pore geometry and pore size on the total
tissue growth rate in a 20 mm? scaffold with a porosity of
0.9. Grey level decreases with the growth rate. For each
shape, the dot shows the perimeter corresponding to an
inner radius of 150 um (considered as the limit for good
permeability properties). In that respect, smaller
perimeters are not relevant for tissue engineering
purposes.

Kl:1>0
R
2(R,-R) <0 (5)
L2

(Feo-R)2+I

K, =—

where R is the radius of the pore at time t and L is
the depth of tissue deposition. Mean curvatures

H :K1+K2
2

in each point of the interface are

lower than the one measured on the projection (k)
and, therefore,
2(R,-R)R (6)
2 L2
(R-Ry'+

PTA(t) can be then derived numerically from

dPTA,, dR
= _g—=27RAH(R)=274. 1—
dt g RAHR)= 20

Equation (6). Some results presented in Figure 6(b)
show, indeed, a slowing down of the growth that is
not predicted by the two dimensional model but
appears in experiments.
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Although the observations and calculations proposed
in this paper are simple, they have important
consequences for the design of tissue engineering
scaffolds. For example, the results suggest that for
purely convex channels, the rate of new tissue growth
in a single pore is independent of size and geometry.
This implies that pore shape can be modified to satisfy
other criteria (e.g. strength, fatigue resistance,
permeability, etc)l21l without changing the rate of
tissue ingress. Moreover, introducing non-convexities
into the pore shapes can greatly increase the growth
rate (by a factor of 2 in the case of cross-like pores)
giving a new opportunity to optimize the architecture
of scaffolds for tissue repair.

Integrating an implant in a host organism often
implies to produce as much tissue as possible in a
short time. In that respect, a lot of highly non-convex
pores would be useful. However, having small pores
filling fast and completely with agglomerates of cells
is also not desired. Indeed, diffusion of nutrients
would be impaired and cell viability affected.
Moreover, cells also need space to migrate and lay
down extracellular matrix. Pores should then be large
enough to guarantee a good permeability and leave
room for the formation of new tissue and for
angiogenesis.[22]

As shown in this study, the geometry of individual
pores not only influences density, permeability and
the amount of tissue produced in the scaffold, but also
the speed and repartition of tissue deposition. In the
cross-shaped pore, for example, tissue is generated
with a high rate in the branches in a first stage, which
could help anchoring the scaffold faster in the host
organism. As the interface smoothens and becomes
circular (convex), the growth rate slows down, leaving
time and space for exchanges through the pore.
Experimentally, the slowdown occurs a bit earlier for
the reasons discussed above.

A common concern in tissue engineering is the
permeability of the scaffold to guarantee cell
migration as well as nutrient and waste diffusion
necessary for cells to survive. Tissue engineering
literature suggests that pores should be at least 300
um large to ensure a good permeability of the
scaffold.[23] For each shape, the size of the inner circle
is taken as a limitation for pore size. An inner radius
of 150 pm leads to the minimum relevant perimeter.
Maximum realistic initial growth rates are estimated
for each shape (small shapes on Figure 4(b)).
Considering this aspect, the fastest initial growth rate
can be obtained using regular crosses with thick
branches. The circular interface being quickly
reached, the amount of tissue produced at that high
rate is however low. The remaining space and the
slower growth from this time point could be
profitable for angiogenesis and facilitate diffusion as
the pore is closing.

All these calculations assume that the totality of the
scaffold area can be covered by assembling pores of
the same shape. This statement is true for squares,
triangles and regular crosses with k=0.33 (see
Supporting information). However, it is known that
the maximum density achieved by packing circles in a
hexagonal arrangement on a surface is 0.90 and star

shapes are also not likely to be packed in an optimal
arrangement. It is therefore relevant to envisage
scaffolds containing pores of different geometries and
sizes. Few large highly non-convex shapes can
promote the anchoring of the scaffold at the early
time points and facilitate diffusion as growth
progresses, whereas smaller (mainly convex) pores
fitted in between can provide additional surfaces for
cells to deposit tissue with a slower rate, but that will
also support integration of the implant in the host
body. The total initial tissue growth rate obtained in
such a scaffold can be estimated by adapting equation

(4):

dPTA,, 2 1Y) x™
—— o =8x?) D= | = 7
dt Ascaff Z(pl RZ Ci ( )
with ¢, the contribution of the shape i to the global
density.
Conclusion

This work lays stress on the determining role of the
geometry of a substrate on the kinetics of tissue
deposition. We show that tissue growth can be
promoted simply by tuning the curvature of the
surfaces where cells deposit their extracellular matrix.
A simple geometrical model based on the tensile
behavior of the cells, which leads to curvature-
controlled growth, can predict both the kinetics
achieved and the distribution of tissue deposition. As
such simple principles could be of high interest for
tissue engineering, we propose some methods to
optimize pore design when considering a porous
scaffold intended for tissue repair.

Experimental Section

Curvature-driven growth simulation

A model for curvature-driven tissue growth was
proposed by Rumpler et alll4] and implemented by
Bidan et all5] in a Matlab (Matlab 7.8.0 R2009a,
MathWorks, Natick, MA) code based on a method for
measuring curvature on digital images.[24]

This computational simulation is run on binarized
images of the pores in which the scaffold is black and
the medium is white. In the first step of the
simulations the effective curvature is measured at
each pixel of the image by convoluting a circular mask
with the image. This curvature represents what cells
sense from the geometry of the surface. The second
step involves turning the white pixels that have a
positive effective curvature to black thus representing
tissue deposition in concave regions. The process is
then repeated iteratively to simulate curvature-
controlled growth. To make a quantitative
comparison with the experimental results, this simple
model only requires the input of a single parameter
accounting for the number of iterations needed to
simulate one day of culture. This value is calculated
using the experimental growth rate measured in a
convex shape, the square in this study.

As demonstrated previously [15], this computational
model is equivalent to the layering of tensile chords

on a surface if the radius of the mask is v/3/2 times
the size of a cell (about 50um for an elongated
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osteoblast). In the simulations the mask radius is set
to r=85px .

Production of the hydroxyapatite (HA) scaffolds
2mm thick HA scaffolds containing straight sided
pores are produced by slurry casting as mentioned in
previous studies(* 15l Pore sections represent
squares or crosses and are normalized with respect to
their perimeter ( P, .. =4.71mm, B, =6.28mm).

Molds are designed using the computer-aided design
(CAD) software Alibre Design (Alibre Inc., Richardson,
TX) and produced with a three-dimensional wax
printer, Model Maker II (Solidscape Inc., Merrimack,
NH) as described by Manjubala et all25l. The molds are
then filled with a HA slurry made of methacrylamide
(MAM) monomers (15g), N-N’-
Methylenebisacrylamide (BMAM) (5 g), water (75 g),
Dextran (12.5 g) and HA powder (300 g), and cross-
linked with ammonium persulfate and N,N,N’,N’-
Tetramethylethylenediamine (TEMED). The
structures are slowly air dried by heating the samples
to 50 °C at a rate of 5 °C per day and then holding this
temperature for one day. The dried samples are then
pre-sintered at 600 °C for 48 h to remove the wax
molds and are finally sintered at 1100 °C for 24 h.[26]
Cell culture

Murine pre-osteoblastic cells MC3T3-E1 (provided by
the Ludwig Boltzmann Institute of Osteology, Vienna,
Austria) are seeded with a density of 105 cells/cm? on
the surface of the HA scaffolds and cultured for 28
days in a-MEM (Sigma-Aldrich, St. Louis, MO)
supplemented with foetal calf serum (PAA
laboratories, Linz, Austria) (10 %), ascorbic acid
(Sigma-Aldrich, St. Louis, MO) (0.1 %) and gentamicin
(Sigma-Aldrich, Steinheim, Germany) (0.1 %) in a
humidified atmosphere with CO2 (5 %) at 37 °C.
Imaging

Each pore is imaged every 3 to 4 days using a phase
contrast microscope (Nikon Eclipse TS100, Japan)
equipped with a digital camera (Nikon Digital sight DS
2Mv). All pictures are taken with a 4x objective,
yielding a final image resolution of 205 pixels per mm.
Image analysis

The digital phase contrast images are semi-
automatically binarized wusing Image] (National
Institutes of Health, Bethesda[27]). The contrast in
the images is sufficient to enable scaffold and tissue
(represented in black in the binarized images) to be
distinguished from the medium (represented in
white).

Measurement of tissue growth

Tissue growth in the pores is quantified by
determining the projected tissue area (PTA) formed in
the pores. As this measurement is two-dimensional, it
is only a proxy for quantifying the volume of growth
into the depth of the pore. The free section of a pore,
corresponding to the white regions in the binarized
images, decreases with time. The PTA is then
calculated by subtracting the binarized image at an
initial time point from the image at the time of
interest, and then calculating the remaining area. As
cells need time to settle on the scaffold and start
tissue deposition, the initial pore section is taken on
the second day after seeding (D2).

Curvature measurement

The curvature profile of the interface between the
tissue and the medium on each binarized image is
calculated using Frette’s algorithml24 28] implemented
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in a custom made Matlab code (Matlab 7.8.0 R2009a,
MathWorks, Natick, MA) as described in [15l. Briefly,
the algorithm first locates the pixels on the tissue-
medium interface in the binarized image and the local
curvature k associated with an interface pixel is then
estimated from the ratio of the number of black to
white pixels lying within a given radius from the
interface with the formula:

(AL
t (Am 2] @

where A is the number of pixels in the mask and on
the outer side of the interface, A, is the number of

pixels in the mask and r is the mask radius. The
calculation is made for all pixels on the interface on
each side of the border. The local curvature in one
position of the interface is taken as the mean value of
the curvatures measured on the outer pixel and the
inner pixel. In the limit of a perfectly smooth interface
and an infinitely small radius, this ratio corresponds
to the local curvature. In the context of this paper,
concave surfaces have a positive curvature.

To quantify interfacial geometry at different time
points, the local curvature is given as a function of the
position along the interface normalized with respect
to its perimeter. In order to reduce the noise induced
on the curvature profiles by both the roughness of the
experimental interfaces and the digitalization, the
mask radius r of the computational tool is set to
r =14.5px and the resulting profile is then smoothed

using a running average algorithm with a sampling
proportion of 5% of the total length of the perimeter.
Immunofluorescence staining

Scaffolds are washed with phosphate buffered saline
(PBS), fixed with 4 % paraformaldehyde for 5 min and
permeabilized overnight with 1 % Triton-X100
(Sigma-Aldrich, Steinheim, Germany) at room
temperature. Once washed in PBS, the tissue is
stained for actin stress fibers by incubating with
Alexa-Fluor 488-phalloidin (Invitrogen, Molecular
Probes) (3 x 10-7 M) for 90 min. Nuclei are then
stained with TO-PRO 3 692-661 (Invitrogen,
Molecular Probes) (3 x 10-6 M) for 5 min. Fluorescent
images of the stress fibers are obtained using a
confocal laser scanning microscope (Leica TCS SP5).
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Abstract: This study investigated how substrate geometry influences in-vitro tissue formation at length scales much
larger than a single cell. Two-millimetre thick hydroxyapatite plates containing circular pores and semi-circular
channels of 0.5 mm radius, mimicking osteons and hemi-osteons respectively, were incubated with MC3T3-E1 cells
for 4 weeks. The amount and shape of the tissue formed in the pores, as measured using phase contrast microscopy,
depended on the substrate geometry. It was further demonstrated, using a simple geometric model, that the observed
curvature-controlled growth can be derived from the assembly of tensile elements on a curved substrate. These
tensile elements are cells anchored on distant points of the curved surface, thus creating an actin “chord” by
generating tension between the adhesion sites. Such a chord model was used to link the shape of the substrate to cell
organisation and tissue patterning. In a pore with a circular cross-section, tissue growth increases the average
curvature of the surface, whereas a semi-circular channel tends to be flattened out. Thereby, a single mechanism
could describe new tissue growth in both cortical and trabecular bone after resorption due to remodelling. These
similarities between in-vitro and in-vivo patterns suggest geometry as an important signal for bone remodelling.

Introduction

Cells are not only sensitive to biochemical signals [1],
but also to the mechanical properties [2] and the
geometry [3] of their environment. They detect and
respond to these physical characteristics at different
length scales. On the sub-cellular level, cells sense and
integrate mechanical information via their Focal
Adhesions (FAs). These complexes of proteins link the
extracellular environment to the cytoskeleton and
enable cells to both apply and “feel” forces [4]. The
internal cytoskeletal stress is constantly tuned by
actin fibre remodelling and acto-myosin contractility
[5], giving rise to a mechanical homeostasis in the cell
[6]. This in turn enables the geometrical [7,8] and
physical [2] properties of the underlying extracellular
matrix (ECM) or substrate to be sensed. The
information is then transmitted to the nuclei [9]
allowing cells to adapt proliferation [10],
differentiation [11], apoptosis [12], spreading [13],
migration [14], ECM production [15], and orientation
during mitosis [16]. As cells are linked directly via
cell/cell contacts or indirectly via the ECM, they can
mechanically communicate with each other [17] and
synchronise their individual decisions to act in a
collective way giving rise to cell patterning [10,18]
and ECM organisation [19,20] during morphogenesis
for example [21].

At the tissue level, the influence and emergence of
mechanical properties have been investigated in the
context of cancer research [22], cardio-vascular
disease [23] and tissue engineering [24]. While a lot of
studies on porous scaffolds also revealed an effect of
porosity and pore size on cell adhesion, proliferation
and matrix deposition (see e.g. [25,26]), relatively few
focused on quantifying the role of scaffold
architecture on tissue growth kinetics [27,28]. In one
study, Ripamonti and co-workers compared tissue
growth in natural bone structures and artificial
hydroxyapatite scaffolds implanted in vivo [29], and
showed preferential tissue production in concave
areas of the scaffolds, as also observed in vitro [30].

The kinetics of in vitro bone tissue growth was also
measured in pores of controlled geometries in
another study [27]. In their study, they showed that
the thickness of tissue produced by osteoblasts
depended on the local surface curvature. This led to
the description of tissue development in terms of
curvature-controlled tissue growth (CCTG), which
gave good predictions of the tissue shape. Since this
description is purely geometric, additional studies are
required to elucidate the potential effects of
mechanical and biological processes involved in the
interfacial motion of tissue (e.g. cell proliferation and
ECM production).

A classic example of the interaction between
geometry and tissue growth can be found in the
process of bone remodelling [31] which allows bone
to renew and to adapt to slowly changing mechanical
environments. During bone remodelling, three cell
types are involved: osteocytes sense mechanical loads
in existing bone [32,33,34]and forward the signal to
osteoclasts which resorb old or damaged bone, and to
osteoblasts which produce new collagenous tissue
called osteoid. By definition, resorption and
deposition are two processes that locally change the
surface geometry of the bone tissue. In cortical bone
remodelling, osteoclasts resorb bone, leaving
cylindrical pores called osteons [35]. These are then
refilled by osteoidal tissue with a central blood vessel,
the Haversian canal [36]. During the remodelling of
trabecular bone however, osteoclasts dig out small
semi-circular channels or grooves called resorption
pits or trails which can be seen as hemi-osteons, that
are later refilled with osteoid by the osteoblasts [35].
Despite the continually changing local geometry, the
mean curvature of the trabecular bone surface is
tightly controlled [37]. Indeed, the signals responsible
for such a precise spatial orchestration of the cells on
the millimetre scale are still unclear. For instance, it is
not clear why osteoblasts stop tissue production once
a hemi-osteonal lacuna is filled. This provides a strong
motivation to understand the influence of geometry
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FIGURE 1. Experimental protocol

A - Moulds are produced by rapid prototyping. A build wax
(blue) is used to print the mould in 3D. A support wax
(red) is added to reinforce the object while printing, and
then removed by dissolution. B - Hydroxyapatite slurry is
cast into the moulds, slowly dried and sintered. C - Pre-
osteoblast cells are seeded (105 cells/cm?) on the scaffolds
and cultured for 28 days. D - Tissue growth is quantified by
phase contrast microscopy twice a week by measuring the
projected tissue area (PTA) in each pore.

C - Cell culture

MC3T3-E1
Pre-osteoblasts

10° cellslem?

28 days

on tissue deposition during bone remodelling - the
goal of this paper.

Besides the quantitative description of tissue
deposition on bone-like substrates, the present study
proposes a new physical explanation of how the
organisation of contractile cells leads to CCTG, as
observed by Rumpler et al. [27]. Circular pores and
semi-circular ~ surfaces  were  designed in
hydroxyapatite scaffolds to mimic osteons and
osteoclastic resorption pits (hemi-osteons),
respectively, and the scaffolds were incubated with
MC3T3-E1 pre-osteoblast cells. In order to quantify
geometry evolution on experimental images, a
computational tool based on the approach of Frette et
al. [38] was used to measure the curvature profiles
and integrated into an algorithm for CCTG. In this
paper, CCTG is shown to be equivalent to a simple
geometrical construction representing the
organisation of individual tensile elements and called
the chord model. This new approach enables
curvature-controlled tissue growth to be interpreted
as the result of the superposition of linear elements
such as stretched cells and collagen fibres. By
comparing a simple geometrical model to
experiments, this paper also highlights that the sum of
mechanical and biological processes responsible for
tissue growth responds to simple geometrical rules
giving rise to the patterns observed in vitro. This
suggests geometry as a key regulatory element for the
tight control of tissue deposition during bone
remodelling.

Material and methods

Production of the hydroxyapatite (HA) plates

HA plates (2mm thick) containing circular pores and
semi-circular vertical channels (nominal diameter
1mm) were made by slurry casting. The moulds were
designed using the computer-aided design (CAD)
software Alibre Design (Alibre Inc., Richardson, TX)
and produced with a three-dimensional (3D) wax
printer, Model Maker II (Solidscape Inc., Merrimack,
NH) as described in [39] (Fig.1A). The moulds were
filled with a HA slurry made of 15g of methacrylamide
monomers (MAM), 5g of N-N’-
Methylenebisacrylamide (BMAM), 75g of water and
12.5g of Dextran for 300g of HA powder, and
crosslinked with ammonium persulfate and N,N,N’,N’-
Tetramethylethylenediamine (TEMED). The
structures were slowly air dried, pre-sintered and
finally sintered as done in [40] (Fig.1B).

Cell culture

Murine pre-osteoblastic cells MC3T3-E1 (provided by
the Ludwig Boltzmann Institute of Osteology, Vienna,
Austria) were seeded with a density of 105 cells/cm?
on the surface of the HA scaffolds and cultured for 28
days in a-MEM (Sigma-Aldrich, St. Louis, MO)
supplemented with 10% foetal calf serum (PAA
laboratories, Linz, Austria), 0,1% ascorbic acid
(Sigma-Aldrich, St. Louis, MO) and 0,1% gentamicin
(Sigma-Aldrich, Steinheim, Germany) in a humidified
atmosphere with 5% COz at 37°C (Fig.1C).

Imaging and analysis

Each pore was imaged every 3 to 4 days using a phase
contrast microscope (Nikon Eclipse TS100, Japan)
equipped with a digital camera (Nikon Digital sight DS
2Mv) (Fig.1D). All pictures were taken with a 4x
objective, yielding the final image resolution
Imm=205px .

The digital images were semi-automatically binarised
using Image] (National Institutes of Health, Bethesda
[41]). The contrast in the images enabled scaffold and
tissue (black in the binarised images) to be
distinguished from the medium (white).
Measurement of the tissue production

Tissue production in the pores was quantified by
determining the projected tissue area (PTA) formed in
the pores (Fig.1D). As this measurement is two-
dimensional, it is only a proxy for quantifying the
volume of growth into the depth of the pore. The free
section of a pore, corresponding to the white regions
in the binarised images, decreases with time. The PTA
was then calculated by subtracting the binarised
image at an initial time point from the image at the
time of interest. As cells needed time to settle and
start tissue deposition, the initial pore section was
taken on the fourth day after seeding (D4).

The experiments presented here included 6 pores for
each shape: circular pores (CIR) and semi-circular
channels (SC). Two other sets of experiments
repeated in the same conditions showed similar
results (data not shown).

Immunofluorescence staining

Some scaffolds were washed with phosphate buffered
saline (PBS), fixed with 4% paraformaldehyde and
permeabilized with 0.1% Triton-X100 (Sigma-Aldrich,
Steinheim, Germany). After 15min blocking in 10%
blocking reagent (Roche, Germany), the samples were
incubated for 1h in a 1:200 solution of myosin IIb
antibody (Cell Signaling Technology, Beverly, MA) and
1h in a 1:200 solution of anti-Rabbit IgG AF 488 (Cell
Signaling Technology, Beverly, MA). Once washed in
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FIGURE 2. Computational methods

A-B - Principle of curvature measurement on continuous
(A) and discrete (B) interfaces (adapted from [38]). The
grey area represents the contributing area A in equation 1

where r=8.5pxl is the radius of themask, A = r? inA

tot

and A , = Zpixels in B. C - Implementation of CCTG.

tot
mask

The whole image is scanned with the mask (1-) and the

A
ratio — is attributed to each pixel (2-). A threshold of

tot
0.5, corresponding to k¥ =0, is applied: free pixels where
kK >0 are filled with tissue (3-). The interface is then
updated and the entire procedure is repeated.

PBS, the tissue was stained for actin stress fibers by
incubating with TRITC-Phalloidin 4 x 10-8M (Sigma-
Aldrich, Steinheim, Germany) for 40min. After
fixation, some of the samples were permeabilized as
mentioned above and stained for nuclei with a 1:300
solution of TO-PRO3 (Invitrogen, Oregon, USA) for
5min. Images of stress fibres, myosin and nuclei were
obtained using a confocal laser scanning microscope
(Leica, Germany).

Curvature measurement

The curvature profile of the interface between the
tissue and the medium on each binarised image was
calculated using  Frette’s algorithm [38,42]
implemented in a custom made Matlab code (Matlab
7.8.0 R2009a, MathWorks, Natick, MA). This method
has an advantage over other curvature measurements
based on spline fitting [43], in that it can be applied
directly to digital images coming from the phase
contrast measurements. The algorithm first located
the pixels on the tissue-medium interface in the

1
binarised image. The local curvature K':E

associated with an interface pixel was then estimated
from the ratio of the number of black to white pixels
lying within a given radius from the interface:

_srf( A1
T (Am 2] (Fa-1)

where A is the number of pixels in the mask and on
the outer side of the interface, A, is the number of

pixels in the mask and r is the mask radius (Fig.2A
and B).The calculation was made for all pixels on the
interface on each side of the border. The local
curvature in one position of the interface was taken as
the mean value of the curvatures measured on the
outer pixel and the inner pixel. In the limit of a
perfectly smooth interface and an infinitely small
radius, this ratio corresponds to the local curvature.
In this paper, a positive curvature is defined as a
concave surface (Fig.3). Average curvatures x,,

were determined along the perimeter of the pore for
circles, and along a portion of the interface in semi-
circles. The precision of the measurements are
discussed in Text S1.

Curvature-controlled tissue growth

An equivalent of the CCTG model presented by
Rumpler et al. [27] was implemented by incorporating
the curvature estimation of Frette et al. [38]. The
technique to estimate interfacial curvature on a
binary image was extended towards a description of
growth by scanning the mask over the entire image,
giving “effective curvature” values for all pixels
(Fig.2C). Assuming that growth occurs only in concave
regions, each white pixel where the effective
curvature is positive was changed to black,
representing tissue deposition. The process was then
iterated to describe CCTG. This method has the
advantage that growth can be directly compared with
the experimental pore geometries.

In the approximation R>>r , the local thickness of
tissue produced in one step is proportional to the
local curvature (for a proof see Text S1) and compares
with the description of CCTG proposed in [27]:

2
S5 r

Comp = EK (qu)

Results

Tissue deposition was observed in each pore by phase
contrast microscopy over a period of 28 days. Fig.3A
presents images taken at different times during the
culture (D4, D7, D14 and D21) and is compared with
the CCTG description in Fig.3B. In circular pores,
tissue deposition occured homogeneously along the
interface, leading to a uniform concentric closing of
the cylinder. On semi-circular channels, no tissue
formed on the convex corners of the channel neither
on the external flat surfaces. Growth is therefore
pinned within the channel, resulting in different
amounts of tissue as a function of position in the
lacuna. In contrast to circular pores, the interface of
semi-circular channels flattened with time.

The evolution of tissue shape reveals the determining
role of the boundary conditions in the interfacial
motion between 4 and 28 days. The average curvature
measured on the experimental images increased with
ongoing tissue growth in circular pores, whereas
curvature slowly decreased on a semi-circular
channel (Fig.3A and 4A).

On the growth curves in Fig4B, the PTA was
normalised by the area of the pore (PA) measured on
the fourth day of culture. In semi-circular channels,
PA was taken to be the free area under the scaffold
surface (dashed line in Fig.5). A direct comparison of
the fraction of available space filled with tissue was
then possible. The experimental data displayed a
linear increase of the amount of tissue produced in
circular pores up to day 14 in agreement with
previous results [27]. Afterwards, tissue amplification
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FIGURE 3. Qualitative results: evolution of the
geometry

A - Evolution of the tissue interface in a circular pore and
on a semi-circular surface. Images taken at different
culture times (D4, D7, D14 and D21) during in vitro
experiments show behaviours comparable to those
observed in osteons and hemi-osteons during bone
remodelling. B - The superposition of the interfaces
obtained experimentally (top) compares to the one
derived from CCTG applied to the actual geometry of the
experimental pores at D4 (bottom). 7, 14 and 21 days of
culture are simulated by 51; 170 and 289 steps for the
circle and 34; 153 and 272 steps for the semi-circle

respectively (r=8.5pxl, o0 =17.0step /day ).

slowed down. Comparison of the early growth
behaviour in circular and semi-circular channels,
calculated between day 4 and day 14, revealed that
tissue growth was significantly higher in the circles
compared to semi-circular surfaces (Fig. 4C).
Although the local curvature was supposed to be the
same on each point of the surface, the initial growth
rates (between D4 and D14) in a circular pore and on
a semi-circular surface are different (Fig.4C). A two-
way analysis of variance ANOVA showed a statistical
difference between the shapes (CIR vs SC) and no
significant influence of the methods used (Experiment
vs Simulation on experimental shapes vs Simulation
on ideal shape). All pair-wise multiple comparisons
were done following the Holm-Sidak method and
values of less than were considered significant. The
geometry of the substrate influenced the speed of
tissue production by the cells. The CCTG description
correctly predicted that the average curvature
diverges as the circular pore filled whereas it should
converge toward zero (flat surface) in semi-circular
channels (Fig.4A).

In order to compare predictions and in vitro results, a

time scale parameter ¢« in stepday™ was derived

from the ratio between simulated and experimental
growth rates measured in circular pores in
mm’.step™ and mm’.day™ respectively. The tissue
growth rate was derived from the simulations
performed on experimental images with r =8.5pxl,

APTA

=0.00167mm*step™  and  experimentally

AT g,
measured on the early stage (D7 to D14) and is
. dPTA b o
considered constant: ——| =0.0284mm".day . The
exp

time scale used in the following is thus
o =17.0step.day ™.

Quantitative results predicted by application of CCTG
on experimental images at D4 are reported in Fig.4B.
The simulated projected tissue areas (PTA) were
normalised by the area of the respective pores at D4
(PA) and averaged (n=6). An additional lag time was
used to overlap simulated and experimental data:
t, or = 4day and t, . =5day. t, represents the time

cells need to spread and colonize the scaffold before
starting growth and is known to depend on the
geometry of the pore [44]. Once the single free
parameter of the calculations is fitted on the
experimental growth in circular pores (
o =17.0step.day™), CCTG also correctly described the
initial growth behaviour on semi-circular channels
(Fig 4A, B and C). However, it did not explain the
notable slowdown observed experimentally in both
geometries from D14.

A “chord model” to explain curvature-controlled
tissue growth

Although CCTG can predict both the geometry and the
linear kinetics of tissue formation, it contains no
intrinsic time scale and provides no mechanistic
explanation of the curvature sensing of cells and
tissue.

In the following, tissue is considered as a collection of
stretched cells and fibrous ECM, and growth is
described as occurring via the assembly of such
tensile elements (chords) on a surface. In this section,
it is demonstrated that CCTG is a direct consequence
of this simple geometric construction. Besides giving a
mechanistic interpretation of the CCTG on the cellular
level, the chord model also motivates the interaction
range (mask size) chosen for measuring curvature
and thereby justifies the time scale of the
computational implementation.

As cells are the tissue manufacturers, a geometrical
description of single cells settled on a surface (Fig.5)
provides hints to the local dependence of tissue
organisation on the geometry. Once attached to the
substrate, cells contract their cytoskeleton thus
defining a new interface between the FAs [45]. If the
surface is flat or convex, cytoskeletal contraction
results in a downward motion of the cell towards the
substrate (Fig.5A). However, if the surface is concave,
the contracting cell is stretched between the FAs and
locally forms a flat interface (Fig.5B).

The chord model presented here consists of a tensile
element of length | that connects two points on a
surface (Fig.5C) and locally defines a new interface.
The effect induced in the perpendicular direction can
be described using the largest distance 8, between

the chord and the substrate. Simple geometrical
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FIGURE 4. Quantitative results: curvature profile and growth rate
Quantitative analysis of tissue growth in circular pores (CIR) and on semi-circular channels (SC) of 1 mm diameter. A - The
average curvature along the perimeter of the circular pore and on a given portion of the semi-circular surfaces is measured on

experimental images at different culture times. As K . = 2.047mm™", theoretically circular pores should be filled in about 432

steps or 25.4 days. B - The projected tissue area (PTA) is normalised by the area of the pore (PA) at D4 (reference) and reported as
a function of culture time. In A and B, the full lines correspond to the prediction given by CCTG (r=8.5pxl ; 0t =17.0step / day ).

A lag time is used to overlap simulated and experimental data (to_m =4day and t; ;.= Sday). C - Growth rates are calculated

between D7 and D14 with the experimental and the simulated data as well as data simulated on ideal geometries with a radius
derived from the experimental images. ANOVA analysis shows no significant differences between the methods used but a

statistical difference in the tissue growth rates achieved in CIR and SC ( p < 0.05 ). Dots and error bars represent mean values and

standard errors, respectively (n=6).

relations (detailed in Text S1 and Figures S1 and S2)
demonstrate that the local interfacial motion induced
by the deposition of a single chord Jq,g is

. 1
proportional to the local curvature K:E with the

hypothesis R>>1:
|2

Octorg = =K Eq.3
Chord ~ g (Eq.3)

Combining this effect for all possible positions of the
chord on the substrate predicts the location of the
interface once a collection of tensile elements has
been laid down (Fig.5D). Additional layers can then
settle iteratively on the surface.

Equations 2 and 3 demonstrate that the superposition
of tensile elements on a curved surface generates an
interfacial motion equivalent to the CCTG evolution

presented earlier (Fig.2 and [27]). Using r :gl as

the radius of the mask in the computational method
leads to full quantitative consistency between the
chord model and the CCTG description:

IZ
8 = Scrong = Ocomp =

K . Mathematical details are

Comp _E

provided in the Text S1. Moreover, Fig.5D reveals that
geometries derived from the chord model also
compared well with the experimental observations
(Fig.3).

Considering cells as tensile elements, the chord model
can describe tissue growth and its curvature-driven
behaviour. Additional support comes from the
observation of actin fibres that indicate stresses
produced by interacting cells. These stress fibres
formed rings inside circular channels (Fig.6B), as
previously observed [27], which are reminiscent of
contractile actin -myosin rings found in wound
healing for other cell types [46,47,48]. Actin fibres co-
localizing with myosin are shown in concave regions
on Fig.6A. These fibres have an arrangement very
similar to the chords in Fig.5B, supporting the idea
that cells in the tissue collectively exert tensile stress

as they adhere to matrix and substrate. On convex
surfaces however, Fig.6A clearly shows a much lower
density of contractile chords, also in agreement with
the model in Fig.5. A convex surface (Fig. 6D) was also
tested and interestingly only a mono-layer of tissue
was observed even up to late growth stages.

Staining tissue for cell nuclei reveals a homogeneous
cell density all over the projected tissue area (Fig.6C).
This showed that cell density is independent of
curvature. Note that the global geometry of the new
interface was independent of the number of chords,
i.e. cell density, in one layer. Moreover, the geometry
of a substrate is known to influence cell proliferation
by determining the stress distribution in the
contractile cell layer [10]. Although no proliferation
study was performed here, the constant cell density
suggests that cell proliferation adapts as the curvature
increases and the adhesion surface decreases during
tissue growth, leading to the overall constant cell
density.

In the computational description presented earlier,
the radius of the mask defined the interaction range
around a given point and influences the precision of
curvature estimation. The equivalence between the
CCTG and the chord model together with the cellular
approach proposed above motivated us to scale this

By

range to the approximate length of a cell: r =
For an elongated osteoblast, | =50um but with
r=85pxI and 1mm=205px| , the actual cell length
considered here is | = 47um. Thereby, the effective
curvature values derived in the computational
implementation of CCTG represent what cells “feel”

from the geometrical features of the surface.
In terms of PTA, the simulated growth rate in

mm’.step™ in an ideal circular pore is constant:

APTA m?  ar?
=~ =27R(1)8(1) = —=
At -d(T) wR(7)d(7) 23

(Eq.4)

This constant rate derived in closed convex shapes
(circles) confirms the equivalence between the chord
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FIGURE 5. A chord model to describe tissue growth

After adhering on a substrate (pink dots), a cell contracts
its cytoskeleton (purple arrows) to reach a stable tensile
state. A - On a convex surface, the cell remains bent and
exerts pressure on the substrate. B - On a concave surface,
cell contraction stretches the membrane and results in a
local flattening of the surface. C - A chord representing a
static stretched cell defines an element of tissue, which
thickness & is proportional to the local curvature of the
surface. D - A collection of stretched cells sitting on a
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model and the CCTG description proposed by
Rumpler et al. [27], see also Fig S3.
According to equation 4, the simulated growth rate
and thus the time scale of the model depend on the
interaction range chosen. The simplest approach to
determine this time scale is to assume that the
experimental growth rate is also proportional to
curvature. This requires the definition of one
parameter o(l) that fits the time 7 of simulated
growth in steps to the time t of experimental tissue
growth in days, which leads to:
dPTA nl? nr?
— =all)—=o(r)— Eq.5
RS LS S
Equations 4 and 5 show that «(l) scales with the
inverse of the square of the interaction range chosen
in the model and can always be derived by comparing
simulated and measured tissue growth rates in the
experimental pores. The interaction range being fixed
to I=47um, IS a constant accounting for the
kinetics of all the biological phenomena contributing
to tissue deposition (cell migration, proliferation, ECM
synthesis, etc.).

7 and t being proportional, the interfacial motion
derived from the model can be described as a

. . . T .
continuous function of time t=— . To quantify
o

kinetics, the evolution of the distance between tissue
interface and the substrate (in mmgep™ ) was
derived in an ideal pore by integrating equation 3:

12 dR@)

SHt)=«o =——-F Eq.6
® 8RO T (Eq.6)
This gives a solution in terms of curvature:
1 K
kt)=——=—-2— Eq.7
(t) RO 7 (Eq.7)

1-—C%at
4

The time needed for an ideal circle to be filled was
determined for a radius equal to zero and an infinite
curvature:

4

il = |2K§0! (Eq.8)

Discussion

The amount and the shape of the tissue produced by
MC3T3-E1 cells cultured in pores of controlled
geometries were quantified in terms of PTA and
curvature on phase contrast images taken over a
period of 28 days. The chord model not only agrees
with the computational implementation of CCTG as
described in Fig.2, but it also provides a relevant
interpretation on the cellular scale of the equivalent
behaviour observed during tissue growth (Fig.3).
Moreover, the works of Théry et al. [13] about the
shape and the stress state of a cell after spreading and
contraction, support the approach sketched on Fig.5.
As described earlier, one step of the computational
implementation of CCTG represents roughly the
contribution of one layer of cells to the tissue
thickness. In agreement with the hypothesis of CCTG,
the simulation predicts a constant tissue growth rate
(in mm®.step™) in an ideal circle [27]. This rate only
depends on the cell size, arbitrarily set to 47um
(Eq.7). Measuring the initial experimental rate (in
mm?.day™) in circular pores enabled us to fit the

model of growth with a unique parameter that
introduces a linear time scale by giving the number of
steps needed to represent one day of experiment:
o =17.0step.day™ . Although this parameter should
theoretically represent the number of cell layers
deposited in one day of culture, the high value
suggests that some assumptions are too simple. For
example, stretched osteoblasts in culture are probably
not homogeneous in size | and are likely to be larger
than 47pm. Moreover, a chord model only based on
cells implies that the contribution of the ECM is
neglected although Fig.6B reveals the presence of
collagen fibres aligned with the interface, just as actin
fibres in stretched cells. Considering larger cells
and/or adding collagen fibres in the definition of the
tensile elements would increase the simulated growth
rate and decrease o toward more realistic values.
Importantly, o does not interfere with the
geometrical behaviour of the interface but just
rescales the evolution in time.

The circular pores and semi-circular surfaces
produced in the experiments were chosen with the
same radius, i.e. the same local curvature, along the
interface. Although CCTG supposes a local growth rate
proportional to the local curvature, Fig.4C shows a
significant difference in the normalised global growth
rates ( PTA/PA) on circular pores and semi-circular
surfaces. The qualitative results (Fig.3) as well as the
evolution of the average curvature (Fig.4A) suggest
the importance of the boundary conditions for the
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A - Tissue produced in a pore made of 4 adjacent circles and stained for actin stress fibres and myosin IIb. Actin fibres colocalised
with myosin IIb are present on the whole surface but their higher density on concave interfaces suggests a local higher stress state
of the cells. B - Tissue is made of cells and collagen. Nuclei (red), actin stress fibres (green) and collagen fibres (visualized by
polarized microscopy) are oriented parallel to the interface. The white arrows show polarisation direction. C - The homogeneous
distribution of nuclei shows that cell density is independent of geometry and suggests a local dependence of cell proliferation on
the local curvature. D - An example of a convex HA surface (D35) on which only a mono-layer of tissue was formed.

pattern of tissue deposition. As no growth occurs on
the convexities (Fig.6D), the tissue laid down within
concavities flattens the surface in semi-circular
channels, i.e. decreases the average curvature. In
circular pores however, the concentric growth
increases curvature.

To underline the determining role of the convex
corners as seen in Fig.6, CCTG was simulated on
artificial images (Fig.7A-F). All geometries were based
on a semi-circle ( R=0.5mm) that is differently linked
to the surrounding flat surfaces. Fig.7 shows that
although the local curvature is the same on a given
portion, tissue deposition (in time and space) depends
strongly on the geometry of the surroundings. As the
tissue grows, changes in the curvature profile of the
interface affect both local and global growth rates.
Although the phenomenon is slightly exaggerated due
to the discrete character of the computational method
(Fig.7A and B), it is interesting to note the slowdown
of growth when tissue reaches the convex corners.
This suggests geometry as a potential signal for
osteoblasts to decrease and eventually stop tissue
production when a hemi-osteonal lacuna is filled.
Fig.4B reveals a slowdown of the experimental tissue
growth after 18 days of cell culture that is not
predicted by the chord model fitted with a linear time
scale. However, more complex scaling laws could be
used to depict the non-linearities induced as cells
slow down proliferation and ECM synthesis when
they differentiate and mature [49]. For example, pre-
osteoblasts differentiate towards osteoblasts during
culture and begin to synthesise alkaline phosphatase
(ALP). As the plateau often appears after 14 days of
culture or later, which approximately corresponds to
the beginning of ALP synthesis by such cells [50], the
influence of the differentiation could be a possible
explanation for the decrease in tissue production. In

parallel, the ECM synthesized by the osteoblasts also
undergoes maturation, whereby cross-link formation
in the collagen matrix increases with culture time
[51,52]. This could implement a denser packing of the
tissue and explain the plateau in PTA. As the CCTG
description is intrinsically a geometrical description,
adapting the time scale would be a simple way to take
the effects of cell and matrix maturation into account.
For a given interaction range, the number of steps
representing one day of culture a(t) would then

decrease with time, and the scaling law would require
an additional time characteristic representing the
slowdown of cell activity with ageing.

Alternatively, the plateau in tissue production
observed after two weeks of culture may have a
geometrical origin. In the experiments, tissue is grown
in 2mm thick scaffolds with straight sided pores, and
only the projected tissue area is measured on phase
contrast images. Using PTA as a proxy to quantify the
amount of tissue produced in the pore implies that the
local tissue thickness is homogeneous along the third
axis, which is unlikely. Indeed, cells need time to
migrate and therefore can not build the same
thickness of tissue simultaneously throughout the
depth of the channel. Moreover, the extremities of the
pore present convex corners in 3D and such boundary
conditions are expected to affect the growth pattern
along the z-axis. As a consequence, pores are unlikely
to remain straight during growth, and a second
principal curvature (different from zero) should then
complete the geometrical characterisation of the
interface in 3D. Although this second principal
curvature is expected to play a role, the approaches
proposed in this study assume that only one principal
curvature (in the image plane) changes during growth
whereas the other remains constant and zero
(straight sided pores). The slowdown of tissue growth

111



0,8
F.
Dla _ i
— E
E !
:E 04 4
= D
o
0,2 C'
Al
0,0 T T T T
0 200 400 600 800 1000
Time (steps) A

FIGURE 7. Importance of boundary conditions

Tissue growth (orange) is simulated on different artificial images using the CCTG description (A to F). The predicted PTA is
reported as a function of iteration steps. Each initial interface (black) contains a semi-circle with a radius of 0.5 mm. The different
boundary conditions show the influence expected on tissue growth rate and organisation. On A, B and C, the model predicts that
the sharper the convex corners, the slower the growth. Tissue is eventually deposited on convex surfaces after the surroundings
have been filled and the interface has locally become concave (red arrows). Comparing A, D and E reveals that shifting the convex
corners upward prolongs the duration of a constant growth rate which is half of the one obtained in a full circle (F). Tissue
deposition can expand on the walls until it reaches the convex corners. From this time point (inset), the surface joining the pinning
points is minimised, which decreases the curvature and slows the growth.

observed in terms of PTA could then be explained by
the emergence of a convexity (negative second
principal curvature) in the z-direction that is not
taken into account in the previous calculations.
Extending the CCTG description to 3D would be of
great interest to understand which combination of the
two principal curvatures is relevant for tissue growth:
mean curvature, Gaussian curvature, maximal
curvature, etc. As such models predict interface
evolution toward surfaces of minimal energy, this 3D
mean curvature would then decrease and tend
towards zero, much akin to what is observed in
trabecular bone [37].

Interestingly, curvature-controlled growth is well
known in physics and material sciences and has been
used to describe electrochemical coating [53][54],
solidification [55], and grain growth [56], for example.
Such processes come about in systems with high
surface tensions, in which surface energy is linked to
curvature through the Laplace equation, as commonly
seen in wetting problems [57]. Surface tension has
also been shown to be a determining factor in biology,
mainly in the context of the Differential Adhesion
Hypothesis [58]. This interfacial characteristic is not
only responsible for self sorting on the cell level
during gastrulation [59] and tumour invasion [60] but
also for tissue organisation [28].

While it was known that tissue-producing -cells
respond to geometry [29] following a principle of
CCTG on a millimetre scale [27], the present study
shows that the patterns of growth obtained in circular
pores and on semi-circular channels are analytically
equivalent to those derived from a simple
construction based on tensile elements representing
stretched cells. No direct geometry sensing is
necessary to explain the resulting curvature-
controlled growth. The shape of the surface affects the
spatial distribution of FAs and thereby the shape of
the contractile cells [13] as well as the forces they

sense [8] and produce [10]. Adding a time scale
enables the model to predict the kinetics of tissue
deposition: faster growth occurs in circular pores
compared to semi-circular surfaces.

The chord model was able to explain the shape-
dependence of growth solely in terms of tension and
curvature, without any biological mechanisms such as
stress-dependent proliferation or migration. Although
such mechanisms are involved on the cellular level
and need to be taken into account in a physiological
context, our results show that the interplay of
contractility and geometry alone can coordinate
growth in scaffolds. This reveals a generic physical
control mechanism for biological growth processes in
bone, independent of specific functional aspects and
signalling pathways, that may also be relevant to
other tissue types.

The interfacial motion predicted by the model and
supported by the experiments is similar to the one
occurring in osteons and osteoclastic resorption
lacunae during bone remodelling: while circular pores
are filled in a concentric way, semi-circular channels
are filled layer by layer until the interface becomes
flat i.e. the curvature of the surface becomes zero. This
implies that osteoblasts do not need a specific signal
to stop matrix production when the resorption pit is
filled, but the gradual flattening of the bone surface
during the filling process are sufficient as a cue.
Interestingly the observation that semi-circular pores
fill at a slower rate than circular ones is also observed
in trabecular and cortical bone, with the filling of
hemi-osteons being slower than for osteons (see e.g.
[61,62,63]). These results strongly suggest that
surface geometry is an important signal for
controlling bone remodelling. In this respect the
model may also have implications for tissue
engineering and of course may be interesting to use it
in the design of scaffold materials for implants
[64,65,66]. One major difficulty in testing the model
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in-vivo is the limited amount of kinetics data available
in which local growth rates within a scaffold have
been measured. It is possible that recent
developments in in-vivo CT may provide suitable data
that enables a comparison with the model [67].

The chord model presented in this paper makes the
link between the macroscopic curvature-controlled
tissue growth observed in vitro and in vivo, and the
assembly of stretched cells and other fibrous elements
making up the tissue.
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Abstract: It is known that cells proliferate and produce extracellular matrix in response to biochemical and
mechanical stimuli. Constitutive models considering these phenomena are needed to quantitatively describe the
process of tissue growth in the context of tissue engineering and regenerative medicine. In this paper we re-examine
the theoretical framework provided by (Ambrosi and Guana, 2007; Ambrosi and Guillou, 2007). We show how a
volumetric growth rate term can be obtained (both in a large and small strain setting), which is consistent with the
laws of thermodynamics and then apply the model to a simple geometry of tissue growth within a circular pore. The
model, despite its simplicity, is comparable with experimental measurements of tissue growth and highlights the
contribution of the mechanical stresses produced during tissue growth on the growth rate itself.

1 Introduction

Understanding the kinetics of tissue growth is of major importance for many biological processes, including wound
healing (Martin, 1997), tumour growth (Mantzaris, et al, 2004), and bone remodelling (Taylor, et al, 2007). The
development of good predictive models is not only fundamental to understanding the progression of disease
(Mantzaris, et al., 2004) and healing (Martin, 1997) but also in the design of optimized scaffolds for tissue engineering
(Hollister, 2005; Mitragotri and Lahann, 2009; Sengers, et al., 2007). Mesenchymal cells responsible for tissue growth
(e.g. connective tissue, bone, cartilage, etc.) are known to integrate physical signals into their growth behaviour
(Geiger, et al., 2009). For example, in addition to biochemical growth factors (such as bone morphogenic proteins,
etc.) (Hartung, et al,, 2006; Place, et al., 2009) and substrate chemistry (Castner and Ratner, 2002; Faucheux, et al,,
2004; Tabata, 2009), cell behaviour can be modified by mechanical stimuli (Chen, 2008; Geiger and Bershadsky,
2002), and is strongly influenced by the stiffness (Discher, et al., 2005; Kong, et al., 2005; Lo, et al., 2000), topography
(Curtis and Wilkinson, 1998; Zinger, et al., 2005), and surface roughness (Boyan, et al,, 1999; Linez-Bataillon, et al,,
2002) of the substrate. As an example, Fig.1 shows bone-like tissue growth formed in-vitro by MC3T3-E1 pre-
osteoblast cells, within millimetre sized hydroxylapatite channels of different size and shape (Rumpler, et al., 2008).
Under these conditions, new tissue forms preferentially in the corners of the channels and is initially quiescent on the
faces. This leads to strongly inhomogeneous growth behaviour which seems to depend on the stress state of cells, as
indicated by the formation of actin stress fibres (or actin filaments) oriented tangential to the inner surface of the
growing tissue (Nelson, et al,, 2005; Pathak, et al., 2008). These observations were interpreted using a simple growth
law in which the growth rate is taken to be proportional to the local surface curvature (Fig. 1 lower row). In contrast
to (Rumpler, et al.,, 2008), the theory of tissue growth outlined in this current paper is developed based on well known
thermodynamic arguments (see e.g. (Martyushev and Seleznev, 2006; Onsager, 1931)) using the approach of Ambrosi
and Guana (2007) and Ambrosi and Guillou (2007), respectively. The resulting growth laws are applicable to both,
large and small strain settings. The growth kinetics and the evolution of the radial and circumferential stress
component of a tissue layer at the inner wall of a cylindrical body are calculated numerically by incrementally
applying small strains, and the numerical results are discussed in the context of the experimental findings of Rumpler
etal. (2008).

Figure. 1 - After Rumpler et al. (2008), Tissue imaged by actin staining (upper row) and tissue growth described by a simple
model (growth-rate proportional to local curvature of the surface) (lower row).

115



2 Theoretical Framework

Modelling of tissue and/or bone growth has been a research topic in continuum mechanics and later in biomechanics
for many years (see for example the review by Taber, (1995)). One of the principal goals of such models is to
introduce or derive the experimentally observed coupling between the growth of new material and the local
deformation or stress state. Much work has been done in this direction for example in the field of bone remodelling
(see e.g. (Dunlop, et al., 2009; Frost, 1987; Huiskes, et al., 2000; Turner, 1991; Weinkamer, et al., 2004)) and tumour
growth (Ambrosi and Preziosi, 2002; 2009; Ehlers, et al,, 2009). With respect to bone remodelling, the models often
consist of a phenomenological rule, introduced ad-hoc, describing how the tissue grows (or is absorbed) as a function
of the mechanical state of the tissue. They typically consider growth or absorption not as a growth eigenstrain, but
rather by simply removing (or adding) volume elements to the surface or by modifying the local materials properties.
Cowin and Hegedus for example proposed an adaptive elasticity concept, in which a phenomenological solid volume
change is introduced that depends on the strain tensor (Cowin and Hegedus, 1976; Hegedus and Cowin, 1976). This
volume change is implemented as a change in porosity which in turn affects the elastic behaviour; a growth
eigenstrain rate is not established however. Later Taber and co-workers (1996; 2001) formulated the growth process
in the framework of finite deformations and suggested growth strain ratios, whose material derivatives are
proportional to the principle stresses. Garikipati et al. presented an extensive continuum mechanical treatment of the
growth process, using a finite deformation setting including inertia terms (Garikipati, et al., 2004). This concept is
widely applicable, but not related to a special growth eigenstrain. However, it is referred to a framework consistent
with the 2nd law of thermodynamics. This concept was applied by Humer (2008) for a spherical configuration with a
Blatz-Ko material and an explicitly given growth term. Volokh (2006) introduced an evolving growth eigenstrain
term, based on a mass flux of the tissue or bone matter itself. This term is transferred to an eigenstress term and
considered within thermo-elasticity. This promising concept motivated the authors to develop a growth eigenstrain
term, which can be handled within elasticity, consistent with the 2nd law of thermodynamics. A well established
method to describe both the development of a microstructure by an eigenstrain and the rules of continuum mechanics
and thermodynamics is the concept of material (or configurational) forces, which has been widely applied in
continuum mechanics and has promoted the understanding of the kinetics of phase transformation in solids. Very
important for our purpose, the volumetric growth of a body can be considered as a specific case. A rigorous treatment
of this approach was presented by Maugin and coworkers, see e.g. (Epstein and Maugin, 2000). The gradient of the so-
called “energy momentum tensor” (or the Eshelby tensor (Eshelby, 1975)) plays here a central role. Kirchner and
Lazar recently used this concept to describe bone and arguing that terms quadratic in the stress (the elastic strain
energy) may outweigh the remaining terms (Kirchner and Lazar, 2008). The concepts of porous continua has also
been applied to swelling media most recently by Ehlers et al. (2009) also using the relations by Ambrosi and co-
workers for the constitutive equations. Finally the reader is referred to a recent review on growth in the context of
continuum mechanics and thermodynamics by Garakipati (2009). We rather exploit the concept of thermodynamics,
studying the dissipation inequality as in the work by Maugin and coworkers, e.g. (Epstein and Maugin, 2000), and
follow the path paved by Ambrosi and coworkers (Ambrosi and Guana, 2007; Ambrosi and Guillou, 2007). This
current work is focused on the growth of soft tissues. The growth process occurs simultaneously in the whole region
as nutrient can be assumed to be supplied simultaneously to each subregion and can be understood as a swelling
process. The volumetric growth rate can be obtained (both in a large and small strain setting), whose constitutive law
meets the supply of matter by a diffusing nutrient and guarantees a positive entropy production. The following three
sections outline the derivation of the thermodynamically consistent growth law. The first describes the mass balance
relations which are implemented in the second section, into the dissipation inequality arising from the 2nd law of
thermodynamics. The third section describes the biological interpretation of the growth model.

2.1 Kinematics and balance relations

In order to develop a consistent theoretical description of tissue growth some continuum mechanical concepts are
required. An appropriate frame of reference for the problem has to be chosen, in which a mass balance relation is
defined, which is in turn obeyed during the growth process. Tissue growth could be investigated in two different
frames of reference; the reference configuration and the actual configuration. In the reference configuration, any
quantity depends on the material coordinates assigned to the material body at a fixed time t =0 . This configuration
has the advantage that the boundary conditions do not move during growth, making calculations somewhat simpler.
An alternative viewpoint is to assign the material coordinates to the (deformed) body at the actual time t. This
placement is called actual configuration and the quantity is then measured relative to the deformed body. This system
has the advantage that it is observable. Both configurations can be connected to the same spatially fixed coordinate
system and readily converted from one to the other via the deformation gradient tensor, F. Following Rodriguez et al
(1994) and Ambrosi and Guillou (2007) the deformation gradient can be multiplicatively decomposed in a
deformation gradient tensor F, due to elastic deformation and a deformation gradient tensor G related to the

growth process,

F=FG. (2.1)

The density p, in the actual configuration is related to the density p, in the reference configuration using the
determinant Det F>0:

p,=p,DetF. (2.2)
Following Ambrosi and Guillou (2007) the rate of of the density p, in the reference configuration reads
Py = po(l :GG'l) (2.3)

based on the assumption that a pure elastic deformation does not lead to a change of the mass.
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A nutrient with the mass fraction C, [C] =1, flows as an interstitial fluid through the solid with a flux vector m (mass
per area and time), obeying the mass balance

Divm =—¢p, —cp, + p,E, :GG™, (2.4a)

where the second term on the right hand side of Eq. (2.4a) was missed in (Ambrosi and Guillou, 2007). The last term
is a source term introduced by Ambrosi and Guillou (2007), which takes into account that nutrient has to be provided
during tissue growth. A non-isotropic absorption rate can be described by the tensor E, . In the special case that the

absorption rate is isotropic, E; = ¢/l , the mass balance (2.4a) can be rewritten as

Divm =—¢p, +p, (¢, ~0)(1:6G*). (2.4b)

2.2 Energetics
The chemical free energy per unit The chemical free energy per unit mass y,, can be expressed by the chemical

potentials of the (growing) tissue (i and of the nutrient u_ giving

W e = O, + (1= C) 1, = C(1t, — 1) + 14, (2.52)

Substituting y — y, = U and by setting the chemical potential y_ to zero in an arbitrary manner (only differences in
energies can be measured) one obtains

Y = O = CH, (2.5b)

The total free energy per unit mass y consists of the elastic strain energy per unit mass, v and the chemically

mech ’

stored free energy per unit mass v/,

w = lllmech +Wchem = ll/mech + C,U ’ (26)

By assuming that neither y_ . nor m depend explicitly on the nutrient mass fraction c, the partial derivative dy /oc

h
equals m. As a mechanism of conversion of nutrient to tissue, we follow as a possible model, the concept of phase
transformations, so that the conversion process is accompanied by an energy change Ay per unit mass. Note that Ay
includes both the change in the energy per unit mass of the transforming phase and a transformation barrier energy.

For an isothermal process the free energy per unit mass y therefore, depends on the deformation gradient F, and

on an internal variable, the mass fraction, c. The rate of w = !//(Fe,c) is given by

oy . oy
=L E+2¢. 2.7
V= gE o 2.7)
We express now the work rate (the power) W provided from outside to a unit mass as
W=P:F- Div(unm)+ U.p,E, GG (2.8a)

P is the 1st Piola-Kirchhoff stress tensor, and P:F represents the mechanical energy contribution, - Div(unm) is the
outward flux of chemical energy of the nutrient, and the last term in (2.8a) is the volumetric source term or the rate of
chemical energy of the nutrient provided to the unit mass.

The internal change of the microstructure is represented by the energy rate E consisting of the free energy rate
d(pol//)/dt and the change of energy due to a conversion of the provided rate (source term) of nutrient to tissue
yielding

E=d(pgw)/dt+Aup,E,: GG™. (2.8b)

The dissipation, D, is the difference between the rate at which work is done on the system, W , and the rate of change

of energy, E (see e.g. Simha, et al. (2008)). The 2nd law of thermodynamics asserts that the dissipation is non-
negative for every sub-region of the material body:

D=W-E=>0. (2.8¢)
Thus the 2nd ]aw of thermodynamics can be formulated as
P:(I':eG + FeG) —p,Divm—m- Gradu, — pw — pyr + (un - Au)pOE0 :GG™=0. (2.9a)

The inequality (2.9a) is equivalent to that derived by Ambrosi and Guillou ((2007), Eq. 3.3), however without the last
term on the left side concerning the energy contributions due to the source term of the nutrient. According to Ambrosi
and Guillou (2007) we reformulate the inequality (2.9a) and eventually obtain a dissipation inequality

[FPG™-p, (w—cu)1 —AUp,E, |: GG —m- Gradu >0 (2.9b)
Note that due to g, = both according source terms go out of the balance (2.9b). The quantity (y —cp), is replaced
by the term y . that accounts for the elastically stored energy (per mass), see Eq. (2.6). By rearranging Eq.2.9b,

introducing the elastic energy density (per volume) ¢ .. =p. ¥, . and assuming an isotropic absorption rate the

mech
dissipation inequality reads as

—[DetF(pmechl —F'P+Aup el ] :G'G-m-Gradu>0. (2.90)
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This equation contains two terms, each of which consists of a configurational force multiplied by a flux. Within the

square brackets of the first term, the Eshelby energy-momentum tensor C = DetFg _|1—F'P can be recognized,

mech
however it is modified by an additional chemical configurational force, Aup,el. This configurational force is

multiplied by a generalised flux namely the growth rate, GG . The second term consists of the diffusive flux,
multiplied by its conjugate force, namely the gradient in chemical potential. The term (—m . Grad/,l) gives a positive
contribution, if the flux m is proportional to —Grady which is a standard assumption for a diffusive process. Finally
the dissipation inequality (2.9¢) is always fulfilled, if we introduce a positive parameter f (C) >0 and set up a linear
relation:

GG =- 1 (c)[(DetFe,,, + Aup,e, )1 -FP]. (2.10)

This equation is the simplest form of the tissue growth rate, GG , in terms of the deformation gradient tensor (in
the large strain setting), which is thermodynamically consistent. From the point of view of thermodynamics, the
thermodynamic forces are parallel to the fluxes. This is in accordance with the principle of maximum dissipation, first
exploited by Onsager (1931); for references see (Svoboda, et al., 2005). Here we would like to refer to a recently
published paper (Vignes and Papadopoulos, 2010), where a so called surface concept with several activation surfaces
is followed to ensure positive dissipation similar to multi-surface plasticity. The concept at hand is however much
simpler.

An evolution equation can be obtained by reformulating Eq. (2.10) so that it fits within the framework of a small
strain setting. The deformation gradient F can be replaced by the unity tensor I. The growth tensor G is converted to
the volume changing eigenstrain g. The 1st Piola-Kirchhoff stress tensor P becomes the Cauchy stress tensor ¢ .

Furthermore, we transform GG to the growth eigenstrain rate
9= 1(c)(0 - el ~ Fes1). (2.11a)
with i =p,Au . Since ¢ _(O' :(CO')/Z, with C being the (4t order) elastic compliance tensor, is usually much

mech
smaller compared to the values of the individual components of &, the ¢ ., -term can be often neglected,, contrarily
to the statement of its role in (Kirchner and Lazar, 2008), giving finally:
g=1(c)(oc-e,l) . (2.11b)
In case that nutrient transforms to tissue [ <0 is required since the nutrient converts to the energetically more
favourable phase tissue; this can be viewed as similar to the process of the transformation of an amorphous phase to a
crystalline phase, for example. The stress state ¢ depends on both the boundary conditions and the loading process.
Here we refer again to (Taber and Eggers, 1996; Taber and Humphrey, 2001), who suggest a growth rate term as
(2.11a) or (2.11b), however neglecting the role of —fig 1 .

2.3 Biological interpretation of equation 2.11b

Equation 2.11b is an equation for growth (written in terms of an eigenstrain rate) which is thermodynamically
admissible, or rather needs to be of this form in order to be consistent with linear non-equilibrium thermodynamics.
The principle assumptions behind the rigorous thermodynamic derivation are:

. If there are no constraints to matter transport, or in other words if the diffusion of nutrients is much faster
than the growth process, the diffusion equations need not be considered. This is reasonable in most cases for
biological systems (except for some notable cases like the cartilage in joints (Hall, 2005)) where the transport of
nutrients occurs through blood vessels and capillaries.

. The system evolves/changes in order to maximise dissipation in the sense formulated by Onsager (1931),
(see also (Martyushev and Seleznev, 2006) for applications in biology). This just means that the biological system has
to act in concordance with the laws of physics (thermodynamics, in particular), but does not imply any limitation with
respect to the possibility that various signals (biochemical or mechanical) may influence cell proliferation and tissue

growth.
The resulting growth law as given by Eq. (2.11b) then has a number of features:
. The stress term, o , comes directly from the dissipation term in the derivation and gives an explicit stress

dependence. This just means that the occurrence of internal stresses in the tissue has a direct influence on the volume
change of the growing tissue, regardless of whether the cells are directly influenced by stress in their activity.
. The second term in the parenthesis is [igl| representing the energy change analogous to the chemical

potential change in a chemical reaction (that would transform nutrients into tissue). In this sense, the cells (e.g.
fibroblasts, osteoblasts, ...) are considered as thermodynamic machines driven by a chemical potential.

. The pre-factor in Eq. (2.11b), ), f (c) , represents a kinetic term and describes the activity of the system. It

can be viewed as a term which describes how fast cells react and produce new matrix. Indeed, the parameter
describes the growth rate of the tissue in relation to the interplay between mechanical stress state and the energy

input (G—ﬂeol). Less effective (e.g. old or diseased) cells could be imagined to have less activity and, therefore, a
smaller f (c) . Similarly, biochemical growth factors activate the cells and, therefore, would increase f (C) within the

present theoretical description. In principle, f(c) may therefore depend on various extrinsic parameters, both

systemic (such as age or disease) and local (such as local physical or chemical stimuli to the cells).
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3 Solution of the model for a simple geometry
In the following we chose the simplest of cases and take both the activity parameter f (C) and the energy term [ig, as

being constants and investigate what can be derived for a simple geometry of tissue growing inside a circular pore.
3.1 The geometrical and mechanical setting

We consider a layer of tissue growing (in the actual configuration) within an undeformable hollow cylinder with an
outer radius, R, and the inner tissue radius r, (Fig 2). Since the closing of an initial hole by growth of tissue is studied,

it could be viewed as consisting of large deformations. However, we consider the growth process rather than any
large deformation process expressed in an incremental form. In order to model the growth process we study the
deformation state of an actual configuration with the inner radius r, at the starting time t, and select the time interval

t,,,—t in such a way that only small deformations and stresses can be expected. In this case the use of a small strain
setting is justified, and we assume the system to behave as linear elastic. The growth process is then replaced by an
according eigenstrain, given by the product of the growth rate g , Equation (2.11b), and the time increment t,, —t; .
The deformation state due to this eigenstrain delivers the changed configuration at time t,, by adding the
displacements to the starting configuration at time t;. Linear elasticity (Hooke’s law) allows also for a superposition

of the stresses. Finally, the equations of elasticity are solved in rate form, and the actual topology and stress rate are
found by time integration, for details see section 3.2. The tissue is assumed to be isotropically elastic with a Young’s
modulus E and Poisson’s ratio n. We ignore any variation in the axial direction and, therefore, work within a plane
stress setting of a disk with unit thickness.

The strain components, €, and €, are related to the radial displacement u, by standard kinematics as:

du _, u
Er—a—u, 819—F. (31)
The quantity r is the radial coordinate, r, <r<R.
Due to the cylindrical symmetry of the problem and the boundary conditions, we observe a stress state, ¢, with only
two non-zero principal stress components; ¢, in the radial and o, in the circumferential direction. We assume for a

loading increment a small strain setting and, therefore, an additive decomposition of the strain tensor ¢ into an

tissue boundary
growing inward

Figure 1. Sketch of the pore geometry

elastic contribution, €,, and a contribution from the growth eigenstrain g, i.e. £=¢,+g. Hooke’s law (¢ = ct g,)

el’

yields in this case with E = E/(l— vz)

o, =E(e, +ve,)-E(g, +vg,). (3.2a)
and

o, =E(ve, +e,)-E(vg, +g,). (3:2b)
The stress components must obey the equilibrium condition

d

—(ro )-0,=0. 3.3

o (ro)-0, (33)

For the strain components €, and &, in (3.2 a-b) the relations expressed in Egs. (3.1) are used. Then the following
differential equation is obtained by inserting the stress components ¢, and ¢, into the equilibrium condition (3.3),

with u” = d(u')/dr as

reu' =2 =L r(g +vg,)]-(vo, +9,) (34
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3.2 Evolution equations for the growth process
Since only the rate g of g is known, (2.11a-b), the relations, Egs. (3.1-3.4) can be reformulated in rate form by
replacing u and g by their time derivatives. Of course, the radial coordinate r is unaffected by this operation;

however, . becomes now a time-dependent function ri(t) . A solution of the time derivative of (3.4) follows as
_ B
u-Ar+?+up(r). (3.5)

The quantities A and B are integration constants, u, (r) is a particular solution corresponding to the right side of the

time derivative of Eq. (3.4). The integration constants A and B are derived using the boundary conditions
(r=R:u=0andr=r: o, =0).Details can be found in Appendix A.

The first step to the solution is now to find the particular solution u, according to the components ¢,, d, instead of

d,, 9, - The components of the growth eigenstrain rate are related to the components of the stresses ¢,, o, by the
constitutive equations (2.11b) yielding, after some analysis using the equilibrium equation (3.3),

u ’
rup+up_7p=vf(c)[(r%) _or}s(r). (3.60)
The right side of (3.6a) can be reformulated by applying again the equilibrium condition (3.3) as,
s(r)=vi(c)r[30; +ro7]. (3.6b)

After applying the method of “Variation of the Constants”, one can find the particular solution U (r) as

up(r):—%[r}@dr—%?ﬁ(r)dr} (3.72)

r r

R
by use of the relation d(fh(r)dr‘]/ﬂr = —h(r) .
Insertion of S (r) from (3.6b) yields after some analysis,

up(r)=vf(c) ror(r). (3.7b)
This surprisingly simple result can directly be checked by evaluating the left side of (3.6a) and comparing it with
(3.6b). Solution (3.5) can be rewritten by using the particular solution (3.7b) as

u=Ar +$+vf(c) rc,. (3.7¢)
Inserting the coefficients A and B (Appendix A) into (3.7c) gives the rate of displacement l](r) ,as
1-v) (1+v
. f(c)r.szr [( r’ )+( r’ )JVG'(R)
u(r)__(1+v)r.2+(1—v)R2 L1
' —(1+v)( j_

e

+vf (c)rcr(r). (3.7d)

The rates of the stress components &, and &, are obtained by introducing the displacement rate l](r) and the

components of the eigenstrain rate ¢ into the rate form of Hooke’s law, Eqns (3.2 a-b), yielding:

%:u'w%— f(c)(o;+v0'ﬂ)+(1+v)f(c)ﬂeo, (3.8a)
d_éﬂ = vu’+%— f (c)(vo'r +o-x,) +(1+ v) f (c)ﬂeo. (3.8b)

The solution for l](r) as given in Eq. (3.7d) is inserted into Egs. (3.8a) and (3.8b), and with the equilibrium condition

(3.3) one obtains the rates of the components of the stresses 6, and &, as follows

e e AU o AU

. (1‘rV) +(1;2V)2

, (3.9a)
fie, —(l— vz) f (c)cr + (1+ v) f (c)ﬁe0

(3.9b)
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It is worth mentioning that (3.9a) fulfils the boundary condition d‘r’r =0,(r)=0.
The equations above can be rearranged as

%+(1— vz) f (c)csr = (1£lv_):z)+f(£c_)j)sz (vcr(R)—ﬁeo)(—M:‘—i], (3.10a)

d—é"+(1—v2) t(c)o, = (1£lv_)::)+féc_)VR;R2 (vcr(R)—ﬁeo)[—l—:‘—zJ. (3.10b)

In the following the rate of the displacement U, and the rate of the components of the stresses 6, and 6, are

expressed in a normalized, i. e. dimension-free form. Therefore, it is advantageous to introduce the dimension-free

t 1 o
quantities; the dimension-free time 7=— with t; :m , the dimension free radius F=r/R and = ri/R.
7

0

respectively, and the dimension free stress components G, =Gr(l’)/60 and 6{,\:0@('7)/00 where GO=|ﬂq)| and

o= @ ; note that [ is assumed, as usual, to be a negative quantity.

The following expressions for the normalized quantities are obtained after inserting 7,7,f,6,,6,, [ into Eq. (3.7d)

(1-v?)(v6,+1) _

and Egs. (3.10a-b) and using the auxiliary function F = :

du_ BT f ' +vi6, (7). (3.11a)
dr~ (1+v)r2+(1-v) 1 '

r
dé, _ 1 P2 2\ ~
- __E{F.(l_f_z}(l-v )a,} (3.11b)
d, _ 1 F? N~
= ——E[F~(l+r—2]+(1—v )6, |- (3.11¢)

Egs. (3.11a-c) give together with the boundary conditions (f=1: U=0andf=Ff: o, =0) and the initial conditions (
7=0:f=1-6, 6, (1) =0) the general solution for the displacement u(f,7) and the stresses 6 (f,7) and 6 ,(f,7) as

functions of radial position and time. As both dg, (1)/d7: and (dU/dT)‘ _=df. /dt are zero for f; =1r a very small

=

normalized initial tissue thickness, § =107, is introduced. Alternatively one can calculate from (dU/dT)‘ _=drf /dt
T

F=
and (dc?r /d7:)‘|_‘_l the unknown quantities . and &, (1) first, which evolve according to

dr _ i, +(1+v)(7-7)

dt (1—V)+(1+V)fi2 ’ (3.12)
and
(e )

dt H= (1_v)+(1+v)fi2 ’ (3.13)

where Egs. (3.12) and (3.13) can be found as special cases of Egs. (3.11a-b). Together with the initial conditions
7=0: f=1-6, G, (1) =0 Egs. (3.12) and (3.13) form an initial value problem. Then, the solutions f, and &, (1) can be
inserted into Egs. (3.11a-c). An additional derivation of the rates, Egs. (3.12) and (3.13) can be found in Appendix B.

It is also worthwhile expressing the growth equation (2.11b) in terms of the dimension free parameters giving the
following simple equation:

95+ (3.14)
dt

3.5 Numerical solutions to the evolution equations
The coupled equations for the evolution of the pore radius, Eq. (3.12), and the radial stress at the pore wall, Eq. (3.13),
were integrated numerically for different values of i and v . Solutions of Egs. (3.11a-c) for growth in a cylindrical

pore, for different values of I and v, are presented in Fig. 3. The calculated tissue area fraction, A=1— I’i2 , is plotted

as a function of time in Fig. 3a. All curves coincide on an approximate “master curve” being roughly independent of i
and v, although the curves overlap exactly only when the Poisson’s ratio is 0 (as appropriate to describe a fibrous
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network). The simulated growth behaviour is roughly sigmoidal in shape and has three main stages, namely a slow
initial portion increasing exponentially to a roughly linear region, finally slowing down as the pore is filled. Although
the experimental data given in (Rumpler, et al,, 2008) do not extend to times when the pore becomes completely
filled, there is still remarkable similarity between the simulated growth rate and the data at early times. When v =0,
equation (3.12) can be solved analytically (For details see Appendix C). For early times, 7 <<1, the growth rate is
exponential:

Ar)=1-7~exp(r-7,) (3.15)

with 7,=aIn10 being a delay time corresponding to the time taken for the first layer of tissue to nucleate. An

increase in the Poisson’s ratio, v, or the normalised change in the chemical potential, /,7| for v#0, results in only a

small increase in the growth rate. As the time (Fig 3a) is given in units of |ﬂe0f (C)| a stronger change in the chemical

potential for growth, and a higher cell activity will result in a faster growth rate, as expected.
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Figure 3a) Normalized area fraction of transformed tissue, A=1— r,.(T) as a function of 7. b) Radial stress at the outer wall,
6'r (1) as a function of normalized time 7.The radial stress 6'r(l7‘.) at the inner wall is zero. ¢) Circumferential stress at the outer

wall, 6'19(1) as a function of normalized time 7. d) Circumferential stress at the inner wall, 6'0(171.) as a function of normalized

time 7.

The radial stress on the outer pore wall (Eq. 3.13) can also be calculated, and the numerical solutions are plotted in
Figure 3b. As the inner boundary is a free surface, the radial stress is zero. As with the area fraction, when the

appropriate units of stress are used (here we plot in units of the change in chemical potential |ﬂ%| ) all curves fall
onto a master curve with only small variations with [ and v . An increase in both the Poisson’s ratio and the change
in chemical potential increases the speed at which the stress saturates. The saturation radial stress, however, if
expressed in units of |ﬂq) ,isindependent of [ and V being compressive with a value of -1.

The circumferential stresses at both the inner and outer boundaries are also calculated from Eq. 3.11 and the
solutions to the pore radius, Eq. (3.12), and the radial stress at the wall, Eq. (3.13), and plotted on Figure 3c. The
behaviour is quite different to the evolution of the radial stress at the outer pore wall. The stress drops very quickly to
a value of -1 (compressive stress) and, as at this stage the initial tissue layer is thin (compare Fig. 3¢ and Fig. 3d), the
stresses at both the inner and outer boundaries are almost the same. The radial growth only starts occurring when
the circumferential stress in the initial tissue layer reaches a stress value of -1. However as soon as tissue starts to
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grow more rapidly, around 7 ~4, the circumferential stresses at the inner and outer boundaries become markedly
different. While the stress in the outer pore wall, f =1, decreases to a value of -2, the circumferential stress in the
inner wall I =T, remains constant, apart from a small perturbation. This perturbation is due to a coupling between
the radial and the circumferential stresses described by the Poisson coefficient and is, of course, not seen for v=0.

Summarising the behaviour in Fig. 3, the initial quiescent stage corresponds to the fast increase of compressive
circumferential stress in the initial tissue layer. Only when this (normalized) stress reaches a value of -1 does the
exponential growth and the fast development of compressive radial stresses at the outer wall set in. At this stage a
large stress gradient in the circumferential stresses forms between the inner and outer layers (it must be kept in mind
that the radial stress is also zero on the inner boundary also giving rise to a stress gradient).

When Egs. (3.11a-c) are simultaneously solved by considering the initial and the boundary conditions the
distributions in circumferential and radial stresses across the grown tissue as a function of time are obtained. From
the point of view of continuum mechanics the integration can be described as following: A material point is generated

at a distinct radius F = at the time TC(?) belonging to I’i(rc) = . Then the material point keeps its position = P,
which means that it does not move along the radius, except to small deformations. Therefore, the quantities
o, (';)'59 (?) follow by integration of (3.11b) and (3.11c) with constant = i for 7> rc(?) .

The circumferential and radial stress distributions as a function of radius f for various times, 7, are depicted in
Figure 4 ([1=0.5 and v =0). As can be concluded also from Figs 3a and 3b the radial stress is close to zero at 7<4.
Even at 7 =7 the radial stresses in the tissue are still small (Fig. 4a). Once the circumferential stress reaches this level
of -1, growth starts accelerating and the radial stress starts building up (Fig. 4a). The spatial gradient d6, /df atF =T
follows from the equilibrium condition (Eq. 3.3) with the boundary condition (G (f;) =0 ). The according tangents are

depicted in Fig. 4a. As a consequence of the radial growth in the confined pore, the circumferential stress becomes
even more compressive at the inner pore wall tending towards values of -2 at pore closure (Fig. 4b). These high
compressive circumferential stresses relax in the rest of the grown tissue back to a value of -1 (e.g see 7 =11 in Fig
4b)
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Figure 4a) Radial stress G, (}7) distributions across the grown tissue as a function of radius, 7 for fi=0.5,v =0 . Tissue grows

into the centre of the pore 7 =0 from right to left. Dashed lines indicate the gradients (d()'y /dt)

following the equilibrium

=,

condition Eq. (3.3). Dotted lines indicate position of inner pore boundary for the different times. b) Circumferential stress G , (f)

distributions across the grown tissue as a function of radius, 7 for fi=0.5,v =0 . Tissue grows into the centre of the pore 7 =0
).

from right # =1—0 to left. Dotted lines indicate position of inner pore boundary for the different times (7= 7, 8,9, 10, 11

4 Discussion and Outlook

The development of a gradient in circumferential stresses, with the largest magnitude being close to the inner surface
of the pore (Fig 4b), matches at least qualitatively the occurrence of circumferential tensile stress fibres seen in the
tissue growth experiments of Rumpler et al. (2008) (Fig. 1). At first glance it may appear somewhat counterintuitive
to compare the predicted compressive tissue stresses to the tensile actin stress fibres observed experimentally.
However, the underlying assumption behind the model is that cells, although not modelled explicitly, are evenly
distributed everywhere throughout the tissue and synthesize extracellular matrix according to their local stress state

according to g = f (0 - ,L_leol) . That is, the model rather reflects the response of the continuum (tissue) to new tissue

formation by the cells. In order for this new tissue to be accommodated, space must be made by compressing the
surrounding tissue which in turn alters the local stress state experienced by the cells. The cells can compress their
surroundings in two different ways; they either actively contract by creating tensile forces in their cytoskeleton
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(Geiger, et al., 2009), or they just produce new matrix resulting in an effective swelling inside the confinement of the
pore. The net result in both cases is the same. There is, however, a limit to the compressive stress that cells can attain
represented by a negative term in the growth eigenstrain rate. This means that the tissue will grow in such a way as to
reach a uniform stress within the tissue growing inside the pore. The application of the above equation to tissue
growth on convex surfaces however would predict tensile stresses to develop. This would lead to an accelerating
growth rate (this can be modelled by applying the eigenstrain rate equation to growth outwards from a cylinder
similar to section 3), which is not observed experimentally (unpublished data). Therefore future research will also be

directed in this aspect, especially studying the role of a surface stress. In the current model, the parameters f (c) and
Hel , representing the cell activity and the change of energy during tissue growth respectively, are taken to be

constant. In principle these parameters could also include a dependence on stress, and further work is being done to
address this.

5 Conclusions

In this paper we derive and investigate a thermodynamically based model for tissue growth. The model was applied
to the simple geometry of tissue growing within a cylindrical pore. Remarkably the growth kinetics and the calculated
stress distributions are similar to experimental results from tissue cultures (Rumpler, et al., 2008). These similarities
are very interesting, keeping in mind that the description of the biological system (with f(c) and fie,l being

constant) is the simplest possible. Nevertheless, the treatment shows that internal stresses (which cells can sense)
develop inevitably during tissue growth, which supports the idea that the regulation of tissue growth is to a large
extent stress-driven.
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Abstract: In a previous paper we presented a theoretical framework to describe tissue growth in confined geometries
based on the work of Ambrosi et al. A thermodynamically consistent eigenstrain rate for growth was derived using
the concept of configurational forces and used to investigate growth in holes of cylindrical geometries. Tissue growing
from concave surfaces can be described by a model based on this theory. However, an apparently asymmetric
behaviour between growth from convex and concave surfaces has been observed experimentally, but is not predicted
by this model. This contradiction is likely to be due to the presence of contractile tensile stresses produced by cells
near the tissue surface. In this contribution we extend the model in order to couple tissue growth to the presence of a
surface stress. This refined growth model is solved for two geometries, within a cylindrical hole and on the outer
surface of a cylinder, thus demonstrating how surface stress may indeed inhibit growth on convex substrates.

1. Introduction

Evidence is accumulating that, in addition to
biochemical factors, the physical environment in
contact with cells and tissues modifies and controls
cells’ behaviour. Individual cells can sense the
stiffness of a substrate, for example, with stem cells
being able to differentiate along different pathways
depending on the elastic properties of the substrate
[1-4]. The surface roughness has also been
demonstrated to influence cell adhesion and
proliferation of several different cell types [5].
Similarly, the geometry of the sites available for cell
adhesion, determined by features such as the density
of ligands [6, 7], as well as the size [8] and the shape
of adhesive areas [9, 10], plays a role in cell spreading,
apoptosis and differentiation. Finally, cells behave
differently depending on whether they are completely
surrounded by a matrix in three dimensions or are
just sitting on a flat surface in two dimensions [11].
Such geometric effects are also seen at the
multicellular or the tissue level [12], where an
imposed shape gives rise to boundary constraints on
the contractile behaviour of tissue, in turn controlling
proliferation and further growth [13]. The collective
behaviour of cells, such as MC3T3-E1 pre-osteoblasts
cultured within three-dimensional holes, is influenced
by the shape of the holes’ cross-sections, and may be
described by a simple model of curvature controlled
growth [14]. This model is consistent with the idea
that cells, and extracellular matrix they organise, act
as tensile elements within the tissue and predicts the
differing growth rates observed experimentally in
osteons and hemi-osteons [15]. Furthermore, it has
also been shown that after the initial stages of cell
spreading, the rate of growth was found to be
independent of the substrate material [16],
highlighting the crucial role played by geometry. In
order to understand such behaviour, it is important to
develop suitable theoretical models for tissue growth.
One such approach was presented in a previous paper
by the authors [17], where tissue growth was
described by an eigenstrain (as resulting from cell
divisions and synthesis of extracellular matrix by the
cells) which depends on the local stress in the tissue.
While very encouraging results were obtained with
this model, it could not predict experimentally

observed asymmetry between tissue growing on
convex and concave surfaces [15, 18, 19]. It is the goal
of this paper to remedy this by introducing the
additional action of surface stress, as observed to
occur in tissue cultures.

2. Motivation

2.1 Experimental motivation

From an experimental standpoint surprisingly few
quantitative studies have investigated the role of
geometry on tissue formation, although much work
has been done on how geometric features control the
behaviour of single cells (see eg. [6-10]).
Observations of bone tissue growth in-vivo show that
there is a significantly higher amount of bone tissue
formed in concavities as opposed to convex (or
planar) surfaces (see for example [18, 19] and
reference contained therein). The geometry of
artificial bone defects in turn influences the lamellar
arrangement of new bone [20], and also appears to
control lamellar bone formation during bone fracture
healing [21]. This has of course practical
consequences, for instance in periodontal treatment,
where it is also observed that the presence of ‘bony
walls’, which create local concavities on which new
tissue can grow, assists the regeneration of new bone
[22]. Finally, evaluations of computed tomography
measurements of trabecular bone show that
trabecular bone has close to zero mean surface
curvature. This implies that, also in-vivo, there is
indeed a strong control of (and response to) tissue
geometry by the bone cells themselves [23].
Quantification of the tissue response to substrate
geometry was studied in-vitro by observing growth in
simplified scaffolds containing only a few straight-
sided pores with controlled cross-sections [14, 15]. In
the initial study by Rumpler et al [14] pores
containing only concave surfaces were produced in
hydroxyapatite using rapid prototyping and tested in
culture with MC3T3-E1 murine pre-osteoblast cells. It
was shown for these shapes that tissue growth
occurred only on concave surface, with growth
occurring on flat surfaces only when the local tissue
surface curvature changed due to tissue ingrowth
from the surroundings. Bidan et al [15] extended this
work by looking at the response of the same cells to
semi-circular channels produced on the surface of the
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Fig. 1: Experimental evidence for the asymmetry between growth on convex and concave surfaces. a) A stack of confocal
images of tissue stained for actin (green) on a wave like substrate with the scaffold below and medium above. b,c) a stack of 3
slices deep in the tissue showing the high concentration of actin (b, green) and myosin (c, red) at the tissue medium interface.

scaffolds. Growth was observed to be ‘pinned’ on the
corners of the channels, with only a thin layer of
tissue being produced, indicating that tissue growth
in-vitro is sensitive to the local sign of curvature.

To further investigate this curvature sensitivity, a
‘wave-like’ surface was produced in hydroxyapatite
using rapid-prototyping with repeating concave
channels and convex ridges. The scaffold synthesis
and cell culture experiments were performed
identically to the experiments described in [14, 15],
for more details see Appendix A.

A typical tissue configuration is depicted in Figure 1a)
which shows a confocal image stack of the tissue
formed on the wave-like surface. The lower dark
region in the image is the scaffold, (opaque) and the
upper dark region is the media (no signal), actin
stress fibres (present in the tissue) appear at the
interface in green. More tissue is formed on the
concave surfaces compared to the convex one, again
supporting the idea that there is a dependency of
‘bone-like’ tissue growth on the sign of curvature. A
potential reason for this sign dependence of growth
could come from the high contractility of the cells
themselves that develops primarily on the tissue-
medium interface as indicated by the colocalisation of
actin and myosin at the interface (Fig. 1b). A tensile
surface stress has a different effect on underlying cells
depending on whether the surface is convex or
concave. This provides an experimental motivation
behind the main goal of this paper, to examine tissue
growth from a theoretical perspective in simplified

concave and convex scaffolds and to test the role of
surface stress on growth.

2.2 Theoretical motivation
In a preceding paper [17] a thermodynamically
consistent rate g of a growth tensor g being an

eigenstrain tensor to represent tissue growth (later
denominated as eigenstrain rate in a small strain
setting) was derived, based on work by Ambrosi and
co-workers [24, 25], see also the recent review article
by Ambrosi et al. [26]. The provision of matter occurs
by the diffusion of a nutrient which is converted by
cells into tissue. The concept of material or
configurational forces is followed as it is often applied
to describe the kinetics of phase transformations [see
e.g. 27]. The basic idea is to incorporate within the
concept of configurational forces the dissipation
inequality, mass and energy balance relations for the
conversion of nutrient into tissue. This equation can
then be used to derive a growth rate in which positive
entropy production is guaranteed in accordance with
the principle of maximal dissipation [28, 29]. The
eigenstrain rate ¢ for tissue growth derived in [17] is

given as

g=f(o-mel) . &

The quantity f >0 can be considered as a mobility
factor (a kinetic term describing how fast cells react
and produce new matrix), [e, is the (usually
negative) change in Helmholtz energy during

formation of the solid tissue phase from a diffusing
nutrient; G is the stress tensor (small strain setting)
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and | the unit tensor. Therefore, two thermodynamic
quantities drive growth, namely the stress state G

and the (chemical) Helmholtz energy term —figl .

Recently Ganghoffer [30] has published a similar
concept and extended it also with a surface (interface)
growth term. A derivation of the eigenstrain rate ¢

based on the normality concept, using a "homeostatic”
surface, was also recently introduced, in which only a
stress-driven growth rate was derived including no
chemical term such as [ig,, see Loret et al. [31].

Finally a small strain setting has been shown to be
acceptable and sufficient to describe growth when
written in an incremental form. This means that the

growth process in the time interval [t,t+dt] is

represented by the eigenstrain increment ¢gdt .
According to Hodge and Papadopoulos [32] the actual
configuration at time t can be considered as an
evolving reference configuration. Thus, the total strain
increment defined within a small strain setting
&dt = (ée, +g) dt , where &, is the elastic strain rate,

defines the change of the geometrical configuration in
the above mentioned time interval due to growth. The
eigenstrain rate § enforces the elastic strain rate &,

to obtain a physically admissible (i. e. compatible)
deformation state. The eigenstress rate ¢ is a direct
consequence of the elastic strain rate £, . This means

that the eigenstress state o corresponds directly to
the eigenstrain g. In case that there are no external
forces (e.g. surface stresses or body forces) present,
the eigenstress state o is equivalent to the total
stress state and the eigenstress rate ¢ directly
corresponds to the eigenstrain rate €, as described

in [17] Of course, the stress state ¢ acts in the solid
phase, which is assumed to be an assembly of cells
together with the formed extracellular matrix.

Equation (1) was implemented to describe a layer of
tissue growing within a cylindrical hole of outer
radius, R [17]. Solving the mechanical equations of
equilibrium in cylindrical coordinates leads to two
sets of coupled differential equations which give the
change of inner radius r,, at the tissue-medium

boundary, and the radial stress at the outer radius R,
as well as the stress state in the interior of the tissue

as a function of position r, r,<r<R. The growth

kinetics predicted by the model were in good
qualitative agreement with the experiments
performed for closing cylindrical holes [14]. The
calculated stress distribution, with high compressive
circumferential stresses predicted at the internal
tissue-medium boundary, also corresponds well to the
higher concentrations of actin stress-fibres observed
experimentally at the tissue boundary. Although this
seems somewhat counterintuitive, the presence of
actin stress-fibres indicates tensile rather than
compressive loading, the model shows the
(compressive) response of the tissue to the (tensile)
action of the cells themselves.

The model can also be readily applied to describe
tissue growth outwards from the convex surface of a
cylindrical scaffold. Uniform growth on a convex
surface results in higher tensile stresses leading to
ever increasing growth rates through Eq. (1). The

fixed outer wall

tissue boundary
growing inward

tissue

oilr)  o(r)

e

/O\

tissue boundary
v growing outward

<

fixed inner wall

Fig. 2: Schematic sketch of tissue growth starting from a
cylindrical wall at position R, the radial coordinate is 7 ; a)
Radial growth from the inner wall of the cylinder to its

centre, 7, is the position of the inner boundary, b) Radial
growth from the outer wall of the cylinder to the outside,
7. is the position of the outer boundary.

predicted exponential growth on convex surfaces is in
contrast to experimental results where no growth,
apart from the formation of a thin monolayer of cells,
is observed on convex surfaces ([15, 19] and Fig. 1a).
In fact growth can and does occur on convex surfaces
but only after tissue has grown sufficiently from
surrounding concavities to make the local tissue
surface concave. This effect of the sign of curvature
does not appear explicitly in Eq. (1) and is required
for a correct description and prediction of tissue
growth. Asymmetry can be introduced into ¢ , if, in
addition to the eigenstress state due to growth, an
effective "surface stress" is also included. This idea is
inspired by the experimental results of Rumpler et al.
[14] and Bidan et al [15], where tissue growth was
described by a simple model for "curvature-driven"
growth. This is also consistent with the review by
Lecuit and Lenne [33], which discusses the hypothesis
that tissues, as collections of adhesive and contractile
cells, may display an "effective surface stress", of cell
aggregates which arises simply when cells adhere to
each other and pull through their cytoskeleton (see
also the stained stress fibres in Rumpler et al. [14]
and the co-localisation of actin and myosin in [15] and
Fig. 1b). This surface stress is surface curvature
dependent and, therefore, may lead to different
growth behaviour on concave vs convex surfaces.
Such ideas have already been successfully
implemented within an extended Potts model, and
simulations have demonstrated the important role
that an effective tissue surface stress plays in cell
sorting [34], and morphogenesis [35, 36]. In addition
to surface tension (understood as surface energy) due
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to positive adhesive interactions, there is also the
additional surface stress, produced by the contractile
behaviour of cells lying on the tissue surface itself.
This has been shown to play an important role for
example in the prediction of cell shapes within a
tissue [37] but is difficult to separate completely from
the surface stress produced via adhesion between
cells. It is therefore clear that a tissue surface stress
needs to be included as a further thermodynamic
quantity within the theoretical framework of [17].
This means that ¢ in Eq. (1) has not only to include
the eigenstress state, but also the stress state due to a
"surface stress"”.

The role of surface energy (surface tension) and
surface stress in Materials Science has significantly
increased in recent times, since smaller and smaller
objects are being studied experimentally. It is worth
mentioning that clear definitions with respect to the
terms "surface energy, surface tension and surface
stress" are necessary, the reader is referred to [38-
40]. The effective surface stress developed during
tissue growth is somewhat different however from
the usual understanding of surface stress in Materials
Science. Here, active cells situated at the surface of a
cylinder, develop a surface tensile stress state in the
circumferential direction of the hole. In the notation
of continuum mechanics, the activity of cells on the
surface, i.e. the surface stress, can be described by a
positive membrane y in a (virtual) thin layer

mounted onto the surface of the growing tissue. The
membrane force y has the dimension of force per

length or, in other words, of energy per area, which is
the same dimension as that for surface energy
(surface tension) and sometimes the reason for
confusion. For a cylindrical arrangement this
membrane force is actually the force per unit height of
the cylinder acting in the circumferential direction.
The layer of contractile cells is assumed to be attached
to the tissue-medium interface of tissue growing
inside a cylindrical hole. Local equilibrium of an
element of the (virtual) layer requires that a positive
radial stress 7//ri must therefore act outwards onto

the tissue, since no surface pressure is active on the
inner surface of the layer. This is also an outcome of
the so-called "Laplace-Young equation” in Surface
Science, see e.g. sect 1-2 of [39]. This finally means

that the tissue feels a radial tensile stress o, = ]//ri at
its inner (hole) surface, r =r.. In other words, the
cells, responsible for the membrane force v, tend to

close the hole. The opposite effect takes place, if the
contractile layer (the cells) is attached to the outer
surface of a cylinder, R<r<r . Then the cells - and
the according (virtual) membrane force - produce a
radial compressive stress —’}//I’o on the outer surface
of the (possibly) growing object at r=r, . The cells
work now against the growth of the outer object
intending to reduce the outer radius r,. One can easily

imagine that outside growth is not possible for zero
(chemical) change in Helmholtz energy. This
argumentation is also supported by experimental
observations. The goal of this paper is now to
implement the membrane force y, which is called the

"surface stress" in accordance with the notation in

Materials Science, into the growth concept at hand.
This is done by adding a new geometry dependent
boundary condition into the original model. The
outcome of the model is then compared with the
current concept of "curvature-driven" growth.

For sake of clarity, it should be noted again that the
denomination surface tension is used in materials
science for the surface energy per unit area (which
goes back to Gibbs) as well as the surface stress. The
surface tension is precisely defined as the change in
Helmholtz energy per unit extension of the interfacial
area at constant temperature and constant volumes of
both phases involved ([41]). Both, surface energy per
unit area and surface stress (reversible work per unit
area needed to elastically stretch a pre-existing
surface), have the same dimensions (as mentioned
above) and obtain the same value in the case of
liquids. In the case of solids both physical entities may
have different values, as the surface energy (per unit
area) usually depends on the strain state. To avoid
any confusion we will use the term "surface stress” in
the following.

3. Modelling

3.1 General aspects

In this section the model developed in [17] is
extended to include the surface stress. This is done by
combining the constitutive law for growth (Eq. (1))
with Hooke’s Law and the appropriate boundary
conditions allowing for the geometry dependent
surface stress. The following facts must be met by the
model:

. The actual geometry is controlled by both
the elastic deformation state and growth state; the
rate of the latter depends on the total stress state o
via Eq. (1).

. The total stress state o includes % , the
surface stress state.

. The surface stress state o , i.e. stress state
in the specimen due to the surface stress, depends on
the actual geometry via r, or r,.

o Consequently, the surface stress state o is
coupled with the growth process due to the actual
geometry, yielding a coupling stress state o° .

. Finally, three concurrent processes are
active and contribute to the total stress state ¢ by a

0 growth stress state o?,

o surface stress state % ,

o coupling stress state o°.

3.2 Kinematical and mechanical setting

As in the previous paper [17] we consider a
cylindrical disc of unit height, subjected to plane
stress during confined growth. The tissue, consisting
of both cells and extracellular matrix, is taken to be
linear-elastic, with Young's modulus E , and
Poisson’s ratio v ; both are assumed to be constant in

space. In the following context E =E/ (1—v2) is used.

We assume a small strain setting and additively
decompose the strain tensor & into two
contributions, namely g , the growth eigenstrain and
&4, the elastic strain. Combining this with Hooke’s

law gives the radial and circumferential stresses,
respectively, as a function of the strain components,

ie. o, =E(e, +ve,)-E(g, +vg,) and
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o, =E(e, +ve,)-E(g,+vg,) . The position in the
cylindrical coordinate system is described by the
radial distance r. Growth starts from the position
r=R, with a starting tissue thickness 6 small
compared to R, at time t = 0. Two geometries are
studied corresponding either to growth inside a
cylindrical hole (OSri SrSR) (Fig. 2a) or growth
outside of a cylinder (R <r< ro) (Fig. 2b).

A radial stress G,(ri)=}//ri or Gr(ro):—y/r0 is
assumed acting on the inner or outer surface in this
new model.

Due to the symmetry of growth in this setting no
shear stress components occur. Standard Kinematic
relations apply giving the radial and circumferential
strain components (& and g,, resp.) in cylindrical

coordinates as functions of radial displacement u as
du u
=—=Uu', g=—. 3.1
"odr oy (3-1)
The prime indicates spatial derivatives with respect to
the radial position r .
The following normalised parameters are used:

F=r/R,7=r/R,f =r/R,

&

d=u/R, fi=|pe,|/E (3.2a)
which are identical to those in the previous paper
[17].

Due to the introduction of y and meeting the
possibility of =0 , the following normalised

parameters are different to those in the previous
paper [17], except to the normalisation of ¥ which

was not dealt with there:

7=21.6,=0,/E,6,=0,/E,  (3.2b)

ER' " ’
7=Eft, (3.2¢)
f isthe parameter in Eq. (1), t time.
3.3 The role of growth

Some results from the previous paper [17] are
repeated here. A tissue layer is assumed to develop
inwards from the fixed wall of a cylindrical hole due
to a growth process, or in other words, due to a
stress-dependent eigenstrain rate. No surface stress is
active.

Two quantities were calculated, namely the

normalized rates of inner radius f? and the

normalized radial stress 6rg (1) at the fixed wall,

r=Ror f=1. The superscript "g" is set to refer to

growth only. Details of the calculation can be found in
the previous paper and are summarized in the
Appendix B. The results are

are __[2vie, (1) +(t+v)a(r )]

o= = , (3:3)

O [ A L | R
dr (1+v)ez+(1-v)

34 The role of surface stress

In this section the role of the surface stress only is
treated; consequently no eigenstrain is considered.

The quantities to be calculated are the normalized
stress components 6fs(f) and 65;(?) . The
superscript "ss" is set to refer to surface stress only.
Since all calculations run along standard elasticity,
details of the calculations can be found in the
Appendix C. The results are

~ssfx)—_ r|
57 (r)=7 1+v)2 +(1-v

{(1+ v)+ (lr_zv)}, (3.52)

6,°(r)= 77— {(1+ v)- (1;—;)} . (3.5b)

1+v)i?+(1-v
The normalised radial stress 6 * (l) at the fixed wall,

=R or f=1, follows from (3.5a) as
2F;

(o (l):'}/'(m)riz—_'_(ma . (3.6a)

Its derivative with respect to normalised time 7
reads as

=88 _ _ =2 =
dadr (1):72[(1 d (l+v)riz]-% : (3.6b)
© )]
3.5 Coupling between the roles of growth

and surface stress state

As outlined in Section 2, the surface stress state
exerted by the cells is represented by an external
radial tensile stress y/r, at the inner hole contour and

an external radial stress with the value —y/r, at the
outer contour. Obviously, the actual radii r; and r,

determine the values of the radial stress on the inner
and outer contours, and these radii themselves
change with growth. Since growth depends also on
the local stress state in the specimen, the external
radii are affected by the actual stress state, which
itself depends explicitly on the external radii via the
contribution of the external radial stresses y/r, and

—y/r, . Concluding, growth is immediately coupled to

geometry via the surface stress state. The change of
the geometry occurs due to growth, driven
simultaneously by a chemical supply and the stress
state, which itself depends explicitly on the geometry.
We describe the evolution of the geometry by
virtually splitting each time increment into two
virtual sub-increments. In each of the two sub-
increments a different step of evolution process
occurs. Due to the elastic material behaviour and a
small strain setting a superposition of both these
steps is possible.

The first step is addressed to the change of the system
due to growth only with the role of surface stress kept

constant, Gr(ri)=y/ri, Gr(r0)=—y/r0 and 1, 1, set
equal to the starting radius in this time increment. In
the second step the role of surface stress due to the
change of the inner radius r, and outer radius I, is

adapted elastically only according to Sect. 3.4.

Since all calculations again use standard elasticity
theory, they are outlined in Appendix D. The two
quantities of interest are still the normalized rates of

inner radius T,

of three contributions. The first two contributions,
denoted as dfi*/dr and dd':(l)/dr, refer to the

and the radial stress G, (1) consisting
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growth process and due the coupling with the surface
stress state as

dar” _ 2vig, (Y (e v)a(r-7)

dr (1+v)r2 +(1-v)

. i , (3.7a)
, i)
P T A
dr (1+v |’i2+(1—v) . @7b)

The third contribution is that due to surface stress
only, see Sect. 3.4, and Egs. (D.8), (D.9). Adding up
those three terms yields

df  df” 47
="l |17 i ) 3.8
e~ dr| T {es)re )T o
dé, (1) _ds,"(1)
dr  dr

o) ()] B

e s}

Insertion of Egs. (3.7a-b) into Egs. (3.8a-b) forms a
system of two coupled differential equations for the

two quantities F, , G, (1) with the initial conditions

7=0:F =1—5,6'r(1):}7 with § <<1 being a small
perturbation.
3.6 Evolution equations for the stress state
5,(7).6,(F)
Both stress terms are decomposed into three
contributions, namely those due to growth,

o (F),&g(?) , those due to coupling via the growth
eigenstrain rate, Eq. (1), 6:(?),6;(?), and those due

to the surface stress 67° (I’) and 63 (I’) . The first two

contributions exist only in rate form. Therefore, only
the rates of the total stress terms can be calculated
and are derived as the sum of the rates of three
contributions.

The rates due to growth follow from [17, Eqs (3.9 a-
b)] as

(3.9b)

Since both rates due to growth, Egs. (3.9a-b), involve
the total stress terms 6r(l’),6ﬂ(F) on their r.hs,
both coupling stress terms are derived from
U+vW’/r with respect to ¢f and vu+u’/r with
respect to o, , using only the contribution
Ar+ Bc/r to U and not any stress terms, see (B.1),
(B.2), (D.2.b), as

dé? _ . (1—v2)|’i ( B )
de ‘YW-{@”FT} (3.10a)
dt _ (1-v¥)r (1-v)
d—T_yW'{(“V)—F—Z} (3.10b)

The stress rates due to surface stress follow from the
derivatives of 6fs(f) , 6fs(f) , Egs. (3.5a-b), with
respect to 7 and include, therefore, the rate dl’i/dr

as

LA (1+V)ﬁ2*(1fv){(MV)JH)},E, (3.11a)

i | dr

df;s:,y (1+V)r~.i27(1iv)2{(1+\/)7(1;V):|.£‘ (3.11b)
S (T A

Adding now the three contributions together yields
finally the initial value problems

s f1-v)s r)= RHSr[rzﬁr (1) 5
dé ﬁ

d—T"+(1—v2)6'19(|’)=RHSﬂ[f‘,ér(l),dT,l’j - (3.12b)

dr.

fJ (3.12a)

The abbreviations RHS ,RHS, represent the r.h.s. of

the according differential equations, stemming from
the sums of r.h.s. of the three contributions, see Egs.
(3.9a-b), (3.10a-b), (3.11a-b), excluding the terms

with &, (f),éﬁ(F) in Egs. (3.9a) and (3.9b), resp. The
radial distance I can be considered as a parameter.
The initial conditions follow as 7=0:f=1-6 ,
o, (ﬁ) =7, d,(ﬁ) =vy according to Eq. (3.5b).

Remark: The model can also be used to study the case

of growth on the outer surface of a cylinder. Since the
effect of the surface stress is a compressive radial

stress outside, ¥ must be replaced by —7 and T, by

I everywhere in all the equations of sect. 3.6.

4. Solutions of the evolution equations
4.1 Analytical results and discussion
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A significant simplification of the evolution equations
can be obtained, if V is set to 0. This step is followed
for both inward and outward growth. The analytic

results are also checked by numerical results, for
details see sect. 4.2.

4.1.1  Inward Growth
First we deal with the case that fI (the normalized

Helmholtz energy when tissue is formed from
nutrient) is set to zero. Eq. (3.7a) then becomes
ar _ Rl

an _ _ 4.1
ar 7 =) (4.1)
Eqg. (3.8a) can be written as

-1
ar _ _r*-1 . 4F
—|=y- 1- : . 4.2
dr i+l 7/(1+ r2)’ 2

For y <<1 and F, <1 one can use

-1

1-7 ar 147 ar 1

(o)) )

Then the evolution of the inner radius, described by

— , can be approximated by

dz
e _1-¢?
dr - T1er *3)

An approximation for the rate of the normalized
radial stress follows from (3.7b) and (3.8b) and

skipping the —7° term as
dé, (1) 2
— Vi 5 )=y ——.
dr ’() J/1+Fi2
The set of differential equations (4.3), (4.4) can be
solved analytically with the initial conditions (
7=0:F =1-6, 6‘r(1)=77 ), where §<<1 is some
small perturbation in thickness. For I’I(T) one finds

by direct integration

(4.4)

7;r:ri_1+5+|n(1_r~‘) +|n(2_6)

ey S (4.5)

Consequently, 6r(1) can be found also by direct

integration using (4.5) in inverted form as
©o2r(z)
6. (1)=ye"| 1+ . et d7 | 4.6
(1)=7 [ e ] (46)

From Eq. (4.6) one can immediately see that &, (1) is

a positive quantity, 0<6, (1)/‘}731. The process
stops, when F, becomes 0 at time 7; . The upper
limit of &, (1)=77 can easily be found by assuming
ﬁ(f) =1 in the integrand of (4.6). In addition one can
estimate the value of &, (1)

approximating the

at time 7, by
rational function
f(ﬁ)ZZﬁ/(1+ﬁ2) in the integrand of (4.6) by a
function 1- (f/rf )m with m being a positive exponent.
Then one can show, after performing the integration
in Eq. (4.6) and some analysis, that 6r(1)/}7 at

1.0+ S Y e S R R AT I
=
0.8 approx. analyt. solution (= 5107 r'
. "} ——num. solution (7=5-10") g
'.. + approx. analyt. solution (7= % 107 E
0.6 .-..:---—- num. solution (7= 5-107) 5
H )
i )
1 e }
" 5
0.4 4 i I
te 1
te i
i i=0,v=0 ,
0.2 e [
0.0 b b
T + — T
107 10
T

Fig. 3: Comparison of the analytical and the numerical

solution. Normalised inner hole radius ﬁ(r) as function
of T for two different values of ¥ with fi=0 and v=0.

The initial thickness of the layeris § =1.107.

10
0.8
F=110"v=0
0.6 F=110"v=1/3 I
T 7=110"v=0 T
0.4 F=110"v=1/3 .
------- 7=110",v=0 i
« F=L10" v=1/3 I
024 f_ 1-107, v=1/3 t \!l
H=0 3
[} 1
0.0 ——
o 1 2 3 4 5 6 7 8 9
¥

Fig. 4: Normalized inner hole radius l7l (T) as function of

Tj7 for different values of ’J7 with ﬁ: 0 and with
Poisson's ratio V = 0, V= 1 / 3 . The initial thickness of
the layer is 5: l 10_4

7, >>1 is of the order of magnitude of myz, .

This means that G, (1)/‘}7 obtains at time 7, a
rather small value tending to 0 for 7, tending
towards ©° .
Studying the case fi#0 , the role of the surface stress
term 7 can be considered as a contribution to the
Helmholtz energy term fi , if one checks Eq. (3.7a)
together with (3.8a) and skips the terms with 7%,
yielding

()

dr
In the starting period of the hole closing process T is

| =TS

. (4.7)

[S=N
+
=S
N

a7 = (Fa+7)

near 1, and we have [i+7 as driving forces; in the
final period we have only 7 . A further consequence
is that we have for [1=0 a growth process, if 7 is

present. The analytical solution and the numerical
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solution are almost identical for small values of 7 as

can be seen from Fig. 3.

Finally, one can deduce from the differential
equations (4.4) and (4.7) that some scaling
parameters control the development of the system:

. If we introduce the time parameter 7y in

(4.7), only the scaling parameter fi/7 controls the
evolution of f, withrespectto 77 .

. If we introduce the stress parameter
o, (1)/‘}7 , then, according to (3.7b) and (3.8b), again
only the scaling parameters f[i/f controls the
evolution of &, (1)/}7 with respect to 7 . Of course, a
preposition for such a scalingis 7 #0 .

. If fi=0, one may conclude that no scaling
exists. However, one should keep in mind that
Poisson’s ratio v still plays a role in the case that it is

not set to zero as considered above.
4.1.2  Outward growth

The structure of the evolution equations for f. and T
is demonstrated best by the simplified situation that
[ (the normalized Helmholtz energy when tissue is
formed from nutrient) is set to zero. Furthermore, ¥
must be replaced by —7 for the case of outward

growth. The differential equation (4.7) shows clearly
the asymmetry of the problem solution and is
repeated for

dr 1-?
the inner growth — =—7 L 4.8a
g . 71+ﬁ (4.8a)

dr F2-1
the outer growth —2 =—y -2 . 4.8b
& dr 7 P2 +1 (4.8b)

In both cases the rates df;/dz, df /d7 are negative,
meaning no outer growth is possible. Eq. (4.7) teaches
immediately that for df /dr>1 the quantity [
must be greater than ¥,[i1>7 , to allow for an outside
growth process at f =1 . Therefore, one needs as
additional driving force the modified chemical
potential [ >|‘}7| in the case of outside growth!

4.2 Numerical results and discussion

The coupled equations for the evolution of the hole
radius ., Eq. (3.8a), and the radial stress at the outer
wall 6, (1) , Eq. (3.8b), were integrated numerically
for different values of 7 .

According to the discussion on scaling parameters in
Sect. 4.1.1 the radial position of the (inner) tissue-

medium boundary I’I(T) is plotted in Fig. 4 against

1.0 \
0.8 )
—F=110"v=0 I
. ‘
L2 06 7=110",v=1/3 \
- F=110"%v=0 1
1 b 0.4 7=110",v=1/3 1l
=~ F=110",v=0 l
024 - F=110", v=1/3 : |
=0 =
0.0 PN W |
o 1 2 3 4 5 6 71 8
™y

Fig. 5: Normalized outer radial stress 6’r(1)/77 as

function of 7y for different values of ¥ and fi=0 witha

Poisson’sratio v=0, v=1/3. The initial thickness of the

layeris § =1-107*.

7§ for i=0,v=0 and 1/3, and various values of
7. The curves to v =0 and v=1/3 nearly coincide
for a certain ¥ value.

A corresponding study is performed for the radial
stress G, (1) as a diagram of &, (1)/‘}7 versus Ty .

Here we use a common time-axis (T’}7) , so that the

plots for f and G, (1) can directly be compared with

respect to the time parameter. Again two nearly
coinciding curves to v=0 and v =1/3 for certain §
values can be observed in Fig. 5.

From the experimental point of view, the
circumferential stress component 6, is the quantity,
which is easiest to be compared with experimental
data as it is related to the concentration of actin

stress-fibres in the tissue. Since the inner radius r, or

f. in dimension-free form is that position, where the
surface stress is acting, the value of 60(I’i) is

provided. For f1=0 and v=0 it is possible to use

Eq. (4.3) in combination with Eq. (3.12b) for inward
growth. This fact allows for an easy integration of Eq.

(3.12b). Fig. 6 demonstrates 60(I’i)/}7 as a function
of I . In addition the circumferential stress

component 6;5(ﬁ) only due to the surface stress is

depicted, see Eq. (3.5b) for v=0 . One can report the
following facts:
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Fig. 6: Circumferential stress 5(9(}7[)/77 at the inner hole radius as function of the normalised inner hole radius 7. for different

values of ¥ with fi=0, v=0.Thecurve 6‘? /f/ demonstrates the role of surface stress only. The right hand side of the graph is

shown in red at a different scale. The initial thickness of the layer was § =1-107".
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Fig. 7: Normalised inner hole radius ﬁ(r) as a function of
Ty for a fixed value of ¥ and with different values of [i
and with Poisson's ratio v=0,v=1/3 . The initial

thickness of the layeris 8 =1-107.

. Over a wide range of T (ﬁ>0.2) the

circumferential stress 60(ﬁ) is mainly controlled by
the surface stress. For small values of 7 (i.e.
7=1.10") the surface stress only is responsible for
60(ﬁ) over the whole range of I . An order of

magnitude estimate for 7 is obtained by the

following reasoning. By using literature data (for
murine sarcoma cell aggregates as published in
Guevorkian et al [42]) we can get an estimate for the
range of surface energies measured in culture. These
authors measured a surface tension of 6-10°Nm™
which when (normalised according to our notation )

Fig. 8: Normalised outer radial stress 6'r(1)/77 asa
function of 7y for different values of [ and with
Poisson's ratio v =0,v =1/3. The initial thickness of the
layeris § =1-107".

by the stiffness (~ 100 Pa ) and the actual pore
radius (~ 1 mm in our experiments) gives a
normalised value 7 = 6x107 . Of course it must

be kept in mind that these values could differ
considerably as the stiffness alone would depend

on the maturity of the tissue produced. Currently

it is not possible to measure the tissue stiffness
inside the small pores used in the experiments.

. For low values of [0 , say [ <02 , the
interaction of the surface stress with the growth
process becomes more and more relevant, see the
right part of Fig. 6, and even may turn the

circumferential stress G, (ri) into the tension regime.

However, the closing of a rather small hole (fl <0.2)
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Fig. 9: Growth starting from the outer surface of the

cylinder. Normalized outer cylinder radius Fo(‘r) as
function of 7y for different values of f[i and with
Poisson's ratio v=0,v = 1/3 . The initial thickness of the

layeris § =1-107".

1.0
0.5 —un=0, it
——Gi=610" v=0
0.04 ——i=810%v=0
f ] —gi=110", v=0
E 054 - u=0, v 1/3
‘e’u. ——p=6 lil'\_ v=1/3
1.0 ——pn=g810" v=1/3
| ——ji= 110", v =13
a1 7=510"
-2.04
T T T T
0 10 20 30 40

157
Fig. 10: Growth starting from the outer surface of the
cylinder. Normalized radial stress, 6'r (1) / 77 as function
of 7y for different values of i and with Poisson's ratio

v=0,v= 1/3. The initial thickness of the layer is
5§=1-10"".

occurs extremely fast, see Fig. 4, so that some other
effects may appear which overtake the "closing
process".

Figures 7 to 10 demonstrate the influence of the

scaling parameter fi/ for one fixed value of ’}7 .
Four values are considered for fi/7 , namely 0, 0.2,

0.4, 0.6. Furthermore, two sets of curves are
presented, one for v=0 and the other one for

v =1/3. Fig. 7 and Fig. 9 demonstrate the growth of
the inner radius f; and outer radius F, , resp., versus

7y . Fig. 8 and Fig. 10 demonstrate the development

of G, (1)/}7 for inner and outer growth, resp., versus

TV .
5. Conclusions and Remarks
5.1 Area growth

Experimentalists may also be interested in the
evolution of the grown area, represented by the

1.0 4

= 0=055=0
084 ° §=055=510"

0.6 4

0.4+

0 5 10 15 20 25 30

Fig. 11: Normalized area A versus normalized time 7 for
[1=0.5. The surface stress ¥ is set to 0 and 0.5, resp,;

v =0.The initial thickness of the layeris § =1-107".

dimension-free quantity A=1-F? (or for outside

growth 7,?~1). Then Eq. (4.3) can be converted to

the form

dA AV1-A

— =2y — . 5.1
dr ¥ 2-A (5-1)

Plotting the normalised area A versus normalised
time 7 shows sigmoidal-shaped (trans)formation
curves. These curves can be fitted by the Johnson-
Mehl-Avrami (JMA) equation as

A=1—exp(-kz") (5.2)
with k and n being fitting parameters.

The normalised area A for inner growth is plotted
versus time 7 for two cases in Fig. 11, one with

surface stress ¥ =05 (calculated points are

represented by open circles) and one without surface
stress ¥ =0 (calculated points are represented by

full squares). The normalised chemical potential fI is

set to 0.5 in both cases. The lines are the JMA-fitting
curves. In case of zero surface stress, 7 =0 , the fitting

parameters k =2.28-10° and N =7 are calculated;
for 7=0.5 an appropriate fit can be found by

k=1.20-10° and a slightly higher value of
n=7.5. One may argue that the relevance of these
parameters k and n is limited with respect to the
physics behind. However, it is interesting to note that
the kinetics of tissue growth can be described by two
parameters, which can be determined in case of
underlying experimental data.

The time dependence of the (trans)formed volume
fraction, when investigating the kinetics of diffusive
phase transformations in solids, is frequently also
captured by JMA-fits. Thus, a method used in
metallurgy since many decades could also be helpful
describing the Kkinetics of tissue growth. The
numerical exponent n varies from 1 to 4 in case of
diffusive phase transformations of metals as can be
found in [43]. If the Kinetics of tissue growth is
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Fig. 12. Time to 10% radius change as function of ji in
units of ¥ for )7:5-10’2, and v=0, for tissue growth
on the inner surface of a cylinder (inner growth) and on
the outer surface of a cylinder (outer growth), which is
only possible for i/7 >1.

described by JMA equations, the exponent n appears
to be significantly higher. Here a value of 7 is obtained
in case of zero surface stress, and this value becomes
even higher in case of surface stress considered. As
tissue growth not only depends on the difference of
the chemical potentials of nutrient and tissue but is to
a large extent stress-driven, the higher values of n can
be, at least, understood qualitatively. The main reason
for this difference may have its origin in the totally
different mechanisms of growth in both compared
cases. In the case of relatively thin layers of tissue,
diffusion of nutrient will play only a limited role and
growth will rather controlled by the amount of
surface stress and the cell activity. At early time
points the nature of the substrate may play a role in
cell colonisation [16], although this is not addressed
in the current model.

Concerning inward growth one may be interested in
how the growth process proceeds after the hole has
closed. We have then a disk without a hole and a

residual stress state 6r=6'f,6'0=6g at the

dimensionless time 7 =0 , which is counted from the
time period after hole closure. We deal now with a full
disk, which is fixed at the outer radius f=1. The
further derivations are based on Sect. 3.3 with B=0
in (3.3) and outlined in detail in the Appendix E.
Below one finds a collection of the must important
relations, which are formulated for v=0 as

G,+=(6°+m)exp(~7) , (5.3a)
G,+ii= (63 + ﬂ)exp(—f) : (5.3b)
The growth strains §, , §, (- both quantities are the

components of the vector g in Eq. (1)-) after hole
closing read

6, =(6° + ) (1-exp(-2)) (5.4a)
6, =(69 + 1) (1-exp(-7)) - (5.4b)

The total strain ¢,, €;, as sum of the growth strain

and the elastic strain, yields the area strain
e, =& +&,=0’+0" . (5.5)

Note that all quantities above are functions of f
except the quantity [ .

Obviously the area strain (5.5) for v=0 remains
unchanged and keeps to its value immediately after
hole closure, although the stress state and
consequently the growth strain state rearrange
themselves during further growth. In other words, for
v=0 the area strain remains unchanged after the
hole is closed. For v#0 Eq. (E7.2) yields an area
strain varying in time but in the same order of
magnitude as Eq. (5.5).

5.2 Control of growth

The analysis, described in Section 4 and depicted in
Figures 7 to 10, demonstrates that growth is
controlled by the ratio f1/7 . The asymmetry between

inner and outer growth becomes clearer in Figure 12
which depicts the time taken (in units 7y ) for growth

to result in a 10% radius change as a function of [ in
units of 7 . This diagram can be viewed as a proxy for
growth speed as a function of the control parameter
f1/7 . Changing 7 leads to no qualitative changes in
the curves (data not shown). For inner growth at a
fixed value of 7=5-10" the growth speed slowly

increases (or the time for growth decreases) with
increasing driving force fi . In this case, the surface

stress acts in the same direction as the driving force
which accelerates growth. For outer growth, however,
the driving force for growth acts against the surface
stress. This leads to a divergence in the time for 10%
radial change at fi/7 = 1. For control parameters

below this ratio no growth is observed. Approaching
tissue growth as a competition between a driving
force for cell proliferation and extracellular matrix
production versus an effective surface stress induced
by contractile cells may well be a useful approach. In
principle these parameters can be varied
experimentally, for example by inhibiting actomyosin
contractility in the cells as done by Bischofs et al. [44]
or by varying nutrient availability.

5.3 Some final remarks

We want to emphasize that we do not use an extra
surface growth term by an according eigenstrain rate
as e.g. [30]. However, we "reflect” the role of surface
by a surface stress, which is directly transferred by
the cells acting on and near the surface. The radial

stress o, at the positions r, or r, namely ¢, =y /r,

or —)// I, is the conjugate mechanical quantity to

the physical and biologically reality of cells acting as
"contractile elements"”. We consider this point of view
as directly related to and motivated by the
experimental observation.

The presence of a compressive stress component (e.g.
the circumferential stress component, see Fig. 6) may
give rise to the question if a structural instability may
occur, e.g. the formation of a wavy hole contour. Since
such a phenomenon has not yet been observed for an
axisymmetrical geometrical setting, we leave this
topic to a future study. However, it should be
mentioned that most recently three studies
concerning growth and structural stability have been
published, [45-47]. In these studies, the situation is
insofar simplified, as a constant growth eigenstrain
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and not an eigenstrain rate, depending on the
chemistry and the stress state as Eq. (1), is used.
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Abstract: The shape of tissues arises from a subtle interplay between biochemical driving forces, leading to cell
growth, division and extracellular matrix formation, and the physical constraints of the surrounding environment,
giving rise to mechanical signals for the cells. Despite the inherent complexity of such systems, much can still be learnt
by treating tissues which constantly remodel, as simple fluids. In this approach remodeling relaxes all internal
stresses except for the pressure which is counterbalanced by the surface stress. Our model is used to investigate how
wettable substrates influence the stability of tissue nodules. It turns out for a growing tissue nodule in free space, the
model predicts only two states: either the tissue shrinks and disappear, or it keeps growing indefinitely. However as
soon as the tissue wets a substrate, stable equilibrium configurations become possible. Furthermore by investigating
more complex substrate geometries, such as tissue growing at the end of a hollow cylinder, we see features
reminiscent of healing processes in long bones, such as the existence of a critical gap size above which healing does
not occur. Despite its simplicity, the model may be useful in describing various aspects related to tissue growth,

including biofilm formation and cancer metastases.

Introduction

Morphogenesis is controlled via the complex
interaction between biochemical and mechanical
signals arising from cell generated tensions (1, 2).
Such signaling is mediated through the presence of
boundaries, whose shapes determine the formation of
morphogen gradients (3) and the local stress state,
which in turn controls cell proliferation (4),
differentiation (5) and apoptosis (6, 7). Depending on
the physical environment, these boundaries may
either be static, as is the case for solid substrates, or
they may move as new tissue is formed (8). One
important simplification that can be made to help
understand this problem, is based on the observation
that tissues, or at least cell agglomerates, can behave
like viscous fluids with measureable surface tensions
when observed for sufficiently long time scales (9-12).
If one describes tissues as fluids, then the equilibrium
shape of their boundaries will be determined on one
hand by the wettability of any substrates upon which
they are sitting (13) and on the other hand by the
Laplace-Young equation giving a link between
interfacial curvature and tissue pressure (14).
Interestingly, it has been shown that even simple
shapes of wettable regions on flat substrates display a
rich variety of equilibrium liquid droplet
morphologies at constant volume when surface
tension plays an important role in the energy of the
system (15-17). This suggests the possibility of a
similar richness for fluid-like tissues growing under
the influence of large surface tensions. As the stress
state of cells is coupled to growth (18, 19) an
exploration of the consequence of geometric
boundary conditions on surface tension mediated
growth may help explain the observed influence of
shape on tissue growth in-vitro (20, 21) and in-vivo
(22, 23), the goal of this paper.

Many physical models for tissue growth have been
studied previously (see, e.g. (8, 24, 25)) and they often
use rather subtle material models, including second
gradient approaches, see e.g. (26, 27) and (28) for a
recent overview. To simplify our model however we

simplify the material behavior to that of an ideal fluid
(i.e. constant pressure), which relaxes local stress
concentrations by viscous flow at a rate much faster
than the growth which causes them. Since in our case
growth dominates over elastic deformations we can
also avoid treating potential coupling between the
two (see, e.g., (29-31)). We start with a simple
approach fully compatible with thermodynamics (32-
36) which considers both a biochemical driving force
(in the form of a chemical potential) and a mechanical
one (including volume stresses as well as surface
stresses). Then we assume that local tissue
remodeling is sufficiently rapid compared to the
growth rate, so that the tissue can essentially be
regarded as an ideal fluid on the time-scale of growth.
By local tissue remodeling we describe the processes
by which cells can rearrange their orientation and
position with respect to each as well as to move,
reorient and degrade the extracellular matrix in
which they are sitting. The driving force for
remodeling has its origin in the thermodynamics of
the irreversible process controlled by the dissipation;
for details we refer to (36) and the contributions by
Ambrosi et al, eg. (24, 33, 34). With these
assumptions, we show that the problem reduces to a
single free parameter interpreted as a critical
curvature for tissue growth. This critical curvature is
given by the ratio of the chemical potential, describing
the tendency of the tissue to grow as a result of
biochemical signals (e.g. growth factors), and the
surface energy, which leads to a tissue pressure that
may inhibit or accelerate growth. The appearance of
surface energy in the critical curvature means that
geometric boundary conditions may play an
important role on growth, a major focus of this paper.
For the following we assume that the tissue fully wets
a given surface and explore the role of surface shape
on the resultant growth. Our problem is thus related
to the evolution of droplets interacting with partially
wettable surfaces (15-17), where growth corresponds
to an increase of the droplet volume. We first
investigate the growth of an unsupported volume of
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Figure 1: The relative rates of the increase in (a) height (Eq. (7)), and (b) volume (Eq. (5)), for spherical nodules
sitting on top of a full cylinder. Numbers indicate the value critical curvature K¢ used to calculate each curve. (c)
Spherical nodules sitting on top of a full cylinder for several cross sections marked by the values of their
curvature K. When K = 2, the height of the nodule, H, is equal to the cylinder radius, Ro. Note that for every
curvature, there are two possible configurations, smaller or larger than the half sphere corresponding to K = 2 (as
shown for the example with K = 1.85). (d) Graph of the equilibrium volume V¢ of a nodule sitting on top of a full
cylinder of radius 1, as a function of the biochemical driving force (i.e. the critical curvature) K¢. The point G is
the limit for stable growth where unlimited growth starts. The branch corresponding to unstable equilibria (open

circles in (a,b)) is shown by a broken line.

tissue (or nodule) and then its growth upon a circular
disk, this analysis is then extended to tissue growth
on a circular ring. Despite the simplicity of the
geometries analyzed, tissues grow into shapes with
exquisite complexity with many aspects emulating
what can be observed in callus formation and
evolution during bone healing. We compare some of
the predictions of the model to the kinetics of bone
healing in various mammalian species and to the
existence of a critical defect size above which healing
is prevented. The surprising level of coincidence
suggest that during bone healing cells might indeed
behave like liquids and thus profit from the self-
organization capacities of wetting and surface tension.
Formulation of the model hypotheses

We use the formalism for growth outlined in (35, 36)
but assume that the growing body behaves like an
ideal fluid, with a defined surface stress v, for details

see (14). This relies on the assumption that there are
three separable time scales, that of growth,
remodeling and elasticity. The typical time for growth
is taken to be much longer than the relaxation of
stresses by tissue remodeling processes. If the body
behaves like an ideal fluid (at long time scales), and is
subjected to a constant surface stress, then the shape
of the body will have a constant surface mean
curvature when in mechanical equilibrium. This is
formulated by the Laplace-Young equation, p=vK,

where p is the pressure acting in the body, y is the

surface stress (assumed to have the same value as the
surface energy) and K is the surface curvature

(defined as the absolute value of the trace of the
curvature tensor or twice the surface mean
curvature); for details see, e.g, (14). For simple
geometric boundary conditions the equilibrium fluid
shape can be calculated analytically, giving curves that
relate pressure (or curvature) to volume, for more
complex geometries numerical solutions such as
"Surface Evolver" (37) can be used.

Once the relation between pressure (or surface
curvature) and volume is known for a given tissue
geometry in mechanical equilibrium, then we can
analyze its stability under the conditions of growth.
We do this in the following using the equation of
growth g=f(6—ﬂeol) from (35). Here g is the
growth eigenstrain tensor, ¢ the stress tensor which
is given as —pl, where | is the unity tensor, —[ig,l
the chemical potential tensor and f a mobility
coefficient. The chemical driving force for growth is a
“chemical potential” py=-pe,, with a sign chosen
such that p is generally positive. The growth

equation may be simplified with these assumptions to
an equation depending on a chemical driving force
uz0,

%=3f(—p+u), (1

where we have defined V as the volume and V as its
time rate. Note that the convention is that tensile
stresses are positive, while the pressure p is taken

positive when compressive (thus the inversion of the
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Figure 2: Topologically possible configurations with constant curvature sitting on the top of an open thick-walled cylinder. (a) A
complete cap based on spherical calottes on the top and in the inner cylinder (both with same radius of curvature). These
correspond to the stable branch Sz in Fig. 3. (b) Nodoids partially covering the cylinder gap; nodoids labeled 1, 2 and G are on the
stable branch S; in Fig. 3; nodoids between G and R (arrows) corresponds to the unstable branch Ui. (c) Further nodoids (labeled
3,4, R) corresponding to the stable branch S: in Fig. 3. Such nodoids have the same curvature as those in (b) but a larger volume.
(d) Nodoid with a spherical bulge (modeled by an adjacent droplet of identical mean curvature);nodoids with a spherical bulge
correspond to the unstable branches U and Us in Fig. 4. Figs (e-g) are 3D-renderings of numerical simulations performed in
Surface Evolver, for the topologies in (a) (b) and (d). Note that the sketch in (d) is just an approximation of the real configuration
shown in (g), neglecting the connecting zone between the spherical bulge and nodoid.

signs in (1)). Using the Laplace-Young relation, Eq.(1)
can be rewritten as
v
V:—31‘;/(K—KC). 2)
It is clear from this equation that the tissue nodule
will grow whenever its surface curvature K is
smaller than a critical curvature K.=p/y . This

critical value depends on the ratio of chemical
potential for growth (generated by biochemical
signals such as growth factors) and on the surface
stress on the outer boundaries of the nodule and is
interpreted as a kinetic control parameter for growth.

Growth of an unsupported tissue nodule

As a first and most simple case, we consider an
unsupported tissue nodule growing in suspension.
Local mechanical equilibrium implies that the nodule
must be spherical with radius R=2/K . Under these
conditions, Eq. (2) can be rewritten in a form
reminiscent of a nucleation problem, see, e.g., (38).

R=-2fy(1-R/R))
=-2fy((1-K./K)),
where R. =2/K. =2y /u is the critical radius. From

3)

this equation, the tissue nodule will be in equilibrium
when R=0,ie. R= R.. Whether this is stable or not,

depends on how R changes for small variations in R
closeto R..As R>0 for R>R. and R<0 for R<R;

, the unsupported nodule will keep on growing when
larger than the critical radius (at least as long as the
supply of nutrients and therefore the critical
curvature K is maintained at the same level) but will

disappear when it is smaller than R., meaning the

equilibrium configuration is indeed unstable.

Growth of a tissue nodule perfectly wetting a disk
We now consider a nodule that perfectly wets the
circular cap on top of a full cylinder for which the
walls are not wettable (Fig. 1c). We suppose that
there is a constant contribution of the surface stress
at the contact between the support (light grey in Fig.
1c) and the nodule (perfect wetting). For this
boundary condition the nodule will satisfy mechanical
equilibrium when it is a segment of a sphere or calotte
with a radius R=2/K . Fig. 1lc shows several
examples for spherical nodules sitting on top of a full
cylinder. Calling H the height of the calotte,
measured from the surface of the support, the volume
of the nodule is given as

V=rH?(R-H/3)

=7H (3R +H?)/6, @
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where R; is the outer radius of the circular support.

From now one we express all linear dimensions are
expressed in units of the outer radius, with R;=1,
but keep to the same symbols for the sake of
simplicity. Time t is also renormalized by introducing
7 = fyt/R, . Inserting this into Eq. (2) yields

V_
v = AK-Ko), (5)

where the dot now indicates the derivation with
respect to normalized time T . In addition to Eq. (5),
we can also write a relation between volume V and
H aswellas H and the surface curvature K as

V=rH(3+H?)/8,
K =4H /(1+H?),
which allows K to be expressed as a function of V.
Insertion of this expression into Eq. (5) yields the rate
of increase of volume as a function of the nodule
volume. A similar approach also gives the rate of
increase of the nodule height as a function of its
current height, expressed analytically as
) H2
ﬂ:37H2r<c[H2—4i+1]. (7)
H o (1+H?) Ke
Egs. (5) and (7) predict now two equilibrium states
for H, when H=0 (and V=0 ), provided that
K. <2. The stability of these states can be visualized

with the help of Fig. 1a,b which shows plots of Egs. (5)
and (7) for different values of K.. Here a short

(6)

remark concerning the term “stable” may be useful.
We consider a kinetic process and a kinetic stability
criterion. We observe a stable behaviour of the

system, if a small increase of H (V) from a starting

position leads to negative values of H/H (\//V) and

consequently a tendency of the system to move back
to the starting position - and vice/versa for a small

decrease of H (V) and positive values of H/H (\//V).

Such stable configurations are highlighted by full
circles in Fig. 1a,b. The situation is exactly opposite
for the unstable equilibria (open circles). Stable
equilibria correspond to nodules smaller than a half-
sphere (full lines in Fig. 1c), while nodules larger than
a half-sphere are in unstable equilibria (broken line in
Fig. 1c). Hence, for a given biochemical driving force
expressed by the critical curvature K., there are

stable nodule configurations described by the
corresponding curves in Fig. 1c and with

characteristic volumes and heights as given by Fig.
1ab.

Fig. 1a,b shows that growth of the nodule will not stop
when the critical curvature K exceeds the value of 2.

Interestingly (and in contrast to the unsupported
nodule discussed in the previous section), the
unstable equilibrium nodule (open circles in Fig. 1a,b)
does not disappear, when its curvature is smaller than
K¢ . It runs for K, <2 along the curves in Fig. 1a,b

from the unstable (open circles) to the stable state
(full circles). In this sense, the nodule at equilibrium is
dormant, but can reach a state of unconstrained
growth as soon as the critical curvature K, driving

force increases for some reason beyond 2 (for
example by a burst of growth factors). This is
summarized in Fig. 1d, where V., the nodule volume

corresponding to K, is plotted as a function of K.

Portions of the curve with positive slope correspond
to stable branches. Conversely, negative slopes
correspond to unstable branches. Indeed, if a decrease
in thermodynamic driving force (corresponding to a
decrease in critical curvature) would lead to an
increase in volume, the configuration cannot be
stable.

Growth of a tissue nodule perfectly wetting an
annulus

We now consider the growth of tissue pinned to the
top of an open thick-walled cylinder (that is a flat
circular ring, or annulus). We again normalize the
linear space dimensions such that the outer radius of
the open thick-walled cylinder is R, =1, and assume

the walls of the cylinder are non-wetting. The
dimension of the inner radius is kept as a parameter
R.

The analysis is done in a completely analogous way to
the previous sections. Outside the contact to the
annulus (the top of the open thick-walled cylinder),
the nodule will have a surface with constant
curvature. Such surfaces are in general nodoids (39).
To describe this axisymmetric surface, we introduce a
radial coordinate r, such that R <r<R,=1, and an

z

axial coordinate < parallel to the cylinder axis of the

support. The function linking Z \ith r in the nodoid
depends on two parameters, the (constant) surface
curvature K and the position R, (R <R;< Ro)
where there is a horizontal tangent to the profile (that
is, the position of the maximum of the nodoid, sitting
on top of the open thick-walled cylinder), and can be
written as
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[oslo)-coso)]
Z(r,K,R,)=%1+R, E[e’(R:i)zJ_E[e"(R:i)zJ
S|y o)
(8)

with

6 =arcsin(K (1~ R?)/2r). (9)
The quantity 6 represents the polar angle as
parameterization with the starting value 6, <6 . The

current formulation ensures that Z(9|)=0. The

functions E and F are the incomplete elliptic
integrals of the first and the second kind. Both signs in
front of the bracket point to the fact that z may
describe both the contour and its mirror image with
respect to the plane z=0 . For details, see
Supplementary Material and the references therein.

It is interesting to note that several topologically
different shapes (as previously described by
(15,17,40)) may fulfill the requirements of constant
mean curvature and of meeting the boundary
condition (pinning) on the top of the open thick-
walled cylinder. These are sketched in Fig. 2. The first
topology (Fig. 2a) is a spherical cap covering the
central channel, the second topology (Figs 2b,c)
corresponds to various nodoids and the third (Fig. 2d)
is a nodoid with a spherical droplet of identical
curvature attached to it. This last (much simplified)
configuration was considered here, because Lipowsky
and co-workers (15,17,40) showed that nodoidal
objects could bifurcate into conformations with a
significant spherical bulge. Figs 2 e-g were calculated
using Brakke’s "Surface-Evolver" software (37), for
details see the Supplementary Material.

Fig. 3 shows relations between volume and curvature
for all these cases and for three values of the inner
radius (i.e. the ratios of the inner radius R and the

outer radius R, ) of the support cylinder. For

relatively thick-walled cylinders (Fig. 3a,b), there are
three stable branches (labeled S), two of which
correspond to nodoids and there are three unstable
branches (labeled U). Branch Si corresponds to a
wetting of the ring-like cylinder top and the gradual
development of a nodoid with increasing volume (at
increasing critical curvature K., shapes 1, 2 and G in

Fig. 2b). Beyond some value of the critical curvature
K. (close to 2.2 and to 4 in Fig. 3a and b,

respectively), the branch ends and growth becomes
unstable, see branch Ui. At the end of this branch,
denoted by R in Fig. 3c another stable branch S: is
reached, where a further increase of the volume is not
possible. This is the largest possible nodoid that
satisfies the boundary conditions. Nodoids along S,
will respond to a decrease in critical curvature by
following path Sz (with shapes of the type shown in
Fig. 2c). Interestingly, branch Sz is tangent (and nearly
identical at small volumes) to another stable branch
S3 that corresponds to a closed spherical cap (Fig. 3a)
as a second possible topology. Hence, bifurcation from
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Figure 3: Relation between the equilibrium volume V¢ and
critical curvature Kc for nodules growing on the top of an
open thick-walled cylinder, with different ratios of inner to
outer radius: 0.25 (a), 0.5 (b) and 0.75 (b). Both volume
and curvature have units given as fractions of the outer
wall radius Ro= 1. Curve branches with positive slope are
stable, while those with negative slope are unstable with
respect to the growth equation (Eq. (5). Labels S to Sz and
U1 to Us correspond to configurations described in Fig. 2.
Labels G and R denote nodoids with the largest curvature
and the largest volume, respectively.

the topology shown in Fig. 2c to 2a is possible and
very likely. When calculating the volume-curvature
relations for the third topology (Fig. 2d), the
corresponding branches (Uz and Us) are barely visible
in the upper right corner of Fig. 3b and completely
outside the field of view in Fig. 3a. The situation is
rather different for relatively thin-walled cylinders
(Fig. 3c). It turns out that the curves for nodoids of
type shown in Figs 2b and 2c¢, with a drop-like
spherical bulge (U2 and Us) are actually in the same
range as the ones for nodoids and bifurcations are
possible. Most notably, the curves cross at a value of
the critical curvature close to 8, where it is possible
that the nodoid (of the type depicted in Fig. 2c)
bifurcates to another topology (of the type depicted in
Fig. 2d). This consists of a nodoid (of the type
depicted in Fig. 2b) of smaller volume but with the
same curvature by generating an additional spherical
bulge with exactly this curvature taking up the extra
volume. After this bifurcation, growth of the spherical
bulge becomes unstable (branch Uz in Fig. 3c), in a
manner equivalent to the unstable branch in Fig. 1d.
The curves shown in Fig. 3 were also verified with
numerical calculations using "Surface Evolver" (37)
that also showed a bulging bifurcation (Fig. 2g).
Despite the strong simplification of the analytical

145



model (as shown in Fig. 2d), there is excellent
qualitative agreement between the analytical and

total area

critical curvature Kg

Figure 4: Total area of the newly formed tissue on top
of an open thick-walled cylinder for an internal radius of
0.75. The symbols are the same as in Fig. 3c. The two
arrows indicate positions where the overlap of two
branches in Fig. 3c suggests to possibility of
bifurcations.

numerical solutions.

This analysis of potential bifurcations merits a more
thorough analysis. For this, we plot the total free
surface area of the tissue nodule as a function of
critical curvature for the relatively thin-walled
cylinder with an inner radius of 0.75 (Fig. 4). Given
that surface energy governs the development of
shape, the total area, which is proportional to total
surface energy, will tend to be minimal. A bifurcation
from one topology to another is only possible without
a jump in volume and at given curvature. Indeed,
curvature is imposed on the system by the
biochemical driving force expressed by K. and

changes in volume require the synthesis of additional
tissue and can, therefore, not be instantaneous. In Fig.
4, two possible bifurcations can be observed, namely
one between the paths Ui and Uz crossing close to a
critical curvature of K.=8 and the other one

between the paths Sz and Ss approaching
asymptotically for small curvatures. These two points
are marked by arrows in Fig. 4. It turns out that
configurations due to Sz and S3 have nearly the same
surface area at small curvatures, which means that a
bifurcation is likely but not necessary. However, if
biochemical driving forces increase the critical
curvature K. again, it is more likely that the system

follows the path Sz, which has the lower surface area
and consequently surface energy at equal critical
curvature. The bifurcation between the paths U1 and
U: is of a totally different nature. When curvature
increases along the path S1 and exceeds the maximum
value at G, so that further growth becomes unstable
along the path Ui, the formation of a spherical bulge
significantly lowers the surface energy, so that a
bifurcation from path Ui to path Uz becomes highly
probable. The bulge itself is unstable, and will
continue to grow in a similar way to the unstable
branch of the calotte (Fig. 1d). It should be mentioned
again that for thicker cylinder walls, U1 and Uz do not
intersect (Fig. 3a,b) so that the bifurcation towards
uncontrolled growth is not expected above a certain
wall thickness. Without the bifurcation towards a
spherical bulge (which is the case for inner radii
significantly smaller than 75% of the outer radius),
the configurations labeled G and R in Fig. 3

correspond to those with the largest curvature and
the largest volume, respectively. Quantitative data for
these two configurations are given in Table 1.
Comparison to callus formation and bone healing
The model described above has only one free
parameter, the critical curvature K., and is based on

three main biological hypotheses. To recap, the model

relies on the following conditions:

1) Tissue is remodeled on a time scale much shorter
than growth, which justifies the description of
the tissue as an effective ideal fluid (on the time-
scale of months) (10).

2) There is a surface stress, which results in a
surface curvature-dependent internal pressure
inside the tissue (9,11,12,21,41).

3) Growth of a tissue, by cell proliferation and
extracellular matrix formation, depends on its
pressure through the growth equation. Such a
dependency on pressure is known from the
growth of tumor spheroids (18,42), and in
principle can be controlled by the organism (e.g.,
via growth factors).

Despite the simplicity of the above model, the

coupling of growth with the external surface

geometry via the internal pressure leads to
surprisingly complex behaviour as a function of the
boundary conditions. Interestingly this behaviour is
reminiscent of many features seen in biological
tissues. While an unsupported nodule is unstable

(disappearing at small driving forces and showing

unlimited growth at large driving forces), there are

equilibrium sizes for the nodule when adhering to a

substrate. The stabilizing effect of substrates on

growing tissues has been observed in cancer
metastases (18,43) and clearly plays an important

role in biofilm formation (44).

Our model shows that growth of a tissue is also

dependent on the shape of the surface upon which it

adheres. When the tissue grows on top of a hollow
cylinder, which is the same geometry as the free ends
of bone in the simulated fracture gap after an
osteotomy (45), there is a maximum height the tissue
will grow to, for a given value of critical curvature.
Assuming that similar growth occurs from both sides
of the fracture gap in an osteotomy, our model thus
predicts the existence of a maximum bridgeable gap
size. This is reminiscent of the so-called “critical
defect size” known from bone healing (46). Such
calculations of course assume no wetting of the
external bone surface which may occur during bone
fracture-healing due to damage or removal of the
periosteum (e.g. (47)).The prediction of the model is
that the critical gap size is 70%, 78% and 61% of the
outer diameter of the cylindrical tube, when the inner
diameter is 75%, 50% and 25% of the outer diameter,

respectively (Table 1). Most land mammals have a

ratio of inner to outer diameter lower than 75% (48),

and typically have critical defect sizes of 1 to 2 times

the outer bone diameter (49). For example, the ratios
of critical defect sizes to bone diameters are reported
to be: 1.3-1.5 times in feline tibias (49), 1.5-2 times in

dog ulnas (49), and 2-2.5 times in sheep tibias (46).

These ratios are of a similar order of magnitude as the

model predictions. For thin walled cylinders (wall

thickness less than 25% of the radius), the model
predicts a bifurcation towards uncontrolled growth of
spherical bulges, which could have implications in the
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fracture healing of thin walled bones such as those
found in birds. Our theory predicts that if the fracture
gap is too large and then tissue starts to resorb, a cap
will form that will gradually close the tubes at each
side of the gap (Fig. 2e). Remarkably, such closure is
observed in pseudarthrosis or non-union of bone
fractures e.g. (50). In our theory, this arises due to a
kinetic instability of the growth process, which is
described by the evolution equation of the shape of
the actual configuration leading to different paths for
resorption and growth (Fig. 3).

In conclusion, if the above conditions 1 to 3 are
fulfilled in a growing tissue, then the organism needs
to control only one parameter, namely the
proliferation rate (that leads to the growth pressure
or the critical curvature as used in our model), in
order to achieve a complex sequence of structures
surprisingly similar to in-vivo observations. In
addition to bone fracture healing our model may be
interesting for biofilm formation and cancer research
as it shows how the presence of tissue surface tension,
and liquid like properties can lead to radically
different behaviors of tissues on surfaces.
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Abstract: Natural hygromorph actuators, such as those found in the pine cone or in the awns of wheat and the
storksbill, achieve a large variety of motions by controlling the distribution of swellable tissues inside their
geometries. Such natural systems provide inspiration for the design of artificial actuators where swelling is triggered
by any external expansion field. One way to achieve differential swelling inside a structure is to consider two elastic
phases with different expansion properties and to apply a uniform expansion field. The resultant motion depends on
the geometric distribution of the two phases and the cross section of the structure. This paper uses the finite element
method to explore how the geometry and symmetry of the initial structure controls the range of motion available.

1 Introduction

The recent increase in investigations of structure-
function relationships in biological systems by
material scientists (Fratzl 2007; Bhushan 2009)
opens a large range of potentially interesting design
principles that can be translated from Nature to the
engineering world (Dunlop and Brechet 2009).
Passive actuated plant systems are particularly well-
suited for a biomimetic approach to the development
of artificial actuators, as they do not require active
transport of ATP to supply chemical energy to cells.
Actuation in these systems is rather controlled by the
architectural arrangement of dead tissues which swell
to differing degrees upon hydration (Burgert and
Fratzl 2009; Fratzl and Barth 2009; Martone et al.
2010). An additional advantage for bioinspired
robotics shared by many simple natural actuating
systems is their properties of decentralization and
embodiment (Pfeifer et al. 2007). By this it is meant
their ability to integrate sensing and actuating
functions at the material level so as to avoid central
control of the system, which typically needs a complex
information pathway (sensors to central control unit
to actuator). Hygrophilic swelling of dead plant
tissues although somewhat simple in concept, still
leads to complex macroscopic movements like
bending, twisting and helical actuation dependent on
the underlying tissue architecture. This article is
based on a top-down approach, where hygrophilic
plant tissues are modelled as thermo-mechanical
continua in order to explore the relation between the
architectural distribution of expanding properties
inside a given geometry and the resulting movement
for a given stimulus.

Nature provides several examples of nastic actuated
systems in which plant organs move or generate
stresses due to differential swelling of their
constituent tissues. This is nicely illustrated by seed
dispersal units like wheat awns and the pine cone.
Wheat is propelled on and into the ground by daily
humidity cycles that give rise to reversible planar
bending of the awns (Elbaum et al. 2007; Elbaum et al.
2008) while ratchets account for unidirectional
movement (Kulic et al. 2009) and closed wet pines
cones open while drying thus releasing the seeds
(Dawson et al. 1997). In both cases, the orientation of
stiff cellulose microfibrils embedded in the

hygroscopic hemicellulose matrix of the secondary
cell walls is responsible for the differential swelling
properties of the seed dispersal units, as the
shrinkage upon drying will primarily occur
transversally to the fibres. Such a multi-cellular
bilayer with one region’s fibres oriented parallel to
the cell axis and the other region’s fibres with random
or perpendicular orientations will give rise to planar
bending and can inspire simple biomimetic systems
(Reyssat and Mahadevan 2009). More generally,
swelling can also generate either compressive or
tensile growth stresses in so-called “reaction wood”,
depending on the average angle of the cellulose
microfibrils to the main cell axis (Burgert et al. 2007).
General mechanisms of multi-cellular stiff cellulose
architecture inside a soft swellable matrix have been
reviewed for plant actuation systems in (Fratzl et al.
2008) and mechanosensing (Fratzl and Barth 2009).
In poplar tension wood for example (Goswami et al.
2008), an additional G-layer of parallel cellulose
microfibrils, also found in the tissue of contractile
roots (Schreiber et al. 2010), is responsible for the
generation of high tensile stresses. Design limits
between fast movements in which active driving
forces or instabilities are at play, as in the buckling of
the Venus flytrap (Forterre et al. 2005) or the
explosive fracture of seed expulsions (Witztum and
Schulgasser 1995), and slow movements where
passive dead tissue is at work, on which we focus
here, can be made based on mechanical and hydraulic
considerations (Skotheim and Mahadevan 2005).
Symmetry considerations (Curie’s principle) of the
geometry and material distribution can predict the
planar bending of the aforementioned plant systems
(wheat awn, pine cone). A large number of reversible
motions or stresses can be powered by choosing a
clever couple of the distribution of material
properties inside the geometry and an appropriate
expansion/contraction field.

Although nature is able to “design” its materials at
each hierarchical length-scale, this is difficult to
achieve for artificial materials, due to limitations in
common manufacturing techniques. As in the pine
cones, many artificial devices have been produced
based on the bending of a bilayer made up of two
materials, each showing a different volume change in
response to a changing external field. Well established
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Figure 1: Non-exhaustive examples of material-
distributions reducing the number of symmetries
of a square profile. Breaking mirror symmetries
while preserving rotational ones allows twisting
to occur (rows 2 and 4). When only one mirror
plane remains bending can occur (row 5). When
two many symmetries remains, symmetry locking
takes place (rows 1 and 3). When no symmetry
elements is present,, actuation is apparently
unpredictable (row 6).

manufacturing techniques such as -
stereolithography can be used to produce bilayers of
photocurable polymers that bend upon changing
humidity (Lee et al. 2008). Other examples include
Cu/Cr bilayers that change curvature reversibly upon
oxidation/reduction cycles (Randhawa et al. 2010).
Shape-memory materials have also awakened a great
interest in the design of artificial actuators. Actively
foldable origami-like structures have been designed in
which simple bending motion of shape-memory joints
is coupled with a crease pattern of a planar sheet in
order to obtain several programmable shapes
(Hawkes et al. 2010). Shape-memory polymers can in
particular be tuned to respond not only to
temperature changes but also to electrical fields, light
intensity, humidity fields (Behl et al. 2010) or a
combination of these (Sellinger et al. 2010). Magnetic
shape-memory foams are also becoming intriguing for
tomorrow’s applications since significant induced
strains have been shown and some manufacturing
drawbacks have been overcome (Acet 2009). Even if
such systems show the feasibility of bioinspired
actuation, the majority of them are based on bilayers
bending in a single plane, with different materials
distributed only along one transverse direction.

The goal of this paper is to explore the complexity of
movements of one body shape (straight slender
element) made of two elastic phases with different
expansion coefficients distributed along the two
transverse directions. The role of symmetry in
sampling the space of allowable movements is
addressed firstly in the next section. Examples of two
different families of biphasic actuators are then
simulated in the sections following using the finite
element method in order to determine their actuation
patterns.

2 Symmetry Considerations

2.1 Curie’s Principle

As we consider invariant architectures along the
length of the body (uniform cross-sections),
symmetry elements reduce to mirror symmetries (
n#M ) and rotation symmetries ( R,), where n is

respectively the number of mirror planes and the
multiplicity of the rotation (the angle of rotation is
360/n ). In the plane, the inversion centre is

equivalent to R,. Multiple mirror symmetries imply

rotation symmetries, but the inverse statement
doesn’t hold in general (n*M = R, ).If symmetry

exists in the base configuration it is kept in the
deformed configuration as stated by Curie’s principle:
“Effects have at least the symmetries of their causes”
(Curie 1894). In general, this means that mirror
symmetries only allow planar bending to occur in the
mirror plane, whereas rotation symmetries only allow
the structure to twist around its rotation axis. If
multiple symmetries exist in the initial configuration,
they all remain in the deformed configuration. As a
result, overlapping symmetries result in no
deformation (symmetrical locking). For example, the
presence of both a mirror plane and a rotation axis
implies no bending and no twisting as both
movements would break one of the symmetries. Such
preliminary  consideration enables to make
predictions on the allowable actuation patterns based
on the symmetry of the undeformed actuator.

2.2. Materials Distribution Restricts Symmetries
of Geometrical Shape

Profiles can be anything from asymmetric to multiply
symmetric. Examples of the latter are regular n-sided
polygons, possessing n symmetry planes (mirrors)
which imply n-fold rotational symmetries. Moreover
n-sided polygons will also posses all p-fold rotational
symmetries, where p is a product of a subset of

primary numbers present in the decomposition of n
(n=p#p,*..xp, and p=p,*p,*..*" p, where (
il...ik) is a subset of (1..m)). Distribution of two
material phases inside the profile can only maintain
or decrease the number of the symmetry elements of
the geometrical shape. The final symmetry elements
of the body are thus equal to the symmetry elements
of the geometry reduced by the choice of the material
distribution.

2.3 Repetitive Unit Cell

A systematic way of designing complex material
distribution inside a given geometrical shape is to
look at the smallest portion of the profile, which if
mirrored/rotated along a defined number of
symmetry elements of the profile builds up the whole
cross-section. The design of this portion, or repetitive
unit cell (RUC) will produce different patterns. The
symmetry of the patterns can be larger than the
symmetry elements used for its generation.

3 Setting the FE Model

In general, the spatial distribution of the material
properties  (elastic modulus and expansion
coefficient) within a given geometry determines the
deformation of the object subjected to a uniform
expansion field (humidity, temperature, chemical,
magnetic or electric field) and thus its overall
movement. All the architectures are based on a
straight slender beam with a square profile which can
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Figure 2: The squared profile possesses 4 mirror
planes and a 4-fold rotational axis (4*M, R4). For
a constant passive/active area ratio of 50:50, those
symmetry elements can either be maintained by
the material distribution (centre, upper left and
downer right corner), decreased to a single mirror
plane (inner contour) or to one 4-fold rotational
axis (outer contour). The inner contour is used as
RUC for the outer contour showing that the 4-fold
patterned cross-section can still possess 4 mirror
planes if the RUC possess a mirror plane passing
through the centre of rotation.

be mapped to any geometrical form in the plane
(Janichen and Perner 2006).

3.1 Implementation

Analytical solutions are known for the special case of
thermal bilayers, where thermal expansion
coefficients vary in one plane of the cross-section
leading to a planar bending of the bilayer in this plane
(Timoshenko 1925). However, the general case of an
arbitrary distribution of materials is difficult to
address analytically. This motivates a solution using
the finite element method implemented
parametrically in Abaqus 6.9 (www.simulia.com)
through an appropriate script written in Python. All
the architectures are based on a cubic lattice defined
by adjustable length and partitioning parameters. The
lattice is filled with two different material phases,
active and passive, having the same elastic properties
(elastic modulus and Poisson’s ratio) and different
expansion properties (longitudinal coefficient of
thermal expansion). Additionally, a void phase made
of a very soft extensible material enables to make
mechanical holes in the system. A uniform constant
expansion field is applied to the structure and the
static equilibrium configuration is computed taking
non-linear geometrical effects into account. An
adaptive meshing technique (ALE) is used in order to
reduce distortion effects of the elements which are
simple 8-node linear brick elements (C3D8). No
boundary condition is needed as the thermal load
induces an auto-equilibrated eigenstrain. The aim of
the calculation is to qualitatively predict actuation
patterns and to explore the space of allowable
movements.

3.2. Simplifying Assumptions

The reversibility of natural actuation processes
translates into elasticity in the context of continuum
mechanics and the differential swelling expansion of
the actuating material is analogous to thermal
expansion with spatially varying thermal expansion
coefficients. In the calculation the assumption of
linear thermo-elasticity is made, and, thus, does not
consider potential changes in elastic and swelling
properties with the intensity of the expansion field.
Also, the focus on biphasic materials and constant
cross-section does not enable to model continuously
varying properties as in functionally graded materials
(FGM). Nevertheless, the context of linear elasticity
seems well suited to reproduce slowly actuated
movements and to reflect, at least qualitatively, the
symmetry effects.

4 Results and Discussion

In the context of elastic materials, the actuation
process is reversible, as observed in many natural
actuators. Thus, it is possible to go from a straight
element to a curved or twisted one, and to reverse the
transformation. In the absence of buckling
phenomena, this transformation will be continuous,
fully reversible, and with no hysteresis. Complex
movements can be achieved by combining basic
patterns. This combination, however, is not linear, as
there is a coupling between bending and twisting.
Indeed , if stresses are additives, the strain energy is
quadratic, and the cross terms will give the coupling
between the different deformation modes. It appears
to be more difficult to bend a twisted shape or vice-
versa. Depending on whether the aim is to generate
displacement or force, the stiffness must be
respectively small or large. Slender elements will
enable large displacements with small deformations
and stresses through geometrical amplification. A
classification of actuators could further emphasize the
ambivalence between displacement and force
generation (Zupan et al. 2002).

4.1. Actuation Patterns

All the symmetry elements of the initial object are
preserved in the deformed state, which delimits the
space of allowable movements. In the absence of
symmetry locking, one mirror plane or rotational axis
allows for planar bending and twisting respectively.
The actual actuation pattern inside the space of
allowable movements for a given object appears to
depend on several geometrical properties of the
cross-section.

4.2. Bending

Bending is straightforward as the presence of a mirror
plane implies planar bending (figure 3 (a)). Analytical
formulas for curvature are known for simple bilayers
(Timoshenko 1925) and can be generalised to other
geometries. It is also possible to control the local
curvature of the straight element by rotating the
mirror plane of the cross section along the length of
the object. Helical actuation can be achieved this way.
The second moment of inertia of the cross-section is
inversely proportional to the radius of curvature
leading to large displacements in the case of small
inertia. Geometrical effect like opened cross-sections
can amplify the global displacements.

4.3. Twisting

Twisting seems more sensitive to other geometrical
factors. In the case of a compact cross-section (figure
3 (b)), no actual twisting is observed despite the 4-
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Figure 3 actuation patterns for several cross-sections with passive/active area ratio of 50:50: (from left to right) (a) Classical
bilayer bending in its mirror plane; (b) Closed 4-fold cross-section with bilayer RUC remains straight; (c) Opened 4-fold cross-
section with bilayer RUC shows huge twisting; (d) Opened 4-fold cross-section with bigger moment of inertia shows less twisting
than (c). (e) Opened 4-fold cross-section with differently oriented bilayer RUC remains straight.

fold rotational symmetry axis. However, the
augmentation of free-borders with the volume ratio of
the two phases staying equal seems to trigger twisting
(figure 3 (c)). The moment of inertia of the cross-
section seems to relate inversely to the amount of
twisting (figure 3 (d)). The eccentricity of the
expanding region relative to the geometric centre of
the cross-section is proportional to the degree of
twisting.

4.4. Geometrical Parameters

Empirical definitions of geometrical parameters that
control actual actuation can be proposed. These
empirical definitions arise from the observed
actuation patterns. The next step (not attempted
here) would be to try correlating quantitative
measures of movements (radius of curvature, twisting
angle) to these geometrical parameters.

A general parameter is the phase fraction,
corresponding to the ratio between the volume of the
active and passive domains. For a constant cross-
section, the area ratio is equal to the volume ratio.
Topological considerations such as the connectivity of
the phase regions also play a role for the control of the
actuation patterns.

In the case of twisting, other geometrical
parameters are necessary to distinguish between the
observed actuation patterns. On of them is
compactness, defined as the ratio between the area of
the cross-section and the area of the n-sided regular
polygon (with the smallest possible n value)
containing the cross-section. All other parameters
being equal, a compact cross-section will not twist,
whereas an open cross-section will. Concavity defined
as the ratio between the perimeter of the shape and
the perimeter of the smallest convex contour
containing the shape also plays a role similar to
geometrical amplification. Compactness and concavity
are truly disjoined concepts as there are cross-
sections with equal compactness but different
concavity and vice-versa. Eccentricity defined as the
distance between the centres of the active regions to
the geometrical centre of the shape controls the
twisting rate of the section. These are only qualitative
consideration based on the results of the finite

element calculations, without the attempt of a
complete classification of all possible shapes.
Conclusion

In this contribution, the effects of material
distribution and overall architecture on the actuation
patterns of a composite made of swellable and non-
swellable  materials  constituent have been
investigated. The space of possible actuation patterns
can be restricted by symmetry considerations
regarding the initial shape. For constant cross-
sections, it is possible to achieve planar bending or
twisting when the material distribution breaks some
of the symmetry elements of the initial shape,
preserving one mirror plane or one rotational axis.
The observed actuation behaviour seems to depend
on several geometrical parameters, which can be
described empirically as phase ratio, topology,
compactness and concavity of the cross-section as
well as eccentricity. This bioinspired approach
towards actuation enables the design space of
biphasic actuators to be explored. Besides geometrical
considerations, energies and internal stresses could
also play a role and it would be interesting to look at
the stress repartition inside the cross-section or to
optimize the stored strain energy, which has nor been
attempted in the present work. The questions
whether asymmetric shapes can be decomposed into
a set of symmetric shapes in order to predict their
actuation patterns remain open, as well as the
influences of defects on the material. This paper has
been restricted to investigating only variations in
architecture and material distribution within the 2D
cross section of a simple beam. Despite this extreme
simplification, it has been found that the space of
allowed movements is quite rich, including bending,
twisting and curling. The study reported in this paper
is clearly preliminary and much more remains to be
investigated. Foe example, more complex material
distributions (in 3D) and shapes could enable further
unexplored actuation movements. Moreover, it is not
clear what the effect would be, if the discrete
multiphase materials would be replaced by graded
material properties. It is quite likely, that material
optimisation methods could be of use for this problem
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(Torquato 2010). Finally, it is important to stress that
such systems need to be manufactured to be useful,
which imposes further restrictions on the design
space. But this initial study already shows that this
simple bio-inspired approach may enable the design
of artificial actuated materials with a wide span of
potential applications.

Acknowledgements

The authors would like to thank Yael Abraham,
Thomas Antretter, Rivka Elbaum, Matt Harrington,
Davide Ruffoni and especially Ingo Burgert for
stimulating discussions on actuation in plant systems.

References:

Acet, M. (2009). "Magnetic Shape Memory
Magnetoelastic Sponges.” Nature Materials 8(11):
854-855.

Behl, M. Razzaq, M. Y. and Lendlein, A. (2010).
"Multifunctional Shape-Memory Polymers." Advanced
Materials 22(31): 3388-3410.

Bhushan, B. (2009). "Biomimetics: lessons from
nature - an overview." Philosophical Transactions of
the Royal Society a-Mathematical Physical and
Engineering Sciences 367(1893): 1445-1486.

Burgert, 1, Eder, M. Gierlinger, N. and Fratzl, P.
(2007). "Tensile and compressive stresses in
tracheids are induced by swelling based on
geometrical constraints of the wood cell." Planta
226(4): 981-987.

Burgert, I. and Fratzl, P. (2009). "Actuation systems in
plants as prototypes for bioinspired devices."
Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences
367(1893): 1541-1557.

Curie, P. (1894). "Sur la symétrie dans les
phénoménes physiques, symétrie d'un champ
électrique et d'un champ magnétique." Journal de
physique théorique et appliquée 3(1): 393-415.
Dawson, C., Vincent, J. F. V. and Rocca, A.-M. (1997).
"How pine cones open." Nature 390(6661): 668-668.
Dunlop, J. W. C. and Brechet, Y. J. M. (2009).
"Architectured Structural Materials: A Parallel
Between Nature and Engineering." Architectured
Multifunctional Materials 1188: 15-25

241.

Elbaum, R., Gorb, S. and Fratzl, P. (2008). "Structures
in the cell wall that enable hygroscopic movement of
wheat awns.” Journal of Structural Biology 164(1):
101-107.

Elbaum, R, Zaltzman, L. Burgert, 1. and Fratzl, P.
(2007). "The role of wheat awns in the seed dispersal
unit." Science 316(5826): 884-886.

Embury, D. and Bouaziz, 0. (2010). "Steel-Based
Composites: Driving Forces and Classifications."
Annual Review of Materials Research, Vol 40 40: 213-
241.

Forterre, Y. Skotheim, ]. M. Dumais, ]. and
Mahadevan, L. (2005). "How the Venus flytrap snaps."
Nature 433(7024): 421-425.

Fratzl, P. (2007). "Biomimetic materials research:
what can we really learn from nature's structural
materials?" Journal of the Royal Society Interface
4(15): 637-642.

Fratzl, P. and Barth, F. G. (2009). "Biomaterial systems
for mechanosensing and actuation." Nature
462(7272): 442-448.

Fratzl, P., Elbaum, R. and Burgert, 1. (2008). "Cellulose
fibrils direct plant organ movements." Faraday
Discussions 139: 275-282.

Goswami, L., Dunlop, J. W. C,, Jungnikl, K., Eder, M,,
Gierlinger, N., Coutand, C., Jeronimidis, G., Fratzl, P.
and Burgert, . (2008). "Stress generation in the
tension wood of poplar is based on the lateral
swelling power of the G-layer." The Plant Journal 56:
531-538.

Hawkes, E., An, B., Benbernou, N. M., Tanaka, H., Kim,
S., Demaine, E. D, Rus, D. and Wood, R. ]. (2010).
"Programmable matter by folding." Proceedings of the
National Academy of Sciences of the United States of
America 107(28): 12441-12445.

Janichen, S. and Perner, P. (2006). "Aligning concave
and convex shapes." Structural, Syntactic, and
Statistical Pattern Recognition, Proceedings 4109:
243-251.

Kulic, I. M., Mani, M., Mohrbach, H., Thaokar, R. and
Mahadevan, L. (2009). "Botanical ratchets."
Proceedings of the Royal Society B-Biological Sciences
276(1665): 2243-2247.

Lee, H., Xia, C. and Fang, N. X. (2008). "Biomimetic
microactuator powered by polymer swelling "
Proceedings of the ASME 13: 765-769.

Martone, P. T. Boller, M., Burgert, I, Dumais, ],
Edwards, J., Mach, K., Rowe, N., Rueggeberg, M., Seidel,
R. and Speck, T. (2010). "Mechanics without Muscle:
Biomechanical Inspiration from the Plant World."
Integrative and Comparative Biology.

Pfeifer, R., Lungarella, M. and lida, F. (2007). "Self-
organization, embodiment, and biologically inspired
robotics." Science 318(5853): 1088-1093.

Randhawsa, . S.,, Keung, M. D., Tyagi, P. and Gracias, D.
H. (2010). "Reversible Actuation of Microstructures
by Surface-Chemical Modification of Thin-Film
Bilayers." Advanced Materials 22(3): 407-+.

Reyssat, E. and Mahadevan, L. (2009). "Hygromorphs:
from pine cones to biomimetic bilayers." Journal of
The Royal Society Interface.

Schreiber, N., Gierlinger, N. Putz, N, Fratzl, P,
Neinhuis, C. and Burgert, 1. (2010). "G-fibres in
storage roots of Trifolium pratense (Fabaceae):
tensile stress generators for contraction." Plant
Journal 61(5): 854-861.

Sellinger, A. T., Wang, D. H,, Tan, L. S. and Vaia, R. A.
(2010). "Electrothermal Polymer Nanocomposite
Actuators." Advanced Materials 22(31): 3430-+.
Skotheim, ]J. M. and Mahadevan, L. (2005). "Physical
Limits and Design Principles for Plant and Fungal
Movements." Science 308(5726): 1308-1310.
Timoshenko, S. (1925). "Analysis of bi-metal
thermostats." Journal of the Optical Society of America
and Review of Scientific Instruments 11(3): 233-255.
Torquato, S. (2010). "Optimal Design of
Heterogeneous Materials." Annual Review of
Materials Research, Vol 40 40: 101-129.

Witztum, A. and Schulgasser, K. (1995). "The
Mechanics of Seed Expulsion in Acanthaceae." Journal
of Theoretical Biology 176(4): 531-542.

Zupan, M., Ashby, M. F. and Fleck, N. A. (2002).
"Actuator classification and selection - The
development of a database." Advanced Engineering
Materials 4(12): 933-940.

153



154



7.9 [AC2] Shape-Programmed Folding of Stimuli-Responsive Polymer Bilayers.
Stoychev, G., Zakharchenko, S., Turcaud, S., Dunlop, J. W. C., lonov, L
Published in ACS Nano, 2012, 6(5), 3925-3934.
Doi: 10.1021/nn300079f

Reprinted with permission from the American Chemical Society

ABSTRACT. We investigated the folding of rectangular stimuli-responsive hydrogel-based polymer bilayers with
different aspect ratios and relative thicknesses placed on a substrate. It was found that long-side rolling dominates at
high aspect ratios (ratio of length to width) when the width is comparable to the circumference of the formed tubes,
which corresponds to a small actuation strain. Rolling from all sides occurs for higher actuation, namely when the
width and length considerably exceed the deformed circumference. In the case of moderate actuation, when the width
and length are comparable to the deformed circumference, diagonal rolling is observed. Short-side rolling was
observed very rarely and in combination with diagonal rolling. Based on experimental observations, finite-element
modeling as well as energetic considerations, we argued that bilayers placed on a substrate start to roll from corners
due to quicker diffusion of water. Rolling from the long-side starts later but dominates at high aspect ratios in
agreement with energetic considerations. We have showed experimentally and by modeling that the main reasons
causing a variety of rolling scenarios are (i) non-homogenous swelling due to the presence of the substrate and (ii)

adhesion of the polymer to the substrate.

Introduction. Design of hollow 3D objects such as
capsules and tubes is highly demanded for cell
encapsulation, drug delivery, design of self-healing
materials 1. Most approaches for fabrication of
capsules are based on the use of particles or fibers as
templates, which are covered by functional materials.
Hollow functional structures are, thus, formed after
the removal of the core. Recently, the use of self-
folding films - thin films, which are able to form
different 3D structures, was suggested as a template-
free alternative to the traditional template-based
approaches 2. The main advantage of self-folding films
is the possibility to transfer a pattern, created on the
surface of the unfolded film, into the inner and outer
walls of the folded 3D structure 3.

Inorganic and polymer-based bilayers are examples of
self-folding films, which fold due to relaxation of
internal  stresses originated from dissimilar
properties of the two layers, such as lattice mismatch,
thermal expansion or swellability. Inorganic-based
self-folding films are promising for a variety of fields
ranging including transport 4, nanooptics 5, energy
storage elements ¢, photovoltaic power applications 7,
optics 8, engineering of scaffolds ¢ as well as being
suitable to investigate the role of confinement on cell
behavior 10. Polymer based self-folding films, on the
other hand, are particularly promising for
biotechnological application such as encapsulation of
cells 11 and design of biomaterials 12. These and other
applications require precise control of the folding for
fabrication of 3D objects with a defined shape. In
particular, it was demonstrated that the resulting
shape of the folded 3D object can be controlled by the
shape of the original bilayer. For example, rectangular
bilayers form tubes 11a while star-like bilayers are
able to form envelope-like capsules!ib.

Generally, the rolling of a rectangular bilayer may
occur according to three different scenarios: long-
side, short-side and diagonal rolling (see Figure 1).
The effects of film shape on the character of folding
were experimentally investigated on examples of
purely inorganic and composite polyaniline-inorganic
bilayers. Smela et al showed that short-side rolling
was preferred in the case of free homogeneous

actuation and that this preference increased with
aspect ratio (ratio of length to width of rectangular
pattern)13. Li et al experimentally demonstrated the
opposite scenario 14, namely a preference for long-
side rolling, in the case where bilayers are
progressively etched from a substrate. They observed
that when the tube circumference was much larger
than the width, or the aspect ratio of the rectangle
was high, rolling always occurred from the long side.
When the tube circumference was much smaller than
the width and the aspect ratio of the membrane
pattern was not very high, the rolling resulted in a
mixed yield of long- and short-side rolling, as well as a
“dead-locked turnover” shape. Short-side rolling
occurred at small aspect ratios when the deformed
circumference is close to the width. In these self-
rolling systems, the active component undergoes
relatively small volume changes or actuation strains,
which are nearly homogenous over the whole sample.
Hydrogels films, which are also able to fold,
demonstrate considerably different properties 15.
First, hydrogels undergo large volume changes (up to
10 times) upon swelling and contraction. Second, the
swelling of a hydrogel is often kinetically limited: due
to slow diffusion of water through hydrogel, the parts
which are closer to the edges swell first while the
parts which are closer to the center of the films swell
later. Thus, the actuation profile inside the active
layer is heterogeneous. In this paper we investigate
the effects of shape, size and rolling curvature on the
direction of folding of rectangular polymer bilayers
placed on a substrate, where the bottom component is
a stimuli-responsive hydrogel.

Experimental Observations

Experimental preparation. Two families of
polymeric bilayers, made of an active and a passive
layer, are studied. The passive component is either
hydrophobic polycaprolactone (PCL) or random
copolymer poly(methylmethacrylate-co-
benzophenone acrylate) (P(MMA-BA)). The active
component is a thermoresponsive hydrogel formed
either by photoscrosslinked poly(N-
isopropylacrylamide-co-acrylic acid-co-
benzophenone acrylate) (P(NIPAM-AA-BA)) or by
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Figure 1. Scheme of rolling of a polymer bilayer according
to different scenario: short-side, long-side and diagonal
rolling.

poly(N-isopropylacrylamide-co-benzophenone
acrylate) (P(NIPAM-BA)). Thermoresponsive
hydrogels swell and shrink at reduced and elevated
temperature, respectively. The passive hydrophobic
P(MMA-BA) and PCL layers restrict swelling of the
active hydrogel. As a result, the bilayer made of these
polymers does not uniformly expand/shrink but folds
and unfolds due to swelling and collapse of the
hydrogel layer, respectively.
P(NIPAM-AA-BA)/(P(MMA-BA)  and  P(NIPAM-
BA)/PCL bilayers were prepared using
photolithography as described earlier !la. First, we
prepared two sets of patterned bilayers of P(NIPAM-
AA-BA)/(P(MMA-BA), which differ in thickness (H) of
the P(MMA-BA) layer that results in different rolling
curvature. One set formed narrow tubes with the
diameter d = 20 um (Hpvma-Ba) = 500 nm; Hpnipam-aa-
Ba) = 1200 nm), while the second set forms wider
tubes with diameters in the range d = 70-90 pm
(Hpvma-Ba) = 1200 nm; Hpnipam-aa-8a) = 1200 nm). The
rectangular bilayers of different lengths (L = 100 -
1000 pum) and aspect ratios (ratio of length (L) to
width (W), A = L/W =1 - 8) were fabricated using
specially designed photomasks. After removal of the
non-crosslinked polymer, the patterned bilayers were
exposed to PBS solution (pH = 7.4) at room
temperature. As a result, photocrosslinked P(NIPAM-
AA-BA) swelled leading to rolling of the bilayer and
formation of tubes. The folded films formed by each
set of bilayers were then mapped by optical
microscopy in order to assess the rolling radius as
well as the deformation pattern (see Figure 2 and 3).
Experimental results. It was found that the final
diameter of the tube is independent of the size of the
bilayer (L,W), but everything else being equal (Young
Modulus of active and passive layer as well as
activation strain), it is solely controlled by the relative
thickness of the active and passive layers?6, and thus
is (almost) constant for each set of experiments. The
direction of rolling strongly depends on the size and
shape of the films as well as on the thickness of the
active and passive layer (see Figure 4). We
distinguished four general types of rolling: long-side
rolling, diagonal rolling, short-side rolling as well as
mixed all-side rolling, which is a combination of the
three first types. The character of preferential rolling
is plotted as a function of the absolute values of width,

length and aspect ratio, as well as normalized values,
which are obtained by dividing the length or width by
the typical circumference of the rolled tube (C=mxd,
Figure 1).

Three types of rolling were observed when narrow
tubes (d = 20 pm) are formed: long-side, diagonal and
all-side rolling (see Figure 4a). It must be noted that
no short-side rolling was observed. The all-side
rolling (see Figure 2 al-3, b1-2) occurs when the
width of the films considerably exceeds circumference
of rolling for aspect ratios of one or two. Decrease of
the width for an aspect ratio of 2 or more results in
preferential long-side rolling (see Figure 2 b3, c1-3,
d1-3), when the normalized length is more than 2.
Depending on the ratio of width (W) to circumference
(C) incompletely rolled tubes (W/C < 1), completely
rolled tubes (W/C ~ 1) or doubled tubes (W/C 2= 2)
are formed. Further decrease of the length leads to a
mixture between long-side and diagonal or all-side
rolling (see Figure 2 a4, b4, c4 and d4). The most
promising parametric window for potential
applications, such as microfluidics 15¢ and cells
encapsulation 113, is thus bilayers with aspect ratio of
4 or more.

Different rolling behavior is observed when wide
tubes (d = 70 - 90 um) are formed (see Figure 4b).
First, the films with the highest aspect ratio slightly
bend and almost do not roll because of the large
circumference (see Figure 3 d1-4). Second, other
bilayers roll either according to diagonal or all-side
rolling scenarios. Diagonal rolling is observed in the
cases of square films (L/W = 1) when two opposite
corners bend to each other (see Figure 3 al-a4). “Tick
or check mark-like” structures (see for example
Figure 3 c1, the film in the middle) in a combination
with diagonal rolling are observed in almost all cases
at L/W > 1 when either adjacent or opposite corners
bend to each other, respectively. Bending from short
sides was observed in combination with diagonal
rolling only in one case (see Figure 3 b4).

The results obtained for narrow (Figure 2 and 4a) and
wide (Figure 3 and 4b) tubes plotted as a function of
normalized length and width are not fully identical.
Figure 4b is shifted to larger values of L/C. The reason
of this effect is not completely clear and could be due
to effects related to heterogeneities in the swelling
behavior, which are hard to be fully considered. On
the other hand, there is a clear correlation between
the results given in Figure 4a and b which is
qualitatively summed up in Figure 4c. For example,
all-side rolling is observed when both length and
width  considerably  exceed the  deformed
circumference. Diagonal rolling is observed when L =
W and both are comparable to the circumference. In
this case, short diagonally-rolled tubes are formed.
Mixtures of diagonal rolling and the formation of “tick
or check mark-like” structures (tube in the middle of
Figure 3c1) is observed when L > W and both L and W
are comparable to the circumference. The long-side
rolling takes place when the length considerably
exceeds the deformed circumference (L/C > 4) and
aspect ratio is larger than 4. As result long tubes are
formed, at least in the case of narrow tubes (d = 20
pum). In order to test the hypothesis that long tubes
are formed when L/C > 4 and W = C also in the case of
wide tubes (d = 70 - 90 um), we investigated rolling of
1800 pm x 300 um large bilayers tubes (Hpma-Ba) =
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Figure 2. Microscopy snapshots of folded P(NIPAM-AA-BA) - P(MMA-BA) bilayers of different length (L) and width (W) which
form narrow tubes of diameter d = 20 pm, Hpuma-Ba) = 500 nm; Hpnipam-aa-sa) = 1200 nm.

1200 nm, Hpnipam-aa-Ba) = 1200 nm, W/C = 1.2; L/C =
7.5). Indeed, rolling resulted in preferential formation
of longitudinal tubes (see Figure 4d) is in agreement
with our predictions.

Mechanism of rolling. In order to clarify the variety
of observed rolling scenarios, we experimentally
investigated swelling and rolling of the bilayers.
Rolling was investigated first using members of the
second family of patterned bilayers formed by poly(N
isopropylacrylamide - co - benzophenone acrylate)
(P(NIPAM-BA)) and polycaprolactone (PCL) with high
aspect ratio (L/W = 6, HpcL = 300 nm, HpNnipam-Ba) =
750 nm) 1!la  Initially, the polymer films were
immersed in warm water where the active P(NIPAM-
BA) hydrogel monolayer shrinks. The temperature
was gradually decreased and rolling was observed.
Diagonal rolling started from corners and stopped
when two rolling fronts met each other (Figure 5a).
Long-side rolling started later (Figure 5b) but
eventually dominated leading to a switching of the
diagonally-rolled corners to long-side rolled (Figure
5c,d). The formed double tubes were unrolled at
elevated temperature (Supplementary Materials,
Movie S1). The central part of the rolled bilayer,
which has a shape of a line (Figure 5e), is still adhered

to the substrate after rolling because the bilayer
remains almost undeformed there. This adhesion area
directs long-side rolling during second circle of
temperature decrease and prevents short-side rolling.
The second rolling, thus, proceeded similar to the first
one: rolling starts from the corners and then switched
to long-side rolling.

In order to explain the fact that rolling starts from the
corners we experimentally investigated the swelling
process. This was performed in qualitative manner by
observing changes in the interference pattern of white
light with the bilayer during swelling. In order to
avoid bending and folding of the bilayer during
swelling, a very thin P(NIPAM-AA-BA) layer (H = 35
nm) under a thick P(MMA-BA) layer (H = 400 nm)
was used. Due to effect of interference of the light,
which is mirrored from top and bottom surfaces of
the bilayer, the changes of colors (see Figure 6) reflect
changes in the film thickness. It is observed that color
of the films start to change at the corners first, which
confirms the assumption that the inhomogeneous
activation profile in the active layer due to slow water
diffusion into the hydrogels is at the origin of the
experimentally observed fact that rolling starts at
corners. Thus, based on the observations of rolling
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Figure 3. Microscopy snapshots of folded P(NIPAM-AA-BA)- P(MMA-BA) bilayers with different length (L) and width (W) which
form wide tubes of diameter d = 70 - 90 um, Hpmma-a) = 1200 nm; Henipam-aa-sa) = 1200 nm.

and swelling mechanisms we can argue that diffusion
determines folding in first moments of folding while
adhesion seems to play a decisive role at later stages
of folding.

Theoretical considerations

Diffusion driven actuation. The observed long-side
folding of rectangular bilayers for some specific shape
parameters contradicts the bending of bilayer
actuators, which occurs along short side 1316,
However, this holds under the assumption that the
active layer is homogeneously activated and that
there is no interaction with a substrate. It is the case
of a freely floating bilayer where diffusion of water
inside the hydrogel layer is not restricted by any
substrate. It was confirmed that such freely-floating
bilayers undergo short side rolling that is similar to
the behavior of standard actuators (Figure 7a). As the
studied bilayers are placed on a substrate, it is
reasonable to assume that diffusion of water inside
the active monolayer upon activation (T<T_0) occurs
primarily through its lateral sides. Additionally, not
only does the substrate confine diffusion, it also exerts
adhesion forces to the bottom surface of the bilayer
that impede actuation until a certain threshold of
delimitation forces is reached. This means that
bending, which requires detachment of the substrate,

only occurs for a sufficient activation strain. In
particular, non-swollen areas do not bend.

Finite-element simulations

The diffusion pattern is assumed to obey a classical
diffusion law (Fick’s law) with a constant imposed
boundary condition on the lateral sides of the active
monolayer. Well known in one dimension, the two-
dimensional diffusion pattern was obtained through a
finite-element simulation using ABAQUS at different
time points for different monolayer shapes (aspect
ratio). Diffusion of water inside a hydrogel can be
described as a first approximation by steady-state
heat diffusion inside a medium with constant
diffusivity. We wused linear three-dimensional
diffusion elements (DC3D8), in order to be able to
apply the resulting activation field to actuate bilayers
subsequently, and applied a constant boundary
condition on the lateral surfaces. The solvent
diffusion, however, is a very complex process which is
quite difficult to fully describe because the boundary
conditions of diffusion change as the film deforms and
detaches from the substrate. We aimed to discuss
diffusion in the very first moments of swelling, when
the film starts to deform, as we believe that
subsequent deformation of the film are largely
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Figure 4b).

determined by its starting deformation. The
simulation allowed us to predict an inhomogeneous
two-dimensional diffusion pattern that eventually
becomes homogeneous after a sufficient time (see
figure 6a-b).

Subsequently, we applied the obtained thermal field
at different time points to a bilayer of same aspect
ratio. Both layers of the bilayer are made of a linear
elastic material with normalized Young modulus of 1
and a Poisson ratio of 0.3. This crude simplification
relies on the fact that the stiffness contrast between
the active and the passive layer does not significantly
affect the rolling radius of a bilayer 16. The bottom-
layer possesses in-plane thermal expansion
coefficients equal to 1, whereas the top-layer is
thermally inactive. In order to understand the
influence of substrate adhesion, we imposed a fixed
kinematical boundary condition at an internal
rectangular bottom surface, scaled from the external
shape. We used a fine mesh of first-order eight-node
elements with reduced-integration (C3D8R), which
are able to follow the large displacements at
reasonable cost. The deformed shape corresponding
to an edge-activation of the bilayer at a given time
point in the diffusion process, was calculated in a
static step taking non-linear geometric effects into

account. Adaptive meshing techniques were used to
avoid large distortions in mesh elements upon
actuation. We compared the obtained results with the
one obtained using Riks method and found no
discrepancy between the predicted deformed shapes.
Surprisingly, convergence using a combination of
adaptive meshing techniques on a fine mesh with a
static non-linear geometric step proved to be better
than using Riks method. This simple uncoupled model
already shows that sharp activation strains near the
edges combined with an internal constraint of the
bottom layer produces interesting deformation
patterns for different aspect ratios. In particular, the
model predicts that short and long side rolling is more
favorable at L/W < 4 and L/W > 4, respectively (see
Figure 7 b).

The appearance of all-side and diagonal rolling in
experiments at smaller aspect ratios accounts for the
fact that no preferential direction appears for bending
deformations. Also, imperfections of the material
properties of the polymer film and substrate can be
responsible for the observed symmetry-breaking.

Energetic considerations
The fact that edge activation of a constrained bilayer
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the tube d =41 pm (a-e, Supplementary movie S1)
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Figure 6. Color map of the calculated swelling (from 0 to 1) controlled by water diffusion in the active monolayer with a lateral
constant boundary condition (blue is non swollen) dependent on time (a) and shape (b) obtained by finite element simulations as
well as experimentally obtained microscopy snap-shot of swollen P(NIPAM-BA) - PMMA bilayer (Hpma-a) = 400 nm; Hp(nipam-aa-Ba)
=35 nm) after few seconds of swelling (c).

leads to long-side rolling, is also suggested by plate according to Foppl von Karman plate theory 17, in
theory. The elastic energy of plate-like objects can be which the in-plane strains are integrated over the
decomposed into a stretching and a bending term thickness taking into account the edge-activation. This
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Figure 7. Simulation and experimentally observed folding of rectangular bilayers at different conditions: (a) freely floating
rectangular bilayer (homogenous swelling, Supplementary movie S2) (b) rectangular bilayer on substrate (inhomogeneous

swelling, Supplementary movie S1)

formulation describes accurately the elastic energy of
a bilayer plate upon edge-activation and can be solved
numerically (this will be done in a subsequent paper).
Another approach, which is less subtle, but that also
leads to accurate results, is a finite-element method
solving the 3D mechanical problem by finite-element
method. Essentially the problem can be described in
the following way: we make an additive
decomposition of the total strain in the active layer
into an Eigen (or swelling strain) and an elastic strain
T — _€g d

o =& T . The Eigen strain is given as
g =ad; i

where is the Kronecker delta,
isotropic swelling is assumed in the current model.
The amount of swelling depends on the swelling

coefficient & which in turn can vary spatially
according to the solution of the diffusion equation. As
the active layer is constrained by the passive layer,
incompatibilities result in elastic strains and thus

o, =E.&,°
stresses through Hooke’s law ] KK The
final shape of the structure upon changes the spatial
distribution and magnitude of a are calculated by
minimizing the elastic energy of the system. For
further details of the finite element method see e.g 18.
The stretching term being linear in thickness, while
the bending term is cubic, bending deformations are
favored when the plate is sufficiently thin. Unlike in a
beam-like bilayer, actuation triggers a biaxial
expansion field inside the plate, which creates
internal stresses in the long and in the short direction
of the plate. Relaxation of internal stresses
perpendicular to the edge of the bilayer will lead to
bending, whereas relaxation of internal stresses
parallel to the edge of the bilayer will produce
stretching that will eventually lead to wrinkling as in
the edge of long leaves 19. Because of the presence of
the substrate, internal stresses perpendicular to the
edge of the bilayer are more easily relaxed, leading to
simple bending, while internal stresses parallel to the

aL=CiW=C el
’ diagonal rolling

Y
} all-side rolling

b, L>>CW=C

long-side rolling

-

I e

c, L>>C,W=>>C all-side rolling

; 5 y
Figure 8. Schematic of rolling leading to in diagonal
rolling, long-side rolling and all-side rolling.

edge of the bilayer produce simple stretching. As

the aspect ratio increases, it is thus less costly to
relax stresses into bending on the long side than

on the short side. This explains qualitatively why
long-side rolling is observed as the aspect ratio
increases.

Finite-element modeling and energetically
considerations show that the experimentally
observed appearance of long tubes for large aspect
ratios and high activation strains are due to: (i) non-
homogenous swelling due to slow lateral diffusion, as
well as (ii) adhesion of the bilayer to the substrate
constraining the deformations. Both these factors are
caused by the specific geometry of the experiment: (i)
polymer bilayer is deposited on the substrate and (ii)
active polymer is the bottom layer.

Rolling scenario. Finally, by considering modeling
and experimental results, the following scenario of
rolling of hydrogel-based polymer bilayer laying on a
substrate is assigned. The rolling starts from the
edges due to faster diffusion of water from the lateral
surfaces, which then are able to detach from the
substrate and to bend. Rolling can start either from
two adjacent (for example Figure 3 d2 right lower
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polymer film or Figure 3 b2 left upper film) or
opposite edges (almost all polymer films in Figure 2
a2) or from all corners simultaneously, which is less
probable if the bilayer is small due to the presence of
imperfections and becomes energetically unfavorable
once a sufficient actuation strain is reached. Rolling is
almost immediately finished if the films are small and
if the deformed circumference is comparable to the
size of the bilayer. As a result, diagonally-rolled tubes
are formed if rolling starts from two opposite corners
(Figure 8a) or “tick or check mark-like” structures (for
example Figure 3 c1, the film in the middle) are
formed if rolling starts from two adjacent corners.

A more complicated scenario is observed when the
width of the films is small and the length is
considerably larger than the deformed circumference.
Rolling starts at the corners first like before, but. long-
side rolling starts later (Figure 8b and Figure 5) and is
energetically favored. Rolling along the short side is
unfavorable because it implies more stored stretching
energy along the long side. Further long-side rolling
makes diagonally rolled corners unfavorable and
leads to the switching of bent corners to a “long-side
rolling” scenario. Depending on the width of the film
compared to the deformed circumference, either an
incompletely rolled tube is formed, or the two long-
side rolling fronts collide into a completely rolled or
doubled tube.

If the deformed circumference is considerably smaller
than the width and length of the films (which implies
a high activation strain), then rolling starts first from
corners and then continues along all sides (Figure 8c).
The rolling fronts do not collide until several
revolutions are made, which were shown to be almost
irreversible 112, As a result, already rolled fronts are
unable to unroll and irreversible all-side rolling is
observed.

Conclusions. We investigated in detail folding of
rectangular stimuli-responsive hydrogel-based
polymer bilayers located on a substrate with different
lengths, widths and thicknesses. It was found that
long-side rolling dominates at high aspect ratios (ratio
of length to width) when the width is comparable to
the circumference of the formed tubes. Rolling from
all sides occurs when the width and length
considerably exceed this circumference. Diagonal or
all-side rolling is observed when the width and length
are comparable to the circumference. Short-side
rolling was observed very rarely and in combination
with diagonal rolling. Based on both experimental
observations and theoretical assumptions, we argued
that bilayers placed on a substrate start to roll from
corners due to quicker diffusion of water. Rolling from
long-side starts later but dominates at high aspect
ratio due to energetic considerations. We have
showed experimentally and by finite-element
modeling confirmed by theoretical considerations,
that the main reasons causing a variety of rolling
scenarios are (i) non-homogenous swelling due to
slow diffusion of water in hydrogels and (ii) adhesion
of polymer to a substrate until a certain threshold.
Moreover, non-homogenous swelling determines
folding in first moments while adhesion player
decisive role at later stages of folding.

The films which we investigated are fabricated on the
micro scale. On the other hand, the knowledge

obtained in this work is applicable to thinner films to
direct their folding in order to form tubes with
diameter in the nano range. We believe that the
obtained knowledge can be particularly helpful for
design of self-folding objects with highly complex
shapes.
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Abstract: A highly complex multi-step folding of isotropic stimuli-responsive polymer bilayers resulting in a variety
of 2D and 3D structures is reported. Experimental observations allow determination of empirical rules, which can be
used to direct the folding of polymer films in a predictable manner. In particular, it is demonstrated that these rules
can be used for the design of a 3D pyramid. The understanding and know-how attained in this study allow the very
simple design of highly complex, self-folding 3D objects and open new horizons for 3D patterning, important for the
design of microfluidic devices, biomaterials, and soft electronics.

1 Introduction

Nature offers an enormous arsenal of ideas for the
design of novel materials with superior properties
and interesting behavior. In particular, self-assembly
and self-organization, which are fundamental to
structure formation in nature, attract significant
interest as promising concepts for the design of
intelligent  materials.[1] Self-folding  stimuli-
responsive polymer films are exemplary biomimetic
materials[2] and can be viewed as model systems for
bioinspired actuation. Such films, on one hand, mimic
movement mechanisms in certain plant organs[3,4]
and, on the other hand, are able to self-organize and
form complex 3D structures.[5] These self- folding
films consist of two polymers with different proper-
ties. Because of the nonequal expansion of the two
polymers, these films are able to form tubes,[6,7]
capsules[8] or more complex structures.[9] Similar to
origami, the self-folding polymeric films provide
unique possibilities for the straightforward
fabrication of highly complex 3D microstructures with
patterned inner and outer walls that cannot be
achieved using other technologies.

There are two general approaches for the design of
self- folding films. The first approach is based on the
use of complexly patterned films, where locally
deposited active materials form hinges.[10]
Homogenous bilayer films are used in the second
approach.[11] Because of the isotropy of the
mechanical properties of the bilayer, the formed
structures are hinge- free and have rounded shapes.
Importantly, in all reported cases, folding runs in one
step. On the other hand there are reports that folding
in nature can have a very complex character, which

T<33°C
—
T>33°C
=3 P(NIPAM-AA) = PMMA
R o
QL. oL

O

Figure 1. Scheme of folding of a bilayer polymer film
consisting of two polymers: hydrophobic PMMA and
thermoresponsive hydrogel P(NIPAM-AA).

strongly depends on the geometry and swelling
path[12] that may result in multistep folding
(development of curvature in different directions).[3]
In this contribution, we demonstrate that the shape of
isotropic polymer bilayers is able to direct folding

in a sophisticated manner leading to even more
complex hierarchical folding than in nature. In
particular, films can undergo sequential folding steps
by forming various 3D shapes with sharp hinges. By
analyzing the folding patterns we elucidated empirical
rules, cross-checked by analytical considerations and
backed up with finite-element simulations, which
allow the folding to be directed, leading to the design
of specific 3D shapes. We also highlight the
importance of path-dependency in the activation of
the actuator, which enables to lock it in a local energy
minimum, which can differ from the global one.

2 Results and Discussions

For the experiments we used polymer films consisting
of two layers of photo-crosslinked polymers: the
active layer being a random thermoresponsive
copolymer poly(N-isopropylacrylamide-co-acrylic
acid) (P(NIPAM-AA) and the passive layer being poly-
(methylmethycrylate) (PMMA) (Figure 1). The
bilayer, prepared as described elsewhere,[7] is
located on a silica wafer in such a way that the active
and passive polymers are the bottom and top layers,
respectively. The bilayer is undeformed in PBS 0.1 M
pH = 7.4 environmentat T >70° C and folding occurs
after cooling below 70 ° C (Figure 1).

Due to the relatively slow diffusion rate of water
inside the P(NIPAM-AA) layer, actuation is driven by
the progression of the diffusion front, along which the
hydrogel starts to swell. This induces a path-
dependency in the folding pattern as the bilayer is not
homogeneously activated, but progressively swells as
water diffuses from the lateral sides. The investigation
of swelling was performed in a qualitative manner by
observing the color change of the films which, due to
light interference, reflects the change in optical path
length (OPL) (Figure 2). The OPL varies as a function
of the film thickness and refractive index, which in
turn depends on the swelling degree.[13] The
nonswollen elliptical and star-like films have a
homogenous blue (Figure 2a) and reddish (Figure 2d)
color, respectively. The difference in the color of both
films is caused by their different starting thicknesses
(Figure 2). The color of the films starts to change
immediately after immersion in water at 25 ° C, with
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Figure 2. Swelling (upper panels) and first step of folding (lower panels) of circular/elliptical (left panels) and star-like (right
panels) bilayer polymer films. ab,d,e) Microscopy snapshots of swelling elliptical and star-like P(NIPAM-AA)/PMMA bilayers
immediately after immersion in water (a,d) and after ca. 60 s incubation (b,e); c,f) Color map of the calculated swelling (from 0 to 1)
controlled by water diffusion in the active monolayer with a lateral constant boundary condition (blue is non swollen) dependent on
shape obtained by finite element simulations; g) Finite element simulations of wrinkling of a bilayer crown representing the
activated edge in case of a circular shape; h) The number of wrinkles is inversely proportional to the actuation depth. Dashed line
corresponds to the experimental observation of heptahedrons (inset) when folding is typically stopped in the case of circular shapes.
The red line corresponds to n = 170/d. i-1) Two rays of six-ray star during wrinkling, decrease of number of wrinkles is observed. a,
b) HPNIPAM = 35 nm, HPMMA = 400 nm; d,e) HPNIPAM = 35 nm, HPMMA = 500 nm; i-1) H(PNIPAM-AA) = 1200 nm, HPMMA = 400

nm, scale bar is 200 pm.

the elliptical film becoming redder while the star-like
film becomes green (Figure 2b,e). The changes of
color in both cases start from the outer periphery of
the bilayer film. As the active layer is confined
between a water-impermeable silicon wafer and
hydrophobic PMMA, this suggests that water can only
penetrate inside the layer from the lateral sides.[14]
The depth of water penetration along the perimeter of
the film (activation depth) is uniform in both cases in
the first moments of swelling. The differences in the
swelling behavior between the two shapes appear
after several seconds of incubation in water. The
activation pattern depends on the external shape of
the bilayers, with the position of the diffusion front
(the activation depth) depending on the distance to
the tissue border. This can been seen clearly in the
differences of the activation pat- terns in the convex
shapes like ellipse (Figure 2b), and concave ones like
star (Figure 2d). For the star-like bilayers, the tips of
the triangular-like arms swell faster than their base
and their polygonal central part. This can be explained
by the fact that after a certain time the diffusion fronts
on either side of the arms intersect resulting in faster
swelling. The experimental results show that the
swelling starts from the periphery of the films and
that the activation profile strongly depends on the
shape of the film as con- firmed by simple finite
element simulations (see Figure 2c,f).

We next modeled and experimentally investigated the
folding of circular/elliptical and star-like films.
Modeling predicts that multiple wrinkles are formed
along the perimeter of folding bilayer when it is edge-

activated (Figure 2g). The spatial wavelength of the
wrinkles is proportional to the activation depth (d) as
observed in the wrinkles of leafs due to excessive
radial edge-growth[15] and solved analytically in the
context of geometrically nonlinear elasticity.[16] As
the activation depth increases, the number of
wrinkles decreases as P/d, where P is the perimeter of
the shape (Figure 2h). The fact that there is both a
gradient in radial- (edge-activation) and transversal
direction (bilayer), results in a combination of
wrinkling and bending, respectively (Figure 2gh). In
full agreement with the modeling predictions,
experimental results show that the number of
wrinkles decreases during folding (Figure 2i-1). Due to
the transversal bending effect, the wrinkles actually
evolve into local partial tubes as the activation depth
increases. We observed that, at some point, the
wrinkles stop to merge and their number remains
constant. The probability of merging of two tubes
depends on the angle (B, Figure 2h) between them.
Experimentally, we found that the critical value of
below which merging of folded tubes was not
observed is ca. 120-150° , which corresponds to 6-8
wrinkles when starting with a circular shape (inset in
Figure 2h and Figure S3 in the Supporting
Information). Based on these experimental
observations we derived the first folding rule: “Bilayer
polymer films placed on a substrate start to fold from
their periphery and the number of formed wrinkles/
tubes decreases until the angle between adjacent
wrinkles/tubes approaches 130° "
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Figure 3. Seconds step of folding of elliptical arms
depending on their shape. (a) Hnipam-aa) = 1200 nm,
Hemma = 170 nm; (b) (Henipam-aa) = 1200 nm, Hpmma =
400 nm; (c) Heenipamas) = 900 nm, Hpmma = 170 nm.

After the number of wrinkles/tubes along the
perimeter of the bilayer film stopped to change the
bilayers are locked for some time until the subsequent
folding step occurs. For example, the wrinkled semi-
ellipse bends towards its base (Figure 3a). To explain
the origin of the second step of folding we considered
the geometry of the film after the first folding step. As
mentioned, wrinkling of a bilayer leads to the
formation of tubes along the perimeter of the film.
Considering the fact that the rigidity of the tubes is
higher than that of the undeformed films, the
polygonal shapes are stiffened by this tube formation,
and therefore possess a number of weak points
located at the intersection of the tubes, i.e., at the
vertices. These points act like hinges and folding is
only observed along the lines connecting them
(dashed line in Figure 3a). The formation of hinges
during folding of isotropic bilayers, which to our
knowledge has not been reported in the literature, is
induced by the progressive activation from the lateral
sides and the folded shapes are controlled by the
initial shapes of the bilayers. This leads to the second
rule of the folding: “After the wrinkles along the
perimeter of the film form tubes, further folding
proceeds along the lines connecting the vertexes of the
folded film”.

In case there are more than two hinges in the film, a
question arises: upon which connecting line will the
folding occur? The number of hinges is largely
determined by the shape of the semi-ellipses. The
regular semi-ellipse, which has a triangular shape
after the first step of folding, simply bends toward the
base along the line connecting the two bottom
vertexes (dashed line in Figure 3a). If the semi-ellipse
is more rounded, it forms a trapezoid after the first-
step of folding (Figure 3b). In the second step of
folding, the trapezoid bends along one of the lines
connecting the opposite top and bottom vertexes

P ww R
2.8.8.4

B2 | PN

oA

Figure 4. Examples of structures obtained by progressive
edge-activation of six-ray star- like bilayers. a) Patterned
bilayers; b) First step of actuation: wrinkles collapse into
tubes; c-1) Second step of actuation: rays fold leading to
several configurations depending on the order of folding.
Scale bars are 200 um, H(PNIPAM-AA) = 1200 nm, HPMMA =

260 nm.

(dashed line in the second image from the left in
Figure 3b). Next, the formed triangle bends towards
its base along the line connecting the two bottom
vertexes. The elongated semi-ellipse forms four folds
after the first step of folding (Figure 3c). Interestingly,
the semi- ellipse folds further along the lines
connecting the vertexes at the base and the top vertex
and no folding along the lines connecting neither the
vertexes of the middle nor the ones at the base is
observed. Looking at the evolution of the activation
pattern through time (diffusion profile see Figure 2),
we observe that the lines connecting the hinges can
only be used if they are within the activated pattern
(red). Thus, the third rule of the folding states: “the
folding goes along the lines which are closer to the
periphery of the films”.

Six-ray stars demonstrate the formation of very
complex structures (Figure 4). Notably simultaneous
folding of all rays is observed very rarely and in most
cases tri- angles (Figure 4g) were formed. We
investigated the folding in a time-resolved manner in
order to explain the formation of the tri- angles
(Figure 5). Similar to the experiment demonstrated in
Figure 2, wrinkles get longer and bend transversally
into tubes (Figure 5b) thus increasing the rigidity of
the ray. Next, one of the rays folds towards the center
of the star (Il in Figure 5c¢). Folding of this ray leads to
the formation of a rigid semi-rolled tube, which is
formed by the folded ray and the tubular shoulders of
the adjacent rays (Figure 5c). The angle between the
base of the folded ray and the shoulders of the neigh-
boring arms is close to 180° (Figure 5c). In this
configuration, the weak points located at the
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Figure 5. Microscopy snap-shots illustrating the
mechanism of formation of triangles during actuation of
a six-ray stars. Scale bar is 200 pm, H(PNIPAM-AA) =
1200 nm, HPMMA = 170 nm.

intersection between I-II and II-IIl has disappeared
and rays I and III (Figure 5c) cannot bend anymore.
As a result, only three remaining rays (IV, V, VI) can
bend. If ray V folds, no additional rays can bend
(Figure 41).

If ray IV folds (Figure 5d) ray V is blocked. Finally, ray
VI can fold leading to the formation of a triangle
(Figure 5e). The discussed principle can be easily
applied to understand the formation of the other
observed figures (Figure 4c-1, Supporting Information
Figure S2 and Figure S3). In fact, several factors can
be held responsible for the observed symmetry
breaking (rays do not fold at the same time) such as
inhomogeneities in the films and shape imperfections
resulting in small deviations from the symmetric
diffusion profile. Based on these experimental
observations, one can derive the fourth folding
rule:“Folding of the rays may result in blocking of the
neighboring rays if the angle between the base of the
folded ray and the shoulders of the neighboring rays is
close to 180° ”.

Finally, we applied the derived rules for the design of
truly 3D structures-pyramids. In fact, the reason why
six-ray star formed flattened folded structures is their
short arms and the hindering of folding of rays.
Therefore, in order to fabricate pyramids we

Figure 6. Sequential actuation of four-ray stars leads to
the formation of pyramids. a,b) unac- tivated film; c,d)
after wrinkling of the ray periphery into tubes, arrows
indicate four wrinkles formed on each arm during first
step of folding; e-g) after folding of rays leading to the
forma- tion of pyramids. Scale bar is 200 pm, H(PNIPAM-

increased the relative length of the rays and changed
the angle between them by decreasing their number
(Figure 6a,b). The rays of the fabricated four-ray
stars first wrinkle along their perimeter (Figure 6c¢, d).
Four tubes are formed along the perimeter of each ray
(first rule, Figure 6c), which then collapse two by two
and form triangles (second rule, Figure 6d). Since the
angle between the folds located on the shoulders of
each ray is considerably smaller than 180° , the
folding of rays is not self- interfering (forth rule) and
all rays fold in the direction of the center of the star
(third rule) thus forming a hollow pyramid (Figure
6e-g) that is supported by simulations (Figure 6h). In
fact these rules are also applicable to other shapes
such as rectangles. As an example we included two-
step folding of rectangles (Supporting Information
Figure S4).

We observed that, in general, folding rules are
applicable to all thickness (we performed many
experiments with different thicknesses). The
difference between the thin and thick films are in
minor. For example, we observe that when star-like
thin fold than all six arms (Figure 4d,k) can fold inside
because rigidity of the film is not that high. In the case
of thick films, we typically observed folding of 3-4
arms (Figure 4g)).

3 Conclusions

In conclusion, we investigated the actuation of
patterned bilayers placed on a substrate. Due to the
edge-activation of the bilayers, the observed
deformed shapes differ from the classical ones
obtained by homogeneous activation. We found that
films can demonstrate several kinds of actuation
behavior such as wrinkling, bending and folding that
result in a variety of shapes. It was demonstrated that
one can introduce hinges into the folded structure by
proper design of the bilayer’s external shape through
diffusion without having to wuse site selective
deposition of active polymers. Experimental
observations lead us to derive four empirical rules
backed up by theoretical understanding as well as
simulations. We then demonstrated how those rules
can be used to direct the folding of edge-activated
polymer bilayers through a concrete example-the
design of a 3D pyramid. We believe that the derived
understanding and know-how will allow very simple
design of highly complex, self-folding 3D objects and
will open new horizons for 3D patterning which is
highly important for the design of microfluidic
devices, biomaterials, soft electronics, etc.

4 Experimental Section

Materials: N-isopropylacrylamide (NIPAM, Aldrich), 4-
hydroxybenzophenone (Fluka), polycaprolactone (Mn
= 70 000-90 000 Da, Aldrich), benzophenone
(Aldrich) and acryloyl chloride (Fluka) were used as
received. Methyl methacrylate (MMA, Aldrich) and
acrylic acid were purified by filtration through Al203
column before polymerization.

Synthesis  of 4-Acryloylbenzophenone (BA): 4-
Hydroxybenzophenone (20 g, 0.1009 mol),
diisopropylethylamine (19.3 mL, 0.1110 mol) and 80
mL of methylene chloride were added into 200 mL
three-necked round-bottom flask fitted with an
overhead stirrer, a thermometer, and an addition
funnel with acroloyl chloride (9.02 mL, 0.1110 mol)
solution in 20 mL of methylene chloride. The acroloyl
chloride solution was added dropwise into the flask
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under cooling (0-5 ° C) for ca 3 h. The methylene
chloride was removed by rotary evaporation. The
residue was washed with 80 mL of 20% HCI, 80 mL of
saturated solution of sodium hydrocarbonate and
dried over sodium sulphate. The solution was passed
through a silica gel column with chloroform as the
eluent. Chloroform was removed by rotary
evaporator. Finally, 24.44 g (95%) of ABP was
obtained. 1H NMR (CDCI3, 500 MHz): 6.05 (dd, J1 =
10.40, J2 = 1.26, 1H), 6.34 (dd, J1 = 10.40, J]3 = 17.34,
1H), 6.64 (dd, J3 = 17.34, ]2 = 1.26, 1H), 7.27 (m, 2H),
7.49 (m, 2H), 7.59 (m, 1H), 7.80 (m, 2H), 7.86 (m, 2H).
Synthesis of P(NIPAM-AA-BA): BA (0.28 g, 1,12 mmol);
NIPAM (6 g, 51.57 mmol), AA (0.2556 g, 3.36 mmol),
AIBN (0.01632 g, 0.38 mmol) were added in 50 mL
flask. Components were dissolved in 30 mL ethanol
and degassed with nitrogen for 30 min. The mixture
was purged with nitrogen for 30 min. The
polymerization was carried at 70 ° C under nitrogen
atmosphere with mechanical stirring overnight. After
cooling, the mixture was poured in 750 mL diethyl
ether, the precipitate was filtered and dried in
vacuum at 40 ° C. Synthesis of P(MMA-BA): 6.3 g MMA
(62.7 mmol), 0.24 g BA (0.96 mmol) and 0.05 g AIBN
(0.31 mmol) were dissolved in 30 mL of toluene. The
mixture was purged with nitrogen for 30 min. The
polymerization was carried at 70 ° C under nitrogen
atmosphere with mechanical stirring overnight. After
cooling, the mixture was poured in 750 mL diethyl
ether, the precipitate was filtered and dried in
vacuum at

40 ° C. Preparation of Polymer Bilayers: In a typical
experiment, poly-

(NIPAN-BA) was dip-coated from its ethanol solution
on silica wafer substrate. P(MMA-BA) was dip-coated
from toluene solution on the poly-(NIPAM-BA) film.
The bilayer film was illuminated through a photomask
(Toppan Photomasks inc.) by halogen lamp for 40 min
to crosslink the polymers. The illuminated film was
rinsed in chloroform in order to remove the polymers
from non-irradiated areas. The prepared bilayers
were then dried again in air before experiment and
contained no water. The observation of bilayer was
performed by Axiovert Zeiss Microscope using 5x and
10x air objectives.

Numerical Simulations: Simulations were performed
in Abaqus v6.11 using the standard finite-element
method. In order to simulate the diffusion process in
the active layer we performed a 2D heat transfer
analysis with imposed temperature on the free
perimeter of the shapes (circle, semi-ellipsoid) and
constant diffusive properties This resulted in a time-
dependent temperature distribution that mimics the
swelling process The resulting nodal temperatures at
an early point in time were then applied to the
corresponding 3D bilayer shapes having a mismatch
in expansion properties (passive layer has 0 thermal
expansion, while the active layer has in-plane
expansion coefficients of 1). Due to symmetries only
the relevant part of the bilayers were simulated in
order to reduce computational costs. The resultant
actuated shape was obtained through a geometrically
nonlinear static step. For more detailed information

see ref. [14]. Doing this, we assumed that diffusion-
driven actuation follows a quasistatic process in
which the timescales of diffusion and actuation are
clearly separated. The progression of the diffusion
front is slow (s) while the resultant mechanical
actuation is fast (ms). This enabled us to consider the
two phenomena separately thereby neglecting
potential couplings between swelling and mechanical
properties. Results are only qualitative, as the actual
material characteristics of the hydrogels were not
measured. However, the actuation pattern, and thus
the number of wrinkles, only depends on the depth of
the differential edge-activation named “activation
depth” in this paper. This enabled us to predict and
confirm the experimental actuation patterns with
simple normalized properties.
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Abstract: Fast actuation speed, large shape deformation and robust responsiveness are critical to synthetic soft
actuators. Despite this a simultaneous optimization of all these aspects without trade-offs remains unresolved. Here
we describe porous polymer actuators which bend in response to acetone vapor (24 kPa, 20 °C) at a speed of an order
of magnitude faster than the state-of-the-art, coupled with a large-scale locomotion. They are meanwhile multi-
responsive toward a variety of organic vapors in both the dry and wet states, distinctive from the traditional gel
actuation systems that become inactive when dried. The actuator is easy-to-make and survives even after
hydrothermal processing (200 °C, 24 h) and pressing-pressure (100 MPa) treatments. In addition, the beneficial
responsiveness is transferable, being able to turn “inert” objects into actuators via surface coating. This advanced
responsiveness arises from the combination of porous morphology and the “poly(ionic liquid) ~ solvent” interaction

mediated by the counter anions.

Adaptive soft matter, such as responsive gels,
elastomers, shape memory and electro-active
polymers, are attracting burgeoning interest in
material science, engineering, medicine and biology!-
16, Fast and robust responsiveness coupled with large
scale displacement are eagerly sought after!?, which
have been the defining feature of biological actuators
but missing from synthetic counterparts!8-23, For
example, Sea cucumbers can alter the stiffness of their
dermis within seconds to obtain survival
advantages!8; the Venus flytrap can close their leaves
in a second for efficient prey capturel®. On the other
hand, the hygroscopic movements of pine cones?3 and
ice plant seed capsules?!, though slower, can function
even when the host organisms are dead. Recently,
enormous efforts have been paid to these bio-
prototypes, with progresses being made on
responsive nanocomposites and surfaces3, energy
generators and transducers?425, programmable
origami2é, soft robotics?7-29, smart gels30-32, and
artificial muscles33-35. Yet, most of the polymer
actuators suffer from the relatively slow and small
scale movements; furthermore, they are susceptible
to severe circumstances and involve complex
preparation such as multistep lithographic
processes2036, In this scenario, actuators bearing
rapid responsiveness and strong tolerance toward
aggressive milieus are highly desirable for promptly
and reliably converting external stimuli to mechanical
movement. In addition, multi-responsive actuators
viable in both the swollen and dry states remain a
challenge, e.g, hydrogel actuators become inactive
when dried.

To address these requirements, we engineered a
novel structural model fostering the ultrafast and
robust actuation movement through the solvent
molecules adsorption mechanism (Fig. 1la). Two
features are essential to this model. First, the major
component of the actuator membrane is a cationic
poly(ionic liquid) polymer which possesses bulk
organic counter anions (e.g
bis(trifuoromethanesulfonyl)imide, Tf2N) that can
preferably interact with a variety of organic solvent

vapors as will be demonstrated below. Second, the
actuator membrane represents a unique synergy of an
electrostatic complexation gradient and a porous
architecture through the membrane. In this design,
the electrostatic complexation provides ionic cross-
linking network and structural robustness; the porous
structures give rise to a fast responsiveness by
accelerating the internal mass transport and large
scale actuation arising from high compressibility. As
such, the mechanic actuation can be instantly
triggered by variation of solvent vapor and humidity;
the structure also survives very harsh processing
steps to prove their wide operation window in
various environments.

Results

Preparation and characterizations of the porous
membrane. The porous actuator membrane was
prepared from a mixture solution of a cationic
poly(ionic liquid), poly(3-cyanomethyl-1-
vinylimidazolium bis(trifuoromethanesulfonyl)imide)
(abbreviated as “PILTf2N”, Tf2N denotes the counter
anion) and a  carboxylic  acid-substituted
pillar[5]arene (C-pillar[5]arene) that bears ten acid
groups (COOH) (Supplementary Fig. S1). PILTf2N and
C-pillar[5]arene were first dissolved in dimethyl
sulfoxide (DMSO) in a 1:1 molar ratio of the
imidazolium cation ring (on PILTf2N) to COOH groups
(on C-pillar[5]arene). Subsequently the solution was
cast on a glass plate and dried at 80 °C for 1 h (Please
note: the membrane surfaces facing the air and the
glass plate are defined as TOP and BOTTOM surfaces,
respectively). Then the membrane was soaked in
aqueous ammonia (Fig. 1a, left scheme); after 2 h a
free-standing membrane with a scalable size was
peeled off from the glass plate and denoted as
PILTf2N/C-pillar[5]arene (Supplementary Fig. S2 ~
Fig. S4). During the soaking step the ammonia will
diffuse into the membrane from top to bottom,
deprotonate the COOH into COO-NH4+ groups and
simultaneously trigger the electrostatic complexation
between the negatively charged C-pillar[5]arene with
the anionic PILTf2N chains (Supplementary Fig. S2).
As such, a gradient in the degree of electrostatic
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Figure 1 | Design concept and structure characterizations of the membrane actuator. (a) A scheme illustrating the preparation
route (left), porous morphology (middle) and the chemical structure (right) of the PILTf2N/C-pillar[S]arene membrane actuator.
On the right: the red line and purple ring represent PILTf2N polymer chains and C-pillar[5]arene molecules, respectively; this
cartoon schematises the electrostatic complexation between the imidazolium cations on PILTf2N and the carboxylate anions on C-
pillar[5]arene molecules. (b-d) SEMmorphologies of the membrane actuator: general view (b, scale bar (black), 30 mm); top
surface (c, scale bar, 3 mm); and cross-section (d, scale bar: 1 mm); (e) the structural gradient of the DEC along the membrane
cross-section (top-down direction). The DEC of the membrane is defined as the ratio of the imidazolium units that have
electrostatically complexed with COO- groups (on C-pillar[5]arene) to the overall amount of imidazolium units (Supplementary
Fig. 3). Experimentally, DEC values at different locations of the membrane are determined by the sulphur content at different

locations of the membrane cross-section (Supplementary Fig. 4).

complexation (DEC) along the membrane cross-
section (z direction in Fig. 1a) forms, because the
complexation is coupled to the top-down diffusion of
ammonia into the membrane. While the complexation
between  PILTf2N  and  C-pillar[5]arene is
quantitatively accompanied by the release of Tf2N
counter anions into solution, the DEC is inversely
proportional to the Tf2N residue in the membrane.
Because sulfur exists only in Tf2N, its content is a
quantitative measure of Tf2N. In detail, the Tf2N
content was found increase along the TOP-DOWN
direction (Supplementary Fig. S4) and vice versa for
the DEC (Fig. 1c), i.e., the top surface has a lower Tf2N
content and thus a higher DEC than the bottom.

The membrane network is shown to be very stable in
common organic solvents because electrostatic
complexation is characteristic for its exceptional
stability in organic solvents.37 As a supporting proof,
the weight of the membrane remains stable after
being soaking in solvents for 24 h (Supplementary Fig.
S5). In addition, the as-prepared membranes also
feature an interconnected porous architecture, with
macropores (200 nm ~ 3 pm) across the membrane
(Fig. 1b). The pore formation is basically related to the
electrostatic complexation between PILTf2N and C-
pillar[5]arene, a mechanism we have discovered
recently for creation of porous polyelectrolyte
networks from a PILTf2N-poly(acrylic acid) system.38

Superfast actuation of the membrane. The
PILTf2N/C-pillar[5]arene membrane exhibits an
unprecedented fast actuation speed in response to
acetone stimulus. When placed in acetone vapor (24
kPa, 20 °C), the flat membrane bent quickly into a
closed loop in ~ 0.1 s with the top surface inward, and

further into a multiply wound coil in 0.4 s (Fig. 2a,
Supplementary Movie S1). Upon exposure back in air,
the membrane recovered its original shape rapidly in
~ 3 s; this process is reversible and repeatable
(Supplementary Fig. S6). The Kinetics of the bending
and unbending movements is assessed by plotting the
curvature of the membrane against time (Fig. 2b),
resulting in a bending curvature of 1.33 mm-in 0.4 s,
i.e.,, the membrane actuator bent one complete circle
in about every 0.1 s. We compared the actuation
speed of the membrane actuator with previously
reported polymeric actuators in the literature (Fig.
2c). As curvature of bending scales inversely with
membrane thickness 39, we plot ‘curvature x
membrane thickness’ versus time, and the lines of
constant actuation speed. The fastest actuators are
found in the top left of this diagram (red, solid circle).
It is seen that our membrane actuator outperforms
conventional polymer actuators in terms of the
response rate and the amplitude of movement—
allowing for the simultaneous combination of ultra-
fast actuation and large scale deformation that
existing soft actuators do not exhibit (Supplementary
Movie S1).

Next, we quantified the mechanical force generated by
the membrane bending. As depicted in Fig. 2d, a flat
membrane piece was located 2 mm above a cylinder
on an electronic balance. When an acetone
atmosphere was applied, the membrane bent down
towards the cylinder, simultaneously imposed a force
on the balance; by cutting off the acetone vapor flow,
the original shape was resumed, accompanied by a
decrease in the force exerted on the balance. The force
was read out directly from the balance in the form of
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Figure 2 | Actuation of the membrane actuator. (a) Adaptive movement of a PILTf2N/C-pillar[5]arene membrane (1 mm x 20 mm
x 30 mm) placed in acetone vapour (24 kPa, 20 °C, left) and then back in air (right). Note: acetone solvent is stained in blue. (b)
Plot of curvature against time for the membrane actuator in (a); on the left: a schematic of how the curvature is calculated. (c) Plot
of ‘curvature x thickness’ against time for the membrane actuator in (a) and from literature results (blue triangle) compared with
lines of constant actuation speed (Supplementary Fig. 11 and Supplementary Table 1). (d) Plot of the force generated by
membrane actuator in (a) against time when the membrane was exposed to acetone vapour (24 kPa, 20 °C) and air alternatively;
M is the force that the actuator exerted on the balance; MO is the weight of the actuator membrane. On the left: schematic

illustration of the experimental force measurement set-up.

weight (experimental error: 2 mg); it increased and
declined rapidly in ca. 2 s and 5 s (Fig. 2d), which is
coupled to the bending and stretching movements of
the membrane actuator towards the on/off state of
the acetone vapor. The maximum force detected here
(0.75 mN, 75 mg) is already 25 times of the actuator
weight (3 mg). In a control experiment without the
membrane actuator, only negligible forces can be
observed (< 1 mg, Supplementary Fig. S7).

Robust and multiple responsiveness of the
actuator. In addition to operating under normal
conditions, the actuator survives very harsh
treatments. After storage in liquid nitrogen (~ -190
°C, 2 h) followed by annealing (150 °C, 24 h) and high
pressure pressing (100 MPa, 24 h), the actuator
remained active; it bent into a semicircle in ~ 0.5 s
(Fig. 3a), slower than the original form but still
significantly faster in comparison with most common
polymer actuators (Fig. 2c). Morphological
examination by SEM and porosity analysis by mercury
intrusion confirm that pore compaction occurs as a
result of the high pressing pressure, which blocks a
part of the pore channels and leads to a slower

response rate (Supplementary Fig. S9). Even after a
hydrothermal processing (200 °C, 24 h,
Supplementary Fig. S10), the actuator remained
viable (Fig. 3b). Moreover, the membrane actuator
was found to be active in liquid acetone solvent at -50
°C (Supplementary Fig. S11), a temperature well
below the glass transition of even most rubbers in
which gel based actuators no-longer operate. Aside
from this exceptional robustness, the smart
responsiveness can be rendered to even cylindrical
objects by coating the membrane onto them, which is
easy to implement due to the high polarizability and
interfacial activity of poly(ionic liquid)s.38 This
possibility is exemplified here by a human hair, which
after constructing an asymmetrical coating of the
responsive porous membrane onto its surface
“dances” in acetone vapor (Fig. 3c, Supplementary
Movie S2 and Fig. S12). In addition, the membrane
actuator also features multi-responsive properties as
it readily exhibits hygroscopic actuation. When
shaped as a star, the hygroscopic actuator can mimic
an “artificial flower” that blossoms and closes in
response to humidity changes, indicative of an ability
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Figure 3 | Robustness and multiple responsiveness of the actuator. (a) Adaptive movement of a PILTf2N/C-pillar[5]arene
membrane (1 mm x 20 mm x 30 mm) placed in acetone vapour (24 kPa, 20 °C, left) and then back in air (right); the membrane was
immersed in liquid nitrogen (2 h), followed by annealing (150 °C, 24 h) and high-pressure pressing at 100 MPa for 24 h. (b) The
same actuation experiment after hydrothermal processing the membrane in water (200 °C, 24 h). Here the membrane is black
owing to its partly carbonaceous nature. (c) Motion of a membrane-coated human hair in acetone vapour and then back in air. (d)
The reversible closing and opening of a star-shaped membrane actuator ‘flower’ upon switching the humidity between 50 and
90% at 20 °C; here the top surface of the membrane was stained red while the bottom surface retains the original light yellow

colour; inserted number is the relative humidity; scale bar, 1 cm.

of cooperative actuation to “enwrap” objects (Fig. 3d).
As such, the actuation spans from both the dry state to
wet state, which is beneficial because traditional gels
usually become inactive when dried (Supplementary
Fig. S13 and Fig. S14).

Actuation mechanism. The mechanism for this
unique actuation is addressed at two levels: why the
membrane could bend in response to acetone vapor,
and what is the key structure responsible for the
superfast bending kinetics (Fig. 4). First, from a purely
geometric perspective the curvature C=1/r can be
approximated as

1
C~H(£b—st) e8]

Where ¢, and g, are the swelling strains due to

solvent - PILTf2N/C-pillar[5]arene interactions, in the
top and bottom regions of the membrane respectively,
and h is the membrane thickness . Any stimulus that
can drive the actuator must be able to impact ¢, and
£, unequally.

In line with the definition of DEC (Fig. 1c,
Supplementary Fig. S4), a part of imidazolium units
from PILTf2N undergo complexation with C-
pillar[5]arene and provide a stable network because

C-pillar[5]arene is insoluble in acetone and the
electrostatic complexation bonding features high

stability in organic solvent (Supplementary Fig. S5).37
Meanwhile, the rest of PILTf2N are not involved in
complexation and exist as “imidazolium~Tf2N” ion
pairs, shown by the chemical structures in Fig. 4a. The
existence and density of the “imidazolium~Tf2N” ion
pairs are confirmed by monitoring the sulfur content
along the cross-section. In this context it is important
to note that strong interactions exist between acetone
solvent molecules and the “imidazolium~Tf2N” ion
pair, because the acetone solvent can easily dissolve
PILTf2N. Indeed our atomistically-resolved molecular
dynamics (MD) computer simulations of the
“imidazolium~Tf2N” pair in water-acetone mixture
reveal that the acetone adsorbs stronger to the ion
pair than water (Supplementary Fig. S16 ~ Fig. S18,
part 15). In particular, a large number of water
molecules are preferentially replaced by acetone
molecules around the rather hydrophobic fluorine
groups of the Tf2N anion, see the MD snapshot on the
right hand side of Fig. 4a and the analysis in the SI.

When the membrane is placed in acetone vapor, the
solvent molecules diffuse rather rapidly into the
membrane from both the top and bottom surfaces, as
indicated by the blue track “A” schemed in Fig. 4a. The
acetone molecules will adsorb to the “imidazolium ~
Tf2N” ion pair (red dots, Fig. 4a) owing to their
preferential interaction with the anion. Given the
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Figure 4 | Actuation mechanism via solvent molecule sorption. (a) A scheme of the porous membrane actuator (left, not to scale),
definition of variables: h, thickness of the membrane; r, radius of the bended membrane arch; D, thickness of the pore wall; A, the
diffusion track of acetone molecules from outside to the surface of pore walls inside the membrane; (top right) chemical structure
of the ‘imidazoliumBTf2N’ pair; (lower right) the representative snapshot of solvent redistribution around the ‘imidazolium B
Tf2N’ ion pair: water molecules (blue) are partially displaced by acetone molecules (red), which adsorb more to the Tf2N anion on
the left of the snapshot. (b) Curvatures of PILTf2N/C-pillar[5]arene membrane actuator in vapour of different solvents (2 kPa, 20
°C). (c) Effect of PF6 anion content on curvature of PIL(Tf2N p PF6)/C-pillar[5]arene membrane actuator in 3 mol% acetonitrile-

water and 3 mol% acetone-water mixture, respectively.

gradient of DEC along the cross-section (i.e., the top
surface region has less “imidazolium~Tf2N” ion pairs
owing to the higher DEC, Fig. 1c), understandably the
bottom surface region is more solvated by acetone
compared to the top. As such, the local solvent
osmotic pressure increase leads to more swelling#® of
the bottom part, such that & <&, and the membrane

bends with the top surface inward according to
equation (1). Moreover, equation (1) suggests that
only small swelling strain differences of around 4%
would account for the maximum curvature reached of
C=1.34 mm-1. This is in good agreement with the
observation that at the maximum bending, the porous
morphology of the membrane actuator shows little-
to-no detectable change via SEM characterization
when the experimental error 1is considered
(Supplementary Fig. S19).

As another support to this mechanism, it is found that
the amplitude of actuation in general is specific and
proportional to the “solvent~PILTf2N” interaction, if
various solvents are compared. For example, the
solvents that can dissolve PILTf2N polymer, i.e. strong
“solvent~PILTf2N” interaction (acetone, THF,
piperidine and pyridine, Supplementary Table S3)
triggers the strongest actuation; solvents that cannot
dissolve but can swell the PILTf2N polymer (dioxane,
methanol, ethanol and isopropanol) can only drive the
actuator with slower kinetics and weaker bending
(Fig. 4b). On the contrary, solvents that can neither

dissolve nor swell the PILTf2N polymer (diethyl ether,
benzene, cyclohexane and chloroform), fail to drive
the actuator, i.e. the polymer membrane does not
bend at all in the vapor of these solvents. Further
evidence is given by the anion effect: we exchanged
the Tf2N anion with PF6 which has a weak interaction
with acetone but strong interaction with acetonitrile
(PILPF6 is insoluble in acetone but soluble in
acetonitrile). By exchanging Tf2N stepwise with PF6
anions, the actuation curvature of PIL(Tf2N+PF6)/C-
pillar[5]arene membrane in aqueous acetone solution
gradually decreases while the actuation curvature in
aqueous acetonitrile basically remains the same. As
such, both Fig. 4b and Fig. 4c clearly confirm that the
stronger “PILTf2N - solvent” interaction on a
molecular level produces stronger actuation, which
agrees well with the solvent adsorption mechanism.
Regarding the gradient structures, we prepared a
control membrane which has a similar porous
morphology but a symmetrical DEC distribution
across the membrane (Supplementary Fig. S20). Now,
the membrane only slightly bends when placed in
acetone vapor, because the actuation stress now on
both surfaces largely offsets each other.

With respect to the fast bending kinetics, swelling is a
diffusion-determined process in which the rate-
determining step is that the solvent molecules have to
diffuse through the dense polymer network to reach
their final adsorption sites. The standard diffusion law
is expressed in equation (2), where <x2> is the mean
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squared distance travelled in a time t and y is the
diffusion constant.

(x*) =2yt (2)

For a nonporous material, the solvent has to travel a
mean distance on the order of the membrane
thickness, v <x2>~h, to solvate the whole membrane.
For our porous membrane with submicron scale
interconnected pore channels, the solvent vapor
molecules can almost instantaneously travel to the
pore surfaces via the unhindered (percolating)
micron-sized pore channel accesses (blue track “A”
schemed in Fig. 4a). Then, the acetone molecules only
have to diffuse through a distance of roughly v~
<x2>~D, which is the average thickness of the pore
wall, to solvate the whole polymer matrix. From
cross-sectional SEM image in Fig. 1b, the average D is
estimated to be < 1 um, which is much smaller than
the overall membrane thickness, h=30 um. Using the
diffusion law in equation 2, the diffusion rate ratio for
porous materials (tp) and nonporous materials (tap)
can now be expressed by

t, (D 2
t__(h] (3)

np

which indicates that the diffusion rate in the porous
membrane is improved by almost three orders of
magnitude. Thus, the porous architecture accelerates
the actuation speed by providing an instant access to
the pore walls throughout the membrane, and
reducing the rate-limiting diffusion distance (D ~ 1
um compared to h ~ 30 pm). As a comparison, we
prepared another nonporous control membrane that
retains the linear gradient (Supplementary Fig. S21);
understandably the membrane shows slower
responsiveness and smaller bending toward acetone
stimulus. We further found that the pore compaction
resulted from too high pressing pressure (100 MPa)
also reduced the actuation Kkinetics, since the denser
the porous structure is, the slower the diffusion is
(Fig. 3a).

Discussion

Traditionally, the swelling of the polymer networks is
the dominant mechanism to modulate hydrogel and
ion gel actuators, but it is a relative slow process
limited by the retarded diffusion in a wet state. In our
actuator design, a gradient structure was introduced
into an electrostatically cross-linked porous
membrane, whereas the adsorption of the solvent
vapor molecules at the pore surface results in a local
volume change giving rise to actuation movements.
Importantly, due to the pore-accelerated mass
transport, the surface adsorption can take place
instantaneously in contact with solvent vapor
molecules, at a speed of several orders of magnitude
faster than bulk swelling. As such, the PILTf2N/C-
pillar[5]arene actuator features an instant, robust,
and multiple responsiveness spanning both the
swelling and dry modes. Not only the actuator gives a
record actuation speed among all synthetic polymer
actuators so far, the combination of multiple
advantages in one single actuator set it apart from
previous soft actuators. For example, in line with the
actuation mechanism and owing to the actuator’s
versatile responsiveness to a variety of organic

solvents, the membrane appeared responsive even
toward vapors from perfume or tea tree oil (both
contain a considerable amount of ethanol,
Supplementary Movie S3), verifying its actuation
ability to bio-benign stimuli. More significantly, the
membrane actuator can distinguish 13 types of
aqueous miscible solvents through two sets of
actuation experiments (Supplementary Fig. S22). We
regard this implication as substantial because it
renders the actuation available for facile and
quantitative analysis of solvent quality without the
need of sophisticated or expensive instruments. By
further modulating the “PIL ~ solvent” interactions
and the porous morphologies, exciting opportunities
may arise as it may foster high throughput analysis
with improved resolution and capacity, which is now
ongoing in our lab.

This conceptual methodology is virtually applicable to
a wide range of polymers and small molecules with
complementary interactions, opening new avenues
for adaptive soft matters with fast response rate and
complex movements. In addition, given the ionic
nature of the constituent polymers and solution based
processing, the underlying principles seamlessly
interface with more fabrication technologies, such as
spinning and patterning, holding great promise for
micro-actuation devices of high complexity, and smart
ionics spanning multiple length-scales.

Methods

Materials. Both the carboxylic acid-substituted
pillar[5]arene  (C-pillar[5]arene) and  poly(3-
cyanomethyl-1-vinylimidazolium
bis(trifuoromethanesulfonyl)imide), PILTf2N, were
synthesized and characterized (Supplementary Fig.
S1). The apparent molecular weight and
polydispersity index of PCMVImTf2N polymer was
1.15 x 105 g/mol and 2.95, respectively. All the
solvents used in this study were of analytic grades.
Preparation and characterization of membrane
actuators. Typically, 1.0 g of PILTf2N polymer and
0.27 g of C-pillar[5]arene were dissolved in 10 mL of
DMSO solvent to form a homogeneous solution. Then
the solution was cast onto a clean glass plate, dried at
80 °C for 1 h, and soaked in 0.2 wt% aqueous
ammonia (2 h, 20 °C), giving rise to free-standing
membranes with thickness ~ 30 pm. Note that
membrane actuators can be modulated by tailoring
the concentration of ammonia (0.02 ~ 0.2 wt%) and
the soaking time (2 ~ 48 h). Morphologies of the
membranes were examined by scanning electron
microscopy performed on a GEMINI LEO 1550
microscope at 3 kV; samples were coated with a thin
layer of gold before examination. The chemical
compositions and  electrostatic = complexation
structures of the membrane were characterized by
Fourier Transform Infrared Spectrometer and energy
dispersive x-ray spectroscopy (Supplementary Fig. S2
~ Fig. S4).

Solvent vapor stimulus actuation. Organic solvents
were put in a glass beaker at 20 °C. Then a piece of
membrane strip (20 mm x 1 mm x 30 pm) was placed
~ 5 mm above the liquid phase of the solvent; the
solvent vapor will trigger the fast bending movement.
Afterward, the membrane was pulled back into air to
accomplish the shape recovery. This process was
repeated for 50 times to confirm the good durability
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of the actuation function. For the perfume triggered
actuation, perfume (COCO MADEMOISELLE, CHANEL)
was used instead of organic solvents. Please note: in
all cases, the membrane actuator was NOT in contact
with the liquid body of both the solvents and perfume.
All the actuation movements were recorded by a
digital camera (Canon IXUS130, frames per second 30).
For hygroscopic actuation (Fig. 3d), the star shaped
membrane (30 um thick) was placed in a test chamber
(model WKL 34, Weiss Technik), whereby the
temperature was kept 20 °C and the humidity was
modulated from 50% ~ 90%, during which the
membrane open and closed reversibly.
Acknowledgements

Authors would like to thank the Max Planck Society
for financial support. J.Y. thanked Simon Prescher for
the polymer synthesis, Mr. Matthias Kollosche for
mechanical tests. ].D. and ].H. acknowledge financial
support from the Alexander von Humboldt
Foundation and the Deutsche
Forschungsgemeinschaft (DFG).

Author contributions

Q.Z., ].Y. and M.A. conceived the research. Q.Z. and X.Q.
performed the hygroscopic actuation experiments.
Z.Z. and F.H. synthesized the pillar[5]arene molecules.
].D. and J. H. performed simulations and analysis. Q.Z.
carried out all the rest experiments. Q.Z., J.Y. J.W.D.
and M.A. analysed data and wrote the paper. All
authors read and revised the paper.

References

1 Stuart, M. A. C. et al. Emerging applications of
stimuli-responsive polymer materials. Nat. Mater. 9,
101-113 (2010).

2 Ma, M., Guo, L., Anderson, D. G. & Langer, R.
Bio-inspired polymer composite actuator and
generator driven by water gradients. Science 339,
186-189 (2013).

3 Sidorenko, A. Krupenkin, T. Taylor, A,
Fratzl, P. & Aizenberg, ]. Reversible switching of
hydrogel-actuated nanostructures into complex
micropatterns. Science 315, 487-490 (2007).

4 Lendlein, A,, Jiang, H. Y., Junger, O. & Langer,
R. Light-induced shape-memory polymers. Nature
434,879-882 (2005).

5 Kim, ]., Hanna, ]J. A,, Byun, M., Santangelo, C.
D. & Hayward, R. C. Designing responsive buckled
surfaces by halftone gel lithography. Science 335,
1201-1205 (2012).

6 Lee, K. J. et al. Spontaneous shape
reconfigurations in multicompartmental
microcylinders. Proc. Natl. Acad. Sci. U. S. A. 109,
16057-16062 (2012).

7 Keplinger, C. et al. Stretchable, transparent,
ionic conductors. Science 341, 984-987 (2013).
8 Kim, J. et al. Programming magnetic

anisotropy in polymeric microactuators. Nat. Mater.
10, 747-752 (2011).

9 Yu, Y. L, Nakano, M. & Ikeda, T. Directed
bending of a polymer film by light - miniaturizing a
simple photomechanical system could expand its
range of applications. Nature 425, 145-145 (2003).

10 van Oosten, C. L., Bastiaansen, C. W. M. &
Broer, D. ]. Printed artificial cilia from liquid-crystal
network actuators modularly driven by light. Nat.
Mater. 8, 677-682 (2009).

11 Wu, Z. L. et al. Three-dimensional shape
transformations of hydrogel sheets induced by small-
scale modulation of internal stresses. Nat. Commun. 4,
1586 (2013).

12 Kim, O., Shin, T. ]. & Park, M. ]. Fast low-
voltage electroactive actuators using nanostructured
polymer electrolytes. Nat. Commun. 4, 2208 (2013).
13 Jager, E. W. H, Smela, E. & Inganas, O.
Microfabricating conjugated polymer actuators.
Science 290, 1540-1545 (2000).

14 Zhou, Y. et al. High-temperature gating of
solid-state nanopores with thermo-responsive
macromolecular nanoactuators in ionic liquids. Adv.
Mater. 24, 962-967 (2012).

15 Ahir, S. V. & Terentjey, E. M.
Photomechanical actuation in polymer-nanotube
composites. Nat. Mater. 4, 491-495 (2005).

16 Aida, T., Meijer, E. W. & Stupp, S. I. Functional
supramolecular polymers. Science 335, 813-817
(2012).

17 Baker, C. O. et al. Monolithic actuators from

flash-welded polyaniline nanofibers. Adv. Mater. 20,
155-158 (2008).

18 Capadona, J. R, Shanmuganathan, K., Tyler,
D. J, Rowan, S. ]. & Weder, C. Stimuli-responsive
polymer nanocomposites inspired by the sea
cucumber dermis. Science 319, 1370-1374 (2008).

19 Forterre, Y., Skotheim, ]J. M., Dumais, J. &
Mahadevan, L. How the venus flytrap snaps. Nature
433,421-425 (2005).

20 Erb, R. M,, Sander, ]. S., Grisch, R. & Studart,
A. R. Self-shaping composites with programmable
bioinspired microstructures. Nat. Commun. 4, 1712
(2013).

21 Harrington, M. J. et al. Origami-like unfolding
of hydro-actuated ice plant seed capsules. Nat.
Commun. 2, 337 (2011).

22 Armon, S., Efrati, E., Kupferman, R. & Sharon,
E. Geometry and mechanics in the opening of chiral
seed pods. Science 333,1726-1730 (2011).

23 Harlow, W. M., Cote, W. A. & Day, A. C. The
opening mechanism of pine cone scales. ] Forest 62,
538-540 (1964).

24 Kobatake, S., Takami, S., Muto, H., Ishikawa,
T. & Irie, M. Rapid and reversible shape changes of
molecular crystals on photoirradiation. Nature 446,
778-781 (2007).

25 Shepherd, H. ]J. et al. Molecular actuators
driven by cooperative spin-state switching. Nat.
Commun. 4, 2607 (2013).

26 Stoychev, G., Turcaud, S., Dunlop, ]. W. C. &
Ionov, L. Hierarchical multi-step folding of polymer
bilayers. Adv. Funct. Mater. 23, 2295-2300 (2013).

27 Morin, S. A. et al. Camouflage and display for
soft machines. Science 337, 828-832 (2012).
28 Leong, T. G. et al. Tetherless

thermobiochemically actuated microgrippers. Proc.
Natl. Acad. Sci. U. S. A. 106, 703-708 (2009).

29 Palleau, E., Morales, D., Dickey, M. D. & Velev,
0. D. Reversible patterning and actuation of hydrogels
by electrically assisted ionoprinting. Nat. Commun. 4,
2257 (2013).

30 Burdick, J. A. & Murphy, W. L. Moving from
static to dynamic complexity in hydrogel design. Nat.
Commun. 3, 1269 (2012).

177



31 Qiu, X. et al. Selective separation of similarly
sized proteins with tunable nanoporous block
copolymer membranes. Acs Nano 7, 768-776 (2013).

32 Eun Chul, C, Jin-Woong, K., Fernandez-
Nieves, A. & Weitz, D. A. Highly responsive hydrogel
scaffolds formed by three-dimensional organization of
microgel nanoparticles. Nano Lett. 8, 168-172 (2008).

33 Foroughi, J. et al. Torsional carbon nanotube
artificial muscles. Science 334, 494-497 (2011).
34 Takashima, Y. et al. Expansion-contraction

of photoresponsive artificial muscle regulated by
host-guest interactions. Nat. Commun. 3, 1270

(2012).

35 Steven, E. et al. Carbon nanotubes on a
spider silk scaffold. Nat. Commun. 4, 2435 (2013).

36 Stellacci, F. Towards industrial-scale

molecular nanolithography. Adv. Funct. Mater. 16, 15-
16 (2006).

37 Thunemann, A. F., Muller, M., Dautzenberg,
H. Joanny, ]. F. 0. & Lowen, H. in Polyelectrolytes with
defined molecular architecture ii Vol. 166 Advances in
polymer science (ed M. Schmidt) 113-171 (2004).

38 Zhao, Q. et al. Hierarchically structured
nanoporous poly(ionic liquid) membranes: Facile
preparation and application in fiber-optic ph sensing.
J. Am. Chem. Soc. 135, 5549-5552 (2013).

39 Timoshenko, S. Analysis of bi-metal
thermostats. Journal of the Optical Society of America
and Review of Scientific Instruments 11, 233-255
(1925).

40 De gennes, p. G. Scaling concepts in polymer
physics. Cornell University Press: Ithaca, NY, (1979).

178



7.12 [AC5] Porous poly(ionic liquid) actuator with ultra-high sensitivity to solvents
Zhao, Q., Heyda, J., Dzubiella, ]., Tduber, T., Dunlop, J. W. C., Yuan, ].
Published in Advanced Materials, 2015, 27, 2913-2917.
DOI: 10.1002/adma.201500533

Reprinted with permission from John Wiley and Sons

Currently, synthetic polymer actuators are being
actively pursued owing to their importance in
artificial muscles, molecular motors, soft robotics,
programmable origami, and energy generators.[1]
These smart materials are capable of adaptive motion,
and/or reversible shape variation responding to
external stimuli[2] Among various aspects of
actuators, it is necessary to develop higher sensitivity
in actuating setups to realize signaling output at a
rather early stage of external trigger, which is
important for both fundamental research and
practical applications. In this regard biological
actuators are compelling models possessing the
defining ability to sense and respond to subtle
alterations in environmental conditions such as
humidity and forces.[3] For example, wheat awns can
propel their seeds on and into the ground in response
to humidity changes.[3d] The study on such biological
actuators demonstrates the important role of material
architecture (pore-size, fiber orientation, etc.) on
actuation and highlights its potential in the design of
artificial actuators. Recently, enormous efforts are
being paid to make synthetic polymer actuators more
sensitive, such as reducing the electric voltage for
driving polymer electrolyte actuators,[4] decreasing
the energy consumption for light-responsive
actuators,[5] and improving the humidity sensitivity
of hygroscopic actuators.[6] Despite much success
achieved so far, there is still plenty of potential to
improve the sensitivity of synthetic polymer
actuators.

Solvent stimulus polymer actuators (SSPAs) represent
an important mechanism encompassing a significant
breadth of utility including responsive gels,[7]
grippers,[8] nano-robotics,[9] and solvent stimulus
shape memory polymers.[10] For SSPAs usually the
solvent diffusion into actuators results in
heterogeneous volume changes giving rise to
macroscopic shape changes and/or adaptive
movements. In some cases, solvents may not trigger
the actuation directly; instead, the real stimuli (e.g.,
pH, electrolytes, etc.) are coupled to solvent systems
and reach the site of action through the diffusion of
solvents and swelling in the polymer matrix.[11] Yet
like most polymer actuators, SSPAs suffer from a
relatively low sensitivity—usually a substantial
amount of secondary solvents is required to mix with
the primary solvent in order to produce noticeable
shape deformation or displacement.[12] In some
cases SSPAs were even shuttled between two
different solvents to acquire the response, because a
large gradient in solvent concentration is a necessity
for promoting the solvent diffusion into bulk
polymers.[12a] Thus large-scale actuation triggered
by a low portion of solvent stimulus (e.g., < 0.5 mol%)
remains an elusive challenge.

Here we report a porous poly(ionic liquid) (PIL)
membrane actuator exhibiting exceptional sensitivity
to low organic solvent concentrations. The membrane
preparation follows a similar method we recently
invented for porous polymer actuators in gas
phase.[13] Since solution phase actuation is more
general for polymer actuators, our interest was
directed to construct new SSPAs with high sensitivity.
The actuator readily bends to an arc (curvature 0.076
mm-1) upon adding as low as 0.25 mol% acetone
molecules (1 acetone per 400 water molecules). To
make a quantitative comparison, we define the
actuator’s sensitivity ~ to organic  solvents
concentration as the amount of curvature change
triggered by adding 1 mol% of the solvents. Thus our
membrane is found to be at least one order of
magnitude more sensitive than other state-of-the-art
SSPAs.

The membrane chemically consists of two
polyelectrolytes, a cationic PIL, poly[3-cyanomethyl-
1-vinylimidazolium
bis(trifuoromethanesulfonyl)imide]  (denoted as
PCMVImT{2N), and poly(acrylic acid) (denoted as
PAA, molecular weight 2 000 Da, a commercial
product from Sigma Aldrich). Specifically speaking,
PILs are polymerization products of ionic liquid
monomers. The high density packing of ionic liquid
species in PILs gives rise to distinctive properties, e.g.,
tunable solubility in organic media, surface activities,
broad glass transition temperature, etc.[14] Recently
there is huge attention on applying PILs as innovative
polyelectrolytes to build up advanced materials and
(multi)functional devices.[15] The PCMVImT{2N used
in this research was synthesized according to our
previous report (Figure S1, supporting
information).[16]

To prepare the porous membrane, PCMVImT{2N and
PAA were dissolved in dimethylformamide, solution-
cast on a glass plate, dried (80 °C, 2 h), and
subsequently soaked in aqueous ammonia (0.2 wt%,
20 °C, 2 h). Afterwards a free-standing membrane
(denoted as PCMVImT{2N-PAA) was easily peeled off
from the glass plate. Note that the surfaces facing
aqueous ammonia and the glass plate are denoted as
TOP and BOTTOM surfaces, respectively (Figure S2,
supporting information). During the soaking step,
water and ammonia molecules diffused into the film
from the top surface and triggered the electrostatic
complexation between PCMVImT{2N and PAA, a novel
self-assembly mechanism we discovered recently for
fabricating nanoporous membranes.[13a] As-
prepared PCMVImTf2N-PAA membranes feature a
combination of porous morphology (Figure S3,
supporting information) and a gradient in
electrostatic complexation (Figure S4 ~ S5,
supporting information) between cationic
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Figure 1. (a) shape deformation of a PCMVImTf2N-PAA membrane (1 mm x 20 mm x 30 pm) in response to the molar amount of
acetone molecules in a water-acetone mixture at 20 °C (left column: increasing acetone content, right column: decreasing acetone
content); note: inserted numbers are the acetone content; the membrane was kept for 5 mins to reach bending equilibrium at each
acetone concentrations; the membrane (originally yellowish) was painted in red color for better visibility: the color painting does
not affect the actuation; the thick blue bar is a 20 mm scale bar (please see Figure S9, supporting information for the experimental
setup), (b) plot of curvature (mm-) of the membrane actuator against acetone content (mol%); (c) plot of curvature (mm-) of the
membrane actuator against time when placing it in a 1.5 mol% acetone-water mixture and back in water.

PCMVImT{2N and the anionic PAA (neutralized by
ammonia) from top to bottom.

The PCMVImT{2N-PAA membrane actuator is straight
and flat in water (Figure 1a, top), and its top surface
steadily bends inward (curvature = 0.076 mm-l,
Figure S6) upon adding acetone up to 0.25 mol%
relative to water. By increasing acetone content to 1.5
mol%, the membrane arch bends continuously and
ends up with a closed loop (Figure 1a, left column). By
decreasing the acetone concentration, the membrane
actuator gradually reverts to the original shapes with
high accuracy (Figure 1a, right column). Figure 1b
quantitatively shows that the curvature of the
actuator appears linearly proportional to acetone
content, plus being highly reversible. This bending-
stretching cycle can be repeated at least 20 times with
high accuracy (Figure S7, supporting information).
Furthermore the bending Kkinetics were studied
(Figure 1c). Transferring the membrane directly from
water into a 1.5 mol% acetone-water mixture, its
curvature increases rapidly versus time, then levels
off and reaches a plateau after 50 s. Pulling back in
water, the recovery of the membrane curvature is
slower, which is understandable given the slower rate
of acetone releasing from the membrane due to the
solvent-polymer attractive interaction. In addition,
the temperature influence on the bending actuation
was also observed but rather as a secondary effect
(Figure S8, supporting information). As both
mechanical properties and the ionic bonding in
solution are affected by temperature, it remains yet
unclear which dominates the temperature effect in
the shape deformation of the porous actuators.
Moreover, we found that the actuator can also
respond to other solvents such as tetrahydrofuran,
1,4-dioxane, and ethanol with similarly high
sensitivity (Figure S10, supporting information). In
the literature, a variety of SSPAs can respond to

solvents exchange, but with much lower sensitivity.
Here the PCMVImT{2N-PAA actuator is at least one
order of magnitude more sensitive than systems
recently reported (Table S1, supporting information).
For example, 50 mol% acetone is required for a
phenol-formaldehyde bi-layer film bending to a
curvature of 0.35 mm-[12d] whereas the
PCMVImTf2N-PAA actuator bends to a similar
curvature (0.38 mm-1) requiring only 1.5 mol%
acetone. Because it is known that bending actuation is
inversely proportional to membrane thickness
(Figure S11, supporting information), we also plot
“normalized sensitivity” (curvature multiplied by
thickness) as well as the apparent sensitivity to
compare our membrane’s sensitivity with other data
reported recently in literature (Table S1, supporting
information).

The “stimulus ~ actuator” interaction is commonly
recognized as a precondition for SSPAs. In this context
a strong “acetone ~ PCMVImT{2N” interaction indeed
exists, as hinted by the fact that PCMVImTf2N is
soluble in acetone but not in water. Moreover, the
membrane possesses a gradient in complexion degree
through its cross-section (Figure S4 ~ S5, supporting
information), with highest polarity and minimal
cross-linking density at the bottom of the membrane.
The resultant acetone absorption gradient leads to a
swelling gradient across the membrane, decreasing
from bottom to top, which in turn drives the bending
of the membrane.[13b] The gradient in cross-linking
is also likely to produce a gradient in the elastic
modulus through the membrane, however this
modulus gradient is unlikely to have a strong effect on
bending compared to the role of the swelling gradient,
as known from the classical analysis of bi-metal
thermostats.[17] One potential advantage of a graded
membrane as opposed to classical bi-layers is the
reduction in interfacial stresses that are produced in a
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Figure 2. (a) A schematic mechanism of the sensitive actuation of a porous membrane actuator (on the left) compared to dense
one (right), (b) effect of PAA’s molecular weight on the bending actuation of three PCMVImT{2N-PAA membranes (1 mm x 20 mm
x 30 pm) placing in 1.5 mol % acetone-water mixture at 20 °C for 10 mins (top panel, NOT painted in red color), and their
corresponding porous architectures (bottom panel, SEM pictures of membrane cross-sections). Note: the three membranes were
made in the same procedure, except that the molecular weight of PAA from the left to right is 2 000, 5 000, and 100 000 Da,

respectively.

bi-layer. Such stress concentrations are unwanted as
they may increase the likelihood of delamination and
failure in a bi-layer, but also represent stored elastic
energy (coming from the energy of the solvent) that
serves no actuation function. By creating appropriate
gradients in swellability one may improve efficiency
giving actuation at lower acetone concentrations.

In addition, the PCMVImTf2N-PAA actuator
membrane is nanoporous (30-100 nm in pore size), in
stark contrast to common SSPAs that are dense.[12]
The pore channels not only accelerate mass transport
of solvents into the membrane, but also weakens the
overall bending rigidity, since part of its solid bulk
(where the pores stay) is replaced by mobile liquids
(Figure 2a). Put another way, pore structures
circumvent the need for a high acetone concentration
normally required for driving the molecular diffusion
and penetration in dense materials, thus leading to a
higher sensitivity to solvent concentration.

Reference experiments support our mechanistic
views. First, the physical blend of PCMVImT{2N and
PAA as control membranes without electrostatic
complexation and pore structure show negligible
response to acetone solvent (Figure S12, supporting
information), verifying that the combination of
electrostatic complexation and porous architecture
are prerequisites for sensitive actuation. Additionally,
by modulating the molecular weight of PAA, the
membranes were tailored from highly nanoporous to
less porous and finally non-porous states (Figure 2b,
bottom panel). Consequently, the less porous actuator
(Figure 2b, sample on the right) shows much smaller
bending in a 1.5 mol% acetone-water mixture than
porous films. Given the same chemical nature of the
three membranes, unambiguously the pores are
playing critical roles improving their sensitivity.
However, because the membrane’s bending actuation
is affected by a multiple of pore structural
parameters, future study is needed to engineer these
structure features, such as pore size, pore size

distribution and pore shape, for task-specific
actuation.

The actuator’s high sensitivity allows for functionality
unattainable with common SSPAs, such as
discriminating solvent quality even including isomers.
In butanol isomer-water mixtures it shows different
bending curvatures (red bars in Figure 3a and inset
pictures). To the best of our knowledge this
represents the first trial of “reading” solvent isomers,
i.e. subtle solvent quality, by SSPAs. We conducted
molecular dynamics (MD) simulations to shed more
light on the molecular interactions and adsorption
processes between the polymer membrane and the
butanol isomers. Since the preferential adsorption of
solvent to the ionic-liquid-like (IL) groups is
responsible for the outstanding membrane properties
(sensitivity and selectivity), we simulated the
solvation of one PIL-ion pair in the presence of
different solvent compositions (see section 3,
supporting information). We indeed find an excess
adsorption (over water) to the PIL-ion-pair for all
three butanol isomers. We have quantified the
adsorption with the common adsorption coefficient I'
which has positive values if the butanol is in excess
over water; see the blue bars in Figure 3a. Hence, all
butanol isomers solvate the PIL-ion-pair better than
water and will lead to a larger swelling (and bending)
of the membrane due to an enhanced osmotic
pressure. Moreover, we see in Figure 3a that the
butanol isomers feature an increasing adsorption in
the order 1-butanol > 2-butanol > isobutanol. Our
mechanistic view is fully supported by the
experimental fact that the curvature of the actuator
follows exactly the same trend if solvated by these
isomers. From the MD simulations we find that on a
microscopic level the adsorption trend is related to
subtle changes of the detailed interaction of the
isomers (with varying hydrophobicity) to the PIL-ion
pairs, see Figure 3b for representative simulations
snapshots and cartoons depicting the molecular
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Figure 3. (a) Red column: curvature of PCMVImT{2N-PAA actuator membrane in water containing 1.25 mol% butanol isomers
(isobutanol, 2-butanol, and 1-butanol) at 20 oC. Blue column: excess absorption of butanol isomers to the PIL-ion pair calculated
by all-atom molecular dynamics computer simulations. The inserts are photographs of the bent membrane arch (top view); (b)
representative scheme showing the composition of the 1st solvation layer of PIL-ion pair for the three isomers (top panel) and the
growing hydrophobicity (and decreasing solubility) of the respective butanol isomers (bottom panel, isobutanol, 2-butanol, and 1-

butanol from left to right).

structure. More details to the simulation results can
be found in the supporting information (Figure S13 ~

$18).
In addition the actuator is combined with other
beneficial functionalities such as cooperative

actuation, i.e., a group of individual actuators could
work cooperatively to accomplish more complicated
tasks. This feature is viable even at a relatively small
signal input owing to the actuator’s high sensitivity.
For example, 30 pieces of PCMVImTf2N-PAA
membranes were put in a 5 mol% acetone-water
mixture,  which  simultaneously @ bent and
interpenetrated into each other, forming a compact
“membrane coil” comprised of entangled and
interlocked membrane stripes (Figure 4, Figure S19,
supporting information). Put back into water, the
“membrane coil” deaggregates into the original
individual membrane shapes (Figure 4a). Here the
actuator’s high sensitivity is required, otherwise the
interpenetration and entangling of different
membranes is not effective enough to lock the
compact “membrane coil”. Given that disentangling
this “membrane coil” by hand only ends up with
membrane rupture, the cooperative actuation hints to
microdevices capable of multistep manipulation
P24 5 mol% acetone

Water

Figure 4. Cooperative actuation of 30 PCMVImT{f2N-PAA
membranes (1 mm x 25 mm x 30 pm) shuttled between
water (left) and a 5 mol% acetone-water mixture (right);
pictures were taken at a top view; the schemes (bottom
panel) illustrate the entangling-unentangling of membrane
stripes. The scale baris 1 cm.

and/or fabrications.

In summary, we introduced a new concept for
fabricating solvent stimulus polymer actuators with
unprecedented sensitivity and accuracy. This was
accomplished by integrating porous architectures and
electrostatic complexation gradients in a poly(ionic
liquid) membrane that bears ionic liquid species for
solvent sorption. In contact with 1.5 mol% of acetone
molecules in water, the actuator membrane (1 mm x
20 mm x 30 pm) bent into a closed loop. While the
interaction between solvents and the polymer drives
the actuation, the continuous gradient in
complexation degree combined with the porous
architecture optimizes the actuation, giving it a high
sensitivity and even the ability to discriminate
butanol solvent isomers. The membrane is also
capable of cooperative actuation. The design concept
is easy to implement and applicable to other
polyelectrolyte  systems,  which  substantially
underpins their potentials in smart and sensitive
signaling microrobotics/devices.

Supporting information

Supporting Information (materials characterization,
actuation, and molecular dynamic simulations) is
available from the Wiley Online Library or from the
author.
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Abstract: The seed capsule of Delosperma nakurense is a remarkable example of a natural hygromorph, which
unfolds its protecting valves upon wetting to expose its seeds. This beautiful mechanism responsible for this motion is
generated by a specialised organ based on an anisotropic cellular tissue filled with a highly swelling material. Inspired
by this system we study the mechanics of a diamond honeycomb internally pressurised by a fluid phase. Numerical
homogenization by means of iterative finite element simulations is adapted to the case of cellular materials filled with
a variable pressure fluid phase. Like its biological counterpart, it is shown that the material architecture controls and
guides the otherwise unspecific isotropic expansion of the fluid. Deformations up to twice the original dimensions can
be achieved by simply setting the value of input pressure. In turn, these deformations cause a marked change of the
honeycomb geometry and hence promote a stiffening of the material along the weak direction. To understand the
mechanism further we also developed a micromechanical model based on the Born model for crystal elasticity to find
an explicit relation between honeycomb geometry, swelling eigenstrains and elastic properties. The micromechanical
model is in good qualitative agreement with the finite element simulations. Moreover, we also provide the force-
stroke characteristics of a soft actuator based on the pressurised anisotropic honeycomb, and show how the internal
pressure has a non-linear effect which can result into negative values of the in-plane Poisson’s ratio. As nature shows
in the case of the Delosperma nakurense seed capsule, cellular materials can be used not only as low-weight structural
material, but also as simple but convenient actuating materials.

1 Introduction

Natural hygromorphs are biological systems that can
generate a specific actuation (ie displacement or
force) as a response a change in humidity occurring
for example between day and night [1, 2]. They are
interesting examples for bio-inspired materials
design, as they typically operate without metabolic
energy meaning that actuation is achieved through
the arrangement or architecture of the underlying
constituent materials (cellulose fibrils, hemicellulose
and lignin etc) [3, 4]. In other words, the materials-
architecture of the actuating tissue controls and
guides the otherwise unspecific isotropic swelling of
the single components [5-7].

Natural hygromorphs can be found for example in the
seed dispersal units of wild wheat awns [1], or in the
scales of the pine-cone [8, 9]. In each of these systems,
the actuating organ is structured in a similar way to a
bilayer, where two materials with different swelling
properties are juxtaposed. These differences in
swellabilities are a  consequence of the
microstructural organization of the reinforcing
cellulose fibrils in the secondary cell-wall. When
water is absorbed into the swellable matrix polymers,
volumetric expansion occurs mainly perpendicular to
the stiff crystalline cellulose fibrils: the microfibril
angle of the cellulose fibrils thus directs the swelling
deformation of the cell [10, 11]. At the macroscopic
level of the bilayer, wetting/drying cycles correspond
to an alternate bending/straightening motion, as
predicted by the Timoshenko model of a two-material
plate undergoing thermal deformations [11]. Another
natural passive actuator exploiting the microscopic
architecture of the cellulose fibrils is the awn of the
stork’s bill [12]. The macroscopic coiling movement
appears to originate from a mechanically uniform cell
layer made up of intrinsically coiling cells, rather than
a spatial distribution of differently swelling materials

[13]. In each cell the cellulose helix is tilted with
respect to the cell main axis: in a fully swollen state
the matrix exerts a pressure on the helix, which
uncoils and aligns to the cell main axis; while drying,
the helix tilts and tightens, thereby causing a
macroscopic spiralling movement.

Cellulose microfibril orientation also controls the
extent of forces generated during swelling. In the
roots and xylem of higher plants, specialised tissues
have evolved that are able to generate a contraction
force (tensile stresses) on the surrounding tissues
[14-16]. In these tissues the cells possess thick walls
with a lignified secondary cell-wall having high
microfibril angles (about 36 degrees) and an
innermost gelatinous-layer (G-layer) consisting of
axially oriented cellulose fibrils. One explanation for
the development of tensile stresses comes from the
idea that lateral swelling from the G-layer puts the cell
walls under pressure. Due to the high microfibril
angle, these walls, translate the hoop stress into a
longitudinal tensile stress [17].

The shape of the cells in the swelling tissue also plays
an important role in hygroscopic actuation systems.
This was shown in a recent study on the hydro-
actuated unfolding of the ice plant (Delosperma
nakurense) seed capsule [18]. The seed capsule
contains five seed chambers, separated by septa (Fig.
1). In the dry state (Fig. 1a), five valves close the
chambers to prevent accidental seed dispersion, with
the centre of each valve pushed against a
corresponding septum. As liquid water comes into the
tissues, the valves unfold (Fig. 1c), moving away from
the septa, spanning an angular trajectory of about 150
degrees. The specialised organ promoting this
movement is the hygroscopic keel (highlighted in red
in Fig. 1c), a prominent tissue attached to the centre
of the inner valve surface, consisting of two halves
which, in the dry state, pack onto the septum.
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Figure 1 | Anatomy and material architecture of the
hydro-actuated Delosperma nakurense seed capsule.
The seed capsule of the Delosperma nakurense is a
natural example of passive actuation driven by water
adsorption. The dry seed capsule (a) opens upon water
absorption c) due to the expansion of the hydroscopic
keel. One of the five keels is highlighted in red in c). The
anisotropic architecture and differential composition of
the keels tissue (as seen in b) in the dry state and d) in
the wet state) enables a huge localised swelling which
translates in the opening of the valves that protect the
seeds (images provided courtesy of K. Razghandi, b,d
are modified from Ref [18] with permission).

Structural and chemical characterization of the keels
tissue revealed a highly anisotropic honeycomb
structure, with elliptical shaped cells. The cell walls
were lignified and lined with a “cellulosic inner layer”
(CIL) consisting of as-yet unidentified hygroscopic
polysaccharides. In the dry state the cells appear
collapsed and closely packed together. During
swelling the CIL absorbs large amounts of water. The
resultant volume expansion occurs mainly along the
cells cross-sectional short axis, with a net deformation
of up to 4 times the original cell width. Hence, the
swollen CIL exerts a pressure on the cells’ walls,
giving rise to an overall shape change of the keel
tissue (Figs 1 b and d). Although this tissue was
analysed experimentally, little is known about the role
of cell-architecture and cell shape on the swellability
of honeycombs. The goal of this paper is to develop a
suitable theoretical model to describe such systems
and use it to explore the design space of swellable
honeycomb actuators.

Many studies have been conducted on the mechanical
behaviour of regular cellular materials, see e.g. [19-
23]. These models estimate the macroscopic
“continuum” mechanical properties of a regular
cellular material from microscopic parameters like
nodal connectivity, cell shape, relative density, and
mechanical properties of the cell-wall material [20,
24-26]. Moreover, the influence of cell-size
distribution, irregularity and point defects on the
elastic and failure properties of honeycombs and
foams has also been extensively studied [27-29]. In
these studies, the mechanical properties of the
cellular material are discussed by simulating “simple”
boundary value problems (uniaxial, biaxial or pure
shearing loading). Despite the large amount of work

being done on the mechanics of honeycombs,
surprisingly, no systematic study has been conducted
on internal loading conditions like hydrostatic
pressurization on the honeycomb inner surface,
relevant to understanding the actuation of the ice-
plants, has been conducted. One study, by Niklas, that
goes in this direction, provided a theoretical
description of the effect of a turgid protoplast
pressurizing a thick walled plant cell on its effective
stiffness [30]. Here the cell was considered cylindrical
and isolated, and no collective effect at the tissue level
or cell shape influence was considered. Other studies
[31, 32] are concerned with the effect of a turgor
pressure on the effective stiffness of foam solids like
the parenchyma tissue, but their scope limits to
isotropically shaped cells in the stretching dominated
regime. Some studies have investigated the influence
of cell shape on the overall expansion of honeycombs,
however these considered only a small orthotropic
expansion of the honeycomb walls rather than an
internal pressurisation [33]. No explicit investigation
of microscopic swelling deformation at less than fully
turgid pressures has been provided.

Internal pressurisation in hollow structures has also
awakened the interest of applied research fields such
as soft robotics. In a recent study, Martinez et al. [34]
combine elastomers with flexible inextensible paper
reinforcements to produce a new class of soft
pneumatic actuators. Here, the driving force for
actuation comes from an external source of pneumatic
pressure, while the desired actuation is controlled by
the crease pattern and spatial arrangement of paper
sheets embedded in an elastomer. Another study by
Pagitz et al. [35] presents a novel concept for
pressure-actuated cellular structures that is inspired
by the nastic movement of plants. They consider a
composite plate-like cantilever formed by a two
arrays of prismatic cells with identical pentagonal and
hexagonal cross sections. Differences in internal
pressures for each array of cells, corresponds to an
equilibrium configuration that resembles a circular
arc. By changing the initial shape of the cells, also non
circular arc shapes can be achieved.

In the following we will present a theoretical model
for the assessment of the performance of a swellable
honeycomb. This should be of some relevance for
understanding the mechanical aspects related to the
hygroscopic actuation in the ice plant seed capsules.
Nonetheless, the model should be also general enough
to give an insight about the applicability of anisotropic
honeycombs as possible candidates for pressure
driven actuators. The pressure may be generated
from a swelling process (as in the keel’s tissue of the
ice plant), or an external source (as in pneumatic soft
robots). In both cases, notwithstanding the necessary
simplifications introduced in the model, our aim is to
give a deeper understanding of the mechanical
performance of pressurised anisotropic honeycombs.
The actuation performance of the honeycomb will be
investigated in terms of three complementary
responses: the eigenstrains developed by the
honeycomb upon a certain internal pressure (i.e. the
magnitude of accessible motion), the forces generated
at a given stroke, and its effective stiffness in a given
pressurised configuration. In the following we
somewhat abuse the term eigenstrains since the effect
of a pressure on a hollow structure as the honeycomb
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Figure 2 | Diamond honeycomb geometry. Diamond honeycomb geometry results from periodic repetition of the unit cell
(dashed box) along lattice vectors at an angle +-a/2 to the horizontal so that each joint connects four inclined members (a).
This geometry has been imported in the finite element model unit cell as a fluid-filled honeycomb with finite thickness walls
(b). The FE honeycomb has slender walls (t=3, I=41) and strong anisotropy (X0/YO0 = 4:1). The joints (red dotted) are built as

squares of side \/E s (s=2.5).

will generally cause an elastic stress in its walls, and
hence is not a stress free transformation strain [36].
This notwithstanding, if one considers the
pressurising agent as part of the investigated system
(as in our contribution here), then the net elastic
stresses are null and the macroscopic strain of the
structure is stress-free in an averaged sense.

As a test case we will consider a bi-dimensional
anisotropic honeycomb consisting of diamond shaped
cells, inspired by the tissue of the ice-plant keels. Our
modelling approach, described in the methods
section, is based on a finite element (FE) model
comprising all relevant geometrical and mechanical
parameters of the honeycomb. To calculate the
quantities we are aiming at (eigenstrains, exerted
forces and stiffness) we first simulate a hydrostatic
pressurisation, and get an equilibrated pressurised
configuration characterised by its eigenstrains. From
this configuration, we perform basic loading
conditions of the structure such as uniaxial stretching
and in-plane shearing, to get the full stiffness tensor of
the pressurised honeycomb. These simulations are
repeated in a parametric study where the effect of cell
wall stiffness and swelling pressure on the model’s
behaviour is addressed. In the discussion section, we
will show how these results can be interpreted in
terms of an analytical micromechanical model, and
critically evaluate the prediction ability of our
modelling strategy. In the final section we will provide
some conclusions and outlook for future work.

2 Numerical Model

2.1 Shape of the wunit cell and mechanical
properties

Geometry of the investigated system

The honeycomb considered here is a diamond shaped
honeycomb resembling the ice-plant keels tissue. The
unit cell consists of two inclined beams, joined at an
angle a=28°. The regular lattice is obtained by shifting
the unit cell along two lattice vectors at an angle +-
a/2 to the horizontal. In contrast to a hexagonal
honeycomb, each joint of the infinite lattice connects 4
inclined members (Fig. 2a).

Finite Element Model

In the dry state the ice plant keels” tissue is
completely collapsed, with barely no cell lumens
observable. In the swollen state the cells” walls are
pushed apart by the swelling of the CIL inside the
lumens (Fig. 1). Based on the volumetric expansion
that it undergoes, in the swollen state the material in
the lumen can contain up to 95% water. Although
direct mechanical measurements of the CIL have
proven unpractical, it can be inferred that the lumen’s
elastic modulus is negligible, when compared to the
much stiffer lignified walls.

Following this abstraction (Fig. 2b), the unit cell of the
finite element model measures Xo=80 mm by Yo= 20
mm and comprises a structural domain coinciding
with one full diamond-shaped honeycomb cell and a
fluid domain occupying the remaining space; to be
close to the keels’ geometry, the walls are modelled as
slender beams of length =41 mm and thickness t=3
mm so that 1/t>10. The resulting honeycomb angle
measures 28° degrees; with such an anisotropic shape
care has been taken to avoid excessive bulkiness of
the joints. These are built as squares of side V2s
(s=2.5 mm) (red dotted area) in order to make their
rigidity independent from the direction of the loading.
The walls are considered to be linearly elastic with a
Young modulus (1GPa) and Poisson’s ratio (0.3),
according to values reported for cell wall transverse
modulus of spruce wood in moist conditions [6]. The
lumen is modelled as a fluid cavity subjected to a
constant pressure p. The geometry, material
constitutive equation, boundary conditions and
discretization have been implemented in the
commercial finite element software ABAQUS 6.12 ®
(Dassault Systémes Simulia Corp.). In particular, the
structural domain was discretised with 1040 linear,
two dimensional, plane stress, reduced integration
continuum elements (ABAQUS 6.12 element library:
CPS4R), with four elements across the wall’s
thickness to precisely capture the stress gradient. The
“enhanced hourglass control” option has been used to
avoid deformation artefacts at the fluid-structure
boundary. Mesh size independence has been verified
by using a superfine 16704 elements mesh (16
elements across the wall thickness), resulting in
predictions of honeycomb expansion deviating by less
than 1%.
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Figure 3 | Deformation of an anisotropic honeycomb with isotropic linear elastic walls (E=1 GPa, v=0.3) under internal pressure.
(a) Initial configuration at zero pressure. (b) At lower pressure (p=0.3 MPa) the cells volume is maximized by bending
deformation of the walls and localized distortion of the joints with an increase of the honeycomb angle (bending regime). (c) As
the internal pressure increases (p=7.5 MPa) the further volume increase can be accommodated only by stretching the walls
(stretching regime). Swelling eigenstrains, (d) in the x-direction, and (e) in the y-direction as a function of inner pressure. The
swelling eigenstrains change rapidly at low pressures, where the honeycomb deforms mainly by bending and joint opening. Along
the y direction there is up to a 3-fold expansion, while the x dimension shrinks. The dotted line (p-2.25 MPa) highlights the
transition from a bending dominated (A) to a stretching dominated (B) regime. At higher pressures (p>10) the loading of the
honeycomb becomes unstable and the strains diverge. The reason for this is highlighted in (f) which shows the influence of
internal pressure on wall stretching in a square vessel using a modified Laplace law that includes the effect of the Poisson’s ratio
of the cell-walls. At low pressures the walls stretch linearly with the pressure, however as the pressure increases, a non-zero
Poisson’s ratio leads to wall thinning. The pressure has a positive feedback on the strain in the walls and at a certain (finite)
pressure the load is unbalanced and the strain diverges. As a comparison, a material with zero Poisson’s ratio, doesn’t experience
this tvoe of unbalanced loading at least for reasonable values of strains.

increase happens at the expense of significant wall

2.2 Eigenstrains in a finite sized honeycomb

To assess the tissue strain as a function of swelling
pressure, a system of 5-by-10 cells has been
considered. Here, the fluid elements have been
subjected to a hydrostatic pressure, leaving the
external boundaries free, and symmetry conditions
were applied to avoid rigid body motion. Upon
pressurization, the system undergoes an anisotropic
deformation (Figs. 3 a-c). Along the y direction, which
is the soft direction of the honeycomb, the system
expands greatly, even at very low pressure. On the
other hand, in the x direction the system first shrinks
slightly, and then expands again at higher pressures.
Looking at the single cells the deformation is
characterised by two regimes. At lower pressure the
honeycomb walls deform mostly in bending: their
deformed shape is sigmoidal, with localised rotation
at the joints that causes an opening of the honeycomb
angle and a net increase of the fluid volume. As the
pressure increases the honeycomb angle approaches
its maximum value of 90° while the walls get
stretched. At very high pressure any further volume

stretching.

2.3 Eigenstrains in an equivalent periodic system

The specimen size, relative to the cell size, is known to
influence the assessment of mechanical properties
like stiffness and strength. Such scale effects depend
on the loading type (shear, uniaxial), but usually
become negligible in specimens larger than 5
repetitions of the unit cell [37]. In order to calculate
the eigenstrains and properties of the homogeneous
honeycomb, we investigated the system of a single
unit with periodic boundary conditions. We start with
the diamond structure (Fig. 2) and add a constant
fluid pressure p into the lumina, whereby the problem
is treated in 2D. Xo and Yo are the horizontal and
vertical dimensions of the diamond before
deformation and X and Y after some deformation.
Periodic boundary conditions imply that X and Y are
fixed and only some deformation of the walls may
occur due to compressibility of walls’ material
(v<0.5). Hence, for each value of X and Y, a finite
element simulation can be used to determine the
equilibrium shape of the diamond and the associated
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Figure 4 | Eigenstrains and effective stiffness maps. Swelling eigenstrains (a,b) and principal stiffness (c,d) along the
honeycomb weak (right) and strong (left) directions, as function of internal pressure (in MPa) and wall’s Young modulus (in GPa).
Stiffness colour bar in GPa. Swelling eigenstrains generally increase going from stiff honeycomb walls and low internal pressure to
high pressure and soft walls. The effect of pressure on stiffness is twofold, since it stiffens the weak direction and softens the
strong direction, as a possible consequence of the pressure-related shape change of the honeycomb.

elastic energy Ee(XY). For symmetry reasons, we do
not expect shear to occur spontaneously in the system
(at least not with positive internal pressures).
Therefore, the total energy change of the system due
to deformation is:

B = Ea(X V)= P (XY= X,Y,)
(1)

The first term is the elastic energy stored in the walls
which is counteracted by second term, the work done
by the internal pressure. Minimizing this expression
for X and Y should give the shape corresponding to
the mechanical equilibrium. In practical terms, this
means numerical calculation of Ee for a range of (X,
Y)-values and then searching for the one that
minimises Etta. The swelling strain referred in the
following as the eigenstrain is then simply:

L—l 0

(2)

0 —-1

=
YO
Where both X and Y are the values of X and Y that
minimise the total energy, which are thus functions of
the internal pressure p (see supplementary material).

2.4 FE homogenization and parametric study

The effective elastic properties of the pressurised
honeycomb in its equilibrium shape can be calculated
via a numerical homogenization. A bidimensional, 2-
plane symmetric, plane stress system as the
anisotropic honeycomb considered here will generally

show orthotropic elastic properties described by a
stiffness tensor of the kind:

Cll C12 0
C=| C, C, O (3)
0 0 C,

Basic loading states were simulated deforming the
relaxed system (in equilibrium with the fluid
pressure) with wuniaxial stretching/shrinking in
direction 1 and 2 and an in-plane 12 shearing. Then
the corresponding effective stiffness component are
calculated as the ratio between the average stress on
the boundary and the applied probing strain [38].
Pressure equilibration and subsequent elastic
properties homogenization were repeated in a
parametric study spanning several values of p (from 0
to 9 MPa) and E (from 1 to 9 GPa).

3. Results

3.1 Baseline FE model

As for a square lattice, the diamond honeycomb
considered here is a bending dominated lattice,
meaning that the main deformation modes and hence
the apparent stiffness depends on the bending rigidity
of the beams. In the baseline model the wall stiffness
is set to 1 GPa and the inner pressure varies up to 13
MPa. As a consequence, already at pressures lower
than 1 MPa the honeycomb is able to double its
original dimension along the y direction (Fig. 3 d,e).
This is due to the bending dominated deformation and
localised deformation at the joints already described
for the finite size system (Fig. 3). At the same time the
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Figure 5 | Lattice energy evolution for increasing pressure calculated using the Born Model. Colour maps of the lattice strain
energy density normalized by the walls modulus E for input strains ex=[-0.5, 0.5], ey=[-0.5, 5], as the pressure increases (left to
right). The black dotted lines are the axes ey=0 and €x=0. In each box, isolines are spaced by a value 4*E-3. For p=0, the steepest
direction corresponds to a volumetric deformation of the lattice, while the shallowest (narrow valley) to a deviatoric one. The
direction of the shallowest path correlates well with a pure transversal deformation of the wall.

structure shrinks only slightly along the x direction.
Around p=2.25 MPa the horizontal strain shows a
minimum and the vertical one an inflection point.
From this point onwards, as pressure increases, we
observe that both eigenstrains increase, although with
a reduced slope. Here the joints are already
completely opened and any further increase of the
fluid volume must be accommodated by stretching of
the honeycomb walls. At very high pressures (p>10
MPa) the eigenstrains increase more than linearly and
diverge. The reason for this divergence is due to the
properties of the cell-wall material rather than the
structure, and can be understood by the following
simplified example.

In the stretching dominated regime all cells are fully
expanded and have a square shape (Fig. 3c). Since the
cells are all equal and the internal pressure is the
same, we can study only one cell with side length / and
wall thickness t/2 (where I and t are the length and
thickness of the honeycomb beams). This cell is a
pressure vessel; for a cylindrical pressure vessel, the
longitudinal stress in the wall is given by the Laplace
law:

o =p @

Here R is the radius of the vessel and T is the wall
thickness. In our case, as the pressure increases, the
cells’ volume increases while the walls become
thinner according to our choice of material Poisson’s
ratio (v=0.3). Eq. 4 can be expressed in terms of &€

assuming plane stress and using the constitutive

relations, o, = l_—Evz(sL +vsT), o = (sT +vsL)

1-v?
. Assuming o, = p<<o_, we can substitute O = 0;
also, given the square geometry of the cell, in the

. I t
pressurised state R= $(1+ eL) and T :E(:HST) .

With these assumptions Eq. 4 can be rearranged to

become:
I(1+e,)

P2 ve,) ©

Which states that the walls stretching in the
pressurised state depends on the walls’ aspect ratio,
the material properties and on the internal pressure.

Ee =

Since in our honeycomb | /r =10, we can solve Eq. 5
as a function of the pressure. It is straightforward to
verify that the wall strain increases linearly at low
pressures and diverges at a finite value of pressure
(Fig. 3f). This is exactly what we observe in our FE
simulations at the transition from the stretching
dominated regime to even higher pressures. In such
cases it was not possible to find a stable equilibrium
configuration (in FE) past a certain value of pressure.
Materials with v=0 do not experience this instability
(at least for reasonable walls strains), which means
that the third regime is material (rather than
structure) dependent and has to be considered in real
applications.

Hence we can describe the swelling or actuation
behaviour of the structure as being characterised by a
bending dominated regime where the structure
expands more sensitively to fluid pressure and a
stretching dominated regime, where the structure is
less sensitive. The maximum expansion and the
relative importance of the two regimes depend on the
geometry of the honeycomb: the more anisotropic the
cells making up the honeycomb, the larger the
maximum expansion, with a narrower bending regime
and high pressure-stroke sensitivity. Conversely, a
pressurised regular square lattice, would show no
bending dominated regime, small expansion and poor
sensitivity.

3.2 Parametric study

The results from the parametric study on the FE
model are summarised in Fig. 4 in the form of
eigenstrains and effective stiffness maps along the
stiff (ex, C11) and soft axes (ey, C22) of the honeycomb
as a function of pressure (0<p<9 Mpa) and wall Young
modulus (1<E<9 GPa), whereas the initial geometry of
the model is preserved (walls aspect ratio 1/t and
honeycomb angle oo stay constant). At this level of
pressure, ex is always negative and small (some
percentage shrinkage) while ey is everywhere positive
and very large (up to three-fold expansion). Both the
ex and ey maps (Fig. 4, a,b) show a similar distribution
across the parameter space: their absolute value
increases from the top-left corner (stiff honeycomb
walls, low internal pressure) to the bottom-right
corner (high pressure and soft walls). Nonetheless,
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Figure 6 | Lattice angle « for increasing pressure p*
for the Born Model. Normalized parameters
describing deformation (a) and loading (p*) of the
pressurised lattice clearly show the bending
dominated (p*<0.002) and stretching dominated
(p*>0.002) regimes observed in the FE model (Fig. 4).
Note p* is the pressure normalised by the wall

while the ey is monotonic throughout the whole
parameter space, the ex map shows a peak that
doesn’t coincide with the bottom-right corner. Here,
at low wall stiffnesses (~1 GPa) and high inner
pressures (p 5 to 9 MPa) ex increases again. This
behaviour derives from the deformation mechanism
of the walls which is a combination of large bending at
low pressures and smaller amounts of stretching at
high pressures. Shifting from soft to stiffer walls
allows the effect of the inner pressure to be tuned: at
low wall stiffnesses (E=1-2 GPa), only a small
pressure jump (from 0 to 2 MPa) suffices to increase
the eigenstrains abruptly, whereas for higher walls
moduli, this effect is much more gradual.

As for the effective stiffness (that is, the apparent
elastic modulus of the honeycomb when subjected to
a load, where subscripts 1, 2 refer to loading
directions x, y), there is a monotonic (although non-
linear) proportionality between the walls modulus
and Ci1, C22 (Fig. 4 ¢,d). Somewhat counter-intuitively,
a pressure increase stiffens the weak direction (Cz2
increases towards the right Fig. 4 d) but also softens
the strong one (C11 increases towards the left, Fig. 4
). Generally, pressure acting inside the cells would be
expected to stiffen the structure, in contrast to what is
observed here for Ci1. It is likely that this softening
effect is geometry-related. As pressure deforms the
honeycomb, almost axially oriented walls are rotated
away from the x axis, which places them in bending
thus reducing the overall structural stiffness in the x
direction.

To investigate this idea we try to understand this
evidence in terms of a simpler analytical model
governed by explicit geometrical parameters that fully
characterise the honeycomb.

3.3 Born lattice model

A simpler equivalent mechanical model of the
diamond honeycomb is an oblique two-dimensional
lattice with centres sitting in the honeycomb joints.
The deformation state of this lattice is fully identified
by the value of the lattice angle o and the point-to-
point strain g, so that the lattice strains ey, ey along the
principal directions are obtained by a simple

projection. Following other researchers [39,40], we
describe the lattice elasticity by means of the Born
model. Here each material point is connected only to
its nearest neighbours by two kinds of springs: a
longitudinal spring Ki and a transverse one K: The
non-zero transverse stiffness Kt is needed to avoid the
so called uniconstant elasticity theory governed by
'‘Cauchy relations’. For an isotropic medium, the
Cauchy relations imply a Poisson's ratio of 1/4 for all
materials described by the model [41], As already
pointed out by Fratzl and Penrose [42] this is a
consequence of considering just central forces for a
crystal, which clearly doesn’t hold for real crystals or
general lattice materials. Since the lattice geometry
replicates the continuum model used in the FE
simulations, we assign to the longitudinal and
transverse spring constants a value reflecting their
axial and bending rigidity, which changes as a
function of the angle at which they are loaded (see
supplementary material).

K =E16()

K, = E[f—fcz(a)
)

The fluid related term is simply written as the work
done by the fluid from the undeformed normalised
volume V,=1%sn(e,) to a generic deformed one

V =1(1+2¢)sin(). The pressure in general is not

restricted to a specific form, but following the FE
study, we choose a constant value (isobaric) which is
independent of the volume of the single cell. In
passing we also note that different forms of pressure
terms could also be implemented in the model to
capture its potentially different physical origins. For
example, an osmotic pressure could be included, and
will be in general dependent on the volume of the
solute-solvent mixture, while a fluid confined to the
cells will undergo an isothermal transformation.

For such a system we can write the internal potential:

W :Wslre!ching +Wbending +Wpreemre
(5)
Where:
- (e-g)’
Weraening = K| (a)m
2
. -,
sn[ . )
Wiaing = K () ——————
bending t( ) S.n(OCr)
V-V,
Wpl'eSer = _pTr
(6)

where lattice angle or, wall strain & and lumen
volume V: refer to a reference configuration. Clearly,
the swelling eigenstrains are the coordinates of the
energy minimum (Fig 5) when the reference is set to
the undeformed configuration (ar=c0, &=0).
Eigenstrains and stiffness can be found from Eq 5)
and the following geometric relationship between the
eigenstrains and the lattice angle and wall strain:
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For E=1 GPa, dex/dp=0 falls at p=3.03 MPa which,
although not being exactly the same, is still quite close
to the value observed in the FE simulations (p=2.25
MPa), considering the relatively broad minimum
observed for both simulations (see Fig. 3d as well as
7a for a direct comparison).

The effective stiffness tensor components instead are
found via the following:

g =(+e)——=

8

),
)

(7

0.

ey=(1+e)

C. = °W _ °W
vooge?’ TR o’ o
_ *W _ °W ®)
¥ de0e, 0y,

The reference configuration in this case is the
honeycomb'’s pressurised state where o=, &r=¢p.

3.4 Deformation modes of a Born lattice under
pressure

The internal potential is described by the strain
energy density of the mechanical lattice-fluid system.
In Fig. 5 the energy density “landscape” of the lattice
is reported as a function of the principal lattice strains
€x, €&, (mapping (a, €) -> (&x, &) ), where the internal
pressure is set to zero (for convenience, the energy
density value is normalised by the value of wall
stiffness E). The y-strain spans a broader range than
the x-strain since this is the weaker direction. As
expected, the steepest path runs across the first and
third quadrant where a biaxial deformation ((ex>0,
gy>0) and (ex<0, €y<0)) causes the lattice beams to
deform axially, corresponding to a volumetric
deformation of the lattice. Conversely, the lowest
isolines are found for (ex<0, &y>0) a pure deviatoric
deformation of the lattice. In this narrow valley the
energy minimum is found (for £x=0, £,=0).

Upon pressurizing the system the landscape changes
considerably. In Fig. 5 the normalised energy contours
are reported for increasing values of the normalised
internal pressure p* (p*=p/E).

There are two effects that can be observed. Firstly, the
energy minimum migrates from the left area (ex<0,
gy>0) to the upper right area (ex>0, €>0) of the
deformation space. The location of the minimum in
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moderate pushing force at high strokes; b) applying a high pulling force at low strokes; c) applying a low pushing force at very low

strokes. Three graphs (bottom) show the working characteristics for different pressures fed in the honeycomb.

each plot gives the deformation state of the lattice as
it goes from the unloaded to the pressurised state.
Indeed, the corresponding strains compare well with
the swelling eigenstrains in the finite element
simulations (Fig. 4). Secondly, the shape of the
isolines changes from an arc to a closed rounded one,
which is a hint for a structural transformation of the
system. This is confirmed by the angular deformation
of the lattice for increasing normalised pressures (Fig.
6), where the lattice angle approaches 90° (isotropic
geometry).

3.5 FE and Born model comparison

Considering several values of fluid pressure and walls’
Young modulus, actuation maps similar to those of
Fig. 4 can be created. For clarity, each tensor
component is normalised by the material Young
modulus E () and presented as function of normalised
pressure p* (Fig. 7): by doing this, all data collapse
onto a single master curve. Tensorial quantities in Fig.
7 are calculated by evaluating equation (8) with finite
differences. Their “true” value is found for an
infinitesimal probing strain (ex, €y, yxy). since large
(>10%) probing strains will cause the honeycomb
geometry to distort, introducing geometric non-
linearities [43]. Hence, the stiffness tensor
components reported in Fig. 7 are evaluated at the
pressurised state (ap,ep) of the Born lattice applying
the same probing strain ex=ey=1% used for the FE
parametric study. This is important to emphasise,
since the strain energy density W depends on the
choice of the reference configuration.

From the master curves, there is a good qualitative
agreement between the FE and Born models for the
whole extent of the parametric space considered (Fig.
7). The direct components C11 and C22 (Fig. 7 c,d)
experience respectively a rapid increase/decrease for
a slight increase of p* (0 to 0.002). This is due to the

process already described: as the pressure increases,
the lattice switches rapidly to a more isotropic
geometry, strengthening the soft direction y at the
expense of the x direction. At higher pressures
(p*>0.005) the FE model predicts a softening of C11
and C22 which is not observed in the Born model. A
further increase of pressure will not affect the
honeycomb geometry (which already approaches a
square (Fig. 6) ) so that the Born model prediction of
these components tend to a constant valueTherefore
we conclude that the softening effect observed only in
the FE simulations is due to the walls strain
divergence at high pressure due to Poisson’s effect
introduced in section 3.1.

The cross stiffness component C12 (Fig 7 e) is
characterised by a fast increase at low pressure
(consistent with strong geometry change in the
bending dominated regime), but then decreases
linearly at higher pressures, which (for the reasons
just introduced) cannot be related to geometry
change. Moreover, since this behaviour is observed in
both the FE and Born models, it cannot be ascribed to
the aforementioned Poisson’s effect. This peculiar
behaviour can be explained if we recall that C12
measures the response of the material transversally
to the probing strain direction. The transverse
reaction force will be partially compensated by the
internal pressure, thereby causing the observed
inverse linear dependence.

The C66 component evidences a poor agreement
between the two models. This is not too surprising,
since the parametrization of the polynomials c1 and
c2 implies only relative displacement between the
joints (see section 3.3). To improve the prediction for
the C66 component one could introduce a localised
joint rotation as an additional microstructural
parameter. This is equivalent to a move from a
classical continuum mechanics theory (where the
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Figure 9 | Poisson’s ratio as function of inner
pressure for 1GPa stiff walls. The effect of the
pressure on the honeycomb Poisson’s ratio is
twofold: a pure structural effect due to a varying
honeycomb angle (Gibson-Ashby prediction, dotted
line) would give v tending to unity for increasing
pressures, whereas a transverse expansion caused by
the pressurising fluid soon causes v to diverge to
negative values.

strain state depends only on the displacement from
the reference to the deformed configuration) to a
Cosserat continuum theory (where the strain state
depends also on microscopic rotations) [25].

3.6 Honeycomb based actuator

Fig. 8 shows the performance characteristics of the
pressurised honeycomb described earlier (oo=28°,
t/1>10, E=1GPa) when used as an actuator. Reported
is the force exerted as function of the stroke (ie
actuation stress versus strains) for several values of
the pressure fed in the system. Following Zupan [44]
we describe the actuator performance in terms of two
complementary normalised attributes. The maximum
stroke divided by the actuator length parallel to this
stroke is the actuator strain (or normalised stroke),
and the maximum generated force divided by its cross
section perpendicular to the stroke is the actuator
stress (or normalised force). In this honeycomb
actuator the energy required to produce mechanical
worKk is stored in the fluid. An external compressor is
ideally connected to the volume enclosed by the
honeycomb walls and a flexible membrane sealing the
top and bottom surfaces (not shown). In Figs 8 a, and
b two working configurations of the honeycomb
actuator are depicted, where it is respectively used to
produce force along the y and the x directions. In both
cases the transversal direction is free to deform. In
the third configuration (Fig. 8 c), the actuator is
generating force along the x direction, being
constrained along the y direction. Each graph
represents a family of curves depicting the output
stress at different pressure input: the actuator
performance changes drastically at different levels of
energy source. As expected, the maximum stroke
(where the output curve meets the zero stress axis)
coincides with the actuation eigenstrains.
Interestingly, the force output along the weak
direction y is non monotonic with the stroke.
Obviously it starts from a zero-stroke value close to
the set value of the pressure (which measures the
amount of energy fed in the system) but, as the stroke

increases, it firstly increases to an upper limit and
then decreases till eventually it reaches zero. The
stress produced is bigger than the pressure input into
the system. This is not contradictory, but is a sign that
the actuator works in different configurations as the
stroke changes. At low strokes (dy/yo<1) the
expanding fluid has to overcome just a small energy
barrier (walls bending). The pressure is constant but
since the fluid volume increases, the total energy
available to produce mechanical work increases with
the stroke. At higher strokes the honeycomb walls
start deforming in stretching, hence the energy cost is
higher and the force generated lower, till it eventually
reaches zero. In this configuration the system
capitalises on the big angular deformation of the walls
to produce high strains at moderate stresses.
Conversely, when the actuator is used to produce
force along the strong x-direction (Fig 8, b), the stress
output is high and the strokes are low. More
importantly the stress generated is negative: the
actuator “pulls”. Moreover, unlike the force output
along the weak direction y, increasing the input
pressure doesn’t always mean a higher tensile stress.
At a certain pressure (p>2 here) the stretching of the
walls becomes significant and partially compensates
the contraction along the x-direction. Hence the
actuator can be fine-tuned, to produce different
tensile stresses at several strokes.

Constraining the y direction (Fig 8c), causes the
actuator to produce a compressive stress, which is
smaller, in absolute terms, than in the unconstrained
case: since the honeycomb angle cannot open, the
only possible deformation mechanism is due to walls
stretching, which is rather energetically costly. Here
the actuator works in a low strain - low stress fashion.
Such a behaviour is reminiscent of the lever-arm
principle used by wood cells to generate tensile or
compressive stresses [10]: if the microfibril angle
(equivalent to half of the honeycomb angle here) is
less then 45° the only way to swell the cell is to
shorten it along the longitudinal direction (the strong
direction here).

3.7 Tunable Poisson’s ratio material

As seen, the material properties of an anisotropic
cellular material vary strongly with the internal
pressure it is subjected to. In particular the pressure
has two separate effects: the substantial change in
material’s geometry (structural effect) and the
intrinsic pressure contribution to the load-bearing
capacity of the material (fluid-related effect). Fig. 9
shows the dependency of the Poisson’s ratio vz1 at
several inner pressures. The value predicted by the
Gibson-Ashby model [23] (Fig. 9 dotted line) depends
only on the actual geometry (ap is honeycomb angle in
the pressurised state) and acts as a reference to
disentangle the pure structural from the fluid-related
contribution:

(%)

sin’|
szﬁ )

%)

As the pressure increases ap becomes larger (see Fig
6) and v21 quickly goes to unity. The full line (Fig. 9)
shows the prediction given by the pressurised
honeycomb model subjected to a strain &:=1%.
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Obviously the two curves coincide at p=0, and are
close for small values of pressure. Our model predicts
larger values at negative pressures. At positive
pressures however, the pressurised honeycomb
prediction diverges to even more negative values.
Since the applied probing deformation is positive, the
available volume in the honeycomb increases and the
fluid (which is kept at constant pressure) expands
also in the transverse direction. As a result the sign of
the Poisson’s ratio becomes negative. This effect is
qualitatively similar to the long-term positive cross-
sectional strains that a longitudinally prestretched
rubber-like polymer specimen experiences when it is
immersed in a fluid [45]. In summary a pressurizing
fluid put in the honeycomb can act as a free parameter
to drastically change its Poisson’s ratio even to
negative values. This can be useful in a number of
applications, as auxetic materials can show enhanced
shear modulus compared to positive Poisson’s ratio
materials, and can be efficient materials for sandwich
cores [46].

4 Conclusions

Cellular materials and honeycombs have long been
among smart alternatives to classical bulk-materials,
that give tunable materials properties via control of
the underlying pore or cell architecture. Although
known for improving the range of applications of
classical materials with respect to many applications -
load bearing, crash energy absorbers, thermal
insulators- they could potentially be used also in the
field of linear actuators. In the case of honeycombs
subjected to inner pressure, we showed how their
intrinsic ~ characteristics  (anisotropy, material
properties, input pressure) could greatly simplify the
design process for a linear actuator and the choice of
the relevant parameters. The case of Delosperma
nakurense seed capsule well provides an ideal natural
system using this concept, optimised to work in a high
stroke, low force configuration. Pressurised
honeycombs could prove to be very versatile: similar
systems can be implemented with different values of
pressure and Young's modulus to scale up and
generate bigger forces. In addition, the very same
honeycomb can be used in different working
configurations to generate either compression or
tension.

In this paper we mainly discussed the influence of
pressure and wall properties on eigenstrains,
generated forces and effective stiffness. The next step
would be to apply the same approach (analytical
modelling via Born model and validation with FE
simulations) to explore the role of material’s
architecture on their behaviour under pressurization:
a more complex material architecture - as for
asymmetric, aperiodic frameworks, and non-convex
cells- could greatly expand the actuation capabilities
upon pressurisation. From a methodological
viewpoint, the present work tackles all the relevant
mechanical aspects of a pressurised honeycomb, since
the simplified lattice spring model predicts the finite
element simulations, while being beneficially easier to
implement. In addition, a theoretical basis was
provided to compare the finite size and the periodic
finite element systems. As a future development of the
present study, an environmental sensitive pressure
source should be considered, as in the case of a

superabsorbent hydrogel confined in the honeycomb
cells, which is a closer biomimetic embodiment of the
natural system. Also, a theoretical description of out
of plane effects deriving from frustrated or hindered
volumetric expansion or tapering of the honeycomb
walls along the cells axis could expand the range of
the available motion of this planar symmetric system
to the full three dimensional space.
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Biological actuators provide a rich source of
inspiration for the architectural design of their
synthetic analogs [1]. In particular the hygromorphs
found in the plant kingdom provide many examples of
mechanically actuating systems that don’t require a
metabolic energy source to function [2]. In these
systems, directed, controlled forces/deformations are
generated at the material-level, through the
introduction of appropriate meso-scaled architectures
[3]. As a result, both load bearing and morphing
functions can be combined into a single integrated
actuating material [4]. From a materials perspective,
plant tissues can be viewed as porous composite
materials, made up of a honeycomb-like array of cells,
whose walls consist of stiff cellulose microfibrils
embedded in a softer hygroscopic matrix of lignin,
hemi-cellulose and other polysaccharides [5]. The
cellulose microfibril angle (MFA) that these
reinforcing structures make with the long axis of the
plant cell, has a strong influence on both the rigidity
and mechanical actuation behavior of plant tissues
[2,6,7]. Just by controlling the simple architectural
parameter of MFA, plants with the same polymeric
building blocks can grow tissues that produce tensile
or compressive strains along the plant -cell
longitudinal axis. Such a configuration is optimal to
produce large stresses such as those needed to
balance increasing gravitational loads on branches as
plants grow([7,8], but are limited in the magnitude of
strains that can be produced [9]. Nevertheless, since
the mechanical work, the product of force and
displacement, cannot exceed the chemical energy
gained upon moisture sorption[10], it should be
possible to conceive a different actuating tissue
architecture where displacements are maximized at
the expense of force.

In this regard, a relevant example can be found in the
actuating seed capsules of ice plants (family
Aizoacea)[11]. The capsules studied consist of five
chambers enclosed by five leaflets, which are actuated
by highly swellable hygroscopic keels. Upon contact
with sufficient liquid water, large directional strains
of up to 300% are achieved in the keels, thus opening
the capsule and enabling subsequent seed release[12].
This active tissue has a regular, honeycomb-like
structure with anisotropically shaped cells, filled with
a highly swellable cellulosic inner layer (CIL). A large
volume increase of the CIL upon hydration is
transformed into large expansions along the
honeycomb’s soft direction (i.e. in plane). Using a
simplified model of this tissue, we recently showed
how such a pressurized anisotropic honeycomb could
give rise to large directed expansions[13]. In
particular, we showed how the magnitude of
expansion strains and generated forces depend on the

bending and stretching dominated regimes that the
honeycomb undergoes as internal pressure increases.
In the following, we generalize these concepts beyond
one single honeycomb geometry and propose a
criterion for the geometric design of periodic
honeycombs undergoing a desired, controlled,
mechanical actuation. We then test our hypotheses by
combining finite element (FE) simulations with
swelling experiments on composite honeycomb
materials produced using state of the art multi-
material 3D printing, and demonstrate how the shape
of the structural unit (SU)1, that makes up a
honeycomb actuator, can be used to tailor the onset of
bending and stretching, thus inducing any desired
state of deformation.

Possible methods for mechanically actuating
honeycombs is to inflate the SUs either via
pressurization as in typical pneumatic/hydraulic
actuators, or via a swellable medium, as in the ice
plant seed capsules[11]. If we consider a structural
unit of a honeycomb as a framework of beams and
joints, there are two possible mechanisms of
expansion of the SU. Either (1) the SUs keep their
shape and increase their perimeter or (2) they keep
their perimeter length and change the shape.
Typically for beams and rigid joints, the energy
required for stretching a beam, W5 is greater than that
for bending it, Wy, i.e. (Ws=t/1>>Wp=x(t/1)3), where 1/t
is the aspect ratio of the beam. This means that except
for triangular honeycombs, where any shape change
involves stretching, all polygons will preferably
expand as a result of joint bending, unless they have
reached the maximum area for a fixed perimeter or
the highest convexity. This idea is illustrated in the
left column of Figure 1 which shows the mechanisms
by which n-sided polygons can change area and
equivalently, how prismatic structural units could
change volume. From a simplified perspective, we can
look at a cell’s SUs expansion as a purely geometric
one involving no mechanics - with the goal of
identifying the most convex polygon for a given set of
rigid sides. To the best of our knowledge, the first
record of this approach dates back to A. M. Legendre
[14], who, in the early 1800s, demonstrated that in
the Euclidean 2D space, the cyclic polygon -that is a
polygon inscribed in a circle- is the most convex form,
implying that it has the greatest area at constant
perimeter[14]. The cyclic polygon is unique for any
given set of sides[15] and it can be found by
calculating the radius of the enclosing circle through
the following relation:

! To avoid confusion with the biological term, cell,
we use the term structural unit (SU) or tile
interchangeably to describe the elementary “cell”
that makes up a honeycomb.
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Figure 1. Left column. The highest expansion of an
isoperimetrical n-sided polygon is achieved in the cyclic
configuration, that is, when all polygon vertexes lie on
the circumscribed circle (red dots). Subjected to
inflation, polygons with n>3 morph into the cyclic
configuration by changing the internal angles while
keeping the side lengths fixed (white boxes). Stretching
the polygon’s sides (as for triangles and all other cyclic
polygons) is always a possible mechanism of expansion,
actuating cellular structure. During its morphing, a tile
can acquire a non-tessellating shape (here, for n=5)
which further limits the choice of actuating tiles.

n
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where n is the number of sides and /i are the unfolded
(node-to-node) lengths of the sides. Despite its
simplicity, this relationship can also be used to predict
the actuation capacity of honeycombs based on
different shapes of their structural units. If we do not
allow for stretching of the perimeter, a cyclic polygon
cannot increase its area. Conversely, any other
polygon will experience the maximum expansion
when it reaches the cyclic configuration with the same
side lengths ..

Once a potential polygon shape that may change area
(volume) upon bending is chosen, the next question is
whether it tiles the 2D space (Figure 1, right side). A
periodic tiling can be generated by applying one of the
five 2D Bravais translations to the polygonal unit of
choice, given that the angles meeting at a node sum up
to 2m. For this to occur, however, the polygon must be
a parallelogram or par-hexagon (ie polygons of 4 or 6
sides, with opposite sides equal and parallel) (Figure
1)[16]. More general periodical tilings can be created
if the tile complies with the so-called Conway rules
[17]. These state that a polygon of up to 6 sides tiles
the plane if two of its sides are related by translational
symmetry (that is, equal and parallel) and the rest of
the sides are centrosymmetric (each side has a C2
centre). Then the tiling is built by 180° rotations of
the polygon around each C2 center (Figure 1, blank-

dashed tilings). In addition, 4-sided polygons with just
centrosymmetric sides tile the plane as well (the
spear-shaped one in Figure 1).

By these rules, it is also possible to check whether the
inflated SU will tile the plane or not (Figure 1, n=5).
Indeed the tessellation can introduce a constraint
onto the SU expansion, preventing the cyclic
configuration from being achieved. Therefore, SUs
best suited for actuation are those that respect the
tessellation condition in the initial, fully inflated and
all intermediate states in between.

In the following, we apply these concepts to design
two-dimensional actuating honeycomb materials with
a wide range of different architectures. As building
blocks, we chose a non-convex tile or structural unit
shaped like the letter “L” and another shaped like one
of the Tetris® tiles (in the following L- and T-cells).
The presence of re-entrant 90° corners in these SUs
makes it possible to assemble them into several 2D
tilings (L1-L7 and T1-T11 honeycombs; see Figure SI
1), generating honeycombs of different topological
classes (with three-fold or four-fold nodes). The
proposed honeycombs were studied by means of
finite element (FE) simulations and physical swelling
experiments in terms of their actuation behavior
(achieved expansions/forces) in response to a source
of inflation. In our FE simulations, the source of
inflation is a static pressure applied inside each SU, as
in real pneumatic actuators, with a resultant
deformation depending only on the honeycomb
architecture, the material properties of its walls, and
the magnitude of pressure. In this way, we could
directly test whether the geometric arguments
introduced previously would still be valid in a
scenario where the mechanical properties of the
honeycomb material are also accounted for.

The volume expansion of the honeycomb upon
pressurization was similar to our previous results
obtained from diamond-shaped honeycombs[13]
(Figure 2). Large volume changes occur at low
pressures, followed by smaller rates of volume
increase at higher pressures (Figure 2B) [13]. Both
the real and simulation experiments, confirm our
assumption that the nodes and 90° kinks on the SU’s
perimeter act as concentration points for the
deformation (Figure 2A), so that they function as
rotation hinges for the walls, resulting in a low-
pressure, large volume increase (Figure 2B).

When the walls deformations resemble freely rotating
rigid bars, as in this case, tessellations can show
auxetic behavior. Moreover these can undergo
multiple deformation pathways (mechanisms) when
subjected to a uniaxial probing strain. Consequently,
specific ones can be selected depending on which
symmetries are broken during the deformation,
resulting in different Poisson’s ratio for the same
tessellation  (Mitschke). Although no specific
symmetries were enforced during the pressurization,
our simulations show unique deformation pathways.
We believe that this effect results from an energy
minimization requirement: at each level of pressure,
the SUs acquire the most expanded state (lowest
energy), thus tracing a unique pathway. Nonetheless,
when the walls are unfolded, the SUs acquire their
cyclic configuration (Figure 2A, p=1.5 MPa) as
predicted by our geometrical argument. From this
point on the SUs shape stays practically unchanged
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Figure 2. A) Expansion of an inflated non-convex honeycomb,
as predicted by FE simulations. B) Average inflation curves of all
T- (in red) and L-honeycombs (in blue), showing the area strain
as a function of internal pressure (with standard deviation).
Black circles represent the average inflation of regular
triangular, square and hexagonal honeycombs with cells of
same area. C) Influence of topology on volume expansion in
hexagonal (H) and rectangular (R) honeycombs based on same
T-tile D) Performance (output stress oxx exerted at given strain
dx/xo) of a pressurized re-entrant hexagonal honeycomb for
several input pressure values (p=0.1, 0.5, 1, 2, 3, 4, 5). The grey-
shaded area highlights the space where the actuator expresses
more than 90% of the input pressure.

while the walls deform by stretching, resulting in a
slower volume increase upon further inflation. This
inherent non-linear mechanical response arises from
the transition from bending to stretching dominated
behavior, which depends on the starting SU geometry.
Averaging all of the inflation curves relative to the
type of SU (Figure 2B) reveals two well separated
curves, with the L-honeycombs lying below the less
convex T-honeycombs. This result can be traced back
to the number of 90° kinks on the cell’s perimeter:
having 4 kinks on the SU’s perimeter, T-honeycombs
“hide” a larger expansion potential than L-
honeycombs, which only have 2.

When the inflation curves of two honeycombs with
the same SU geometries (Figure 2C) but different
topologies are compared, a larger volume expansion
is observed for the honeycomb with 3-fold nodes
(whose cells morph into hexagons) than the 4-fold
one (whose cells morph into rectangles). Since the
initial SU perimeter is the same, this difference is
ascribed to the honeycomb topology: indeed the
number and length of the SU’s sides is different (a
hexagon with sides of length [1,3[11,3] and a rectangle
with sides 21,312[,3]) which results in the hexagon
having a larger area than the rectangle in the inflated

state. Even at high pressures, in all the honeycombs
studied we don’t observe any topological coarsening
(eg. rectangular to hexagonal honeycomb, as in Figure
2C), which is typical in soap froths microstructure
evolution: since our choice of material is linear elastic,
no plastic “flowing” of the nodes can take place. As the
pressure increases, the stretching of the SU’s walls is
not negligible. In the limit of very high pressures, we
expect the honeycombs should tend asymptotically to
the best space filling configuration, according to their
topology: that is a regular tiling by equilateral
hexagons (for 3-fold nodes) or squares (for 4-fold
nodes). Instead, this configuration could not be
reached due to a singularity in the honeycomb
expansion (for p—7 MPa) arising from our choice of
the material properties of the walls (see Supporting
Information).  Although not exhaustive, our
simulations show that purely geometric parameters
determine the available range of deformations. The
effect of non-geometric parameters, such as the
rigidity of the honeycomb walls, is to scale these
curves (volume expansion scales with p/E, as we
showed in our previous paper[13]), which implies
that such an actuating honeycomb can be built from
any solid with a sufficient elastic range.

The large expansions produced upon pressurization
are translated into directed strain/stress by the
specific architectures of each honeycomb. Uniaxial,
biaxial, equi-biaxial or shearing expansions (see,
respectively, honeycombs: L5; T1-T7, T11; L6, L7; L1,
T8-T10 in Figure SI 1) can be “coded” in the tiling
pattern using the same cells. For example, the overall
volume expansion can be very anisotropic, and the
honeycomb elongating mainly along one direction.
This yields a linear actuator with a characteristic
stress-strain (oxx-dx/xo) output (honeycomb T4 in
Figure 2D). Remarkably, as the actuator deploys, the
output stress stays almost equal in magnitude to the
input pressure: the grey-shaded area highlights the
space where the actuator expresses more than 90% of
the input pressure. This result reveals how the
actuator can function practically with negligible
output force loss for much of the accessible stroke
range, since the work of deformation required to bend
the walls at the hinge points is minimal.

To experimentally verify our theoretical predictions,
we used state of the art multimaterial 3D printing to
fabricate physical models of non-convex honeycombs
which were capable of actuation via solvent swelling
(Figure 3). These models consisted of stiff, non-
swelling walls (Emat1=530 MPa, emat1=3.3E-3) lined by
swellable soft inclusions (Ematz=404 kPa, emat2=0.363).
In these experiments, the swellability was controlled
by increasing or decreasing the polymer cross-linking
density, without significantly altering its bulk
chemistry, thus resulting in excellent interfacial
adhesion between the two constituent phases. Since
the solvent was absorbed by the inclusions and not
the walls, we could control the three dimensional
distribution of swelling inside the structural units, in a
similar manner to the so-called 4D printing of shape
memory composites[18]. The resulting deformation of
the 3D printed honeycombs matches the predictions
of the FE simulations (Figure 3), although compared
to the pressurized simulations, smaller total strains
were achieved due to the limited free swelling
expansion of the soft material (emat2=0.363). In our
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Figure 3. Deformations in inflating (FE) and swelling
(rapid prototyped models) T- honeycombs with
different architectures providing: A, B) macroscopic
biaxial expansion; C) macroscopic biaxial and shearing
expansion. Although smaller, the honeycomb strains
measured in the swelling experiments (empty markers)
are consistent with the FE simulations prediction (solid
lines), thus illustrating how the honeycombs’ expansion
is primarily dictated by their architecture.

simulations, we also observed (see Figure SI 3) that
the use of a more swellable material (such as a
hydrogel) might achieve even larger expansions
comparable with those observed in the pressurized
structures. This confirms the importance of geometric
material design regardless of the physical principle
that generates volume expansion in the SUs (whether
pressurization- or swelling-based). When volume
expansion is based on swelling or, more generally, a
diffusion process, a large scale actuator suffers from
slow activation times, since diffusion time is
proportional to the square of the characteristic length.
Indeed, efficient diffusion based osmotic actuators
profit from low frequency, high force, low stroke
applications[19]. Nevertheless, these issues can be
addressed using microporous swelling polymers,
where capillary transport and a reduced
characteristic length of the diffusive process
accelerate the activation speed [20].

The interplay between mechanics, geometry and
topology was recently recognized to determine the
actuation of cellular structures triggered by an

external compressive load[21]. In this paper, we have
demonstrated a novel concept of controlling the
actuation of cellular materials subjected to positive
internal pressure through the geometric design of the
shape and tiling of the constituent structural units.
Careful control of the SU architecture can lead to a
variety of actuation behaviors. This could be
especially interesting for soft-robotics, a new branch
of engineering[22], which aims to achieve typical
robotic tasks like actuation or locomotion using
structures made of elastomers, optionally paired with
inextensible reinforcements. Similar to elastomeric
soft actuators, a pneumatic actuator based on a
cellular structure will possess a very low specific
weight, regardless of the material used in its
construction, and can be conveniently actuated
remotely by a connected pneumatic source as
demonstrated by Shepard et al [25]. Furthermore, it is
also possible that actuators of this kind would benefit
from the damping properties of the inflating gas in
applications such as object manipulation and walking
where absorbing shocks and preventing vibrations
are essential. Despite the apparent complexity of such
cellular solids, with recent progress in advanced
multi-material 3D printing technologies, it is now
possible to fabricate them, as we have demonstrated.
As such technologies further develop, they will allow
researchers more and more freedom to explore the
role of geometry on functional materials at multiple
length scales.

Experimental Section

Preparation of Models: Virtual 3D models of non-
convex honeycombs were created with Rhinoceros®
4 (Robert McNeel & Associates). The T SUs short/long
sides measured 5/10 mm, respectively. The walls and
inclusions were 2 mm and 1.3 mm thick, respectively,
leaving a 0.4 mm thick slit in the cells’ center (see
Figure 3). The 3D models were obtained by extruding
a trimmed 6-by-6 SUs square patch of the honeycomb
with resulting dimensions of 60x60x5 mm and were
exported as stereolithography (STL) files for 3D
printing.

Rapid prototyping: All samples were constructed with
an Objet® Connex500 multi-material 3D printer.
During the fabrication process, a photosensitive liquid
precursor (the 3D printer ink) is deposited in a voxel-
by-voxel fashion. Several precursors are used to print
multiple materials with different properties and the
resulting modulus can be tuned by varying the
concentration of photo-initiator. A UV light lamp
cross-links the liquid precursors in a layer-by-layer
fashion and this process is repeated until the full 3D
model is built. In our models, the walls and inclusions
are printed from a mixture of precursors resulting
respectively in stiff duroplastic (Matl) and soft
rubber-like (Mat2) materials that we characterized
experimentally (see next section).

Experimental Characterization of 3D Printed Materials:
Young’s modulus, E, of Matl and Mat2 materials in
their cured state was assessed by tensile-testing 3D-
printed flat dog-bone specimens in a Roell-Zwick
testing apparatus according to the ASTM D 638
standard (Pre-load: 0.05 MPa, Test speed: 1
mm/min). Measured values were: Emat1=530 MPa,
Ema2=404 kPa. The linear expansion due to swelling
was measured with a ruler after soaking 50 mm long
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3D-printed bar specimens in isopropanol (iso-propan-
2-ol) for 7 days and the measured values were:
eMat1=3.3E-3, €ema2=0.363. The materials’ Young
moduli in their swollen state were measured in
compression mode on 3D-printed cylindrical
specimens in the same Roell-Zwick testing apparatus,
using a custom made stage with a solvent chamber
and a flat plunger (Matl: E=65.85 MPa, v=0.49; Mat2:
E=0.48 MPa, v =0.25; we estimated the values of v as
suggested in [23]).

Model Swelling Experiments: The 3D printed samples
were soaked in isopropanol in glass Petri dishes,
covered with a glass lid and sealed with an O-ring. The
swelling process was recorded with a digital camera
by taking snapshots every 20 minutes until a stable
configuration was obtained (4 to 5 days). Swelling
deformations were measured in the central field of
the sample with the aid of image analysis software
(Image] [24]).

Finite  Element  Simulations: All  honeycomb
geometries, domain discretization and finite element
(FE) analysis were performed with the commercial
finite element software ABAQUS 6.12® (Dassault
Systémes Simulia Corp.). We studied the honeycombs’
in-plane deformations as the result of both an internal
pressurization and the swelling (anelastic expansion)
of a material filling the SUs. Both cases were treated
as static, plane stress, and large displacement (i.e. the
Green-Lagrange nonlinear strain tensor defined on
the current configuration is used).

Simulations of internally pressurized honeycombs. To
avoid boundary effects, we studied a 6x6 SU square
patch with periodic boundary conditions (details in
Supporting Information). The T/L cells’ short and long
sides measured 5/5.774 mm and 10/11.548 mm,
respectively. T/L honeycombs had a wall thickness of
0.5/0.5774 mm and were discretized using 4-node
bilinear plane stress quadrilateral, reduced
integration elements (CPS4R) with mesh sizes of
~12500 elements. The walls had a Hookean
constitutive law with E=1GPa, v=0.3. Iterative FE
simulations were performed to calculate each
honeycomb’s equilibrated configuration at a given
pressure p applied in the cells.

Simulations of swelling honeycombs: Swelling of 6x6
cells honeycombs with stiff walls and soft cells was
simulated for honeycombs T1, T4, T8 (details in
Supporting Information). Walls and SUs were
considered linear elastic with mechanical and
expansion properties as measured for Matl and Mat2
materials respectively.

Supporting Information
Supporting Information is available from the Wiley
Online Library or from the author.
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