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Abstract As a consequence of recent developments in mass
spectrometry, the application of non-traditional stable isotope
systems (e.g. Ca, Cu, Fe, Mg, Sr, Zn) as well as radiogenic
isotopes to archacological materials is now possible. These
techniques have opened new perspectives in bioarchaeology
and can provide information on metabolism, diet and the mo-
bility of past individuals. This review demonstrates this po-
tential and describes the principle of these new analytical ap-
proaches. In addition, we emphasize how the “non-
traditional” stable isotope systems compare and contrast with
classic isotopic analyses.

Keywords Archaeological sciences - Metal stable isotopes -
Tracers - Diet - Mobility - Metabolism

Introduction
Notion of traditional and non-traditional isotopes

The notion of traditional and non-traditional isotopes is usu-
ally applied to stable isotopes, which remain stable through
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time, as opposed to radioactive isotopes that decay into a
daughter isotope from a different element. This resulting
daughter element is radiogenic. Radiogenic isotope abun-
dances are typically expressed as the ratio of the radiogenic
isotope of interest to a stable isotope of the same element (e.g.
87S1/*°Sr). For stable isotope systems, the isotopic abundance
is mostly measured in terms of delta notation (e.g. 6'°0). If a
radiogenic isotope is involved, then the results are usually
expressed as isotopic ratios.

For several decades, radiogenic isotopes strontium (Sr) and
lead (Pb) and stable isotopes of light elements (hydrogen (H),
carbon (C), nitrogen (N), oxygen (O), sulphur (S)) were the
main isotopic systems studied in human remains (Fig. 1).
Detection of natural stable isotope abundances for elements
of masses greater than 40 amu was very difficult until recently.
Two decades ago, the development of multi-collector induc-
tively coupled plasma mass spectrometry (MC-ICP-MS) and
thermal ionization mass spectrometry (TIMS) methods made
the measurements of natural stable isotopic ratios for elements
up to uranium easier (e.g. Ca: Skulan et al. 1997 (TIMS);
Halicz et al. 1999 (ICP-MS); copper (Cu) and zinc (Zn):
Maréchal et al. 1999 (ICP-MS); iron (Fe): Walczyk 1997;
Beard and Johnson 1999; Johnson and Beard 1999 (TIMS);
Belshaw et al. 2000 (ICP-MS); magnesium (Mg): Richter
et al. 1999 (TIMS); Galy et al. 2001 (ICP-MS)). These newly
measured isotopes have been collectively referred to as “non-
traditional stable isotopes” (Albaréde and Beard 2004; Anbar
and Rouxel 2007; Weiss et al. 2008).

Isotopic fractionation can occur during chemical or physi-
cal incomplete element transfer (Bigeleisen 1965; Albaréde
2015). Isotopic fractionation is generally mass-dependent,
particularly in living organisms, and has been observed for
decades in the lighter elements such as C, N and S (DeNiro
and Epstein 1978, 1981; McConnaughey and McRoy 1979;
Schoeninger and DeNiro 1984; Kelly 2000; Richards et al.
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Fig. 1 Periodic table of the elements presenting traditional and non-
traditional isotope compositions. Blue: Traditional stable isotopes
including radiogenic ones (light blue). Green: Non-traditional isotopes
that have been analysed in human remains. Yel/low: Non-traditional

2001). Heavy isotopes of an element tend to have a higher
affinity for the compounds where the element can form stiff
bonds (Schauble 2004).

“Traditional” stable and radiogenic isotope studies
in archaeology

Since the 1970s, isotopic tracers have been frequently
used for dietary reconstructions (e.g. Vogel and Van der
Merwe 1977; Van der Merwe and Vogel 1978, DeNiro
and Epstein 1978, 1981). Historically, most studies on
diet have relied on C and N isotopes in bone collagen.
These isotopes can trace the consumption of meat, marine
foods and C4 plants (maize, sorghum, millet)
(Schoeninger and Moore 1992). Compared to sources of
information on past diets such as zooarchaeology, organic
residues, dental wear or dental calculus (e.g. Grayson
1984; Ryan and Johanson 1989; Dudd et al. 1999;
Henry and Piperno 2008), these isotope systems provide
a more quantitative approach on the food types eaten at
the individual scale, as opposed to the population scale.
The use of these isotopes has therefore been incredibly
helpful for characterizing the diets and the social organi-
zation of our ancestors. However, the major downside of
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isotopes that have been analysed in animal tissues. Grey: Non-
traditional isotopes (including radiogenic isotopes) that have at least
two stable isotopes

this technique is that it is time-limited: the collagen is not
preserved for ancient sites (>100,000 years), or even for
much younger sites, depending on the environmental con-
text (Pestle and Colvard 2012). Therefore, information on
meat and marine food consumption of ancient hominins is
very difficult to retrieve. Carbon isotope studies on dental
enamel provide useful information on the type of plants
eaten by early hominins or their preys (Sponheimer and
Lee-Thorp 1999; Sponheimer et al. 2006; Ungar and
Sponheimer 2011) but fail documenting their trophic lev-
el. Some laser ablation trace element studies carried out
on dental enamel have provided information for older
specimens (Sponheimer et al. 2005; Balter and Simon
2006; Balter et al. 2012) but only allow assessment to
the nearest trophic level and are highly dependent on the
geology.

Oxygen isotopes can be analysed in bioapatite and
mostly reflect the isotope composition of drinking water,
which is in turn linked to the latitude and climate
(Dansgaard 1964; Longinelli 1984; Evans et al. 2000).
Consequently, these isotopes can be used for
paleoenvironmental or mobility studies (e.g. White et al.
1998; Evans et al. 2006; Touzeau et al. 2013) but can also
trace the dietary patterns of animals that primarily source
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their water from plants rather than free drinking water
(Lee-Thorp and Sponheimer 2006). Hydrogen isotopes
can provide similar information using various body tis-
sues (Sharp et al. 2003; Fraser and Meier-Augenstein
2007; O’Brien and Wooller 2007; Ehleringer et al. 2008)
but do not allow human provenance to be traced using
bioapatite (Holobinko et al. 2011). Sulphur is also com-
monly used since recent analytical developments now re-
quire a smaller amount of collagen to perform S isotope
analysis. Sulphur enters local food webs through atmo-
spheric deposition, microbial processes active in soils
and local bedrock. As sea spray has a very specific iso-
tope signature, the 6°*S values can indicate coastal living
environments (Richards et al. 2001; Richards et al. 2003;
Zazzo et al. 2011; Nehlich 2015). As opposed to these
light elements, heavier isotopes such as Sr and Pb are
not easily fractionated during biological processes: the
heavier the element of interest, the smaller the fraction-
ation (Beard and Johnson 1999). A few decades ago, the
same isotopic ratio was expected for heavy elements from
the soil to the top of a trophic chain, in all organs and
tissues (Gosz et al. 1983). With the recent improvement in
mass spectrometry, this expectation has since been
invalidated for a number of non-traditional isotopic sys-
tems: first for Fe isotopes (Beard and Johnson 1999) and
recently for a much heavier element, mercury (Laffont
et al. 2009, 2011). However, the heavy element isotopic
system investigated in “traditional” archaeological studies
is radiogenic strontium (*’St/*°Sr). The classical analyti-
cal procedure for the measurement of this ratio would
erase any small biological fractionation, if present (Gosz
et al. 1983). Indeed, for Sr, all reported 87Sr/%0Sr ratios are
corrected for fractionation according to the measured de-
viation of the *¢Sr/*®Sr ratio in order to correct the instru-
mental fractionation mass bias (Gosz et al. 1983). As bi-
ological fractionation is mass-dependent, this protocol
erases these small isotopic differences. This also applies
to radiogenic lead (e.g. 2°°Pb/?**Pb), a system also used in
bioarchaeological studies (e.g. Montgomery et al. 2000;
Chiaradia et al. 2003; Turner et al. 2009). As a conse-
quence, Sr and Pb radiogenic isotope compositions of
human tissues reflect that of the soil where a living or-
ganism gets its food (animals or plants) (Bentley 2006).
These isotope compositions are therefore frequently used
to trace the mobility of past populations (e.g. Copeland
et al. 2008; Richards et al. 2008; Copeland et al. 2011;
Balter et al. 2012). Concentrations of radiogenic elements
such as Sr and Pb increase over time. However, this in-
crease does not matter for archaeology or biomedical
studies because daughter isotope production is imple-
mented beyond the timescale of interest or the lifetime
of a living organism: the half-life of ®’Rb is
t;, = 4923 x 10'° years and the radionuclides involved

in the U-Th series, which produce Pb isotopes, have half-
lives ranging from 10® to 10'® years.

Potential of “non-traditional” isotopes for archaeology

As for traditional isotopes, the measurements of non-
traditional isotope ratios have been developed by geochem-
ists. While it was rarely undertaken at first, this type of anal-
ysis has become a discipline per se within the last 10 years
(Albaréde and Beard 2004; Anbar and Rouxel 2007). Initially,
non-traditional stable isotope studies in biological materials
have been mostly carried out on plants (e.g. Weiss et al.
2005; Guelke and von Blanckenburg 2007; Viers et al.
2007; Black et al. 2008; Moynier et al. 2009; von
Blanckenburg et al. 2009; Aucour et al. 2011; Weinstein
et al. 2011; Jouvin et al. 2012; Hindshaw et al. 2013) and
human or animal tissues (e.g. Skulan and DePaolo 1999;
Walczyk and von Blanckenburg 2002; Ohno et al. 2004;
Ohno et al. 2005; Balter et al. 2010; Albaréde et al. 2011;
Balter et al. 2013; Sampson et al. 2013; Moynier et al. 2013;
von Blanckenburg et al. 2014). They are now applied to bio-
medicine (e.g. Albaréde et al. 2011; Morgan et al. 2011, 2012;
Lauwens et al. 2016), archaeological artefacts (e.g. Desaulty
et al. 2011; Albaréde et al. 2012; Balliana et al. 2013; Delile
et al. 2014; Baron and Coustures 2015) and human remains,
which will be discussed throughout this review.

In order to apply the study of an isotopic system to the
field of anthropology, the following two criteria must be
met: (1) the selected element needs at least two stable
isotopes, and (2) its isotope concentration in human or-
gans or tissues needs to be above the detection limit of the
mass spectrometer. Additionally, the isotope analyses of
the element of interest first require the development of an
extraction and purification protocol, as well as a minimum
sample size to perform measurements for archaeological
applications. A list of candidate elements is given in
Fig. 1. At this time, only seven elements have been in-
vestigated for their isotopic composition in the human
body: calcium (Ca), Cu, Fe, Mg, mercury (Hg), Sr (stable
isotopes) and Zn (Fig. 1). Copper, Fe and Zn isotopes are
often studied together as they can be isolated using the
same chemical purification protocol (Maréchal et al.
1999). Zinc data are the most abundant for several rea-
sons: (1) Zn concentration is higher than that of Cu in
body organs and tissues; (2) Zn isotopic measurements
require less advanced technology relative to Fe isotopes;
and (3) the chemical purification of Zn alone (Moynier
et al. 2006) is cheaper and less time-consuming.

Natural isotopic abundances of the abovementioned ele-
ments and their associated delta notation are given in
Table 1. Three factors are likely to trigger isotopic variability
within the human body:
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Table 1  Abundances of stable isotopes for elements studied for their non-traditional isotope compositions
Element Symbol  Group Abundances Delta notation Radiogenic
ratio

Calcium Ca Alkaline earth metal ~ *°Ca® (96.9 %), **Ca (0.6 %), ©*Ca (0.1 %), **Ca 2.1 %),  §***Ca (ICP-MS)

46Ca® (0.004 %), *3Ca® (0.2 %) 5*40Ca (TIMS)
Copper Cu Transition metal 53Cu (69.2 %), °Cu (30.9 %) 5%Cu
Iron Fe Transition metal 3*Fe (5.8 %), °Fe (91.7 %), >’Fe (2.2 %) and **Fe (0.3 %)  §°°Fe, 6°'Fe
Magnesium Mg Alkaline earth metal ~ 2*Mg (79.0 %), Mg (10.0 %), **Mg (11.0 %) Mg, $°Mg
Strontium Sr Alkaline earth metal ~ **Sr (0.6 %), 3°Sr (9.9 %), ¥Sr (7.0 %), 35Sr (82.6 %) o%8Sr 875868y
Zinc Zn Transition metal 5470 (49.2 %), %°Zn (27.7 %), ' Zn (4.0 %), 6%7n, 68°7Zn, 6°Zn

87n (18.5 %), °Zn® (0.6 %)

“Isotopes that are observed stable but actually radioactive

(1) Diet: isotopic fractionation can occur during intestinal
absorption or excretion, inducing isotopic differences between
the body isotopic compositions of a prey animal and its pred-
ator. Predator—prey isotopic differences can be observed for
instance in the case of N isotopes (Fig. 2). Significant isotopic
differences between food categories belonging to the same
trophic level can also exist, and the consumption of these
different food categories can therefore be traced (e.g. '*C iso-
tope compositions of C3/C4 plants). (2) Environmental
context: like the radiogenic ratio of Sr (*’Sr/*°Sr), isotope
composition of the soil can impact that of the whole food
web. (3) Metabolism: metabolic reactions within the body
can also generate isotope fractionation. Metabolic processes
such as disease could therefore be traced. This is particularly
true for non-traditional isotopes: unlike traditional ones, they
do not belong to the CHNOPS' (Fig. 1), that is to say the most
common elements in living organisms. They are therefore
more likely to trace specific metabolic processes, being in-
volved in less biological reactions. When a dietary, environ-
mental or metabolic process triggers major isotope variability
of one element, its isotope composition can be used to trace
the process of interest (Fig. 2). As a consequence, isotope
studies carried out on human tissues can help reconstruct the
diet, mobility and health conditions of past populations.

In this review, we will assess the natural distribution of
these isotopic systems in food webs and their established or
potential contribution for bioarchaeological studies. We
will show that they can be used alongside Sr radiogenic
ratios and light stable isotopes for palacodiet, weaning
and mobility tracing, but we will also discuss how they
could be used to investigate other processes, such as bio-
logical sex or age at menopause. Often, the studies reported
in this review offer only preliminary conclusions but con-
stitute pioneer research: even if non-traditional stable iso-
tope studies are still in their infancy, their potential as prom-
ising new archaeological tools has already been shown.

! CHNOPS stands for carbon hydrogen, nitrogen, oxygen, phosphorus and
sulphur
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Material and methods in non-traditional isotope
studies

Material
Material candidates for non-traditional isotope analyses

All of the non-traditional isotope systems investigated in hu-
man remains have been established in bioapatite, a calcium
phosphate (Ca;o(PO4)s(OH),) located in dental enamel and
tooth dentine as well as in the mineral part of bones. Besides
the classic isotope measurements of O, Ca isotope composi-
tions can also be measured (Firestone and Shirley 1998).
Phosphorus, having only one stable isotope, does not meet
the criteria for isotope studies (Fig. 1). Amongst the minor
elements, Mg isotope compositions have been described in
bone and teeth (Martin et al. 2014, 2015b). Magnesium sub-
stitutes to Ca in the bioapatite lattice. This substitution mech-
anism also applies to several trace elements such as Zn and Sr
(Gross and Berndt 2002). The incorporation process of Fe and
Cu in bioapatite is unclear but could also be a substitution to
Ca atoms. Iron and Zn isotopes have also been measured in
human hair, with a minimum amount of 100 mg required for
one measurement (Stenberg et al. 2004; Ohno et al. 2005).
The mass required for analyses first depends on the concen-
tration of the element of interest in the chosen archacological
material. At a smaller but still important scale, it is also a
function of the mass spectrometer used for the isotopic mea-
surements, the isotopes that can be analysed, as well as their
abundances. These masses are summarized in Table 2.
Depending on the material chosen for analysis, the isotopic
signal will represent different periods of the life of past indi-
viduals. Bones are renewed throughout life while dental
enamel and dentine do not change after their formation.
Dental tissues therefore record the isotopic signature of child-
hood, and bones average the last 5 to 20 years of life (Pate
1994; Sealy et al. 1995; Hedges et al. 2007). Independent of
this temporal difference, bone and dental enamel do not ex-
hibit the same isotope composition, whatever the element
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Fig. 2 The woman template
originates from the pioneer
plaque (NASA, no copyright).
Factors influencing traditional
and non-traditional isotope

Traditional isotopes

C,H, N, O, S, Sr (radiogenic)
Non-traditional isotopes

Ca, Cu, Sr (stable)

compositions of different

elements of the human body
Climate,
Biome,
Geology

DIET

Trophic level
Food categories

ENVIRONMENT

METABOLISM

Menstruations
Diseases & dysregulations
Growth

Non-traditional isotopes
Ca, Cu, Fe, Zn

C,N,S

Traditional isotopes

Non-traditional isotopes
Ca, Fe, Mg, Sr (stable), Zn

considered. Offsets between bone and dental enamel isotopic
values have been reported for all the elements in which isoto-
pic compositions have been measured in these two tissues (C
and O (Warinner and Tuross 2009), Ca (Heuser et al. 2011),
Mg (Martin et al. 2014), Zn (Jaouen et al. 2016a)), though
never really explained.

Diagenesis

When choosing a material for non-traditional isotope anal-
yses, careful attention has to be paid to potential soil con-
tamination. Bone and dentine are more porous than dental
enamel and are therefore more likely to incorporate ele-
ments from aqueous fluids circulating in soils (Reynard
and Balter 2014). This problem is obviously more relevant
for trace elements: it has been shown that diagenesis of
archaeological bones is not likely to overprint the biogenic
signature of Ca isotopes (Reynard et al. 2010), even though
it might happen for very old bones such as those of dino-
saurs (Heuser et al. 2011). On the other hand, some ele-
ments such as Fe are present as traces in human remains
(~100 ppm) but show very high concentrations in soil (1 to
40 %). Depending on the environmental context, historical
bones can incorporate high levels of diagenetic Fe, which
will overprint the isotopic composition of interest (Kohn
et al. 1999; Martinez-Garcia et al. 2005). Several tests have
been described in the literature to investigate bone diagen-
esis: collagen preservation, REE content, crystallinity in-
dex, Ca/P ratios, etc. (Price et al. 1992; Hedges 2002;
Beasley et al. 2014; Reynard and Balter 2014). However,
it has been shown that these tests trace different diagenetic

processes that are not necessarily related (Trueman et al.
2008). Recrystallization can occur in a bone with preserved
trace element content, but geochemical perturbations can
also happen without detectable change of crystallinity
(Pucéat et al. 2004). To overcome this problem, Reynard
and Balter (2014) suggested using a diagenetic test involv-
ing the trace element of interest. This test consists of
assessing if the trace element isotopic compositions of var-
ious samples from a site are correlated to their concentra-
tions, which is expected if these samples incorporated var-
ious proportions of a diagenetic component (Albaréde
1996). Dental enamel is generally considered much more
preserved because of a higher degree of mineralization and
low porosity (Lee-Thorp and van der Merwe 1991; Wang
and Cerling 1994; Hoppe et al. 2003; Lee-Thorp and
Sponheimer 2003). It is considered a material of choice
for trace element analyses. However, depending on the
age and the environmental context of the sample, diagene-
sis can affect the integrity of biogenic signatures in dental
enamel (Kohn et al. 1999; Schoeninger et al. 2003) and
should be assessed.

Methods
Sample preparation

Most of the non-traditional isotope systems’ elements are pres-
ent in minor or trace concentrations in teeth and bones.
Therefore, their analyses using mass spectrometry require the
removal of the matrix, in order to avoid isobaric interferences
with isotopes of other elements or molecules of the same mass.

@ Springer
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Summary of factors influencing non-traditional isotope compositions and material required for analyses

Table 2

Measurement methods Sampled Material of analyses

Metabolic factors

Geographical factor

Trophic level Other dietary factors
effect

Element Amount in

material

bioapatite

Bone, teeth

40 ug

TIMS, MC-ICP-MS,

Yes, important in terrestrial Bone loss

Bone consumption, dairy

Major element Yes

Ca

laser ablation
MC-ICP-MS

environments
Yes, important

products?

Unknown

Dental enamel, non-diagenetic bones

75 mg

Menstruations, cancer,

Unclear

Trace element

Cu

Wilson disease
Menstruations,

Dental enamel, non-diagenetic bones

50 mg

MC-ICP-MS

Plants from strategy I and II? Never observed

Yes

Trace element

Fe

hemochromatosis

Unknown

Dental enamel, non-diagenetic bones

1 mg

MC-ICP-MS
MC-ICP-MS
MC-ICP-MS

Yes

Meat consumption

Minor element  Yes

Mg

Sr

Dental enamel, non-diagenetic bones

20 mg

Unknown

Cancer

Yes, very important

Bone consumption
Slight

Yes

Trace element

Dental enamel, non-diagenetic bones

20 mg

Meat, bone consumption
High trophic level fish?

Yes

Trace element

For example, a molecule made of the major isotopes of Ca and
O (*°Ca and '°0) is likely to interfere with one of the Fe iso-
topes (*°Fe), inducing a bias in the measurement of the 5°°Fe
values. This purification step is achieved using chromatogra-
phy on columns. If the element of interest is a major element,
the purification step will not be mandatory, as shown in blood
by Anoshkina et al. (2015) for Fe isotopes. However, in the
case of Ca, which represents almost one atom out of two in
bioapatite, the removal of the matrix is required to avoid desta-
bilization of the plasma due to the presence of phosphorus. The
protocols used for Ca, Fe, Cu and Zn purifications prior to
isotopic analyses have recently been summarized by Costas-
Rodriguez et al. (2016). The purification of Mg has been de-
scribed by Martin et al. (2014), whereas the technique
employed for stable isotope compositions of Sr remains unpub-
lished. The purification protocol used for the radiogenic ratio of
strontium (*’Sr/*°Sr) is not quantitative and cannot be used for
5%8Sr assessments (Hartman and Richards 2014). Incomplete
recovery of an element during ion exchange resin chromatog-
raphy on columns triggers significant isotopic fractionation on
non-radiogenic stable isotope ratios (Maréchal et al. 1999).

Isotopic analyses

Isotopic ratios of trace elements are measured using TIMS or
MC-ICP-MS. The main difference between these two instru-
ments consists of how the sample is introduced and ionized, but
the analytical aspect of these techniques is similar. The TIMS
measurements are usually more precise but also time-consum-
ing. Most of the non-traditional isotopes are analysed using
MC-ICP-MS (Costas-Rodriguez et al. 2016, Table 2), with
the exception of Ca isotopes that are analysed using either tech-
nique (e.g. Skulan and DePaolo 1999; Heuser and Eisenhauer
2010; Reynard et al. 2010; Tacail et al. 2014). In the case of
MC-ICP-MS instrumentation, the ratio measured will be
44Ca/“ZCa, instead of the **Ca/*’Ca ratio. This technique uses
argon as a carrier gas, which interferes with the isotope “°Ca.
Stable isotope fractionation is mass-dependent, which implies

that §*¥*?Ca = §**4°Ca x (]/ '71/'”') , that is too say Pl

“2Ca = 0.4773 x 6**°Ca (Young et al. 2002; Sime et al.
2007). Details on non-traditional isotope measurements have
been described by Albaréde and Beard (2004).

Recent studies demonstrated the possibility of measuring
non-traditional isotope compositions of human tissues using
laser ablation. Protocols for Ca isotope laser analyses were
recently developed for biological or synthetic apatite (Tacail
et al. 2016; Li et al. 2016). Isotopic measurements of other
elements may be more difficult to achieve because of the low
abundance of Fe, Zn, Cu or Mg in bioapatite but not impos-
sible as shown by Resano et al. (2013), who measured the Cu
isotopic composition of dried urine pellets.



Archaeol Anthropol Sci (2017) 9:1389-1404

1395

Diet and non-traditional isotope compositions

Two dietary factors are likely to impact isotopic compositions
of human bodies: (1) the actual isotopic compositions of food
products and (2) the fractionation occurring during intestinal
absorption, which can be influenced by the atomic environ-
ment of the element of interest and, therefore, the food cate-
gory. For instance, the precipitation of Zn with phytates
contained in plants, which happens within the intestinal tract,
seems to be isotopically selective towards light isotopes
(Jaouen et al. 2013b). The consumption of plants is therefore
associated with an enrichment of the consumer tissues in Zn
heavy isotopes, which are more bioavailable’. In the case of
animal product consumption, there is no evidence of an
existing process influencing the bioavailability” of one isotope
over another and no fractionation apparently occurs during
intestinal absorption (Jaouen et al. 2013b). Another illustra-
tion of these two dietary factors can be given by the carbon
isotope compositions of food products. Marine fish tissues and
C; plants generally exhibit a discrepancy of =15 %o, whereas
the isotope fractionation during intestinal absorption is ap-
proximately 0 to 2 %o for the two food categories
(Bocherens and Drucker 2003). As a consequence, the actual
isotope composition of food products is the main factor of C
isotope variations in the human body. In the case of N iso-
topes, an isotope fractionation of 3 to 5 %o between the bone
collagen and the food product can be observed, and this sig-
nificant increase can therefore be used as an indicator of the
trophic level (Hedges and Reynard 2007). An important step
for the calibration of new dietary tracers is the investigation of
the existence of a trophic level effect, as well as the identifi-
cation of food categories with a specific isotope composition.

Trophic level effect

The existence of a trophic level effect has been demonstrated
for most of the non-traditional isotopic systems studied so far:
Ca (Clementz et al. 2003; DePaolo 2004; Heuser et al. 2011;
Martin et al. 2015a), Mg (Martin et al. 2014; Martin et al.
2015b), Sr (Knudson et al. 2010; Tiitken et al. 2015), Zn
(Van Heghe et al. 2012; Costas-Rodriguez et al. 2014,
Jaouen et al. 2016a, 2016b) and Fe (Walczyk and von
Blanckenburg 2002; Walczyk and von Blanckenburg 2005;
Jaouen et al. 2013b; von Blanckenburg et al. 2013). For Ca,
this pattern is not systematically observed (Melin et al. 2014).
This trophic level effect can correspond to an enrichment in
light isotopes through the trophic chain (like for C and N
isotopes) or a depletion. Enrichment in light isotopes can also
be observed for elements such as Ca, Fe and Sr but not for Mg,

2 Bioavaibility is potential absorption of a chemical species as a function of
external factors such as the food matrix and the chemical form of the element
in question.

Cu and Zn (Fig. 3, Tiitken et al. 2015). The case of Zn is very
peculiar: as mentioned before, a plant-based diet seems to
trigger the preferential intestinal absorption of Zn heavy iso-
topes, whereas no fractionation is expected in a meat-based
diet, due to a quantitative absorption of the element
(Lonnerdal 2000; Jaouen et al. 2016a, 2016b). However, be-
cause animal muscles are depleted in heavy Zn isotopes com-
pared to the bulk isotope composition of the body, body tis-
sues of meat consumers have lower isotope compositions than
those of their prey (Jaouen et al. 2016a, 2016b, Fig. 3).
Similarly, von Blanckenburg et al. (2013) have shown that
vegetarian diets are associated with a Fe isotopic fractionation
factor 1.5 times higher than that of omnivore diets, but in this
case, the light isotopes are preferentially absorbed. Because
the Fe isotope composition of vegetarians’ diet is generally
much higher than that of omnivores, the blood isotope com-
positions of these two groups are similar and cannot be dis-
tinguished (Van Heghe et al. 2012; von Blanckenburg et al.
2013). It should be noted that ovo-lacto-vegetarian and omni-
vore diets both mix animal and plant products. The difference
reported between herbivore and carnivore Fe isotope compo-
sitions could therefore be due to pure meat and plant-based
diets. Mercury isotopes, a system not yet investigated in ar-
chaeological materials, also show a preferential selection for
light isotopes by living organisms. Laffont et al. (2009) report-
ed enrichment of 0.5 %o relative to the atomic mass when
comparing 6°°*Hg values between fish and humans, and
Gehrke et al. (2011) observed an enrichment of about 0.6 %o
between fish and sediments (which contain the primary source
of dietary Hg). As expected, the range of fractionation within a
trophic chain is about 10 times smaller for alkaline earth and
transition metals than for lighter elements like nitrogen and
carbon isotopes (Fig. 3).

Traceability of food categories
Plant consumption

The existence of isotope variability amongst plants has
been documented for Ca (von Blanckenburg et al. 2009;
Hindshaw et al. 2013), Cu (Weinstein et al. 2011; Jouvin
et al. 2012), Fe (Guelke and von Blanckenburg 2007; von
Blanckenburg et al. 2009), Mg (Black et al. 2008) and Zn
(Weiss et al. 2005; Viers et al. 2007; Moynier et al. 2009;
Aucour et al. 2011; Jouvin et al. 2012). Isotopic fraction-
ation occurs within a plant, leading to different isotopic
compositions between the roots, stems and leaves.
Therefore, we can expect isotopic differences between
browsers (which have a leaf-based diet) and grazers (which
mostly feed on grasses). So far, this difference has been
observed for Mg (Martin et al. 2015b) and Zn isotopes
(Jaouen et al. 2016a). Significant differences have also
been observed in the Fe isotope composition of plants
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Traditional stable isotopes
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Fig. 3 Trophic level effect on classic and non-traditional isotope
compositions. Blue colours correspond to a marine environment. Black
and grey correspond to two different terrestrial food webs. After
McConnaughey and McRoy (1979) and Schoeninger and DeNiro
(1984) (C isotopes), Minagawa and Wada (1984), Kelly (2000) and

using a different strategy for Fe mobilization and uptake
from the soils (Guelke and von Blanckenburg 2007). This
strategy is confined to grasses, whereas the preceding strat-
egy is used by all other types of plants (Marschner and
Rombheld 1994). The plants using the first strategy, such
as vegetables, usually show lower 6°°Fe values relative to
plants using the second strategy, such as crops. The Fe
isotopic signature of the consumption of only one of these
two plant types has yet been investigated.

@ Springer

Schoeninger and DeNiro (1984) (N isotopes), Nehlich (2015) (S
isotopes), Skulan and DePaolo (1999), Clementz et al. (2003) and
DePaolo (2004) (Ca isotopes) and Jaouen et al. (2013a, 2016a, 2016b)
(Cu, Fe and Zn isotopes) and Martin et al. (2014, 2015b) (Mg isotopes)

Bone consumption

Isotopic compositions of body tissues are highly variable
within an organism (Skulan and DePaolo 1999; Walczyk
and von Blanckenburg 2005; Balter et al. 2010; Balter et al.
2013; Moynier et al. 2013; Balter and Vigier 2014).
Consequently, the consumption of specific organs or tissues
could impact the isotopic signature of carnivore body tissues.
Bones are enriched in Zn heavy isotopes and Ca light isotopes
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relative to muscles. It seems that the bone consumption occur-
ring in some carnivore species, such as hyenas, impacts the
isotopic signature of their bones and teeth, making them dis-
tinguishable from pure meat-feeders (Tiitken et al. 2015;
Jaouen et al. 2016a). However, these recent findings need
further investigation to be confirmed.

Dairy consumption

Most dietary Ca comes from dairy products and vegeta-
bles, so meat and water can be considered negligible
sources (Chu et al. 2006; Heuser and Eisenhauer 2010).
In 2006, Chu et al. (2006) analysed herbivore milk and
discovered very low §*¥**Ca values, depleted by about
0.5 %o relative to the diet of these animals. They also
analysed dairy products such as curd and whey and
showed that fermentation processes do not induce
significant isotopic fractionation. They suggested that Ca
isotopes could be used to trace dairy product
consumption. Reynard et al. (2011) tested this hypothesis
by comparing bones from Epipalaeolithic and Mesolithic
sites, where dairy consumption is unlikely, to bones from
a medieval site. They systematically observed an enrich-
ment of human bones in light Ca isotopes compared to the
faunal bones, but the range of fractionation was the same
for each site (0.2-0.4 %o, Reynard et al. 2011). As a re-
sult, the trophic level effect seems to overprint the isotope
signature of dairy product consumption.

Breastfeeding and weaning

The relationship between the breastfed child and the
mother is similar to the prey—predator relationship from
a dietary point of view. The trophic level of the child is
higher than that of the mother until weaning. Following
this idea, numerous studies investigate the breastfeeding
duration in archaeological populations using light stable
isotopes, mostly 6'°N values (Richards et al. 2002; Fuller
et al. 2006; Herrscher 2013), but also with 6'°C and §**S
(Wright and Schwarcz 1998; Richards et al. 2002;
Nehlich et al. 2011). These analyses are carried out on
bone proteins, which are not always preserved. As a con-
sequence, major elements contained in the mineral phase
are of great concern for weaning pattern assessment.
Attempts have been performed using O isotopes on dental
enamel carbonates but provided contradictory results
(Wright and Schwarcz 1998; Williams et al. 2005;
Herrscher 2013). Non-traditional isotopes could therefore
be of interest for weaning age assessment. As mentioned
before, milk also has low 5*¥42Ca values. Human milk is
no exception as it corresponds to the lowest **Ca/*’*Ca
ratios measured in biological material alongside bones
(Chu et al. 2006; Reynard et al. 2010). It has therefore

been suggested that Ca isotopes could be used as weaning
indicators (Chu et al. 2006). Reynard et al. (2013) tested
this assumption using human archaeological populations
from the Turkish Neolithic site Asikli Hoylik and skele-
tons from Christ Church, Spitalfields, buried during the
eighteenth century. At Asikli Hoytik, Ca isotope ratios in
milk-consuming infants and juveniles were lower than
those of adults, as expected. Also, 5420 correlates to
5N values. However, at Spitalfields, no significant dif-
ferences between age group and no correlation with tradi-
tional stable isotopes have been observed (Reynard et al.
2013). Wright (2014) observed a weaning pattern in sheep
tooth enamel by comparing the Ca isotope compositions
of modern teeth formed successively during their infancy.
These contradicting results remain unexplained. More
work is needed to understand the impact of diet and me-
tabolism on Ca isotopes in the human body, in order to
fully recognize their potential for archaeological studies.
Some efforts have however already been made by com-
bining isotope analyses with box models (Skulan and
DePaolo 1999; Heuser and Eisenhauer 2010). The results
shed light on the fundamental role of both mineral bone
balance and Rayleigh type Ca isotope fractionation in the
kidneys on Ca isotope compositions of body tissues.

Environmental context and non-traditional isotope
compositions

Assessing the interpopulation variability is a crucial step in
non-traditional isotope studies in a bioarchacological perspec-
tive. High variability between different sites opens up possi-
bilities for developing mobility proxies. Two factors are likely
to generate isotopic variations in soils: (1) the local geology
and (2) environmental processes related to the vegetation, wa-
ter circulation and climate.

Differences between the isotopic composition of animal
or human remains coming from different locations have
been documented for Ca (Reynard et al. 2010), Cu
(Jaouen et al. 2013b), Mg (Martin et al. 2014) and Sr
(stable isotopes, Knudson et al. 2010) (Figs. 3 and 4). On
the other hand, Fe isotopic composition of animal and hu-
man remains seems to be homogenous wherever the prov-
enance (Jaouen et al. 2013b). This is also true for Fe iso-
topes in human blood (Jaouen et al. 2013a), with the ex-
ception of a Thai female population, which exhibits blood
Fe isotope compositions lower than expected (Fig. 4, Hotz
and Walczyk 2013). The origin of this difference is unclear.
The impact of the environmental context on Zn isotope
compositions of a food web is also unclear, albeit
suspected (Jaouen et al. 2013b; Jaouen et al. 20164,
2016b). Consequently, the application of non-traditional
analyses for dietary reconstruction will require systematic
analyses of the associated fauna or soils.
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2013, 2014), Albaréde et al. (2011), Jaouen et al. (2013a), Ohno et al.

Metabolism and non-traditional isotope compositions

Elements with non-traditional isotopic composition can play a
central role in human metabolism. Calcium is the main con-
stituent of bones and teeth, and Mg contributes to their min-
eralization. Both elements play a crucial role in many impor-
tant physiological functions such as muscular contraction and
neurotransmission (Nadler and Rude 1995). Iron and Cu are
involved in bone formation and maintenance, electron and
oxygen transfer and erythropoiesis amongst other things
(Arredondo and Nunez 2005). Zinc is present in more than
300 metalloproteins, most of which have enzymatic or struc-
tural properties (Cousins 1985). Being essential nutrients, the
concentrations of these elements are finely regulated by the
organism, if only to remain in the interval defined by deficien-
cy and toxicity levels. Conversely, isotope abundances a priori
do not undergo regulation mechanisms in mammalian bodies.
They can therefore provide additional physiological
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(2005), Walczyk and von Blanckenburg (2002) and Hotz and Walczyk
(2013) (Fe isotopes) and Van Heghe et al. (2012, 2013, 2014), Costas-
Rodriguez et al. (2014), Larner et al. (2015), Albaréde et al. (2011),
Jaouen et al. (2013a), Ohno et al. (2004) and Stenberg et al. (2005) (Zn
isotopes). Delta values are expressed relative to NIST 915a, IRMM-014,
NIST 976 and JIMC-Lyon 3-0749 standards, respectively

information on elemental metabolism under normal or patho-
logical conditions.

Metabolic dysregulations

Non-traditional isotopes have recently been the subjects
of many studies because of their potential to trace meta-
bolic diseases such as hemochromatosis (Krayenbuehl
et al. 2005; Stenberg et al. 2005, Walczyk and von
Blanckenburg 2005), iron deficiency (Van Heghe et al.
2013), Wilson disease (Aramendia et al. 2013; Resano
et al. 2013), cancers (Balter et al. 2015; Larner et al.
2015; Télouk et al. 2015; Bondanese et al. 2016;
Chamel et al. 2016) or bone mineral balance (Skulan
et al. 2007; Heuser and Eisenhauer 2010; Morgan et al.
2011; Anbar et al. 2013). The potential of these isotopes
as a new diagnostic tool in biomedicine has recently been
fully described in four reviews (Albaréde et al. 2016;



Archaeol Anthropol Sci (2017) 9:1389-1404

1399

Costas-Rodriguez et al. 2016; Heuser 2016; Larner 2016).
Even if it has not yet been investigated, mineralized tis-
sues are likely to record isotopic signatures of these pa-
thologies. Indeed, it has already been shown that they can
trace the Fe, Cu and Zn isotopic signatures of sex (Jaouen
et al. 2012) and diet (Jaouen et al. 2016a, 2016b), previ-
ously observed in blood (Walczyk and von Blanckenburg
2002; Albarede et al. 2011; Costas-Rodriguez et al. 2014).
Such identification of diseases would open up a new field
in palacoepidemiology and would have the potential to
trace the emergence of specific metabolic diseases.

Sex-dependent isotopic differences

The first study published on Fe isotopes in human blood
highlighted different isotopic compositions between men
and women (Walczyk and von Blanckenburg 2002). Later, it
was shown that these differences also exist for Cu isotopes but
not for Zn isotopes (Albarede et al. 2011) and can be seen in
human bones (Jaouen et al. 2012). These sex isotope differ-
ences could be due to a metabolic response to the menstrual
iron losses: the mechanism involved could be the higher Fe
intestinal absorption of women, the mobilization of liver Fe
stores, which are enriched in heavy Fe isotopes, or a combi-
nation of the two (Hotz et al. 2012; Jaouen and Balter 2014).
As a consequence, the sex isotope differences disappear after
menopause (Jaouen and Balter 2014; Van Heghe et al. 2014),
following different timelines on the turnover of the element: a
couple of months for Cu and several years for Fe.
Surprisingly, the study of a Yakut population showed no dif-
ferences between pre- and post-menopausal women for Fe and
the opposite trend for Cu compared to European populations
(Jaouen et al. 2013a). This unique observation remains unex-
plained. Interestingly, an isotopic difference between sexes
has also been highlighted for Ca isotopes in sheep bones
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Fig. 5 Correlation between 5%Zn values from Jaouen et al. (2013b) to
626Mg and Sr/Ca ratios from Martin et al. (2014). The two studies were
performed on several identical specimens coming from two South

2.0

(Reynard et al. 2010). The explanation is that the females
suckled their lambs, thus altering their Ca bone balance.
This pattern was also observed in human bones, though it
was not significant. Besides, the number of times a woman
has given birth is not correlated to the Ca isotope composition
of her bones (Reynard et al. 2013). Further investigations did
not confirm this trend, but the sex ratios of the studied popu-
lations were often imbalanced (Fig. 4).

Perspectives in non-traditional isotope studies
Comparison to classic isotope tracers in archaeology

Non-traditional isotopes are likely to provide complementary
information to classic isotopes or other chemical tracers,
which could help access high-resolution information on diet
and mobility of past populations. Melin et al. (2014), Martin
et al. (2015b) and Jaouen et al. (2016b) showed that the com-
bination of Ca, Mg or Zn (respectively) with C isotopes in
bioapatite could work in a similar way to N and C isotopes
when the collagen is not preserved. Thus, information on the
diet of fossil remains could be retrieved in dental enamel,
which can be preserved for several millions of years, as shown
by Sr radiogenic isotope studies in South African early
hominins (Copeland et al. 2011, Balter et al. 2012) and even
Mesozoic animals (e.g. Martin et al. 2016). This could also
apply to Zn, which is as concentrated as Sr in teeth. Knowing
that mobility can generate additional variation to diet on non-
traditional isotopic compositions, it would be interesting to
analyse whether individuals are locals or not, using Sr radio-
genic isotopic ratios. In addition, Martin et al. (2014, 2015b)
showed the potential of combining Mg isotopes to trace ele-
ments studies, such as Sr/Ca ratios, which is related to the
trophic level via the process of biopurification. As they
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worked on several specimens that we previously analysed for
Zn isotopes (Jaouen et al. 2013b), we take the opportunity of
this review to compare the 5°°Zn values, the 526Mg values and
Sr/Ca ratio obtained by Martin et al. (2014). Magnesium iso-
topes seem to be more affected by the environmental context
than Zn isotopes (Fig. 5), but within Kruger Park, some of the
Zn and Mg isotopic values correlate, which might indicate that
both tracers are similarly responding to the trophic level effect.
The fact that both non-traditional tracers also correlate with St/
Ca ratios could be additional evidence in favour of this con-
clusion (Fig. 5, Martin et al. 2014). However, in the case of
Zn, the sample size is low (Fig. 5). Further work is therefore
needed to confirm this pattern.

Other candidates for non-traditional isotope
archaeological tracers

Some other elements have been investigated in mammalian
tissues but not yet in an archaeological perspective. Mercury
isotopes have been analysed in human hair and used to trace
the origin of mercury in the diet (gold mining) but also the
geographic origin of the fish eaten (freshwater, coastal or plain
ocean) (Laffont et al. 2009, 2011; Li et al. 2014). Lithium
isotopes have not yet been measured in human tissues, but it
has been shown that these isotopes fractionate between the
different organs of mammals (Balter and Vigier 2014), which
is promising for their use as a future new dietary tracer.
Analytical protocols for non-traditional isotope compositions
of other elements (e.g. cadmium, silicon, selenium) have been
developed in biogeochemistry but have not yet been applied to
mammalian tissues.

Concluding remarks

Non-traditional isotopes have demonstrated their promising
potential for archaeology, especially because they can be used
to trace the diet and mobility of ancient hominins, even when
collagen is not preserved. The main information provided by
these tracers is summarized in Table 2. However, this field in
still in its infancy and further work is needed to calibrate the
tracers and to start routinely using them in the archaeological
sciences. The term “non-traditional” will probably soon be
outdated. It might therefore be interesting to rename these
isotopes in the future, possibly according to their group in
the periodic classification.
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