CHEMISTRY A European Journal

Supporting Information

Total Synthesis of Dansylated Park's Nucleotide for HighThroughput MraY Assays

Stephanie Wohnig, ${ }^{[a]}$ Anatol P. Spork, ${ }^{[a, b]}$ Stefan Koppermann, ${ }^{[a]}$ Gottfried Mieskes, ${ }^{[b]}$ Nicolas Gisch, ${ }^{[c]}$ Reinhard Jahn, ${ }^{[b]}$ and Christian Ducho* ${ }^{[a]}$

Table of contents

Syntheses of precursor compounds.. S2
Sequence of the mraY gene.. S33
${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectra of synthetic compounds... S34
References.. S59

Syntheses of precursor compounds

General methods. Compounds $\mathbf{8},{ }^{[S 1]} \mathbf{9},{ }^{[S 2]} \mathbf{2 2}{ }^{[S 3]}$ and $\mathbf{S 3}{ }^{[54]}$ were prepared according to established procedures. All other chemicals were purchased from standard suppliers. High pressure hydrogenation reactions were carried out with a Parr hydrogenation apparatus. Reactions involving oxygen- and/or moisture-sensitive reagents were carried out under an atmosphere of argon using anhydrous solvents. Anhydrous solvents were obtained in the following manner: THF was dried over sodium/benzophenone and distilled, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried over CaH_{2} and distilled, MeOH was dried over activated molecular sieves (3 A) and degassed, MeCN was dried over $\mathrm{P}_{2} \mathrm{O}_{5}$ and distilled, pyridine was dried over CaH_{2} and distilled, DMF was dried over activated molecular sieves $(4 \AA)$ and degassed. All other solvents were of technical quality and distilled prior to their use, and deionized water was used throughout. Column chromatography was carried out on silica gel $60(0.040-0.063 \mathrm{~mm}, 230-400$ mesh ASTM, VWR) under flash conditions. TLC was performed on aluminium plates precoated with silica gel $60 \mathrm{~F}_{254}$ (VWR). Visualization of the spots was carried out using UV light (254 nm and 366 nm) and/or staining under heating ($\mathrm{H}_{2} \mathrm{SO}_{4}$ staining solution: 4 g vanillin, 25 mL conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, 80 \mathrm{~mL} \mathrm{AcOH}$ and $680 \mathrm{~mL} \mathrm{MeOH} ; \mathrm{KMnO}_{4}$ staining solution: 1 g $\mathrm{KMnO}_{4}, 6 \mathrm{~g} \mathrm{~K} \mathrm{~K}_{2} \mathrm{CO}_{3}$ and 1.5 mL 1.25 M NaOH solution, all dissolved in $100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$; ninhydrin staining solution: 0.3 g ninhydrin, 3 mL AcOH and 100 mL 1-butanol). $300 \mathrm{MHz}-$ and $500 \mathrm{MHz}-{ }^{1} \mathrm{H}$ and 75 MHz - and $126 \mathrm{MHz}-{ }^{13} \mathrm{C}$ as well as $282 \mathrm{MHz}-{ }^{19} \mathrm{~F}$ NMR and $121 \mathrm{MHz}-{ }^{31} \mathrm{P}$ NMR spectra were recorded on Varian MERCURY 300, UNITY 300, INOVA 500, Bruker AVANCE 300 and AVANCE 500 spectrometers. All ${ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$ and ${ }^{31} \mathrm{P}$ NMR spectra are ${ }^{1} \mathrm{H}$-decoupled. All spectra were recorded at room temperature except of samples in DMSO- d_{6} and $\mathrm{D}_{2} \mathrm{O}$ (standard $35^{\circ} \mathrm{C}$) and where indicated otherwise and were referenced internally to solvent reference frequencies wherever possible. Chemical shifts (δ) are quoted
in ppm, and coupling constants (J) are reported in Hz. Assignment of signals was carried out using ${ }^{1} \mathrm{H},{ }^{1} \mathrm{H}$-COSY, HSQC and HMBC spectra obtained on the spectrometers mentioned above. Low resolution ESI mass spectrometry was performed on a Varian MAT 311 A spectrometer operating in positive ionization mode. High resolution (HR) ESI mass spectrometry was carried out on a Bruker microTOF spectrometer or a Bruker 7 T FTICR APEX IV spectrometer. Melting points (mp) were measured on a Büchi instrument and are not corrected. Optical rotations were recorded on a Perkin-Elmer polarimeter 241 with a Na source using a 10 cm cell (concentrations in $\mathrm{g} / 100 \mathrm{~mL}$). Infrared spectroscopy (IR) was performed on a Perkin-Elmer Vektor 22 spectrometer with solids being measured as KBr pills or on a Jasco FT/IR-4100 spectrometer equipped with an integrated ATR unit (GladiATR ${ }^{\mathrm{TM}}$, PIKE Technologies). Wavenumbers (v) are quoted in cm^{-1}. UV spectroscopy was carried out on a Perkin-Elmer Lambda 2 or on a Jasco V-630 spectrometer. Wavelengths of maximum absorption $\left(\lambda_{\max }\right)$ are reported in nm with the corresponding logarithmic molar extinction coefficient $\left(\log \varepsilon, \varepsilon / \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$ given in parenthesis.

HPLC methods. Analytical HPLC was performed on a VWR-Hitachi system equipped with an L-2300 pump, an L-2200 autosampler, an L-2300 column oven ($24^{\circ} \mathrm{C}$), an L-2455 Diode Array Detector (DAD) and a LiChroCart ${ }^{\text {TM }}$ column ($4 \times 125 \mathrm{~mm}$) containing reversed phase silica gel Purospher ${ }^{\mathrm{TM}}$ RP18e $(5 \mu \mathrm{~m})$ purchased from VWR. Method: eluent A water $(50 \mathrm{mM}$ $\mathrm{HOAc}_{\mathrm{NEt}}^{3}$ (1:1)); eluent B MeCN; 0-5 min gradient of B (10-30\%), 5-25 min gradient of B (30-70\%), 25-30 min gradient of B (70-100\%), 30-35 min $100 \% \mathrm{~B}, 35-40 \mathrm{~min}$ gradient of B (100-10\%), 40-45 min 10% B; flow $0.5 \mathrm{~mL} / \mathrm{min}$.

Semi-preparative HPLC was carried out on a VWR-Hitachi system equipped with an L-2300 pump, an L-2200 autosampler, an L-2300 column oven $\left(24^{\circ} \mathrm{C}\right)$, an L- 2455 Diode Array Detector (DAD), an L-2485 Fluorescence Detector (FLD), and a LiChroCart ${ }^{\text {TM }}$ column
$(10 \times 250 \mathrm{~mm})$ containing reversed phase silica gel Purospher ${ }^{\mathrm{TM}}$ RP18e ($5 \mu \mathrm{~m}$) purchased from VWR. Method: eluent A water ($10 \mathrm{mM} \mathrm{HOAc}-\mathrm{NEt}_{3}(1: 1)$), eluent $\mathrm{B} \mathrm{MeCN} ; 0-20 \mathrm{~min}$ gradient of $B(10-30 \%), 20-20.1 \mathrm{~min}$ gradient of $B(30-100 \%)$, 20.1-25 min $100 \% \mathrm{~B}$, 25-25.1 min gradient of B (100-10\%), 25.1-35 min 10% B; flow $5 \mathrm{~mL} / \mathrm{min}$. This method was used for the purification of the crude product of semi-synthetically obtained $\mathbf{3}$.

Preparative HPLC was carried out on a Jasco system equipped with a DG-2080-53 degasser, two PU-2080 Plus pumps, a UV-2075 Plus UV/Vis detector (detection at 260 nm) and a LiChroCart ${ }^{\text {TM }}$ column ($20 \times 250 \mathrm{~mm}$) containing reversed phase silica gel Purospher ${ }^{\mathrm{TM}}$ RP18e $(10 \mu \mathrm{~m})$ purchased from VWR. Method: eluent A water ($50 \mathrm{mM} \mathrm{HOAc}-\mathrm{NEt}_{3}(1: 1)$), eluent B MeCN; 0-20 min 20% B, 20-25 min gradient of B (20-100\%), 25-35 min 100% B, 35-40 min gradient of B (100-10\%); flow $15 \mathrm{~mL} / \mathrm{min}$. This method was used for a first purification of the crude product of synthetically obtained 3. Subsequently, pure 3 was obtained by preparative HPLC carried out on a Hitachi system equipped with an L-7150 pump, an L-7614 mixer, an L-7400 detector, and a column ($21 \times 250 \mathrm{~mm}$) containing reversed phase silica gel Nucleodur ${ }^{\text {TM }}$ 100-10 C18ec $(10 \mu \mathrm{~m})$ purchased from Macherey-Nagel. Method: eluent A water ($50 \mathrm{mM} \mathrm{HOAc}-\mathrm{NEt}_{3}(1: 1)$), eluent B MeCN; 0-5 min gradient of B (10-30\%), 5-25 min gradient of $\mathrm{B}(30-70 \%), 25-30 \mathrm{~min}$ gradient of $\mathrm{B}(70-100 \%), 30-35 \mathrm{~min} 100 \% \mathrm{~B}, 35-40 \mathrm{~min}$ gradient of $\mathrm{B}(100-10 \%), 40-45 \mathrm{~min} 10 \% \mathrm{~B}$; flow $10 \mathrm{~mL} / \mathrm{min}$.

Synthesis of MurNAc phosphate derivative 5. The synthesis of $\mathbf{5}$ from N-acetylglucosamine 4, based on the route reported by Hitchcock et al., ${ }^{[55]}$ is summarized in the scheme given below.

1-O-Benzyl- N -acetyl- α-D-glucosamine (S1)

S1

To a suspension of N-acetylglucosamine $4(10.0 \mathrm{~g}, 45.2 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in benzyl alcohol (125 mL), acetyl chloride ($10.9 \mathrm{~mL}, 12.0 \mathrm{~g}, 152 \mathrm{mmol}, 3.4 \mathrm{eq}$.) was added dropwise at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred for 30 min at rt and further stirred for 4 h at $70^{\circ} \mathrm{C}$. At $0^{\circ} \mathrm{C}$, NaHCO_{3} was added until pH 7 was achieved. The suspension was filtered through a short pad of Celite ${ }^{\mathrm{TM}}$ and further washed with $\mathrm{MeOH}(200 \mathrm{~mL})$. The solvent was removed under reduced pressure and diethyl ether (200 mL) was added to the residue. The precipitate was filtered and dried in vacuo. Recrystallization from EtOH yielded $\mathbf{S 1}(12.1 \mathrm{~g}, 86 \%)$ as a
colorless solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+115.5(\mathrm{c}=0.53, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=7.39-$ $7.24(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 4.84(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.74\left(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}\right), 4.49(\mathrm{~d}$, $\left.J=12.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}\right), 3.89(\mathrm{dd}, J=10.7 \mathrm{~Hz}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.84-3.81(\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{H}-3$), 3.74-3.63 (m, 3H, H-4, H-5, H-6a), 3.40-3.34 (m, 1H, H-6b), 1.94 (s, 3H, acetyl- CH_{3}) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=173.65$ (acetyl-C=O), 138.98 (Ar-C), 129.36 (Ar-CH), 129.23 (Ar-CH), 128.80 (Ar-CH), 97.44 (C-1), 74.05 (C-4), 72.63 (C-3), 72.36
 3029, 2934, 1650, 1636, 1552, 1454, 1377, 1122, 1091, 1038, 734, $695 \mathrm{~cm}^{-1} ;$ MS (HR-ESI): $m / z:$ calcd for $334.1261[\mathrm{M}+\mathrm{Na}]^{+}$; found: 334.1266.

1-O-Benzyl-4,6-O-benzylidene- N -acetyl- α-D-glucosamine (S2) ${ }^{[\mathrm{S6}]}$

S2

1-O-benzyl- N-acetyl- α-d-glucosamine $\mathbf{S 1}$ ($1.03 \mathrm{~g}, 3.21 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was coevaporated with dry EtOH (2 mL) and dry toluene (6.5 mL). Starting material $\mathbf{S 1}(998 \mathrm{mg}, 3.20 \mathrm{mmol}$) was then dissolved in dry DMF (3 mL) and dry dioxane (3 mL), and triethyl orthoformate ($1.60 \mathrm{~mL}, 1.24 \mathrm{~g}, 9.60 \mathrm{mmol}, 3.0 \mathrm{eq}$.$) , benzaldehyde (1.30 \mathrm{~mL}, 1.37 \mathrm{~g}, 12.9 \mathrm{mmol}, 4.0 \mathrm{eq}$. and p-toluenesulfonic acid ($166 \mathrm{mg}, 0.96 \mathrm{mmol}, 0.3 \mathrm{eq}$.) were added subsequently. The reaction mixture was stirred for 20 h at $\mathrm{rt} . \mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ was added to the suspension and stirred for 1 h at $0^{\circ} \mathrm{C}$. The colorless solid was filtered off, washed with diethyl ether (20 mL) and dried in vacuo to yield $\mathbf{S} \mathbf{S}(1.03 \mathrm{~g}, 80 \%)$ as a colorless solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+86.0(\mathrm{c}=1.1$, DMSO); ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=7.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), 7.47-7.28 (m, $10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}), 5.15(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{OH}), 4.83(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-1), 4.71\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}-\mathrm{CH}_{2}\right), 4.50\left(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{CH}_{2}\right), 4.15(\mathrm{~d}$,
$\left.J=4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{G}_{\mathrm{a}}\right), 3.93-3.84(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 3.80-3.67\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-5, \mathrm{H}-\mathrm{G}_{\mathrm{b}}\right), 3.55-3.50$ (m, 1H, H-4), $1.87\left(\mathrm{~s}, 3 \mathrm{H}\right.$, acetyl- $\left.\mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta=169.17$ (acetyl-C=O), 137.52 (Ar-C), 137.46 (Ar-C), 128.61 (Ar-CH), 128.00 (Ar-CH), 127.76 ($\mathrm{Ar}-\mathrm{CH}$), 127.41 ($\mathrm{Ar}-\mathrm{CH}$), 127.32 ($\mathrm{Ar}-\mathrm{CH}$), 126.16 ($\mathrm{Ar}-\mathrm{CH}$), 100.71 ($\mathrm{Ph}-\mathrm{CH}$), 96.83 (C-1), 81.98 (C-4), $68.53\left(\mathrm{Bn}-\mathrm{CH}_{2}\right), 67.91$ (C-6), 67.18 (C-3), 62.75 (C-5), 54.15 (C-2), 22.47 (acetyl-CH3) ppm; IR: $v=3425,3292,1650,1556,1453,1372,1130,1090,1040,1022$, 1001, 749, 734, $696 \mathrm{~cm}^{-1}$; MS (HR-ESI): $m / z:$ calcd for $422.1574[\mathrm{M}+\mathrm{Na}]^{+}$; found: 422.1583.

1-O-Benzyl-4,6-O-benzylidene-3-O-((R)-propion-2-yl)-N-acetyl- α-D-glucosamine (S4) ${ }^{[57]}$

S4
The reaction was carried out under an inert atmosphere of argon. To a solution of 1-O-benzyl-4,6-O-benzylidene- N -acetyl- α-D-glucosamine $\mathbf{S 2}$ ($3.32 \mathrm{~g}, 8.31 \mathrm{mmol}, 1.0$ eq.) in dry dioxane (200 mL) was added NaH (60% dispersion in oil, $588 \mathrm{mg}, 24.5 \mathrm{mmol}, 2.9 \mathrm{eq}$.) at $60^{\circ} \mathrm{C}$. The reaction mixture was then heated under reflux for 5 min . (S)-2-chloropropionic acid $\mathbf{S 3}{ }^{[S 4]}$ ($4.98 \mathrm{~g}, 41.7 \mathrm{mmol}, 5.7 \mathrm{eq}$.) was added at $60^{\circ} \mathrm{C}$ and the reaction mixture was stirred for 30 min . A second portion of NaH (60% dispersion in oil, $2.35 \mathrm{~g}, 98.1 \mathrm{mmol}, 12 \mathrm{eq}$.) was added and the mixture was stirred for 16 h at $60^{\circ} \mathrm{C}$. The reaction was quenched by adding ice water (8.3 mL). At $0^{\circ} \mathrm{C}$, the reaction mixture was acidified with ice-cold aq. $\mathrm{HCl}(6 \mathrm{M})$ until pH 2 and poured into ice water (400 mL). The precipitate was filtered off, washed with water $(3 \times 50 \mathrm{~mL})$ and petroleum ether $(2 \times 50 \mathrm{~mL})$ and dried in vacuo to yield $\mathbf{S 4}(3.70 \mathrm{~g}, 94 \%)$ as a colorless solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+101.7$ ($\mathrm{c}=1.2$, DMSO); ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=$ $12.79\left(\mathrm{~s}_{\mathrm{br}}, 1 \mathrm{H}, \mathrm{COOH}\right), 7.94(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.45-7.26(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}), 5.69(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{Ph}-\mathrm{CH}), 5.07(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.70\left(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2}-\mathrm{CH}_{2}\right), 4.50(\mathrm{~d}$,
$\left.J=12.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{-\mathrm{CH}_{2}}\right), 4.30(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$, propionyl-CH$), 4.15(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, H-6 $)_{\mathrm{a}}$, 3.87-3.73 (m, 5H, H-2, H-3, H-4, H-5, H-6 b_{b}), 1.86 ($\mathrm{s}, 3 \mathrm{H}$, acetyl- CH_{3}), 1.29 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}$, propionyl- CH_{3}) ppm; ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}\right.$, DMSO- d_{6}): $\delta=174.94$ (acetyl$\mathrm{C}=\mathrm{O}), 169.07(\mathrm{COOH}), 137.38$ (Ar-C), 137.35 (Ar-C), 128.53 (Ar-CH), 128.02 (Ar-CH), 127.91 (Ar-CH), 127.41 (Ar-CH), 127.35 (Ar-CH), 125.60 (Ar-CH), 100.14 (Ph-CH), 96.67 (C-1), $81.46(\mathrm{C}-4), 74.94,74.92\left(\mathrm{C}-3\right.$, propionyl-CH), $68.90\left({\left.\mathrm{Bn}-\mathrm{CH}_{2}\right), 67.77(\mathrm{C}-6), 62.77}\right.$ (C-5), $53.44(\mathrm{C}-2), 22.53\left(\right.$ acetyl- $\left.\mathrm{CH}_{3}\right), 18.60$ (propionyl- $\left.\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR: $v=3299,3035$, 2926, 1658, 1561, 1123, 1091, 1080, 1055, 1023, $696 \mathrm{~cm}^{-1}$; MS (HR-ESI): $m / z: ~ c a l c d . ~ f o r ~$ $472.1966[\mathrm{M}+\mathrm{H}]^{+}$; found: 472.1962 .

1-O-Benzyl-4,6-O-benzylidene-3- O-((R)-phenylsulfonylethyl-propion-2-yl)-N-acetyl-α-D-glucosamine (S5)

The reaction was carried out under an inert atmosphere of argon. To a suspension of 1-O-benzyl-4,6-O-benzylidene-3- $O-((R)$-propion-2-yl)- N-acetyl- α-D-glucosamine $\mathbf{S 4}$ (1.77 g , $3.75 \mathrm{mmol}, 1.0 \mathrm{eq}$.$) in dry \mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added $\mathrm{HOBt}(554 \mathrm{mg}, 4.10 \mathrm{mmol}, 1.1 \mathrm{eq}$.) and $\mathrm{EDC} \cdot \mathrm{HCl}(787 \mathrm{mg}, 4.10 \mathrm{mmol}, 1.1 \mathrm{eq}$.$) . The mixture was stirred for 45 \mathrm{~min}$ at rt . Subsequently, 2-phenylsulfonyl ethanol ($764 \mathrm{mg}, 4.10 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added dropwise and the reaction mixture was stirred for 16 h at rt . The reaction mixture was washed with water (50 mL), aq. $\mathrm{HCl}(10 \%, 50 \mathrm{~mL})$, water $(50 \mathrm{~mL})$ and sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(50 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by column chromatography
$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 98: 2 \rightarrow 80: 20\right)$ yielded $\mathbf{S 5}(1.52 \mathrm{~g}, 63 \%)$ as a colorless solid. $[\alpha]_{\mathrm{D}}{ }^{25}+86.3(\mathrm{c}=$ 1.0, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.85-7.82(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{CH}), 7.49-7.27(\mathrm{~m}, 14 \mathrm{H}$, Ar-CH, NH), 5.56 (s, 1H, Ph-CH), 5.36 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1$), 4.69 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{Bn}^{-\mathrm{CH}_{2}}$), $4.53\left(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2}-\mathrm{CH}_{2}\right), 4.50-4.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1$ '), $4.22(\mathrm{dd}, J=9.8 \mathrm{~Hz}$, $\left.J=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6_{\mathrm{a}}\right), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, propionyl-CH), 3.94-3.80(m,2H,H-2, H-3), 3.77-3.65 (m, 3H, H-4, H-5, H-6 $), 3.45$ (t, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$), 2.01 (s, 3 H , acetyl- CH_{3}), $1.18\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right.$, propionyl- $\left.\mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=174.10$ (acetyl-C=O), 170.56 (propionyl-C=O), 138.97 (Ar-C), 137.19 (Ar-C), 134.06 (Ar-C), 129.28 (Ar-C), 129.16 (Ar-CH), 128.95 (Ar-CH), 128.27 (Ar-CH), 128.19 (Ar-CH), 127.82 (Ar-CH), 127.80 (Ar-CH), 127.78 (Ar-CH), 127.73 (Ar-CH), 125.79 (Ar-CH), 101.26 (Ph-CH), 97.20 (C-1), 83.21 (C-4), 74.85 (propionyl-CH), $74.81(\mathrm{C}-3), 70.32\left({\left.\mathrm{Bn}-\mathrm{CH}_{2}\right),} 68.91(\mathrm{C}-6), 62.86\right.$ (C-5), 58.32 (C-1'), 54.92 (C-2'), 54.08 (C-2), $23.13\left(\right.$ acetyl- $\left.\mathrm{CH}_{3}\right), 18.40$ (propionyl- CH_{3}) ppm; IR: $v=3313,1755,1653,1373,1305,1145,1119,1085,1053,732,694 \mathrm{~cm}^{-1} ;$ MS (HRESI): m / z : calcd. for $662.2030[\mathrm{M}+\mathrm{H}]^{+}$; found: 662.2038 .

1-O-Benzyl-4,6-O-diacetyl-3-O-((R)-phenylsulfonylethyl-propion-2-yl)-N-acetyl-

 α-D-glucosamine (S6) ${ }^{[S 5]}$

1-O-Benzyl-4,6- O-benzylidene-3- $O-((R)$-phenylsulfonylethyl-propion-2-yl)- N -acetyl-α-D-glucosamine $\mathbf{S 5}$ ($4.16 \mathrm{~g}, 6.51 \mathrm{mmol}, 1.0$ eq.) was dissolved in a mixture of glacial AcOH $(70 \mathrm{~mL})$ and water $(45 \mathrm{~mL})$ and stirred for 45 min at $110^{\circ} \mathrm{C}$. The reaction mixture was cooled
to $0^{\circ} \mathrm{C}$ and the solvent was removed in vacuo. The residue was dissolved in dry pyridine (70 mL) under an inert atmosphere of argon, then $\mathrm{Ac}_{2} \mathrm{O}(25 \mathrm{~mL}, 27.9 \mathrm{~g}, 27.3 \mathrm{mmol}, 4.2 \mathrm{eq}$. and DMAP ($16 \mathrm{mg}, 0.13 \mathrm{mmol}, 0.02 \mathrm{eq}$.) were added and the mixture was stirred for 16 h at rt. The solvent was removed in vacuo, and purification by column chromatography (PE:EtOAc 1:3) yielded $\mathbf{S 6}(3.38 \mathrm{~g}, 82 \%)$ as a colorless oil (mixture of α, β-anomers, $\alpha: \beta$ 6:1). α-anomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.87$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H}-2, \mathrm{Ph}-\mathrm{H}-6$), 7.63 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-\mathrm{H}-4), 7.51(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H}-3, \mathrm{Ph}-\mathrm{H}-5), 7.41(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NH}), 7.31-7.24(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 5.33(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 5.03(\mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{H}-3), 4.61\left(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{CH}_{2}\right), 4.49\left(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Bn}^{2} \mathrm{CH}_{2}\right), 4.53-4.40(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-1$ '), $4.12\left(\mathrm{dd}, J=12.4 \mathrm{~Hz}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{G}_{\mathrm{a}}\right), 4.05(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, propionylCH), 3.94-3.70 (m, 4H, H-2, H-4, H-5, H-6 b_{b}), $3.44(\mathrm{t}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2$ '), $2.05(\mathrm{~s}, 6 \mathrm{H}$, $2 \times O$-acetyl- $\left.\mathrm{CH}_{3}\right), 1.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{N}\right.$-acetyl- $\left.\mathrm{CH}_{3}\right), 1.19\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right.$, propionyl- $\left.\mathrm{CH}_{3}\right) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=173.76$ (N -acetyl-C=O), 170.55 (propionyl-C=O), 170.49 (O-acetyl-C=O), 168.93 (O-acetyl-C=O), 138.87 (Ar-C), 137.08 (Ar-C), 134.01 (Ph-C-4), 129.30 (Ph-C-3, Ph-C-5), 128.26 (Ph-C-2, Ph-C-4), 127.87 (Ar-CH), 127.81 (Ar-CH), 127.76 (Ar-CH), 96.49 (C-1), 75.97 (C-4), 75.03 (propionyl-CH), $71.88(\mathrm{C}-3), 70.34\left(\mathrm{Bn}^{2} \mathrm{CH}_{2}\right)$, 68.10 (C-5), 62.02 (C-6), 58.17 (C-1'), 54.72 (C-2'), 53.76 (C-2), $23.10\left(N\right.$-acetyl- $\left.\mathrm{CH}_{3}\right), 20.87$ $\left(O\right.$-acetyl- $\left.\mathrm{CH}_{3}\right), 20.76\left(\mathrm{O}\right.$-acetyl- $\left.\mathrm{CH}_{3}\right), 18.52$ (propionyl- CH_{3}) ppm; α, β-anomeric mixture: IR: $v=3360,1747,1662,1253,1146,1124,1045,732,693 \mathrm{~cm}^{-1} ;$ MS (HR-ESI): $m / z: c a l c d$. for $658.1929[\mathrm{M}+\mathrm{Na}]^{+}$; found: 658.1927.

4,6-O-Diacetyl-3-O-((R)-phenylsulfonylethyl-propion-2-yl)- N-acetyl- α, β-d-glucosamine

 (S7)

The reaction was carried out under an inert atmosphere of argon. To a solution of 1-O-benzyl-4,6-O-diacetyl-3-O-((R)-phenylsulfonylethyl-propion-2-yl)- N -acetyl- α-D-glucosamine ($48 \mathrm{mg}, 76 \mu \mathrm{~mol}, 1.0$ eq.) in dry EtOAc (0.95 mL) and dry $\mathrm{MeOH}(1.95 \mathrm{~mL})$ were added glacial $\mathrm{AcOH}(0.15 \mathrm{~mL})$ and $\mathrm{Pd}(\mathrm{OH})_{2}(20 \%$ on charcoal, $50 \mathrm{mg}, 0.38 \mathrm{mmol}, 5.0 \mathrm{eq}$.$) . The$ reaction mixture was stirred under H_{2} atmosphere (3 bar) for 48 h at rt . Pyridine (0.3 mL) and silica were added and the solvent was removed in vacuo. Purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 97: 3 \rightarrow\right.$ 95:5) yielded $\mathbf{S 7}(34 \mathrm{mg}, 80 \%)$ as a colorless oil (mixture of α, β-anomers, $\alpha: \beta 6: 1$). α-anomer: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.98$-7.95 (m, 2H, Ph-H-2, Ph-H-6), 7.79-7.74 (m, 1H, Ph-H-4), 7.69-7.64 (m, 2H, Ph-H-3, Ph-H-5), $5.24(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1), 4.95-4.88(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3), 4.55-4.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1 \mathrm{I}^{\prime}\right), 4.17$ (dd, $\left.J=11.7 \mathrm{~Hz}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-\mathrm{G}_{\mathrm{a}}\right), 4.12-3.98\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{H}-5, \mathrm{H}-6_{\mathrm{b}}\right.$, propionyl-CH), 3.82-3.80 (m, 2H, H-2, H-4), 3.67 (t, 2H, J=5.2 Hz, H-2'), 2.10 (s, 3H, O-acetyl- CH_{3}), 2.03 ($\mathrm{s}, 3 \mathrm{H}$, O-acetyl- $\left.\mathrm{CH}_{3}\right), 1.97\left(\mathrm{~s}, 3 \mathrm{H}, N\right.$-acetyl- $\left.\mathrm{CH}_{3}\right), 1.14\left(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right.$, propionyl- $\left.\mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=174.47$ (N-acetyl-C=O), 173.27 (propionyl-C=O), 172.32 (O-acetyl-C=O), 171.16 (O-acetyl-C=O), 140.68 (Ph-C-1), 135.22 (Ph-C-4), 130.49 (Ph-C3, Ph-C-5), 129.10 (Ph-C2, Ph-C6), 92.03 (C-1), 77.82 (C-4), 76.69 (propionyl-CH), 72.86 (C-3), 68.62 (C-5), 63.76 (C-6), 59.54 (C-1'), 55.53 (C-2'), 55.36 (C-2), 23.04 (N-acetyl- CH_{3}), $21.07\left(O\right.$-acetyl $\left.-\mathrm{CH}_{3}\right), 20.76\left(O\right.$-acetyl- $\left.-\mathrm{CH}_{3}\right), 19.09$ (propionyl- $\left.\mathrm{CH}_{3}\right) \mathrm{ppm} ; ~ \alpha, \beta$-anomeric
mixture: IR: $v=3429,2992,1752,1733,1662,1260,1154,1133,1037,732 \mathrm{~cm}^{-1} ;$ MS (HRESI): $m / z:$ calcd. for $568.1459[\mathrm{M}+\mathrm{Na}]^{+}$; found: 568.1460 .

Di-O-benzyl-4,6-O-diacetyl-3-O-((R)-phenylsulfonylethyl-propion-2-yl)-N-acetyl- α-D-

 glucosamine-1-phosphate (5)

The reaction was carried out under an inert atmosphere of argon. To a solution of dibenzylN, N-diethylphosphoramidite ($0.82 \mathrm{~mL}, 845 \mathrm{mg}, 2.45 \mathrm{mmol}, 3.6 \mathrm{eq}$.) and $1 H$-tetrazole $(0.45 \mathrm{M}$ in $\mathrm{MeCN}, 8.18 \mathrm{~mL}, 315 \mathrm{mg}, 3.68 \mathrm{mmol}$, 5.3 eq.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$, a solution of $4,6-\mathrm{O}-$ diacetyl-3-O-((R)-phenylsulfonylethyl-propion-2-yl)-N-acetyl- α-D-glucosamine S7 (376 mg, $0.69 \mathrm{mmol}, 1.0$ eq. $)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added dropwise over 10 min and stirred for 17.5 h at $\mathrm{rt} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added and the solution was washed with sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$, water and brine (30 mL each), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product was recrystallized from $\mathrm{Et}_{2} \mathrm{O}$:hexane $(1: 1,18 \mathrm{~mL})$ and dried in vacuo. The resultant material was dissolved in dry THF (14 mL), and at $-10^{\circ} \mathrm{C}$, tert-butylhydroperoxide (5.5 M in decane, $0.88 \mathrm{~mL}, 4.84 \mathrm{mmol}, 7.0 \mathrm{eq}$.) was added. The reaction mixture was stirred for 1.5 h at $-10^{\circ} \mathrm{C}$ and then stirred for 18.5 h at $\mathrm{rt} . \mathrm{Et}_{2} \mathrm{O}$ was added $(30 \mathrm{~mL})$ and the solution was washed with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, sat. aq. NaHCO_{3} and brine (20 mL each), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Recrystallization from $\mathrm{Et}_{2} \mathrm{O}$:hexane ($1: 1,18 \mathrm{~mL}$) yielded 5 (337 mg , $61 \%)$ as a colorless solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+46.8\left(\mathrm{c}=1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 7.94-7.91 (m, 2H, Ph-H-2, Ph-H-6), 7.70-7.65 (m, 1H, Ph-H-4), 7.61-7.56 (m, 2H, Ph-H-3,

Ph-H-5), 7.38-7.30 (m, 10H, Ar-H), $6.10\left(\mathrm{dd}, J_{\mathrm{HP}}=5.9 \mathrm{~Hz}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 5.14-5.09$ (m, 1H, H-3), 5.06-5.01 (m, 4H, Bn-CH2), $4.56(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1$ '), 4.12-4.05 (m, 2H, propionyl-CH, H-6 ${ }^{\text {a }}$), 4.01-3.95 (m, 2H, H-5, H-6 b_{b}), 3.92-3.87 (m, 1H, H-2), 3.77-3.71 (m, $1 \mathrm{H}, \mathrm{H}-4), 3.53-3.41\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2\right.$ '), 2.10 (s, $3 \mathrm{H}, \mathrm{N}$-acetyl- CH_{3}), 1.98 (s, $3 \mathrm{H}, \mathrm{O}$-acetyl- CH_{3}), $1.86\left(\mathrm{~s}, 3 \mathrm{H}, O\right.$-actyl- $\left.\mathrm{CH}_{3}\right), 1.25\left(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}\right.$, propionyl- $\left.\mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz}$, CDCl_{3}): $\delta=174.09$ (N-acetyl-C=O), 171.09 (propionyl-C=O), 170.62 (O-acetyl-C=O), $168.97\left(O\right.$-acetyl-C=O), $139.08(\mathrm{Ph}-\mathrm{C}-1), 135.50\left(\mathrm{~d}, J_{\mathrm{CP}}=7.5 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{C}\right), 135.40\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ 7.5 Hz, Ar-C), 134.22 (Ph-C-4), 129.53 (Ph-C-3, Ph-C-5), 128.64 (Ar-CH), 128.61 (Ar-CH), 128.03 ($\mathrm{Ar}-\mathrm{CH}$), 127.97 ($\mathrm{Ph}-\mathrm{C}-2$), 127.93 (Ph-C-6), 95.54 (d, $J_{\mathrm{CP}}=7.4 \mathrm{~Hz}, \mathrm{C}-1$), 75.21 (propionyl-CH), 74.93 (C-4), $71.05(\mathrm{C}-5), 69.91(\mathrm{C}-3), 69.56\left(\mathrm{~d}, J_{\mathrm{CP}}=5.7 \mathrm{~Hz}, 2 \times \mathrm{Bn}^{2} \mathrm{CH}_{2}\right.$), $\left.61.47(\mathrm{C}-6), 58.33(\mathrm{C}-1)^{\prime}\right), 54.72\left(\mathrm{C}-2^{\prime}\right), 53.77\left(\mathrm{~d}, J_{\mathrm{CP}}=8.6 \mathrm{~Hz}, \mathrm{C}-2\right), 22.79\left(O\right.$-acetyl- $\left.\mathrm{CH}_{3}\right)$, $20.80\left(\mathrm{~N}\right.$-acetyl- $\left.\mathrm{CH}_{3}\right), 20.61\left(\mathrm{O}\right.$-acetyl- $\left.-\mathrm{CH}_{3}\right), 18.44$ (propionyl- $\left.\mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{31} \mathrm{P}$ NMR: ($121 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-2.98 \mathrm{ppm}$; IR: $v=3483,2937,1746,1660,1376,1297,1241,1145$, 1044, $733 \mathrm{~cm}^{-1}$; MS (HR-ESI): m / z : calcd. for $828.2061[\mathrm{M}+\mathrm{Na}]^{+}$; found: 828.2061.

L-alanine phenylsulfonylethyl ester (6)

The reaction was carried out under an inert atmosphere of argon. To a solution of N -Cbz-L-alanine 22 ($250 \mathrm{mg}, 1.12 \mathrm{mmol}$, 1.0 eq .) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (12.5 mL), HOBt (227 mg , $1.68 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) and \mathrm{EDC} \cdot \mathrm{HCl}(322 \mathrm{mg}, 1.68 \mathrm{mmol}, 1.5 \mathrm{eq}$.$) were added. After 30 \mathrm{~min}$, 2-phenylsulfonyl ethanol ($230 \mathrm{mg}, 1.23 \mathrm{mmol}, 1.1 \mathrm{eq}$.) was added and the reaction mixture was stirred for 39 h at rt . It was then washed with water, aq. $\mathrm{HCl}(0.5 \mathrm{M})$, water and sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL}$ each $)$. The combined aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$(3 \times 10 \mathrm{~mL})$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by column chromatography (petroleum ether:EtOAc 3:2) yielded N -Cbzprotected L-alanine phenylsulfonylethyl ester (286 mg) as a colorless oil.

To a solution of the thus obtained N-Cbz-L-alanine phenylsulfonylethyl ester (102 mg , $0.26 \mathrm{mmol}, 1.0$ eq.) in EtOAc (10 mL), $\mathrm{Pd}(10 \%$ on charcoal, $70 \mathrm{mg}, 0.06 \mathrm{mmol}, 0.2$ eq.) was added. The reaction mixture was stirred for 2 h under an H_{2} atmosphere (1 bar) at rt and then filtered through a short pad of Celite ${ }^{\mathrm{TM}}$. The solvent of the filtrate was removed in vacuo to yield 6 ($72 \mathrm{mg}, 65 \%$ over 2 steps from 22), which was used without further purification. $[\alpha]_{\mathrm{D}}{ }^{25}=-9.7(\mathrm{c}=1.1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- $\left.d_{6}\right): \delta=7.90-7.86(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}-$ H-2, Ph-H-6), 7.75-7.70 (m, 1H, Ph-H-4), 7.70-7.63 (m, 2H, Ph-H-3, Ph-H-5), 4.07 (q, $\left.\left.J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.65,(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1)^{\prime}\right), 3.43(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-2)^{\prime}\right), 1.36(\mathrm{~d}$, $\left.J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=170.56(\mathrm{C}-1), 139.88(\mathrm{Ph}-$ C-1), 133.52 (Ph-C-4), 129.17 (Ph-C-3, Ph-C-6), 127.93 (Ph-C-2, Ph-C-5), 57.54 (C-2'), $54.89\left(\mathrm{C}-1{ }^{\prime}\right), 47.89(\mathrm{C}-2), 15.83\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR: $v=1859,1411,1308,1016,904,630$, $561 \mathrm{~cm}^{-1}$; MS (HR-ESI): $m / z:$ calcd. for $258.0795[\mathrm{M}+\mathrm{H}]^{+}$; found: 258.0798 .

Di-O-benzyl-4,6-O-diacetyl-3-O-((R)-propion-2-yl-alanyl-phenylsulfonylethyl ester)-

N-acetyl- α-D-glucosamine-1-phosphate (7)

The reaction was carried out under an inert atmosphere of argon. To a solution of Di-O-benzyl-4,6-O-diacetyl-3-O-((R)-phenylsulfonylethyl-propion-2-yl)- N-acetyl- α-D-
glucosamine-1-phosphate 5 ($292 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.0$ eq.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL), DBU ($54 \mu \mathrm{~L}, 55 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added, and the resultant mixture was stirred for 15 h at rt . Aq. $\mathrm{HCl}(1 \mathrm{M}, 9 \mathrm{~mL})$ was added and the organic layer was washed with water and brine (10 mL each), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. The crude product was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL})$, and $\mathrm{HOBt}(99 \mathrm{mg}, 0.73 \mathrm{mmol}, 2.0 \mathrm{eq}$.) and $\mathrm{EDC} \cdot \mathrm{HCl}$ ($139 \mathrm{mg}, 0.73 \mathrm{mmol}, 2.0$ eq.) were added. A solution of L-alanine phenylsulfonylethyl ester $\mathbf{6}$ ($102 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.1 \mathrm{eq}$.) in dry THF (9 mL) and DIPEA ($0.2 \mathrm{~mL}, 1.08 \mathrm{mmol}, 3.0 \mathrm{eq}$.) were added. The reaction mixture was stirred for 15.5 h at $\mathrm{rt} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was then added and the solution was washed with water, aq. $\mathrm{HCl}(1 \mathrm{M})$, sat. aq. NaHCO_{3} and water (50 mL each). The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by column chromatography (EtOAc) yielded 7 ($208 \mathrm{mg}, 66 \%$) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}=+115.5(\mathrm{c}=0.53, \mathrm{MeOH}) ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.88(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$, Ph-H-2, Ph-H-6), 7.64 (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph}-\mathrm{H}-4$), 7.55 (t, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph}-\mathrm{H}-3, \mathrm{Ph}-\mathrm{H}-5$), 7.35-7.29 (m, 10H, Ar-H), $6.74(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$, Ala-NH), $6.41(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}$, acetyl$\mathrm{NH}), 5.60\left(\mathrm{dd}, J_{\mathrm{HP}}=5.8 \mathrm{~Hz}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-1\right), 5.09-4.98\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-3, \mathrm{Bn}^{-\mathrm{CH}_{2}}\right), 4.40(\mathrm{t}$, $\left.J=6.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1)^{\prime}\right), 4.32-4.27(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-2), 4.16(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}$, Ala-H-2), 4.08-4.05 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-6_{\mathrm{a}}$), 3.94-3.87 (m, 3H, propionyl-H-2, H-5, H-6 b_{b}), 3.50-3.47 (m, 1H, H-2'), 3.45$3.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 2.04\left(\mathrm{~s}, 3 \mathrm{H}, N\right.$-acetyl $\left.-\mathrm{CH}_{3}\right), 1.97\left(\mathrm{~s}, 3 \mathrm{H}, O\right.$-acetyl- CH_{3}), 1.72 ($\mathrm{s}, 3 \mathrm{H}$, O-acetyl- CH_{3}), $1.25\left(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}\right.$, propionyl- $\left.\mathrm{CH}_{3}\right), 1.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$, Ala-H-3) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=171.94$ (N-acetyl-C=O), 171.43 (Ala-C=O), 170.54 (propionyl-C=O), 170.50 (O-acetyl-C=O), 169.04 (O-acetyl-C=O), 139.04 (Ph-C-1), 135.33 $\left(\mathrm{d}, J_{\mathrm{CP}}=7.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{C}\right), 135.09\left(\mathrm{~d}, J_{\mathrm{CP}}=7.1 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{C}\right), 134.03(\mathrm{Ph}-\mathrm{C}-4), 129.40(\mathrm{Ph}-\mathrm{C}-3, \mathrm{Ph}-$ C-5), 128.93 (Ar-CH), 128.71 (Ar-CH), 128.03 (Ar-CH), 128.00 (Ph-C-2), 127.98 (Ph-C-6), $96.74\left(\mathrm{~d}, J_{\mathrm{CP}}=7.7 \mathrm{~Hz}, \mathrm{C}-1\right), 78.21$ (propionyl-CH), 76.85 (C-4), 70.08 (C-5), 69.90 (d, $\left.J_{\mathrm{CP}}=6.9 \mathrm{~Hz}, 2 \times \mathrm{Bn}-\mathrm{CH}_{2}\right), 68.69(\mathrm{C}-3), 61.46(\mathrm{C}-6), 58.05\left(\mathrm{C}-11^{\prime}\right), 54.78\left(\mathrm{C}-2^{\prime}\right), 52.90(\mathrm{~d}$,
$\left.J_{\mathrm{CP}}=8.6 \mathrm{~Hz}, \mathrm{C}-2\right), 47.85($ Ala-C-2 $), 22.87\left(O\right.$-acetyl- $\left.\mathrm{CH}_{3}\right), 20.72\left(O\right.$-acetyl- $\left.\mathrm{CH}_{3}\right), 20.57$ $\left(N\right.$-acetyl- $\left.\mathrm{CH}_{3}\right), 18.58$ (propionyl- CH_{3}), 16.95 (Ala-C-3) ppm; ${ }^{31} \mathrm{P}$-NMR $\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta=-2.56 \mathrm{ppm} ;$ IR: $v=1742,1214,1141,1034,1010,950,730,629,505 \mathrm{~cm}^{-1} ;$ MS (HR-ESI): $m / z:$ calcd. for $899.2433[\mathrm{M}+\mathrm{Na}]^{+}$; found: 899.2432.

N -Cbz-D-alanine-D-alanine methyl ester (10)

The reaction was carried out under an inert atmosphere of argon. To a solution of N -Cbz-D-alanine $\boldsymbol{9}^{[52]}$ ($160 \mathrm{mg}, 0.720 \mathrm{mmol}, 1.0$ eq.) in dry THF (4 mL), HOBt ($97 \mathrm{mg}, 0.72 \mathrm{mmol}$, 1.0 eq.) and $\mathrm{EDC} \cdot \mathrm{HCl}(138 \mathrm{mg}, 0.720 \mathrm{mmol}, 1.0 \mathrm{eq}$.) were added. The reaction mixture was stirred for 30 min at rt . Then D-alanine methyl ester hydrochloride $\mathbf{8}^{[\mathrm{S} 1]}(100 \mathrm{mg}, 0.720 \mathrm{mmol}$, 1.0 eq.) and DIPEA ($0.25 \mathrm{~mL}, 190 \mathrm{mg}, 1.4 \mathrm{mmol}, 1.9 \mathrm{eq}$.) were added and the solution was stirred for 21 h at rt . EtOAc (10 mL) was added and the solution was washed with water, aq. $\mathrm{HCl}(0.5 \mathrm{M})$, sat. aq. NaHCO_{3} and water (10 mL each). The organic layer was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. Purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 95: 5\right)$ yielded $\mathbf{1 0}(186 \mathrm{mg}, 88 \%)$ as a colorless solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+11.3(\mathrm{c}=1.0$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=7.31-7.24(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Cbz}-\mathrm{CH}), 6.84(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NH}), 5.60(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.07\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Cbz}-\mathrm{CH}_{2}\right), 4.52(\mathrm{dq}, J=7.5 \mathrm{~Hz}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 4.30(\mathrm{dq}, J=7.0 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.35(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-3), 1.34(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-3) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=$ 172.95 ($\mathrm{C}=\mathrm{O}$), 171.78 ($\mathrm{C}=\mathrm{O}$), 155.74 (Cbz-C=O), 136.05 (Cbz-C), 128.35 (Cbz-CH), 127.99 (Cbz-CH), $127.84(\mathrm{Cbz}-\mathrm{CH}), 66.88\left(\mathrm{Cbz}^{2} \mathrm{CH}_{2}\right), 52.41\left(\mathrm{OCH}_{3}\right), 50.33(\mathrm{C}-2), 48.01(\mathrm{C}-2)$, $18.74(\mathrm{C}-3), 18.13(\mathrm{C}-3) \mathrm{ppm}$; IR: $v=3299,1739,1687,1648,1540,1455,1327,1261,1233$,

1069, 1057, 695, $672 \mathrm{~cm}^{-1}$; MS (HR-ESI): m / z : calcd. for $331.1264[\mathrm{M}+\mathrm{Na}]^{+}$; found: 331.1266.

D-alanine-D-alanine methyl ester trifluoroacetate (11)

To a suspension of $\mathrm{Pd}(\mathrm{OH})_{2}$ (20% on charcoal, $56 \mathrm{mg}, 0.11 \mathrm{mmol}$) and TFA ($32 \mu \mathrm{~L}, 48 \mathrm{mg}$, 0.49 mmol) in degassed $\mathrm{MeOH}(1.5 \mathrm{~mL}), N$-Cbz-D-alanine-D-alanine methyl ester $\mathbf{1 0}$ ($150 \mathrm{mg}, 0.49 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added. The reaction mixture was stirred for 2 h under an H_{2} atmosphere (1 bar) at rt, was then filtered through a short pad of Celite ${ }^{\mathrm{TM}}$ and the Celite ${ }^{\mathrm{TM}}$ were washed with $\mathrm{MeOH}(25 \mathrm{~mL})$. Evaporation of the solvent of the combined filtrates in vacuo yielded $11\left(202 \mathrm{mg}\right.$, quant.) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}=+24.3(\mathrm{c}=1.1, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=4.45(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 3.93(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2)$, $3.72\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 1.52(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-3), 1.41(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{H}-3) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($\left.75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=173.96(\mathrm{C}=\mathrm{O}), 170.74(\mathrm{C}=\mathrm{O}), 58.91\left(\mathrm{OCH}_{3}\right), 50.07(\mathrm{C}-2)$, 49.85 (C-2), 17.53 (C-3), 17.25 (C-3) ppm; ${ }^{19}$ F NMR ($282 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=-77.07 \mathrm{ppm}$; IR: $v=1662,1556,1198,1179,1130,1054,836,799,721 \mathrm{~cm}^{-1} ;$ MS (HR-ESI): $m / z:$ calcd. for $175.1077[\mathrm{M}-\mathrm{TFA}]^{+}$; found: 175.1078.

N^{α}-Cbz- N^{ε}-dansyl-L-lysine (12) ${ }^{[88]}$

12
To a solution of N -Cbz-L-lysine hydrochloride ($8.6 \mathrm{~g}, 30.7 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in water (276 mL) and $\mathrm{MeOH}(696 \mathrm{~mL}), \mathrm{NaHCO}_{3}(7.45 \mathrm{~g}, 88.7 \mathrm{mmol}, 2.9 \mathrm{eq}$.$) and dansyl chloride (12.0 \mathrm{~g}$, $44.5 \mathrm{mmol}, 1.5 \mathrm{eq}$.) were added. The reaction mixture was stirred for 19 h at rt , then acidified until pH 2 with aq. $\mathrm{HCl}(1 \mathrm{M})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 1.2 \mathrm{~L})$. The combined organics were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 10: 0 \rightarrow 9: 1\right)$ yielded $\mathbf{1 2}(10.0 \mathrm{~g}, 64 \%)$ as a greenish solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+10.4\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right): \delta=8.45(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-2), 8.30 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-4), 8.08 (dd, $J=7.3 \mathrm{~Hz}, J=$ $1.1 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-8), $7.81\left(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}^{\varepsilon} \mathrm{H}\right), 7.63-7.54(\mathrm{~m}, 2 \mathrm{H}$, dansyl-H-3, dansyl-H-7), 7.36-7.29 (m, 5H, Ar-H), 7.24 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-6), 5.01 (s, 2H, Cbz-CH $)_{2}$, 3.83-3.76 (m, 1H, H-2), $2.83\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.75(\mathrm{q}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-6), 1.53-1.20(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{H}-3, \mathrm{H}-4, \mathrm{H}-5) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta=174.06(\mathrm{C}-1)$, $155.73(\mathrm{Cbz}-$ $\mathrm{C}=\mathrm{O}$), 151.16 (dansyl-C-5), 136.92 (dansyl-C-1), 136.05 (Cbz-C), 129.13 (dansyl-C-2), 128.99 (dansyl-C-8 ${ }_{\mathrm{a}}$), 128.95 (dansyl-C-4 ${ }_{\mathrm{a}}$), 128.13 (C-4), 127.97 (Cbz-CH), 127.59 (C-7), 127.55 (Cbz-CH), 127.47 (Cbz-CH), 123.36 (C-3), 119.02 (dansyl-C-8), 114.95 (dansyl-C-6), $65.22\left(\mathrm{Cbz}^{2} \mathrm{CH}_{2}\right), 54.19(\mathrm{C}-2), 45.00\left(\mathrm{~N}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right),} 42.30(\mathrm{C}-6), 30.77(\mathrm{C}-3), 28.91(\mathrm{C}-5), 22.59\right.$ (C-4) ppm; IR: $v=1698,1308,1139,1059,788,697,622,568,536 \mathrm{~cm}^{-1} ;$ MS (HR-ESI): $\mathrm{m} / \mathrm{z}:$ calcd. for $512.1861[\mathrm{M}-\mathrm{H}]$; found: 512.1864.

N-Cbz-L-lysine-(N^{ε}-dansyl)-D-alanine-D-alanine methyl ester (13)

The reaction was carried out under an inert atmosphere of argon. To a solution of N^{α}-Cbz-N^{ε}-dansyl-L-lysine $\mathbf{1 2}$ ($20 \mathrm{mg}, 0.039 \mathrm{mmol}, 1.0$ eq.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and dry THF (1 mL), PyBOP ($20 \mathrm{mg}, 0.039 \mathrm{mmol}, 1.0$ eq.) was added. Then D-alanine-D-alanine-methyl ester trifluoroacetate $\mathbf{1 1}$ ($6.8 \mathrm{mg}, 0.039 \mathrm{mmol}, 1.0$ eq.) and DIPEA ($7 \mu \mathrm{~L}, 5 \mathrm{mg}, 0.078 \mathrm{mmol}$, 2.0 eq.) were added. The reaction mixture was stirred for 24 h at rt . Then a second portion of PyBOP ($10 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.5 \mathrm{eq}$.) and DIPEA ($4 \mu \mathrm{~L}, 3 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.5 \mathrm{eq}$.) were added and the reaction mixture was stirred for an additional 24 h at $\mathrm{rt} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added and the solution was washed with aq. $\mathrm{HCl}(0.5 \mathrm{M}, 10 \mathrm{~mL})$, sat. aq. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and water ($2 \times 10 \mathrm{~mL}$). The combined aqueous layers were extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed in vacuo. Purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 98: 2\right)$ yielded $13(221 \mathrm{mg}, 85 \%)$ as a greenish solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+13.2\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=8.52(\mathrm{~d}$, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-2), $8.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-8), 8.21 (dd, $J=7.3 \mathrm{~Hz}$, $J=1.3 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-4), 7.53-7.47 (m, 2H, dansyl-H-3, dansyl-H-7), 7.32-7.28 (m, 5 H , Cbz-CH), 7.16 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-6), 7.00 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, Ala-NH), 5.69 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$, Lys-N $^{\alpha} \mathrm{H}$), $5.48\left(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, Lys $\left.^{2} \mathrm{~N}^{\varepsilon} \mathrm{H}\right), 5.07(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Cbz}-$ CH_{2}), 4.57-4.47 (m, 2H, Ala-H-2), $4.09\left(\mathrm{q}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$, Lys-H-2), $3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, 2.88 (s, 6H, N($\left.\mathrm{CH}_{3}\right)_{2}$), 2.84-2.80 (m, 2H, Lys-H-6), 1.72-1.60 (m, 2H, Lys-H-3), 1.58-1.50 (m, 2H, Lys-H-5), 1.43-1.22 (m, 8H, Lys-H-4, $2 \times$ Ala-H-3) ppm; ${ }^{13} \mathrm{C}$ NMR (75 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta=173.06($ Lys-C=O), 171.73 (Ala-C=O), 171.69 (Ala-C=O), 156.33 (Cbz-C=O) 151.77 (dansyl-C-5), 136.08 (dansyl-C-1), 134.82 (Cbz-C), 130.25 (dansyl-C-2), 129.77 (dansyl-C-8 ${ }_{\mathrm{a}}$), 129.57 (dansyl-C-4a), 129.46 (dansyl-C-4), 128.47 (Cbz-CH), 128.26 (dansyl-C-7), 128.15 (Cbz-CH), 128.03 (Cbz-CH), 123.21 (dansyl-C-3), 118.88 (dansyl-C-8), 115.21 (dansyl-C-6), $67.09\left(\mathrm{Cbz}^{-C H}\right), 54.79(\mathrm{Lys}-\mathrm{C}-2), 52.41\left(\mathrm{OCH}_{3}\right), 48.85$ (Ala-C-2), 48.11 (Ala-C-2), $45.40\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 42.67$ (Lys-C-6), 31.79 (Lys-C-3), 28.89 (Lys-C-5), 22.17 (Lys-C-4), 18.08 (Ala-C-3), 17.89 (Ala-C-3) ppm; IR: $v=1647,1521,1453,1308,1139,1048,789,622$, $568 \mathrm{~cm}^{-1}$; MS (HR-ESI): $m / z:$ calcd. for $692.2725[\mathrm{M}+\mathrm{Na}]^{+}$; found: 692.2725 .

L-Lysine-(N^{ε}-dansyl)-d-alanine-D-alanine methyl ester (14)

The reaction was carried out under an inert atmosphere of argon. To a solution of N -Cbz-L-lysine-(N^{ε}-dansyl)-D-alanine-D-alanine methyl ester 13 ($50 \mathrm{mg}, 0.075 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in degassed $\mathrm{MeOH}(1 \mathrm{~mL})$, TFA ($6 \mu \mathrm{~L}, 9 \mathrm{mg}, 0.075 \mathrm{mmol}, 1.0$ eq.) and $\mathrm{Pd}(\mathrm{OH})_{2}(20 \%$ on charcoal, $10 \mathrm{mg}, 0.02 \mathrm{mmol}, 3.8$ eq.) were added. The reaction mixture was stirred under an H_{2} atmosphere (1 bar) at rt for 4.5 h . Then a second portion of $\mathrm{Pd}(\mathrm{OH})_{2}(20 \%$ on charcoal, $10 \mathrm{mg}, 0.02 \mathrm{mmol}, 3.8 \mathrm{eq}$.$) and \mathrm{MeOH}(0.5 \mathrm{~mL})$ were added and the reaction mixture was stirred for further 16 h at rt . It was then filtered through a short pad of Celite ${ }^{\mathrm{TM}}$ and the Celite ${ }^{\mathrm{TM}}$ were washed with MeOH . Evaporation of the solvent of the combined filtrates in vacuo yielded 14 (61 mg, quant.) as a greenish oil. $[\alpha]_{\mathrm{D}}{ }^{25}=+35.2(\mathrm{c}=1.0, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right): \delta=8.56(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-2), $8.33(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$,
dansyl-H-8), 8.17 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-4), 7.61-7.55 (m, 2H, dansyl-H-3, dansyl-H-7), 7.28 (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-6), 4.40-4.35 (m, 2H, Ala-H-2), 3.71-3.66 (m, 1H, Lys-H-2), $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.88\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.82(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$, Lys-H-6), 1.741.64 (m, 2H, Lys-H-3), 1.48-1.37 (m, 4H, Lys-H-4, Lys-H-5), 1.39 (d, $J=7.2 \mathrm{~Hz}, 6 \mathrm{H}, 2 \mathrm{x}$ Ala-H-3) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=175.17$ (Lys-C=O), 174.64 (Ala-C=O), 174.28 (Ala-C=O), 153.20 (dansyl-C-5), 137.08 (dansyl-C-1), 131.22 (dansyl-C-2), 131.11 (dansyl-C-8 ${ }_{\mathrm{a}}$), 130.97 (dansyl-C-4a), 130.12 (dansyl-C-4), 129.07 (dansyl-C-7), 124.29 (dansyl-C-3), 120.53 (dansyl-C-8), 116.43 (dansyl-C-6), 59.28 (Lys-C-2), $55.15\left(\mathrm{OCH}_{3}\right)$, 54.44 (Ala-C-2), 52.68 (Ala-C-2), $45.81\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 43.52$ (Lys-C-6), 32.69 (Lys-C-3), 32.51 (Lys-C-5), 23.75 (Lys-C-4), $17.88\left(\right.$ Ala- $\left.\mathrm{CH}_{3}\right), 17.23\left(\mathrm{Ala}^{2}-\mathrm{CH}_{3}\right) \mathrm{ppm}$; IR: $v=1735,1666$, 1241, 1200, 1138, 1044, 790, 623, $569 \mathrm{~cm}^{-1}$; MS (HR-ESI): $\mathrm{m} / \mathrm{z}:$ calcd. for 536.2537 [M-TFA] ${ }^{+}$; found: 536.2544.

D-Glutamic acid 5-allyl ester hydrochloride (16)

The reaction was carried out under an inert atmosphere of argon. To a suspension of D-glutamic acid 15 ($500 \mathrm{mg}, 2.87 \mathrm{mmol}, 1.0$ eq.) in dry allyl alcohol (13.4 mL), trimethylsilyl chloride ($1.15 \mathrm{~mL}, 988 \mathrm{mg}, 9.10 \mathrm{mmol}, 3.2$ eq.) was added dropwise. The solution was stirred for 18 h at rt . Then $\mathrm{Et}_{2} \mathrm{O}$ was added at $0^{\circ} \mathrm{C}$, the precipitate was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$ and dried in vacuo to yield $16(531 \mathrm{mg}, 80 \%)$ as a colorless solid. $[\alpha]_{\mathrm{D}}{ }^{25}=-20.3(\mathrm{c}=1.2$, MeOH); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=5.95$ (ddt, $J=17.2 \mathrm{~Hz}, J=10.5 \mathrm{~Hz}, J=5.7 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 5.32\left(\mathrm{dq}, J=17.2 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{a}}{ }^{\prime}\right), 5.23(\mathrm{dq}, J=10.5 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{H}-3_{\mathrm{b}}{ }^{\prime}\right), 4.62\left(\mathrm{dt}, J=5.7 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1 \mathrm{I}^{\prime}\right), 4.06(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2), 2.63(\mathrm{dt}$,
$J=7.0 \mathrm{~Hz}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-4), 2.29-2.16(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=173.10(\mathrm{C}-5), 171.16(\mathrm{C}-1), 133.34\left(\mathrm{C}-2^{\prime}\right), 118.40\left(\mathrm{C}-3^{\prime}\right), 66.42\left(\mathrm{C}-1{ }^{\prime}\right), 53.15(\mathrm{C}-2), 30.57$ (C-4), 26.59 (C-3) ppm; IR: $v=3019,2938,1740,1651,1512,1488,1216,1179 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (HR-ESI): m / z : calcd. for 188.0917 [M-Cl] ${ }^{+}$; found: 188.0917 .

N-Cbz-D-glutamic acid 5-allyl-1-methyl ester (17)

To a solution of D-glutamic acid 5-allyl ester hydrochloride 16 ($8.93 \mathrm{~g}, 40.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) in water (400 mL), $\mathrm{Na}_{2} \mathrm{CO}_{3}\left(33.6 \mathrm{~g}, 400 \mathrm{mmol}, 10\right.$ eq.) was added. At $0^{\circ} \mathrm{C}$, benzyl chloroformate ($5.70 \mathrm{~mL}, 6.90 \mathrm{~g}, 40.0 \mathrm{mmol}, 1.0 \mathrm{eq}$.) was added dropwise over 5 min . The reaction mixture was stirred for 2 h at $0^{\circ} \mathrm{C}$ and stirred for 36 h at rt . It was then washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 300 \mathrm{~mL})$. The aqueous layer was acidified until pH 1 with aq. $\mathrm{HCl}(10 \%)$ and was extracted with EtOAc ($3 \times 300 \mathrm{~mL}$). The combined organics were washed with water (300 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated in vacuo to yield N -Cbz-D-glutamic acid 5-allyl ester (11.3 g) as a colorless solid.

To a solution of the thus obtained N-Cbz-D-glutamic acid 5 -allyl ester ($11.2 \mathrm{~g}, 34.9 \mathrm{mmol}$, 1.0 eq.) in dry DMF (220 mL), NaHCO_{3} ($5.86 \mathrm{~g}, 69.7 \mathrm{mmol}, 2.0$ eq.) was added. Methyl iodide ($10.9 \mathrm{~mL}, 24.7 \mathrm{~g}, 174 \mathrm{mmol}, 5.0 \mathrm{eq}$.) was slowly added and the mixture was stirred for 2 d at rt . EtOAc (200 mL) was added, the resultant precipitate was filtered off, and the solvent was removed under reduced pressure. The residue was dissolved in EtOAc (1.5 L) and washed with water (500 mL). The aqueous layer was extracted with EtOAc (3 x 150 mL). The combined organics were washed with sat. aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{x} 400 \mathrm{~mL})$ and sat. aq. NaHCO_{3}
($2 \times 400 \mathrm{~mL}$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by column chromatography (petroleum ether:EtOAc 4:1) yielded 17 ($9.15 \mathrm{~g}, 69 \%$ over 2 steps from 16) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}=-7.0\left(\mathrm{c}=0.7, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.36-7.31$ (m, 5H, Cbz-CH), 5.89 (ddt, $J=17.3 \mathrm{~Hz}, J=10.4 \mathrm{~Hz}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}, ~ H-2$ '), 5.44 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.30\left(\mathrm{dq}, J=17.3 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{a}}{ }^{\prime}\right), 5.23(\mathrm{dq}, J=10.4 \mathrm{~Hz}$, $\left.J=1.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{b}} \mathrm{'}^{\prime}\right), 5.10\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Cbz}^{2}-\mathrm{CH}_{2}\right), 4.56\left(\mathrm{dt}, J=5.7 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{H}-1^{\prime}\right)$, 4.45-4.38 (m, 1H, H-2), $3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.47-2.40(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4), 2.28-2.17\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{a}}\right)$, 2.06-1.98 (m, 1H, H-3 b ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=172.24(\mathrm{C}-1, \mathrm{C}-5), 155.85$ (Cbz-C=O), 136.07 (Cbz-C), 131.91 (C-2'), 128.48 (Cbz-CH), 128.15 (Cbz-CH), 128.06 $(\mathrm{Cbz}-\mathrm{CH}), 118.40(\mathrm{C}-3 '), 67.03\left(\mathrm{Cbz}^{\prime} \mathrm{CH}_{2}\right), 65.35\left(\mathrm{C}-1\right.$ '), $53.26(\mathrm{C}-2), 52.50\left(\mathrm{OCH}_{3}\right), 30.06$ (C-4), $27.55(\mathrm{C}-3) \mathrm{ppm}$; IR: $v=1717,1521,1207,1171,1048,985,738,697 \mathrm{~cm}^{-1} ;$ MS (HRESI): $m / z:$ calcd. for $358.1261[\mathrm{M}+\mathrm{Na}]^{+}$; found: 358.1261.

N-Cbz-D-glutamic acid 1-methyl ester (18)

The reaction was carried out under an inert atmosphere of argon. To a solution of N -Cbz-D-glutamic acid 5-allyl-1-methyl ester 17 ($503 \mathrm{mg}, 1.5 \mathrm{mmol}, 1.0$ eq.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (45 mL), phenylsilane ($0.35 \mathrm{~mL}, 308 \mathrm{mg}, 2.85 \mathrm{mmol}, 1.9 \mathrm{eq}$.) was added dropwise. Tetrakis(triphenylphosphine) palladium ($35 \mathrm{mg}, 0.03 \mathrm{mmol}, 0.02 \mathrm{eq}$.) was added and the reaction mixture was stirred for 2.5 h at $\mathrm{rt} . \mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$ was added and the solution was extracted with sat. aq. $\mathrm{NaHCO}_{3}(3 \times 150 \mathrm{~mL})$. The combined aqueous layers were washed with diethyl ether, acidified with aq. $\mathrm{HCl}(2 \mathrm{M})$ until pH 2 and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 150 \mathrm{~mL}$). The
combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Evaporation of the solvent in vacuo yielded $\mathbf{1 8}$ (452 mg, quant.) as a colorless oil. $[\alpha]_{\mathrm{D}}{ }^{25}=-3.3\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}$, CDCl_{3}): $\delta=7.37-7.31(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Cbz}-\mathrm{CH}), 5.44(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 5.11(\mathrm{~s}, 2 \mathrm{H}, \mathrm{Cbz}-$ CH_{2}), 4.48-4.40 (m, 1H, H-2), 3.75 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.49-2.42 (m, 2H, H-4), 2.28-2.17 (m, 1H, $\left.\mathrm{H}-3_{\mathrm{a}}\right), 2.03-1.91\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-3_{\mathrm{b}}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=177.85(\mathrm{C}-5), 172.39$ (C-1), 156.00 (Cbz-C=O), 136.01 (Cbz-C), 128.50 (Cbz-CH), 128.20 (Cbz-CH), 128.06 (Cbz$\mathrm{CH}), 67.14\left(\mathrm{Cbz}^{\left.-\mathrm{CH}_{2}\right)}\right.$, $53.12(\mathrm{C}-2), 52.55\left(\mathrm{OCH}_{3}\right), 29.85(\mathrm{C}-4), 27.41(\mathrm{C}-3) \mathrm{ppm}$; IR: $v=$ 1699, 1524, 1210, 1175, 1050, 1027, 737, 697, $576 \mathrm{~cm}^{-1}$; MS (HR-ESI): $\mathrm{m} / \mathrm{z}:$ calcd. for 294.0983 [M-H] ${ }^{-}$; found: 294.0982.

N-Cbz-D- γ-glutamic acid-(1-methyl ester)-L-lysine-($N^{\mathfrak{\varepsilon}}$-dansyl)-D-alanine-D-alanine methyl ester (19)

The reaction was carried out under an inert atmosphere of argon. To a solution of N -Cbz-D-glutamic acid 1-methyl ester $\mathbf{1 8}$ ($235 \mathrm{mg}, 0.80 \mathrm{mmol}, 1.2 \mathrm{eq}$.$) in dry THF (10 \mathrm{~mL}$), HOBt ($90 \mathrm{mg}, 0.66 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and $\mathrm{EDC} \cdot \mathrm{HCl}(127 \mathrm{mg}, 0.66 \mathrm{mmol}, 1.0$ eq.) were added and the mixture was stirred for 20 min at rt . Then L-lysine-(N^{ε}-dansyl)-D-alanine-D-alanine methyl ester 14 ($414 \mathrm{mg}, 0.66 \mathrm{mmol}, 1.0 \mathrm{eq}$.) and DIPEA ($0.23 \mathrm{~mL}, 171 \mathrm{mg}, 1.30 \mathrm{mmol}, 2.0 \mathrm{eq}$.) were added and the reaction mixture was stirred for 20 h at rt . Then a second portion of HOBt ($45 \mathrm{mg}, 0.33 \mathrm{mmol}, 0.5 \mathrm{eq}$.) and $\mathrm{EDC} \cdot \mathrm{HCl}(63 \mathrm{mg}, 0.33 \mathrm{mmol}, 0.5 \mathrm{eq}$.$) were added and the$ reaction mixture was further stirred for 24 h at rt . EtOAc was added and the solution was washed with water, aq. $\mathrm{HCl}(0.5 \mathrm{M})$, water and sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(50 \mathrm{~mL}$ each $)$. The combined
aqueous layers were extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), and the combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 95: 5\right)$ yielded $19(381 \mathrm{mg}, 72 \%)$ as a greenish solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+2.4(\mathrm{c}=0.5$, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=8.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-2), $8.31(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-8), 8.13 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, ~ A l a-\mathrm{NH}), 8.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-4), 8.04 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, Ala-NH), $7.91(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.68(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}$), 7.63-7.55 (m, 2H, dansyl-H-3, dansyl-H-7), 7.35-7.26 (m, 5H, Cbz-CH), $7.25(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H} \text {, dansyl-H-6), } 5.03 \text { (s, 2H, Cbz-CH })_{2}$, 4.31-4.21 (m, 2H, Ala-H-2), 4.13-4.00 (m, 2H, Lys-H-2, Glu-H-2), 3.59 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 3.18 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 2.83 ($\mathrm{s}, 6 \mathrm{H}$, $\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.74(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}$, Lys-H-6), 2.31-2.17 (m, 2H, Glu-H-4), 1.98-1.86 (m, 1H, Glu-H-3 ${ }_{\mathrm{a}}$), 1.81-1.72 (m, 1H, Glu-H-3 b_{b}), 1.51-1.33 (m, 6H, Lys-H-3, Lys-H-4, Lys-H-5), 1.28 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, Ala-H-3), 1.18 (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, Ala-H-3) ppm; ${ }^{13} \mathrm{C}$ NMR (75 MHz , DMSO- d_{6}): $\delta=172.80$ (Lys-C=O), 172.58 (Glu-C=O), 172.02 (Glu-C=O), 171.43 (Ala$\mathrm{C}=\mathrm{O}$), 171.29 (Ala-C=O), 156.02 (Cbz-C=O), 151.30 (dansyl-C-5), 136.83 (dansyl-C-1), 136.09 (Cbz-C), 129.26 (dansyl-C-8 ${ }_{\mathrm{a}}$), 129.08 (dansyl-C-4 ${ }_{\mathrm{a}}$), 129.03 (dansyl-C-2), 128.32 (Cbz-CH), 128.28 (Cbz-CH), 128.12 (Cbz-CH), 127.74 (dansyl-C-7), 127.67 (dansyl-C-4), 123.54 (dansyl-C-3), 119.12 (dansyl-C-8), 115.07 (dansyl-C-6), $65.53\left(\mathrm{Cbz}^{2} \mathrm{CH}_{2}\right), 53.48$ (Lys-C-2), $52.69(\mathrm{Glu}-\mathrm{C}-2), 51.78\left(\mathrm{OCH}_{3}\right), 48.58\left(\mathrm{OCH}_{3}\right), 47.53(\mathrm{Ala}-\mathrm{C}-2), 45.04\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 42.28 (Lys-C-6), 31.26 (Glu-C-4), 31.19 (Lys-C-3), 28.91 (Lys-C-5), 26.68 (Glu-C-3), 22.34 (Lys-C-4), 17.97 (Ala-C-3), 16.72 (Ala-C-3) ppm; IR: $v=3281,1688,1630,1536,1218$, 1140, 1020, 622, $569 \mathrm{~cm}^{-1}$; MS (HR-ESI): m / z : calcd. for $811.3342[\mathrm{M}+\mathrm{H}]^{-}$; found: 811.3355 .

The reaction was carried out under an inert atmosphere of argon. To a solution of N -Cbz-D- γ glutamic acid-(1-methyl ester)-L-lysine-(N^{ε}-dansyl)-D-alanine-D-alanine methyl ester 19 ($251 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.0$ eq.) in degassed $\mathrm{MeOH}(25 \mathrm{~mL}$), Pd (10% on charcoal, 100 mg , $0.09 \mathrm{mmol}, 0.3$ eq.) was added and the reaction mixture was stirred under an H_{2} atmosphere for 2 h at rt . The suspension was filtered through a short pad of Celite ${ }^{\mathrm{TM}}$ and the Celite ${ }^{\mathrm{TM}}$ were washed with MeOH . Evaporation of the solvent of the combined filtrates in vacuo yielded $20(188 \mathrm{mg}, 92 \%)$ as a greenish oil. $[\alpha]_{\mathrm{D}}{ }^{25}=+18.5(\mathrm{c}=1.0, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=8.55(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-2), $8.34(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-8), 8.17 (dd, $J=7.3 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-4), 7.60-7.54 (m, 2H, dansyl-H-3, dansyl-H-7), 7.27 (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-6), 4.40-4.32 (m, 2H, Ala-H-2), 4.12-4.02 (m, 2H, Lys-H-2, Glu-H-2), $3.74\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.68\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.87\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.81$ ($\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}$, Lys-H-6), 2.41-2.35 (m, 2H, Glu-H-4), 2.20-2.01 (m, 2H, Glu-H-3), 1.641.27 (m, 6H, Lys-H-3, Lys-H-4, Lys-H-5), 1.40 (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$, Ala-H-3), 1.33 (d, $J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}$, Ala-H-3) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=175.41$ (Lys-C=O), 175.17 (Glu-C=O), 174.64 (Glu-C=O), 174.40 (Ala-C=O), 174.28 (Ala-C=O), 153.20 (dansyl-C-5), 137.08 (dansyl-C-1), 131.27 (dansyl-C-8 ${ }_{\mathrm{a}}$), 131.11 (dansyl-C-4a), 130.97 (dansyl-C-2), 130.12 (dansyl-C-7), 129.07 (dansyl-C-4), 124.29 (dansyl-C-3), 120.53 (dansyl-C-8), 116.43 (dansyl-C-6), 59.28 (Lyc-C-2), $55.15\left(\right.$ Ala-C-2), $54.44\left(\mathrm{OCH}_{3}\right), 52.69(\mathrm{Glu}-\mathrm{C}-2), 52.56\left(\mathrm{OCH}_{3}\right)$,
50.03 (Ala-C-2), $45.81\left(\mathrm{~N}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right), ~} 43.52\right.$ (Lys-C-6), 32.51 (Glu-C-4), 31.92 (Lys-C-3), 31.02 (Lys-C-5), 30.27 (Glu-C-3), 23.75 (Lys-C-4), 17.88 (Ala-C-3), 17.23 (Ala-C-3) ppm; IR: $v=$ 3338, 2943, 2874, 1740, 1658, 1537, 1316, 1208, 1146, 795, 627, $571 \mathrm{~cm}^{-1}$; MS (HR-ESI): m / z : calcd. for $679.3120[\mathrm{M}+\mathrm{H}]^{+}$; found: 679.3125 .

N-Fmoc-L-alanine-D- γ-glutamic acid-(1-methyl ester)-L-lysine-(N^{ε}-dansyl)-D-alanine-D-alanine methyl ester (23)

The reaction was carried out under an inert atmosphere of argon. To a solution of N-Fmoc-Lalanine 21 ($68 \mathrm{mg}, 0.22 \mathrm{mmol}, 2.0$ eq.) in dry THF (3 mL), $\operatorname{HOBt}(29 \mathrm{mg}, 0.22 \mathrm{mmol}, 2.0 \mathrm{eq}$.) and $\mathrm{EDC} \cdot \mathrm{HCl}(42 \mathrm{mg}, 0.22 \mathrm{mmol}, 2.0$ eq.) were added and the mixture was stirred for 20 min at rt. Then $\mathrm{D}-\gamma$-glutamic acid-(1-methyl ester)-L-lysine-(N^{ε}-dansyl)-D-alanine-D-alanine methyl ester 20 ($74 \mathrm{mg}, 0.11 \mathrm{mmol}, 1.0$ eq.) and DIPEA ($0.4 \mathrm{~mL}, 28 \mathrm{mg}, 0.22 \mathrm{mmol}, 2.0$ eq.) were added and the reaction mixture was stirred for 20 h at rt . Then a second portion of HOBt ($45 \mathrm{mg}, 0.33 \mathrm{mmol}, 0.5 \mathrm{eq}$.) and $\mathrm{EDC} \cdot \mathrm{HCl}(63 \mathrm{mg}, 0.33 \mathrm{mmol}, 0.5 \mathrm{eq}$.$) were added and the$ reaction mixture was further stirred for 4 d at rt . EtOAc was added and the solution was washed with water, aq. $\mathrm{HCl}(0.5 \mathrm{M})$, water and sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(50 \mathrm{~mL}$ each $)$. The combined aqueous layers were extracted with $\operatorname{EtOAc}(3 \times 50 \mathrm{~mL})$, and the combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 95: 5\right)$ yielded $19(53 \mathrm{mg}, 55 \%)$ as a greenish solid. $[\alpha]_{\mathrm{D}}{ }^{25}=-1.5(\mathrm{c}=1.0$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=8.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-2), $8.30(\mathrm{~d}$,
$J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-8), $8.23(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 8.12(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH})$, 8.09-8.04 (m, 2H, NH, dansyl-H-4), 7.92-7.86 (m, 3H, Fmoc-H-4, Fmoc-H-5, NH), 7.80 (dd, $J=5.9 \mathrm{~Hz}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}$, Lys $^{2} \mathrm{~N}^{\varepsilon} \mathrm{H}$), 7.73-7.70 (m, 2H, Fmoc-H-1, Fmoc-H-8), 7.61-7.53 (m, 2H, dansyl-H-3, dansyl-H-7), 7.41-7.36 (m, 3H, Fmoc-H-3, Fmoc-H-6, NH), 7.31 (dd, $J=7.4 \mathrm{~Hz}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, Fmoc-H-2, Fmoc-H-7), 7.24 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-6), 4.30-4.05 (m, 8H, Ala-H-2, Lys-H-2, Glu-H-2, Fmoc-H-9, Fmoc-CH 2), 3.59 (s, 6H, 2 x $\left.\mathrm{OCH}_{3}\right), 2.82\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.77-2.70(\mathrm{~m}, 2 \mathrm{H}$, Lys-H-6), 2.18-2.13 (m, 2H, Glu-H-4), 1.98-1.76 (m, 2H, Glu-H-3), 1.51-1.13 (m, 6H, Lys-H-3, Lys-H-4, Lys-H-5), 1.28 (d, $J=$ 7.3 Hz, 3H, Ala-H-3), 1.24 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, Ala-H-3), 1.18 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, Ala-H-3) ppm; ${ }^{13}$ C NMR (75 MHz, DMSO- d_{6}): $\delta=172.50$ (Lys-C-1), 172.37 (Glu-C-1), 171.85 (Glu-C-5), 171.73 (Ala-C-1), 171.18 (Ala-C-1), 171.05 (Ala-C-1), 155.34 (Fmoc-C=O), 151.10 (dansyl-C-5), 143.66 (dansyl-C-1), 143.55 (Fmoc-C-1a, Fmoc-C-8a), 140.47 (Fmoc-C-4a, Fmoc-C-4b), 135.94 (dansyl-C-8a), 129.07 (dansyl-C-4a), 128.92 (dansyl-C-2), 128.88 (dansyl-C-7), 127.90 (Fmoc-C-3, Fmoc-C-6), 127.38 (dansyl-C-4), 126.84 (Fmoc-C-2, Fmoc-C-7), 125.06 (Fmoc-C-1, Fmoc-C-8), 123.32 (dansyl-C-3), 119.85 (dansyl-C-8), 118.95 (Fmoc-C-4, Fmoc-C-5), 114.90 (dansyl-C-6), $65.55\left(\right.$ Fmoc-CH $\left._{2}\right)$, 54.76 (Lys-C-2), 52.69 (Glu-C-2), $51.69\left(\mathrm{OCH}_{3}\right), 51.66\left(\mathrm{OCH}_{3}\right), 49.76$ (Ala-C-2), 47.51 (Ala-C-2), 47.45 (Ala-C-2),
 28.87 (Lys-C-5), 27.00 (Glu-C-3), 22.32 (Lys-C-4), 18.52 (Ala-C-3), 17.89 (Ala-C-3), 16.71 (Ala-C-3) ppm; IR: $v=3293,2957,1654,1632,1536,1448,1229,1143,791,740 \mathrm{~cm}^{-1} ; \mathrm{MS}$ (HR-ESI): $m / z:$ calcd. $994.3991[\mathrm{M}+\mathrm{Na}]^{+}$; found: 994.3998.

N-Cbz-L-alanine-D-glutamic acid-(1-methyl ester)-L-lysine-(N^{ε}-dansyl)-d-alanine-D-alanine methyl ester (24)

The reaction was carried out under an inert atmosphere of argon. To a solution of N -Cbz-L-alanine $\mathbf{2 2}^{\left[{ }^{[S 3]}\right.}$ ($\left.124 \mathrm{mg}, 0.55 \mathrm{mmol}, 2.0 \mathrm{eq}.\right)$ in dry THF (7 mL), HOBt ($75 \mathrm{mg}, 0.55 \mathrm{mmol}$, 2.0 eq.$)$ and $\mathrm{EDC} \cdot \mathrm{HCl}(106 \mathrm{mg}, 0.55 \mathrm{mmol}, 2.0 \mathrm{eq}$.) were added and the mixture was stirred for 20 min at rt . Then D- γ-glutamic acid-(1-methyl ester)-L-lysine-(N^{ε}-dansyl)-D-alanine-Dalanine methyl ester $20(188 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.0$ eq.) and DIPEA ($0.9 \mathrm{~mL}, 72 \mathrm{mg}, 0.55 \mathrm{mmol}$, 2.0 eq.) were added and the reaction mixture was stirred for 20 h at rt . Then a second portion of HOBt ($45 \mathrm{mg}, 0.33 \mathrm{mmol}, 0.5 \mathrm{eq}$.) and $\mathrm{EDC} \cdot \mathrm{HCl}(63 \mathrm{mg}, 0.33 \mathrm{mmol}, 0.5 \mathrm{eq}$.) were added and the reaction mixture was further stirred for 44 h at rt . EtOAc was added and the solution was washed with water, aq. $\mathrm{HCl}(0.5 \mathrm{M})$, water and sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(50 \mathrm{~mL}$ each $)$. The combined aqueous layers were extracted with EtOAc ($3 \times 50 \mathrm{~mL}$), and the combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 95: 5\right)$ yielded $24(145 \mathrm{mg}, 59 \%)$ as a greenish oil. $[\alpha]_{\mathrm{D}}{ }^{25}=+3.6(\mathrm{c}=0.42$, $\mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}): $\delta=8.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-2), 8.30-8.26 (m, 2H, dansyl-H-8, NH), 8.18 (d, $J=7.1 \mathrm{~Hz}$, Ala-NH), 8.13 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-4), 8.08 (d, $J=7.3 \mathrm{~Hz}, \mathrm{Ala}-\mathrm{NH}), 7.96(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NH}), 7.86$ (dd, $J=5.6 \mathrm{~Hz}, J=5.6 \mathrm{~Hz}$, 1 H, Lys-Ň H), 7.64-7.55 (m, 2H, dansyl-H-3, dansyl-H-7), 7.39 (d, J=7.9 Hz, 1H, NH), 7.35-7.26 (m, 5H, Cbz-CH), 7.25 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-6), 5.01 (d, $J=2.8 \mathrm{~Hz}, 2 \mathrm{H}$, Cbz-CH2), 4.29-4.17 (m, 3H, $3 \times$ Ala-H-2), 4.12-4.05 (m, 2H, Lys-H-2, Glu-H-2), 3.59 (s,
$3 \mathrm{H}, \mathrm{OCH}_{3}$), $3.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.82\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.75-2.69$ (m, 2H, Lys-H-6), 2.182.11 (m, 2H, Glu-H-4), 1.99-1.70 (m, 2H, Glu-H-3), 1.50-1.22 (m, 6H, Lys-H-3, Lys-H-4, Lys-H-5), 1.28 (d, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}$, Ala-H-3), 1.19 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, Ala-H-3), 1.19 (d, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$, Ala-H-3) ppm; ${ }^{13} \mathrm{C}$ NMR (75 MHz, DMSO- d_{6}): $\delta=172.66$ (Lys-C-1), 172.52 (Glu-C-1), 171.99 (Glu-C-5), 171.89 (Ala-C-1), 171.34 (Ala-C-1), 171.21 (Ala-C-1), 155.46 (Cbz-C=O), 151.24 (dansyl-C-5), 136.91 (dansyl-C-1), 136.07 (Cbz-C-1), 129.17 (dansyl-C-8a), 129.02 (dansyl-C-4a), 128.99 (dansyl-C-2), 128.18 (Cbz-C-2, Cbz-C-3, Cbz-C-5, Cbz-C-6), 128.00 (Cbz-C-4), 127.62 (dansyl-C-7), 127.54 (dansyl-C-4), 123.42 (dansyl-C-3), 119.04 (dansyl-C-8), 114.99 (dansyl-C-6), $65.27\left(\mathrm{Cbz}^{-} \mathrm{CH}_{2}\right)$, 52.68 (Lys-C-2), 51.67 (Glu-C-2), $51.65\left(\mathrm{OCH}_{3}\right), 51.43\left(\mathrm{OCH}_{3}\right), 49.81$ (Ala-C-2), $47.50(\mathrm{Ala}-\mathrm{C}-2), 47.44$ (Ala-C-2), 44.95 $\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 42.21$ (Lys-C-6), 31.11 (Glu-C-4), 31.03 (Lys-C-3), 28.83 (Lys-C-5), 26.93 (Glu-C-3), 22.27 (Lys-C-4), 18.41 (Ala-C-3), 17.83 (Ala-C-3), 16.66 (Ala-C-3) ppm; IR: $v=3279$, 2917, 1649, 1630, 1536, 1458, 1257, 1022, 797, $626 \mathrm{~cm}^{-1}$; MS (HR-ESI): $m / z:$ calcd. for $906.3678[\mathrm{M}+\mathrm{Na}]^{+}$; found: 906.3679.

Protected dansylated 1-(dibenzylphospho)-muramic acid pentapeptide (28)

The reaction was carried out under an inert atmosphere of argon. To a solution of di-O-benzyl-4,6-O-diacetyl-3-O-((R)-propion-2-yl-alanyl-phenylsulfonylethyl ester)- N -acetyl- α-D-glucosamine-1-phosphate 7 ($18 \mathrm{mg}, 20 \mu \mathrm{~mol}, 1.0$ eq.) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, $\mathrm{DBU}(3 \mu \mathrm{~L}$,
$3 \mathrm{mg}, 21 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$.$) was added. The reaction mixture was stirred for 16 \mathrm{~h}$ at rt . Aq. HCl ($1 \mathrm{M}, 0.7 \mathrm{~mL}$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL), was subsequently added. The organic layer was washed with water ($2 \times 5 \mathrm{~mL}$) and brine (5 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to yield 27 (16 mg , quant.) which was used without further purification.

To a solution of the thus obtained carboxylic acid 27 (16 mg) in dry DMF (1 mL), HATU ($11 \mathrm{mg}, 30 \mu \mathrm{~mol}, 1.5 \mathrm{eq}$.) and DIPEA ($30 \mu \mathrm{~L}, 23 \mathrm{mg}, 0.17 \mathrm{mmol}, 8.5 \mathrm{eq}$.) were added. The reaction mixture was stirred for 25 h at rt , then concentrated in vacuo and dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(5 \mathrm{~mL})$. The resultant solution was washed with sat. aq. $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 5 \mathrm{~mL})$. The combined organics were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Purification by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH} 96: 4\right)$ yielded $28\left(20 \mathrm{mg}, 73 \%\right.$ over 2 steps from 7) as a greenish solid. $[\alpha]_{\mathrm{D}}{ }^{25}=+21.5(\mathrm{c}=1.1$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=8.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-2), $8.22(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-8), $8.10(\mathrm{dd}, J=7.3 \mathrm{~Hz}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-4), $7.71(\mathrm{~d}, J=$ 8.1 Hz, 1H, NH), 7.51-7.40 (m, 2H, dansyl-H-3, dansyl-H-7), 7.31-7.20 (m, 11H, Ar-H, NH), $7.16(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, dansyl-H-6), 7.11-7.05 (m, 1H, NH), $6.88(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}$, acetyl$\mathrm{NH}), 6.84-6.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{NH}), 5.86\left(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, Lys $\left.^{\mathrm{N}}{ }^{\varepsilon} \mathrm{H}\right), 5.62\left(\mathrm{dd}, J_{\mathrm{HP}}=5.7 \mathrm{~Hz}\right.$, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Glc}-\mathrm{H}-1), 5.10-4.94$ (m, 5H, Bn-CH2, Glc-H-5), 4.55-4.44 (m, 4H, Glc-H-2, Lys-H-2, 2 x Ala-H-2), 4.32-4.25 (m, 1H, Ala-H-2), 4.15-4.10 (m, 2H, Glu-H-2, Glc-H-6a), 3.93-3.86 (m, 3H, propionyl-H-2, Glc-H-4, Glc-H-6 b_{b}), $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.70-3.65(\mathrm{~m}, 1 \mathrm{H}$, Glc-H-3), $3.64\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 2.86\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 2.84-2.78(\mathrm{~m}, 2 \mathrm{H}$, Lys-H-6), 2.52-2.43 (m, 1H, Glu-H-4 ${ }_{\mathrm{a}}$), 2.32-2.14 (m, 2H, Glu-H-3a, Glu-H-4b), 2.07 (s, 3H, N-acetyl-CH ${ }_{3}$), 2.00 $\left(\mathrm{s}, 3 \mathrm{H}, O\right.$-acetyl- $\left.\mathrm{CH}_{3}\right), 1.89\left(\mathrm{~s}, 3 \mathrm{H}, O\right.$-acetyl- $\left.\mathrm{CH}_{3}\right), 1.74-1.69\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Glu}-\mathrm{H}-3_{\mathrm{b}}\right), 1.52(\mathrm{~d}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$, Ala-H-3), 1.42-1.23 (m, 6H, Lys-H-3, Lys-H-4, Lys-H-5), 1.41 (d, $J=8.7 \mathrm{~Hz}$, 3 H, Ala-H-3), 1.32 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$, Ala-H-3), 1.25 (d, $J=10.3 \mathrm{~Hz}, 3 \mathrm{H}$, propionyl-CH3) ppm; ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta=175.31(\mathrm{C}=\mathrm{O})$, $173.38(\mathrm{C}=\mathrm{O}), 173.10(\mathrm{C}=\mathrm{O}), 172.43$
$(\mathrm{C}=\mathrm{O}), 127.24(\mathrm{C}=\mathrm{O}), 171.89(\mathrm{C}=\mathrm{O}), 171.29(\mathrm{C}=\mathrm{O}), 170.55(\mathrm{C}=\mathrm{O}), 169.49(\mathrm{C}=\mathrm{O}), 152.19$ (dansyl-C-5), $135.31\left(\mathrm{~d}, J_{\mathrm{CP}}=7.0 \mathrm{~Hz}\right.$, Ar-C), $135.24,\left(\mathrm{~d}, J_{\mathrm{CP}}=7.0 \mathrm{~Hz}\right.$, Ar-C), 134.32 (dansyl-C-1), 130.62 (dansyl-C-2), 129.82 (dansyl-C-4), 129.42 (dansyl-C-8a), 128.76 (Ar-CH), 128.66 ($\mathrm{Ar}-\mathrm{CH}$), 128.57 ($\mathrm{Ar}-\mathrm{CH}$), 128.54 ($\mathrm{Ar}-\mathrm{CH}$), 128.14 (dansyl-C-7), 128.01 (Ar-CH), 127.88 (Ar-CH), 127.40 (dansyl-C-4a), 123.23 (dansyl-C-3), 118.15 (dansyl-C-8), 115.22 (dansyl-C-6), $96.61\left(\mathrm{~d}, J_{\mathrm{CP}}=6.4 \mathrm{~Hz}\right.$, Glc-C-1), 78.81 (propionyl-C-2), 78.79 (Glc-C-3), 69.99 (Glc-C-4), $69.81,\left(\mathrm{~d}, J_{\mathrm{CP}}=5.5 \mathrm{~Hz}, \mathrm{Bn}^{-\mathrm{CH}_{2}}\right), 69.73\left(\mathrm{~d}, J_{\mathrm{CP}}=5.5 \mathrm{~Hz}, \mathrm{Bn}^{2} \mathrm{CH}_{2}\right), 68.53($ Glc-C-6), 61.34 (Glc-C-5), 54.97 (Lys-C-2), $52.84\left(\mathrm{~d}, J_{\mathrm{CP}}=8.3 \mathrm{~Hz}\right.$, Glc-C-2), $52.59\left(\mathrm{OCH}_{3}\right)$, $52.17\left(\mathrm{OCH}_{3}\right), 51.39$ (Glu-C-2), 49.92 (Ala-C-2), 49.40 (Ala-C-2), 47.93 (Ala-C-2), 45.33 $\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 41.41$ (Lys-C-6), 31.36 (Glu-C-4), 30.36 (Lys-C-3), 28.28 (Glu-C-3), 27.73 (Lys-C-5), 22-95 (N -acetyl- CH_{3}), 21.42 (Lys-C-4), $20.88\left(\mathrm{O}\right.$-acetyl- $\left.\mathrm{CH}_{3}\right), 20.61\left(\mathrm{O}\right.$-acetyl- $\left.\mathrm{CH}_{3}\right)$, 19.06 (Ala-C-3), 18.18 (Ala-C-3), 17.21 (propionyl- CH_{3}), 16.89 (Ala-C-3) ppm; ${ }^{31} \mathrm{P}$ NMR $\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=-1.33 \mathrm{ppm}$; IR: $v=3297,3029,2934,1650,1636,1552,1454,1377$, 1122, 1091, 1038, 734, $695 \mathrm{~cm}^{-1}$; MS (HR-ESI): $m / z:$ calcd. for $1391.5129[\mathrm{M}+\mathrm{Na}]^{+}$; found: 1391.5136.

5'-GCCATGGTTTTTGTATATGCGTTATTAGCGCTAGTGATTACATTTGTTTTGGTA CCTGTTTTAATACCTACATTAAAAAGGATGAAATTTGGTCAAAGTATTCGAGAAG AAGGCCCACAAAGCCATATGAAGAAGACTGGTACACCAACGATGGGTGGACTAA CATTTCTATTAAGTATTGTGATAACGTCTTTGGTGGCTATTATATTTGTAGATCAA GCTAATCCAATCATACTGTTATTATTTGTGACGATTGGTTTTGGGTTAATTGGTTT TATAGATGATTATATTATTGTTGTTAAAAAGAATAACCAAGGTTTAACAAGTAAA CAGAAGTTTTTGGCGCAAATTGGTATTGCGATTATTTTCTTTGTTTTAAGTAATGT ATTTCATTTGGTGAATTTTTCTACGAGCATACATATTCCATTTACGAATGTAGCAA TCCCACTATCATTTGCATATGTTATTTTCATTGTTTTTTGGCAAGTAGGTTTTTCTA ATGCGGTAAATTTAACAGATGGTTTAGATGGATTAGCAACTGGACTGTCAATTAT CGGATTTACAATGTATGCCATCATGAGCTTTGTGTTAGGAGAAACGGCGATTGGT ATTTTCTGTATCATTATGTTGTTTGCACTTTTAGGATTTTTACCATATAACATTAAC CCTGCTAAAGTGTTTATGGGAGATACAGGTAGCTTAGCTTTAGGTGGTATATTTG CTACGATTTCAATCATGCTTAATCAGGAATTATCATTAATTTTTATAGGTTTAGTA TTCGTAATTGAAACATTATCTGTTATGTTACAAGTCGCTAGCTTTAAATTGACTGG AAAGCGTATATTTAAAATGAGTCCGATTCATCATCATTTTGAATTGATAGGTTGG AGTGAATGGAAAGTAGTTACAGTATTTTGGGCTGTTGGTCTGATTTCAGGTTTAAT CGGTTTATGGATTGGAGTGCATCTCGAG-3' (NcoI/XhoI)

This sequence is identical to the mray gene of S. aureus subsp. aureus MRSA252 (underlined) except of the G (in red) at position 4, which was introduced to create the NcoI restriction site. Additional restriction sites (bold, named in parentheses) were also introduced.

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S} \mathbf{1}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{S} \mathbf{1}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S} 2\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{S} \mathbf{2}\left(75 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S 4}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{S 4}\left(75 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S 5}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{S 5}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S 6}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{S 6}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S 7}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{S} 7\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3}\left(126 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$

${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{3}\left(121 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{5}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $5\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{31} \mathrm{P}$ NMR spectrum of $\mathbf{5}\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $7\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $7\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{31} \mathrm{P}$ NMR spectrum of $7\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 0}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 1}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 1}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{1 1}\left(282 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 2}\left(75 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 3}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 3}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 4}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

00	190	180	170	160	150	140	130	120	110	$\begin{array}{r} 100 \\ f 1 \end{array}$		80	70	60	50	40	30	20	10	0

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 4}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 6}\left(75 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 7}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 8}\left(\mathbf{3 0 0} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^0]
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 9}\left(300 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of 19 (75 MHz, DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 0}\left(300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

[^1]
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 8}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 8}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{31} \mathrm{P}$ NMR spectrum of $28\left(121 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

References

[S1] R. Rengasamy, M. J. Curtis-Long, W. D. Seo, S. H. Jeong, I.-Y. Jeong, H. K. Park, J. Org. Chem. 2008, 73, 2898-2901.
[S2] P. J. Belshaw, S. Mzengeza, G. A. Lajoie, Synth. Commun. 1990, 20, 3157-3160.
[S3] M. Y. H. Lai, M. A. Brimble, D. J. Callis, P. W. R. Harris, M. S. Levi, F. Sieg, Bioorg. Med. Chem. 2005, 13, 533-548.
[S4] B. Koppenhöffer, V. Schurig, Org. Synth. 1993, 8, 119-124.
[S5] S. A. Hitchcock, C. N. Eid, J. A. Aikins, M. Zia-Ebrahimi, L. C. Blaszczak, J. Am. Chem. Soc. 1998, 120, 1916-1917.
[S6] P. H Gross, M. Rimpler, Liebigs Ann. Chem. 1986, 37-45.
[S7] H. M. Flowers, R. W. Jeanloz, J. Org. Chem. 1963, 28, 2983-2986.
[S8] A. Dantas de Araujo, J. M. Palomo, J. Cramer, O. Seitz, K. Alexandrov, H. Waldmann, Chem. Eur. J. 2006, 12, 6095-6109.

[^0]: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{1 8}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^1]: ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 0}\left(75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right)$

