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Abstract

Classical radiation reaction is the effect of the electromagnetic field emitted by an accelerated electric charge on the
motion of the charge itself. The self-consistent underlying classical equation of motion including radiation-reaction
effects, the Landau-Lifshitz equation, has never been tested experimentally, in spite of the first theoretical treatments
of radiation reaction having been developed more than a century ago. Here we show that classical radiation reaction
effects, in particular those due to the near electromagnetic field, as predicted by the Landau-Lifshitz equation, can be
measured using presently available facilities, in the energy emission spectrum of 10-GeV electrons crossing a 0.5-mm
thick diamond crystal in the axial channeling regime. Our theoretical results demonstrate the feasibility of the suggested
setup, e.g., at the CERN Secondary Beam Areas (SBA) beamlines.
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1. Introduction

The Lorentz equation is one of the cornerstones of classi-
cal electrodynamics and it describes the motion of an elec-
tric charge, an electron for definiteness (charge e < 0 and
mass m), in the presence of an external, given electromag-
netic field [1]. The Lorentz equation, however, does not
take into account that, as the electron is being accelerated
by the external field, it emits electromagnetic radiation,
which in turn alters the trajectory of the electron itself
(radiation reaction (RR)). The search for the equation of
motion of an electron moving in a given external electro-
magnetic field, including self-consistently the effects of RR,
has already been pursued since the beginning of the 20th
century. By starting from the Lorentz equation of an elec-
tron in the presence of an external electromagnetic field
and of the electromagnetic field produced by the electron
itself, the so-called Lorentz-Abraham-Dirac (LAD) equa-
tion has been derived [2, 3, 4, 1, 5, 6, 7, 8]. RR effects
result in two force terms in the LAD equation, one pro-
portional to the Liénard formula for the radiated power
and accounting for the energy-momentum loss of the elec-
tron due to radiation, the “damping term”, and the other
one, the “Schott” term, related to the electron’s near field
[8] and accounting for the work done by the field emitted
by the electron on the electron itself [9]. Unlike the damp-

ing term, the Schott term, being proportional to the time
derivative of the acceleration of the electron, 1) renders
the LAD equation a non-Newtonian, third-order time dif-
ferential equation; and 2) allows for unphysical features of
the LAD equation as the existence of “runaway solutions”,
with the electron acceleration exponentially diverging in
the remote future, even if, for example, the external field
identically vanishes [1, 5, 6, 7, 8, 9, 10, 11].

The origin of the inconsistencies of the LAD equation
has been identified in [5]. The conclusion is that in the
realm of classical electrodynamics, i.e., when quantum ef-
fects can be neglected, a “reduction of order” can be con-
sistently carried out in the LAD equation, resulting in a
second-order differential equation, known as the Landau-
Lifshitz (LL) equation. Moreover, the physical solutions
of the LAD equation, i.e., those which are not runaway-
like, have been shown to be on the critical manifold of the
LAD equation itself and are governed there exactly by the
LL equation [12]. Finally, the LL equation has been also
derived from quantum electrodynamics in [13].

The rapid progress of laser technology has renewed the
interest in the problem of RR as the strong electromag-
netic fields produced by lasers can violently accelerate the
electron and consequently prime a substantial emission of
electromagnetic radiation. Correspondingly, a large num-
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ber of setups and schemes have been recently proposed to
measure classical RR effects in electron-laser interaction
[14, 15, 16, 17, 18, 19] (we refer to the review [10] for pre-
vious proposals). However, experimental challenges either
in the detection of relatively small RR effects or in the
availability of sufficiently strong lasers has prevented so
far any experimental test of the LL equation. Moreover,
since RR effects are larger for ultrarelativistic electrons, re-
ported laser-based experimental tests of the LL equation
turn out to be sensitive mainly to the damping term in the
LL equation, which has the most favorable dependence on
the electron Lorentz factor.

In the present Letter we adopt a different perspective
and put forward a presently feasible experimental setup
to measure classical RR effects on the radiation field gen-
erated in the interaction of ultrarelativistic electrons with
an aligned crystal. The experiment can already be per-
formed at, e.g., the CERN Secondary Beam Areas (SBA)
beamlines. In fact, in the proposed setup 10-GeV elec-
trons impinge into a 0.5-mm thick diamond crystal and
emit a significant amount of radiation due to axial chan-
neling [20, 21, 22, 23]. Our numerical simulations indicate
that in this regime RR effects substantially alter the elec-
tromagnetic emission spectrum especially at frequencies
corresponding to photon energies around 0.6 GeV. More-
over, unlike experimental proposals employing lasers, the
distinct structure of the electric field of the crystal at axial
channeling renders the emission spectrum especially sen-
sitive to a term in the LL equation originating from the
controversial Schott term in the LAD equation. As we will
see below, this term depends in general on the spacetime
derivatives of the background field. This feature makes
our setup prominent also with respect to synchrotron fa-
cilities where the electron dynamics is dominated by the
damping term. We also mention that at an electron en-
ergy ε0 = 10 GeV and for a typical synchrotron radius
R = 1 km, the relative electron energy loss per turn is
∆ε/ε0 = 8.9×10−5ε0[GeV]3/R[m] = 8.9×10−5 [24], which
would induce too small effects on the emitted radiation to
be measured. In addition, in order for the synchrotron to
operate during many turns, the electron energy loss has to
be precisely compensated preventing again any possibil-
ity of “accumulating” and measuring RR on the emitted
radiation.

2. The physical model

When a high-energy electron impinges onto a single crys-
tal along a direction of high symmetry, its motion can be-
come transversely bound and its dynamics determined by
a coherent scattering in the collective, screened field of
many atoms aligned along the direction of symmetry (ax-
ial channeling) [20, 21, 22, 23]. In this regime the electron
experiences an effective potential in the transverse direc-
tions (continuum potential), resulting from the average of
the atomic potential along the direction of symmetry. By

indicating as z the direction corresponding to the symme-
try axis of the crystal and by ρ = (x, y) the coordinates in
the transverse plane, with the atomic string crossing this
plane at ρ = 0, the continuum potential Φ(ρ) depends
only on the distance ρ = |ρ| and it can be approximated
as [22]:

Φ(ρ) = Φ0

[
ln

(
1 +

1

%2 + η

)
− ln

(
1 +

1

%2
c + η

)]
, (1)

where % = ρ/as and %c = ρc/as. Here, the parameters Φ0,
ρc, η, and as depend on the crystal and ρ ≤ ρc. A conve-
nient choice to investigate classical RR effects is diamond,
with the 〈111〉 as symmetry axis and for which Φ0 = 29 V,
ρc = 0.765 Å, η = 0.025, and as = 0.326 Å. In fact, the
relatively low value of Φ0 as compared to other crystals al-
lows one to neglect quantum effects also at relatively high
electron energies. The depth ΦM = Φ(0) of the potential
in diamond is such that UM = U(0) = −103 eV, where
U(ρ) = eΦ(ρ) is the electron potential energy (units with
~ = c = 1 and α = e2 ≈ 1/137 are employed throughout).

In general, the channeling regime of interaction fea-
tures ultrastrong electromagnetic fields, which can lead
to substantial energy loss of the radiating electron. In or-
der for quantum effects to be negligible, we require that
χ = γ0E/Ecr � 1 [22], where γ0 is the initial Lorentz
factor of the electron, E is a measure of the amplitude
of the electric field E(ρ) = −∇Φ(ρ) = (2Φ0/as)%/[(η +
%2 + (η + %2)2] in the crystal, and Ecr = m2/|e| =
1.3 × 1016 V/cm is the critical electric field of QED.
By employing E ∼ ΦM/ρc as an estimate of E, it is
χ = 1.5× 10−5ε0[GeV]|UM [eV]|/ρc[Å].

In the classical regime χ � 1 the electron dynamics
including RR effects is described by the LL equation [5].
The LL equation for an electron with arbitrary momentum
p(t) = mγ(t)β(t), with γ(t) = ε(t)/m = 1/

√
1− β2(t)

and β(t) = ṙ = dr/dt, reads:

dp

dt
=eE +

2

3

e2

m

{
eγ(β ·∇)E +

e2

m
(β ·E)E

− e2

m
γ2[E2 − (β ·E)2]β

}
.

(2)

Here the first two terms of the RR force originate from
the Schott term in the LAD equation whereas the last
“damping” one corresponds to the Liénard formula. Un-
like the first “derivative” term, however, the second term
of the RR force is strictly related to the damping one
as only their sum ensures that the on-shell condition
ε(t) =

√
m2 + p2(t) is preserved during the electron mo-

tion. Now, we assume that the crystal extends from
z = 0 to z = L and that at the initial time t = 0,
the electron’s position and velocity are r0 = (x0, 0, 0),
with 0 < x0 ≤ ρc, and β0 = (0, 0, βz,0), respectively

(ε0 = mγ0 = m/
√

1− β2
z,0). With these initial conditions,

due to the symmetry of the potential Φ(ρ), it is y(t) = 0
and Ey(ρ) = 0 along the electron trajectory. Thus, Eq.
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(2) substantially simplifies and only the equation

dβx
dt

= −
(
Fx
ε

+
2

3

e2

m2

dFx
dx

βx

)
(1− β2

x), (3)

for βx(t) is needed below, with Fx(x) = |e|Ex(x, 0).
If one first neglects RR, the total energy E = ε(t) +

U(|x(t)|) is a constant of motion. In the ultrarelativis-
tic regime γ0 � 1 of interest here and for typical crys-
tal parameters it results |βx(t)| � 1, such that ε(t) ≈
ε0[1 +β2

x(t)/2] (see, e.g., [20, 21, 22]). Indeed, energy con-
servation implies that |βx(t)| ≤

√
2|UM − U(x0)|/ε0 � 1

(recall that |U(ρ)| ∼ 100 eV [21, 22]). Finally, with the
considered initial conditions, the quantity βx(t) is periodic
in time, with period T0 =

√
8ε0

∫ x0

0
dx/

√
|U(x)− U(x0)|

and angular frequency ω0 = 2π/T0 [21].

3. Results

The considerations above allow us to evaluate the effects
of RR on the electron dynamics analytically. In fact, as
it can be verified a posteriori, it is safe to assume that
|βx(t)| � 1 and that βz(t) ≈ 1 also including RR. Thus, by
multiplying Eq. (2) by px(t) and by neglecting corrections
proportional to β2

x(t) ∼ |UM |/ε0, it is easy to prove that

ε(t) =
ε0

1 + (2/3)α(γ0/m3)
∫ t

0
dt′F 2

x (x(t′))
, (4)

where the integral is performed along the electron trajec-
tory. In order to get an analytical insight on the mo-
tion of the electron, we assume here that |x(t)| � as

√
η,

such that Fx(x) ≈ F0x/as
√
η and dFx(x)/dx ≈ F0/as

√
η,

where F0 = |e|E0 = 2|U0|/as
√
η, with U0 = eΦ0 (U0 =

−29 eV for diamond). Equation (3) with 1 − β2
x(t) ≈ 1

and Eq. (4) show that the electron dynamics along the
x direction is characterized by three time scales: one,
T0 ≈ 2π/

√
F0/
√
ηε0as, proper of the Lorentz dynamics

and two additional,

τs =
6

α

η

γ0

(
Ecr
E0

)2(
as
x0

)2

λC , τd =
3

α

√
η
Ecr
E0

as (5)

introduced by RR and corresponding to the term propor-
tional to F 2

x (x) in Eq. (4) and to the one proportional
to dFx(x)/dx in Eq. (3), respectively (λC = 1/m =
3.9 × 10−3 Å is the Compton wavelength). Now, it
is T0[Å] = 1.4 × 105as[Å]

√
ηε0[GeV]/|U0[eV]|, τs[Å] =

7.0 × 1012 η2as[Å]4/(ε0[GeV]U0[eV]2x0[Å]2), and τd[Å] =
2.7 × 1010 ηas[Å]2/U0[eV], thus for a typical initial en-
ergy of ε0 = 10 GeV and for x0 = 0.2 as

√
η in dia-

mond, it results τd/τs ≈ 0.044 and T0/τd ≈ 23T0/τs =
1.7 × 10−3. This suggests to solve Eq. (3) by employing
the method of separation of time scales, which provides
x(t) ≈ x0 exp(−t/τd) cos(ϕ(t)), where ϕ(t) =

∫ t
0
dt′ω0(t′),

with ω2
0(t) = F0/ε(t)as, and

ε(t) ≈ ε0

1 + (τd/τs)[1− exp(−2t/τd)]
. (6)
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Figure 1: (Color online) The rapidly oscillating electron’s coordi-
nate x(t) (continuous black curve) and the analytical expression
x0 exp(−t/τd) of the envelope (dashed red curve), for numerical pa-
rameters given in the text.

0 2.0×10
6

4.0×10
6

6.0×10
6

8.0×10
6

1.0×10
7

1.2×10
7

1.4×10
7

9.6

9.7

9.8

9.9

10.0

t[as]

ε(
t)
[G
eV

]

Figure 2: (Color online) Time evolution of the electron energy from
a numerical integration of Eq. (2) (continuous black curve) and
according to Eq. (6) (dashed red curve), for the same parameters as
in Fig. 2.

In Fig. 1 and Fig. 2 we show a numerical example for di-
amond indicating the validity of the analytical estimation
for x(t) and for ε(t) in Eq. (6) in comparison with a nu-
merical integration of Eq. (2). The initial energy of the
electron is 10 GeV, the initial position is x0 = 0.2 as

√
η,

and the final time corresponds to a crystal thickness of 0.5
mm (see also below). We have ensured numerically that
the trend shown in the inset of Fig. 1, with RR “focus-
ing” the electron’s transverse motion to amplitudes much
smaller than as

√
η, occurs for all allowed x0 ≤ ρc.

Now, RR effects are clearly larger for thicker crystals.
However, an upper limit to “meaningful” values of the
crystal thickness is set by the dechanneling, i.e., by the fact
that, due especially to multiple Coulomb scattering, the
transverse amplitude of the electron motion increases and,
after a certain distance ld (dechanneling length), the elec-
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Figure 3: (Color online) Radiation energy spectra for parameters
given in the text without RR (dashed green curve), with RR and no
derivative term (dotted blue curve), and with RR (continuous red
curve). The inset shows the corresponding plots including dechan-
neling and the spectrum of coherent bremsstrahlung by dechanneled
electrons (fine-dotted purple line).

tron leaves the “channel” produced by the potential in Eq.
(1) [21, 22]. The term “meaningful” above thus refers to
the fact that for a crystal thickness larger than ld, the elec-
tron will not anyway emit channeling radiation after a dis-
tance ld. An order-of-magnitude estimate of the dechan-
neling length ld for an electron initially propagating along
the atomic string is given by ld = (α/2π)(|UM |γ0/m)X0,
where X0 is the radiation length in the amorphous case
(X0 = 12.2 cm for diamond) [22]. In Fig. 3 three single-
electron energy spectra dW/dω are shown as a function
of ω/ε0, with ω being the emitted radiation angular fre-
quency. The spectra are calculated by integrating the dif-
ferential spectrum [1]

dW

dωdΩ
=

e2

4π2

∣∣∣∣∣
∫ ∞
−∞

dt
n× [(n− β)× β̇]

(1− n · β)2
eiω(t−n·r)

∣∣∣∣∣
2

(7)

with respect to the solid angle Ω along the observation
direction n (see also [25] for details) and by integrating
numerically the exact LL equation (2) along the whole
electron trajectory. In order to test specifically the im-
portance of the derivative term in the LL equation (2),
we show the spectrum without RR terms (dashed green
curve), with RR terms except the derivative one (dotted
blue curve), and with all RR terms (continuous red curve).

3.1. Discussion

The spectra in Fig. 3, obtained for diamond (z = 〈111〉),
ε0 = 10 GeV (χ = 0.021) and L = ld = 0.5 mm, are av-
eraged over a disk of radius ρc in the transverse plane

1Notice that, depending on the value of x0, the maximum value
EM of the electric field experienced by the electron can be about 4E,
with the corresponding value χM = γ0EM/Ecr ≈ 0.08 remaining
still smaller than 0.1.

to simulate electrons impinging at different coordinates.
Also, the free-electron laser parameter K = γ0

√
2〈β2

x(t)〉,
with 〈f(t)〉 = L−1

∫ L
0
dtf(t), varies from 0 (for x0 = 0) to

2.8 (for x0 = ρc) without RR such that the local constant
crossed field approximation [22], which requires K � 1,
cannot be applied here. The main effect of RR is to in-
crease the radiation yield at low frequencies thus shifting
the position of the maximum of the spectrum to lower
frequencies and the derivative term in the LL equation
significantly enhances such effect. The shift of the maxi-
mum can be understood qualitatively as RR effects tend
to reduce the electron energy and the average electric field
experienced by the electron. The enhancement of RR ef-
fects due to the derivative term in the LL equation can
be understood by noticing that the derivative dFx/dx is
largest at small x, where dFx/dx > 0, such that since
e < 0 the corresponding term in Eq. (2) acts as an ad-
ditional “damping” term. The inset in Fig. 3 shows the
corresponding spectra with dechanneling being included
phenomenologically by dividing the crystal into N = 50
equal sections of length ∆L = L/N and by weighting the
contribution of the jth section by means of the fraction
of particles exp[−(j − 1)∆L/ld] remaining in the channel
(see, e.g., [26]). The condition ∆L � L = ld ensures
that a small fraction of electrons dechannels on average in
each section. One sees that the main effect of dechannel-
ing, which resulted to be essentially insensitive to the exact
value of N for large N ’s, is an overall reduction of the spec-
tral yield, with no qualitative changes on the RR effects.
Finally, we have ensured that the contribution of coher-
ent bremsstrahlung from dechanneled electrons does not
conceal RR effects (see the inset in Fig. 3). In order to in-
clude the latter effect, we have started from the differential
cross section dσCB(ω, θ, ϕ)/dω of coherent bremsstrahlung
as presented, e.g., in Eq. (8.19) in [27] for the case at hand
(an electron propagating at a small angle θ from the axis
〈111〉 of diamond) and by averaging it with respect to the
azimuthal angle ϕ of the initial electron momentum. In
order to take into account that only dechanneled electrons
emit coherent bremsstrahlung, we have assumed that the
number of electrons in the channel as a function of the
depth z is given by

Ne(z) = Ne,0e
−z/ld , (8)

where Ne,0 is the initial number of electrons. As an elec-
tron dechannels with a uniformly distributed value of ϕ,
if we consider N sections of the crystal of length ∆L =
L/N , we can estimate the single particle energy spec-
trum per unit frequency due to coherent bremsstrahlung
by the sum of contributions from each section given by
dWj(ω, θj , ϕ)/dω = ρnω∆LdσCB(ω, θj , ϕ)/dω, multiplied
by the fraction 1− exp[−(j − 1)∆L/ld] of electrons in the
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Figure 4: Sketch of a possible experimental setup (top view). S1-S3
denote scintillators and M1-M6 denote position-sensitive MIMOSA
detectors [29].

section and averaged with respect to ϕ:

dWCB

dω
=ρnω∆L

N∑
j=1

[
1− e−(j−1)∆L/ld

]
×
∫ 2π

0

dϕ

2π

dσCB(ω, θj , ϕ)

dω
.

(9)

Here ρn is the number density of atoms in diamond (ρn =
1.76 × 1023 cm−3). Now, a suitable value of the angle θj
for each section j has still to be inserted in Eq. (9). Due
to multiple Coulomb scattering, the nonprojected angle
θ for electrons crossing an amorphous medium (the crys-
tal acts essentially as an amorphous medium for above-
barrier, dechanneled particles) is distributed according to
a Gaussian distribution with standard deviation depend-
ing on z and given by (see, e.g., [28])

σθ(z) =
13.6 MeV

ε0

√
2z

X0

(
1 + 0.038 ln

z

X0

)
, (10)

where X0 is the radiation length (X0 = 12.2 cm for dia-
mond). In this way, we can estimate θj as the average value
of θ of the particles over the solid angle dΩ = sin θdθdφ ≈
θdθdφ, with θ ≥ θc where θc =

√
2|UM |/ε0 is the Lindhard

critical angle:

θj =

∫∞
θc
dθ θ2e−θ

2/2σ2
θ,j∫∞

θc
dθ θe−θ

2/2σ2
θ,j

, (11)

where σθ,j = σθ((j − 1)∆L).
By dividing the crystal into 50 sections, we have ob-

tained the results shown as a fine-dotted purple line in the
inset in Fig. 3.

3.2. Experimental considerations

Measurement of the spectra in Fig. 3 is possible using
a setup as shown in Fig. 4. After passing the scintilla-
tors S1-S3, the electrons go through two position-sensitive
MIMOSA detectors M1 and M2 [29] encased in Helium
to reduce multiple scattering, in order to determine their
incoming angle [30]. By deflecting the charged particles
outgoing from the crystal via the large magnet, only the
emitted photons hit a converter foil to produce electron-
positron pairs. By measuring the energy of the pairs em-
ploying the small magnet, the energy of the photons can be

determined. The case considered here of electrons initially
moving along the atomic string is a reasonable approx-
imation as long as the electrons impinge with angles to
the atomic string on a scale of order of or smaller than
the Lindhard critical angle θc. Electrons with an angu-
lar divergence comparable to θc can indeed be achieved at
the CERN SBA [31]. The spectra in Fig. 3 correspond
to each electron emitting approximately 4.1 photons ca-
pable of pair production in the converter foil. In order
to avoid pileup and obtain single-photon spectra, the con-
verter foil should have correspondingly a thickness smaller
than about one fourth of the radiation length. The peak
of the red curve in the inset in Fig. 3 corresponds to a
maximum of the number spectrum dNγ/dω = ω−1dW/dω
of 1.1× 10−8 eV−1 at 131 MeV and with a FWHM of 260
MeV. In order to resolve this maximum in 100 bins with
104 counts in each bin corresponding to an uncertainty of
1%, which would allow to discriminate among the three
higher peaks of the curves in the inset in Fig. 3, would
thus require about 1.4×107 electrons. At the CERN SBA
a rate of 2000 electrons per minute can be achieved imply-
ing a measurement time of about five days.

4. Conclusions

In conclusion, we have demonstrated that the predic-
tions of the LL equation can be feasibly tested experimen-
tally by measuring the channeling radiation emitted by an
ultra-relativistic electron beam impinging onto a diamond
crystal slab. Most importantly, the effects of the derivative
term in the LL equation are shown to affect in a measur-
able way the emission spectra. The required experimental
conditions are available at the CERN SBA beamlines.
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