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Superradiance of a charged scalar field coupled to the Einstein-Maxwell equations
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We consider the Einstein-Maxwell-Klein-Gordon equations for a spherically symmetric scalar field
scattering off a Reissner-Nordström black hole in asymptotically flat spacetime. The equations are
solved numerically using a hyperboloidal evolution scheme. For suitable frequencies of the initial
data, superradiance is observed, leading to a substantial decrease of mass and charge of the black
hole. We also derive a Bondi mass loss formula using the Kodama vector field and investigate the
late-time decay of the scalar field.

I. INTRODUCTION

Even though particles can never cross the event hori-
zon from the inside of a black hole (at least classically),
it is nevertheless possible to extract energy from a rotat-
ing or charged black hole. For particles this can occur
via the Penrose process [1]. The field-theoretic analogue
is superradiance, which involves the scattering of scalar,
electromagnetic or gravitational waves off a black hole.
For a comprehensive recent review article of this field of
research see [2].
In general relativity, superradiance is mostly studied

for rotating black holes (the Kerr family of solutions)
and is based on linear perturbation theory [3]. It should
be stressed that this involves a mode analysis. There has
been some controversy as to whether the predicted am-
plification factors are still meaningful for realistic wave
packets. Csizmadia et al. [4] reported an almost per-
fect reflection for a wave packet whose initial frequency
content lies entirely in the superradiant regime. Until re-
cently little was known about superradiance in the non-
linear case. East et al. [5] presented fully nonlinear nu-
merical evolutions of the vacuum Einstein equations for
gravitational waves scattering off a rotating black hole
and confirmed the existence of superradiance.
Due to the lack of symmetries such simulations are

very demanding. A simpler model is obtained by con-
sidering a charged scalar field scattering off a charged
(Reissner-Nordström) black hole in spherical symmetry.
This 1+1-dimensional problem can be tackled with mod-
est computational resources. The test-field case (fixed
black hole background spacetime) was studied by Di
Menza and Nicholas [6]. The authors computed the
frequency-dependent energy gain by constructing a con-
served flux. Such an approach is not feasible when the
matter fields are coupled to the Einstein equations and
the mass and charge of the black hole change during the
superradiant scattering. Instead it is the changes in those
quantities themselves that need to be monitored, as in
[5] and in the present paper. Numerical evolutions of
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the coupled Einstein-Maxwell-Klein-Gordon system were
carried out by Torres and Alcubierre [7], however with
a focus on gravitational collapse rather than superradi-
ance. Recently there has been an increasing interest in
superradiance in the context of the anti-de Sitter (AdS)–
conformal field theory (CFT) correspondence. An exam-
ple is the numerical study of a superradiant instability
of Reissner-Nordström-AdS black holes in [8]. Due to
the timelike infinity one effectively has reflective bound-
ary conditions that lead to an unbounded amplification
of the superradiant waves. A similar situation, namely a
Reissner-Nordström black hole enclosed in a cavity, was
investigated in [9]. To our best knowledge the present
paper is the first study of superradiance in the cou-
pled Einstein-Maxwell-Klein-Gordon system in asymp-
totically flat spacetimes.

Most numerical studies of asymptotically flat space-
times truncate the computational domain at a finite dis-
tance from the black hole, where boundary conditions
must be imposed. (This approach was taken e.g. in [6].)
Spurious reflections of outgoing waves must be avoided on
the relevant time scales. Designing such boundary condi-
tions in the nonlinear case is highly non-trivial. A more
elegant solution is to incorporate future null infinity I+

in the computational domain, e.g. by foliating spacetime
into hyperboloidal surfaces that may be compactified to-
wards future null infinity. This also enables us to evaluate
the Bondi mass and total charge at I+ in a straight-
forward way. We use a conformal 3+1 decomposition of
the Einstein equations on hypersurfaces of constant mean
curvature (CMC) developed in [10]. Such CMC surfaces
have the additional advantage that they are able to pen-
etrate black hole horizons, so that an excision boundary
may be placed just inside the horizon, where all char-
acteristics leave the computational domain. In [11] this
approach was first implemented for the vacuum axisym-
metric Einstein equations. In [12] we included matter
sources and studied late-time power-law tails of matter
fields in spherical symmetry. The present formulation is
based on [12].

This paper is organized as follows. In Sec. II
we describe our formulation of the Einstein-Maxwell-
Klein-Gordon equations and the hyperboloidal evolution
scheme. We also investigate mass conservation with the
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help of the Kodama vector field and derive a Bondi mass
loss formula. Details on redundant evolution equations
and their regularity at I+ and on alternative electromag-
netic gauge conditions are deferred to Appendices A and
B. Section III is concerned with the numerical evolution
of the system. We describe our numerical methods, con-
struction of initial data, and various notions of charge
and mass used to analyze the results. After performing a
number of code tests, we present our main results on the
occurrence and amount of superradiance depending on
the chosen parameters. A separate subsection is devoted
to the analysis of the late-time decay of the scalar field.
We conclude in Sec. IV.

II. FORMULATION AND THEORETICAL

ANALYSIS

In this section we describe our formulation of the
Einstein-Maxwell-Klein-Gordon equations and their re-
duction to spherical symmetry. Our gauge choices for the
Einstein and Maxwell equations are explained, in partic-
ular our use of constant-mean-curvature slices extending
to future null infinity. In Sec. II B we investigate the Ko-
dama vector field, construct a conserved flux and relate it
to the Hawking mass. This enables us to derive a Bondi
mass loss formula.

A. Field equations

We consider a massive charged complex scalar field
minimally coupled to the Einstein-Maxwell equations.
The action is given by

S =

∫

d4xµ (4)g

(
1

16π

[
(4)R− FµνF

µν
]

−1

2

[
(4)gµν (Dµφ)

∗ (Dνφ) +m2|φ|2
])

,

(1)

where (4)gµν is the spacetime metric, µ (4)g its volume

element and (4)R the scalar curvature. We use geometric
and Gaussian units. In terms of the vector potential Aµ,
the Maxwell field strength tensor is

Fµν = ∂µAν − ∂νAµ. (2)

The gauge-covariant derivative is defined as

Dµ := (4)∇µ + iqAµ, (3)

where (4)∇ is the covariant derivative of (4)gµν . The
mass and charge of the scalar field are m and q respec-
tively.
We perform a conformal transformation

(4)gµν = Ω−2 (4)γµν , (4)

where the conformal factor Ω ց 0 at I+ . In spherical
symmetry we may write the conformal metric in isotropic
coordinates as

(4)γ = −Ñ2dt2 + (dr + rX dt)2 + r2dσ2 (5)

with dσ2 = dθ2 + sin2 θ dφ2. We consider an ADM de-
composition [13] with respect to the time coordinate t.
Constant mean curvature (CMC) slicing is used; i.e., the
mean curvature of the t = const slices is a spacetime con-
stant K > 0. The tracefree part of the ADM momentum
πtr ij (cf. [10]) has only one degree of freedom in spheri-
cal symmetry, which we take to be Π := (r4 sin θ)−1πtr rr.
The gravitational field is thus described by the four vari-
ables Ω, Ñ ,X and Π, which are functions of t and r only.
In the following we use an overdot to denote t-derivatives
and a prime to denote r-derivatives.
Preserving the isotropic spatial coordinate condition

and the CMC slicing condition under the time evolution
yields

0 = r−1X ′ + 3
2ÑΠ, (6)

0 = −Ω2Ñ ′′ + 3ΩΩ′Ñ ′ − 2Ω2r−1Ñ ′ − 3
2Ω

′2Ñ

+ 1
6ÑK

2 + 15
8 ÑΩ2r4Π2 + 4πÑΩ4(S̃ + 2ρ̃). (7)

In spherical symmetry, the geometry is completely deter-
mined by the Einstein constraint equations,

0 = −4ΩΩ′′ + 6Ω′2 − 8Ωr−1Ω′ + 3
2Ω

2r4Π2

− 2
3K

2 + 16πΩ4ρ̃, (8)

0 = Ω(rΠ′ + 5Π)− 2rΩ′Π+ 8πΩ3r−1J̃r. (9)

The source terms ρ̃, S̃ and J̃r in (7)–(9) are compo-
nents of the conformally rescaled energy-momentum ten-
sor T̃µν = Ω−2Tµν and are defined for our matter model
below in (19)–(21). There are redundant evolution equa-
tions for Ω and Π, given in Appendix A, that we monitor
during the evolution in order to check the accuracy of
our code.
The Maxwell equations are conformally invariant and

hence we may define the fields in terms of the conformal
metric (4)γµν , indicated by tildes in the following. In
spherical symmetry the vector potential may be written
as

Ã = −Ñ Φ̃ dt+ ãr(dr + rX dt), (10)

and the field strength tensor

F̃ = −ÑẼr dt ∧ dr. (11)

We may impose one gauge condition on the vector po-
tential, and the one we choose is temporal gauge

Φ̃ = 0. (12)

Alternative gauge conditions are discussed in Appendix
B.
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The definition (2) of the field strength tensor in terms
of the vector potential implies an evolution equation for
ãr:

˙̃ar = (rXãr)′ − ÑẼr. (13)

The Maxwell equations imply an evolution equation for
the electric field

˙̃E r = rXẼr ′+2XẼr−rẼrX ′−3

2
r2ÑẼrΠ−4πÑ j̃re (14)

and the Gauss constraint
(

r2Ẽr
)′

= 4πr2ρ̃e. (15)

The source terms ρ̃e and j̃
r
e are given below in (22)–(23).

We normally use (15) to solve for Ẽr and monitor (14)
during the evolution but we have checked that the oppo-
site choice gives identical results within numerical accu-
racy.
We introduce a conformally rescaled scalar field

φ̃ := Ω−1φ (16)

and write the Klein-Gordon equation in first-order form
(in time) by introducing a new variable ψ̃:

˙̃
φ = rXφ̃′ +Xφ̃+ Ñ

(

ψ̃ − 1

2
r2φ̃Π

)

, (17)

˙̃ψ = rXψ̃′ + Ñ

(

φ̃′′ + 2r−1φ̃′ − 1

4
φ̃r4Π2

)

+ φ̃′Ñ ′

+ψ̃
(

−Ñr2Π+ 2X
)

− Ω−2m2Ñ φ̃+ iqr−2φ̃
(

r2Ñ ãr
)′

+
1

3
φ̃
(

Ñ ′′ + 2r−1Ñ ′
)

− q2φ̃Ñ
(

(ãr)2 − Φ̃2
)

+2iqÑ

[

ãrφ̃′ + Φ̃ψ̃ − 1

2
r2ΠΦ̃φ̃+ Ñ−1XΦ̃φ̃

]

−4

3
πΩ2Ñ φ̃

[

iqãr
(

φ̃∗φ̃′ − φ̃φ̃′∗
)

− |φ̃′|2 − q2|φ̃|2(ãr)2

−iqΦ̃
(

φ̃ψ̃∗ − φ̃∗ψ̃
)

+ |ψ̃|2 + q2|φ̃|2Φ̃2
]

+
4

3
πΩÑ φ̃

[
1

3
K

(

ψ̃φ̃∗ + ψ̃∗φ̃
)

+Ω′
(

φ̃∗φ̃′ + φ̃φ̃′∗
)]

−4

3
πÑφ̃

[
1

9
|φ̃|2K2 − |φ̃|2Ω′2 − 2m2|φ̃|2

]

. (18)

The somewhat non-standard definition of ψ̃ given by (17)
is used in order to avoid time derivatives of the lapse
and shift in its evolution equation (18), cf. [12]. In de-
riving (18), we have re-expressed the four-dimensional
scalar curvature in terms of the trace of the energy-
momentum tensor using the Einstein equations, which
produces terms quadratic in the scalar field. This is re-
quired in order to remove a term containing a negative
power of the conformal factor, which would be formally
singular at I+ . In [12] a different approach based on con-
formal rather than minimal coupling of the scalar field is
taken.

Numerically, we have found it to be advantageous to
also perform a first-order reduction in space by introduc-
ing a new variable ξ̃ := r−1φ̃′, and we evolve the real
and imaginary part of the complex scalar field variables
separately.
The source terms appearing in the slicing condition (7)

and the Einstein constraint equations (8)–(9) are

ρ̃ =
1

2

(

|φ̃′|2 + |ψ̃|2
)

+
1

18
Ω−2|φ̃|2K2

+
1

2

[

iqãr
(

φ̃φ̃′∗ − φ̃∗φ̃′
)

+ q2|φ̃|2
(

(ãr)2 + Φ̃2
)]

+
1

2
Ω−1Ω′

(

φ̃∗φ̃′ + φ̃φ̃′∗
)

+
1

2
Ω−2|φ̃|2Ω′2

+
1

2
iqΦ̃

(

φ̃∗ψ̃ − φ̃ψ̃∗
)

− 1

6
Ω−1K

(

φ̃∗ψ̃ + φ̃ψ̃∗
)

+
1

8π
(Ẽr)2 +

1

2
Ω−2m2|φ̃|2, (19)

J̃r = q2|φ̃|2Φ̃ãr + 1

2
iqΦ̃

(

φ̃φ̃′∗ − φ̃∗φ̃′
)

+
1

3
Ω−2|φ̃|2Ω′K

−1

2

[

φ̃′∗ψ̃ + φ̃′ψ̃∗ + iqãr
(

φ̃ψ̃∗ − φ̃∗ψ̃
)]

+
1

2
Ω−1

[
1

3
K

(

φ̃∗φ̃′ + φ̃φ̃′∗
)

− Ω′
(

φ̃∗ψ̃ + φ̃ψ̃∗
)]

,

(20)

S̃ = −1

2
|φ̃′|2 − iq

2
ãr

(

φ̃φ̃′∗ − φ̃∗φ̃′
)

− q2

2
|φ̃|2(ãr)2

−1

2
Ω−1Ω′

(

φ̃∗φ̃′ + φ̃φ̃′∗
)

− 1

2
Ω−2|φ̃|2Ω′2

+
3

2

[

|ψ̃|2 + iqΦ̃
(

φ̃∗ψ̃ − φ̃ψ̃∗
)

+ q2|φ̃|2Φ̃2
]

−1

2
Ω−1K

(

φ̃∗ψ̃ + φ̃ψ̃∗
)

+
1

6
Ω−2|φ̃|2K2

+
1

8π
(Ẽr)2 − 3

2
Ω−2m2|φ̃|2. (21)

The source terms appearing in the Maxwell equations
(14)–(15) are

ρ̃e = − iq
2

(

φ̃∗ψ̃ − φ̃ψ̃∗
)

− q2|φ̃|2Φ̃, (22)

j̃re =
iq

2

(

φ̃∗φ̃′ − φ̃φ̃′∗ + 2iq|φ̃|2ãr
)

. (23)

B. Mass conservation

In the dynamical spacetimes we study, there is no time-
like Killing vector field. Nevertheless, in spherical sym-
metry one can construct a preferred timelike vector field
[14–16]. For a general spherically symmetric metric of
the form

ds2 = (2)gab dx
adxb + r̄2(dθ2 + sin2 θ dφ2), (24)

with a two-dimensional Lorentzian metric (2)gab (indices
a, b ranging over t, r), this Kodama vector field is given
by

Kµ = (2)ǫµν∂ν r̄, (25)
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where (2)ǫ is the volume element of (2)g. For our form
of the metric (4)–(5), we obtain

Kt = Ñ−1(rΩ′ − Ω), (26)

Kr = −rÑ−1Ω̇, (27)

Kθ = Kφ = 0. (28)

The Kodama vector field has the remarkable properties

(4)∇µKµ = 0 (29)

and

(4)Gµν (4)∇µKν = 0. (30)

Together with Einstein’s equations, the latter implies
that the current

Jµ
K := T µνKν (31)

is conserved, (4)∇µJ
µ
K = 0. In our formulation we obtain

J t
K = Ω4

[

Ω2Ñ−1J̃rKr − ρ̃Kt
]

, (32)

Jr
K = Ω4

[

Ω2
(

S̃tr rr + 1
3 S̃ − rXÑ−1J̃r

)

Kr

+
(

rXρ̃− Ñ J̃r
)

Kt
]

, (33)

Jθ
K = Jφ

K = 0. (34)

(The source term S̃tr rr is defined in (A3).)
The Kodama vector field is closely related to the

Misner-Sharp or Hawking mass [16]

MH =
1

2

r

Ω
[1 + gµνK

µKν ] . (35)

Its derivatives turn out to be

∇µMH =
8πr2Ñ

2Ω4

(
−Jr

K, J
t
K, 0, 0

)
, (36)

so that the integral of the Kodama flux is essentially given
by the difference of the Hawking masses at the ends:

4π

∫ r1

r0

r2ÑΩ−4J t
K dr =MH(t, r1)−MH(t, r0), (37)

4πr2
∫ t1

t0

ÑΩ−4Jr
K dt =MH(t0, r) −MH(t1, r). (38)

Taking the limit of (38) at I+ , where the Hawking mass
coincides with the Bondi mass MB, and using the reg-
ularity conditions stated in Appendix A, a lengthy cal-
culation results in the Bondi mass loss formula (see also
[17])

∂tMB = −4πr2
∣
∣
∣
∣

{

∂t −
i

3
rqK

(

Φ̃ + ãr
)}

φ̃

∣
∣
∣
∣

2

I+

, (39)

which is manifestly non-positive.

III. NUMERICAL EVOLUTION

In this section we present our numerical evolutions of
the system derived in the previous section. In Sec. III A
we briefly describe the numerical methods we use. The
initial data for a Reissner-Nordström black hole with
scalar field perturbation are constructed in Sec. III B. In
Sec. III C, various notions of charge and mass are intro-
duced, which are needed to evaluate our numerical evolu-
tions. In Sec. III D we perform mass/charge conservation
and convergence tests in order to check the accuracy of
our code. Sec. III E contains our main results: evolu-
tions for various choices of parameters are presented and
evaluated with regard to the existence and the amount
of superradiance. Finally in Sec. III F, we investigate the
late-time behavior of the scalar field and compare with
known perturbative results on quasi-normal modes and
power-law tails.

A. Numerical method

We discretize the equations in space using fourth-order
finite differences. A mapping of the radial coordinate
with an adjustable parameter [12] is used in order to pro-
vide more resolution where it is needed, especially near
the black hole horizon where the fields typically develop
steep gradients. The outermost grid point is placed at
I+ , which we choose to correspond to r = 1. Typical
resolutions used for the simulations in this paper range
from 2000 to 10000 radial grid points.
Following the method of lines, the evolution equations

(13), (17) and (18) are first discretized in space and then
integrated forward in time using a fourth-order Runge-
Kutta method with sixth-order Kreiss-Oliger dissipation
[18]. At each time step, the ODEs (6)–(9) and (15) are
solved using a Newton-Raphson method, at each iter-
ation solving the resulting linear system using a direct
band-diagonal solver. (Alternatively, as mentioned in
Sec. II A, we may replace the Gauss constraint (15) with
the evolution equation (14) for the electric field, which
yields identical results within numerical accuracy.)
Our treatment of the boundaries follows [12]. We place

an inner excision boundary just inside the apparent hori-
zon of the black hole, whose location is determined at
each time step as the outermost zero of the expansion of
outgoing null rays,

θ+(r) =
1
3K − 1

2Ωr
2Π+ r−1Ω− Ω′. (40)

One-sided finite differences are used at the excision
boundary. Since this boundary lies inside the black hole,
all characteristics leave the domain and hence no bound-
ary conditions are required for the evolution equations.
We choose to freeze the conformal lapse Ñ at the in-
ner boundary, yielding a Dirichlet boundary condition
for the slicing condition (7). Inner Dirichlet boundary
conditions for the Einstein constraint equations (8)–(9)
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and the Gauss constraint (15) are obtained by evolving

Ω, Π and Ẽr there according to their evolution equations
(A1)–(A2) and (14).
The outer boundary I+ is an outflow boundary and

hence we use one-sided differences there as well, with no
boundary conditions for the evolution equations. The
conformal lapse is set to Ñ = 1

3Kr at I+ , which ensures
that our time coordinate t coincides with Bondi time [12].
Outer Dirichlet boundary conditions on X , Ω and Π fol-
low from the regularity conditions at I+ , equations (A4),
(A7) and (A11).
In all our evolutions the value of the mean curvature

is taken to be K = 1/2.
The code has been written in and the figures pro-

duced with Python, making use of the NumPy, SciPy and
matplotlib extensions.

B. Initial data

We choose initial data that is close to the Reissner-
Nordström spacetime. First the geometry variables (Ω,

Π, Ñ and X) are set to coincide with this solution, then
the initial data for the scalar field are specified and finally
the constraints and elliptic gauge conditions are re-solved
for the geometry variables.
The Reissner-Nordström spacetime in (uncompacti-

fied) CMC coordinates is given by [19]

(4)g = −
(

1− 2M

r̄
+
Q2

r̄2

)

dt2 +
1

f2
dr̄2 (41)

−2a

f
dt dr̄ + r̄2

(
dθ2 + sin2 θ dϕ2

)
, (42)

with

f(r̄) =

(

1− 2M

r̄
+
Q2

r̄2
+ a2

)1/2

, (43)

a(r̄) =
Kr̄

3
− H

r̄2
, (44)

where M (mass), K (mean curvature) and H are con-
stants. We transform the radial coordinate r̄ to a new
radial coordinate r by demanding that the spatial metric
be manifestly conformally flat. For convenience we work
with s := 1/r̄ due to its finite range, which yields the
ODE

ds

dr
=

−F (s)1/2
r

, (45)

with

F (s) = s2 − 2Ms3 +Q2s4 +A(s)2, (46)

A(s) =
K

3
−Hs3, (47)

and we choose r = 1 to correspond to I+ (s = 0). We
obtain the r-coordinate of the horizon by numerically

integrating

rh = exp

(

−
∫ sh

0

F (s)−1/2 ds

)

, (48)

where sh = 1/r̄+, and

r̄± =M ±
√

M2 −Q2 (49)

are radii of the outer and inner horizon in Schwarzschild
coordinates. We place the excision boundary just inside
the outer horizon: rmin = α rh, where typical values of α
are between 0.8 and 0.9. The ODE (45) is then solved
numerically on the interval r ∈ [rmin, 1] with the initial
condition s(1) = 0.
The geometry variables can be expressed in terms of

the numerically determined function s(r) as

Ω = rs, (50)

Π = 2Hs2r−3, (51)

Ñ = rF (s)1/2, (52)

X = Hs3 − 1
3K. (53)

For the scalar field we choose initial data that are sup-
ported sufficiently far outside the black hole, where the
background is almost flat. We take an ingoing solution
of the wave equation on a Minkowski background:

φ̃(t̄, r̄) =
A

r̄
exp

(

iω(r̄ + t̄)− (r̄ − r̄0 + t̄)2

σ̄2

)

. (54)

This is then expressed in terms of our CMC coordinates
t, r, which are related to the standard Minkowski coordi-
nates t̄, r̄ via

t̄ = t+

(
3

K

)(
1 + r2

1− r2

)

, (55)

r̄ =
6r

K (1− r2)
. (56)

Now we choose r̄0 such that the wave packet is localized
sufficiently far outside the black hole (we use r̄0 = 20M ,

which corresponds to r0 = 0.55) and take φ̃(t = 0, r) as
initial data for the scalar field.
The initial data for the electromagnetic field have to

correspond to the Reissner-Nordström spacetime. To-
gether with the gauge condition (12) we set

Ẽr =
Q

r2
, ãr =

Q

ar
. (57)

Alternative gauge conditions (and our reasons for not
using them) are discussed in Appendix B.

C. Charge and mass

As in [7] we introduce the charge Q(r) inside a sphere
of radius r:

Q(r) =

∫

S(r̄)

ρedV =

∫

S(r)

ρ̃edṼ , (58)
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which using the Gauss constraint (15) can be written as

Q(r) = r2Ẽr(r). (59)

Let us first consider a static black hole. Its irreducible
mass is given by the area of the event horizon Ah:

Mirr =

√

Ah

16π
=MH(rh). (60)

The mass of the black hole can now be calculated as

MBH =Mirr +
Q(rh)

2

4Mirr
. (61)

These formulas are valid if spacetime is static in a neigh-
bourhood of the horizon. This is the case for the final
state of the evolution as well as for the initial data, which
consist of a scalar field pulse supported far away from the
horizon. During the evolution, we still compute Mirr and
MBH according to the above expressions, but evaluated
at the apparent horizon. The second equality in (60) still
holds if h refers to the apparent horizon, but this dif-
fers slightly from the event horizon during the dynamical
phase of the evolution. Hence when we plot (60) and (61)
as functions of time, they cannot strictly be interpreted
as the irreducible mass and black hole mass during the
dynamical phase but its initial and final values are cor-
rect.
Analogously to the rotational energy in [5], we define

the charge energy of the black hole as

EQ :=MBH −Mirr. (62)

During superradiant scattering, both the charge energy
and the mass of the black hole decrease:

∆EQ =Mfinal
BH −M initial

BH
︸ ︷︷ ︸

∆MBH60

− (Mfinal
irr −M initial

irr )
︸ ︷︷ ︸

∆Mirr>0

6 0. (63)

Part of the charge energy is carried away by the wave,
part of it increases the irreducible mass and hence is no
longer extractable. Following [5] we define the efficiency
of this process as

η :=
∆MBH

∆EQ
. (64)

Alternatively, we may compare the energy of the initial
scalar field pulse

Einitial
φ =M initial

B −M initial
BH . (65)

with the total energy radiated away at infinity,

−∆MB =M initial
B −Mfinal

B > 0. (66)

From these quantities we define an alternative efficiency

η̂ :=
−∆MB

Einitial
φ

− 1. (67)

FIG. 1. Convergence test for three different resolutions: 1000
(solid red), 2000 (dashed blue) and 4000 (noisy green) grid
points. Shown is the residual of the evolution equation (14)
of the electric field as a function of time. The parameters
used here are M = 1, Q = 0.282, m = 0, q = 0.282, ω = 0.5,
r̄0 = 20, σ̄ = 0.5 and A = 0.01.

D. Code tests

The first test of our code consists in the evolution of
the Reissner-Nordström background spacetime, without
any scalar field. On the timescale relevant for the scalar
field scattering experiments presented later (t . 60M),
mass (Bondi, black hole and irreducible) is conserved to
a relative error of 2 × 10−6 and charge (at future null
infinity and at the horizon) is conserved to a relative
error of 10−5. Both are negligible compared with the
observed changes of charge and mass during scalar field
scattering.

Next we perform a convergence test for an evolution
with scalar field. Figure 1 shows the residual of the evo-
lution equation (14) for Ẽr, which we do not impose ac-

tively as we solve the Gauss constraint (15) for Ẽr. (To
compute the time derivative in the evolution equation
numerically, we use fourth-order finite differences, using
data from five subsequent time levels.) The observed de-
crease of the residual for successively doubled resolutions
is close to the expected value of 24 = 16 for a fourth-order
accurate finite-difference method. Similar plots are ob-
tained for the residuals of the evolution equations (A1)
and (A2) for Ω and Π.

E. Numerical results

For most of the evolutions shown here, we choose the
scalar field mass to vanish,m = 0. The scalar field charge
is taken to be q = 100/

√
4π = 28.2. The parameters of

the Reissner-Nordström background solution are M = 1
and Q = 1/

√
4π = 0.282. (The relatively large value of q
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FIG. 2. Non-superradiant evolution (M = 1, Q = 0.282, m =
0, q = 28.2, ω = 10, r̄0 = 20, σ̄ = 1, A = 0.01). Top: black
hole mass MBH (solid red), Bondi mass MB (dashed blue)
and irreducible mass Mirr (dotted green). Bottom: horizon
charge Q(rh) (solid red) and total charge at future null infinity
Q(r = 1) (dashed blue).

is chosen so that there is enough room for superradiance
to occur, as the maximum superradiant frequency is pro-
portional to q, see Eq. (68) below.) For the initial data
parameters in (54) we first choose ω = 10, A = 0.01,
σ̄ = 1, and r̄0 = 20. The corresponding evolution is
shown in Fig. 2. It shows the “normal” behavior we ex-
pect for a scalar field that mainly falls into the black hole,
while only a small amount escapes to infinity: the black
hole mass increases by about 13% to almost the initial
value of the Bondi mass, while the Bondi mass only de-
creases by a small amount; similar behavior is seen in the
evolution of the charges at the horizon and at I+ . The
energy radiated away at infinity ∆MB = 0.021 is much
smaller than the energy of the initial scalar field pulse
Einitial

φ = 0.15.

Next, we change the frequency to ω = 2.4, leaving all
the other parameters unchanged. The resulting evolution
(Fig. 3) is markedly different: now the black hole mass

FIG. 3. Superradiant evolution (M = 1, Q = 0.282, m = 0,
q = 28.2, ω = 2.4, r̄0 = 20, σ̄ = 1, A = 0.01). Top: black
hole mass MBH (solid red), Bondi mass MB (dashed blue)
and irreducible mass Mirr (dotted green). Bottom: horizon
chargeQ(rh) (solid red) and total charge at future null infinity
Q(r = 1) (dashed blue).

decreases by about 0.5% (and its final value agrees with
the final Bondi mass)—a clear indication of superradi-
ance. The horizon charge decreases by about 24%, the
total charge at I+ is nearly halved. This time the energy
radiated away at infinity ∆MB = 0.018 is larger than the
energy of the initial scalar field pulse Einitial

φ = 0.01.

For this choice of parameters, the superradiant effi-
ciency η defined in (64) is shown as a function of ω in
Fig. 4. The evolution in Fig. 3 corresponds to the max-
imum efficiency of η = 0.61. This is comparable to the
maximum efficiency reported by East et al. [5] for super-
radiant scattering of gravitational waves off a rotating
black hole, η ≈ 0.58. There is a sharp decrease of η
towards zero at ωmax = 4.2, beyond which there is no
superradiance.

The alternative definition (67) of the superradiant ef-
ficiency η̂ is also plotted in Fig. 3. Compared with η, the
maximum of η̂ is shifted towards lower frequencies, with
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FIG. 4. Superradiant efficiency η (Eq. (64), solid red) and
η̂ (Eq. (67), dashed blue) as a function of ω for M = 1,
Q = 0.282, m = 0, q = 28.2, r̄0 = 20, σ̄ = 1, A = 0.01.
Shown are results from several simulations (dots) and a cubic
spline interpolant.

a peak value of ≈ 0.73. The cut-off frequency ωmax is vir-
tually the same for both definitions of the efficiency. The
quantity η̂ shows an almost linear decrease as ω → ωmax.
Comparing our findings with perturbative results for

monochromatic waves is not straightforward because we
work with wave packets of finite extent, the black hole
mass and charge change drastically during the scattering
process, and the amount of this change depends on the
frequency. From monochromatic perturbation theory one
would expect superradiance to vanish as ω → 0, and the
upper cutoff frequency should be at [2, 6]

ωmax =
qQ

r̄+
. (68)

For the initial black hole parameters in our simulation
this results in ωmax = 4.06, quite close to the observed
cutoff in the efficiency in Fig. 4.
In Fig. 5 we report an anomalous case where the black

hole charge decreases even though the black hole mass in-
creases by a small amount (about 0.1%) and hence there
is no superradiance. The scalar field charge q is still
positive in this evolution; note however that the charge
current density (23) may still be negative depending on

the form of the scalar field φ̃, which is indeed what we
observe.
Similar behavior (decreasing charge, increasing mass

of the black hole) is found generically for negative q.
While so far the charge-to-mass ratio of the Reissner-

Nordström black hole has been moderate (Q/M =
0.282), Fig. 6 shows the evolution of a near-extreme black
hole with Q/M = 0.987. This case is superradiant with
efficiency η = 0.35, η̂ = 0.56.
Finally, we present evolutions with non-zero scalar field

mass. In Fig. 7 we choose m = 0.5; the other parameters

FIG. 5. Non-superradiant evolution with decreasing charge
(M = 1, Q = 0.282, m = 0, q = 28.2, ω = 1.5, r̄0 = 20, σ̄ =
0.5, A = 0.01). Top: black hole mass MBH (solid red), Bondi
mass MB (dashed blue) and irreducible mass Mirr (dotted
green). Bottom: horizon charge Q(rh) (solid red) and total
charge at future null infinity Q(r = 1) (dashed blue).

are the same as in the previous evolutions. This case
is superradiant with efficiency η = 0.62, η̂ = 0.18. For
m = 1 (Fig. 8) we obtain a non-superradiant evolution.

As shown in [6] in the test field case, there is no super-
radiance if m > |qQ/r̄+|, which evaluates to m < 4.06
for our choice of parameters. Our results are consistent
with this but note that the particular value ofm at which
superradiance ceases to exist depends on the frequency
ω, and can be lower than this bound (in our simulation
already m = 1 was non-superradiant).

For comparison with [6] we also compute the (physical)
radius of the effective ergosphere (defined therein as the
region where the potential becomes negative). In the
m = 0.5 case this is r̄ergo = 16.9, in the m = 1 case
r̄ergo = 9. In both cases the initial data are concentrated
around r̄0 = 20 with width σ̄ = 1 so the initial data lie
outside the effective ergosphere.
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FIG. 6. Superradiant evolution for a near-extreme black hole
(M = 1, Q = 0.987, m = 0, q = 28.2, ω = 10, r̄0 = 20, σ̄ = 1,
A = 0.01). Top: black hole mass MBH (solid red), Bondi mass
MB (dashed blue) and irreducible mass Mirr (dotted green).
Bottom: horizon charge Q(rh) (solid red) and total charge at
future null infinity Q(r = 1) (dashed blue).

F. Quasi-normal modes and tails

At late times we observe a decay of the scalar field that
is well described by an exponential ringdown followed by
a power-law tail (Fig. 9; here we return to the massless
case m = 0).
Quasi-normal modes of charged scalar fields on a Kerr

background were computed by Konoplya and Zhidenko
in [20]. The relevant regime for the simulation shown
in Fig. 9 is that of large qQ, in which the authors find
asymptotically φ ∼ exp(−iωQNMt) with the fundamental
(n = 0) quasi-normal mode frequency

ωQNM =
qQ

r̄+
− i

r̄+ − r̄−
4r̄2+

. (69)

(In our case there is no rotation.) The imaginary part of
ωQNM (dashed line on the left in Fig. 9) agrees roughly
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FIG. 7. Superradiant evolution with scalar field mass (M = 1,
Q = 0.282, m = 0.5, q = 28.2, ω = 2.4, r̄0 = 20, σ̄ = 1,
A = 0.01). Top: black hole mass MBH (solid red), Bondi
mass MB (dashed blue) and irreducible mass Mirr (dotted
green). Bottom: horizon charge Q(rh) (solid red) and total
charge at future null infinity Q(r = 1) (dashed blue).

with our simulation. The real part predicted from (69) is
ReωQNM = 3.07 and the value measured from the simu-
lation is 2.3.
A detailed analysis of late-time power-law tails of a

charged scalar field on a Reissner-Nordström background
was carried out by Hod and Piran in [21]. In the regime
|qQ| ≫ 1 their results imply for spherical perturbations
(ℓ = 0) that |φ| ∼ t−1/2 at I+ and |φ| ∼ t−1 at the
horizon. This agrees reasonably well with our simulation
(Fig. 9).

IV. CONCLUSIONS

In this paper we investigated superradiance of a spher-
ically symmetric charged scalar field scattering off a
Reissner-Nordström black hole in asymptotically flat
spacetime. Unlike in previous studies, we solve the fully
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FIG. 8. Non-superradiant evolution with scalar field mass
(M = 1, Q = 0.282, m = 1, q = 28.2, ω = 2.4, r̄0 = 20, σ̄ = 1,
A = 0.01). Top: black hole mass MBH (solid red), Bondi mass
MB (dashed blue) and irreducible mass Mirr (dotted green).
Bottom: horizon charge Q(rh) (solid red) and total charge at
future null infinity Q(r = 1) (dashed blue).

coupled Einstein-Maxwell-Klein-Gordon system. A hy-
perboloidal evolution scheme on hypersurfaces of con-
stant mean curvature is used, which is ideally suited to
black hole scattering experiments as these slices extend
smoothly from inside the horizon to future null infinity.

Our main result is that for sufficiently low frequency of
the initial data, superradiance occurs and leads to sub-
stantial losses of mass and charge of the black hole. The
maximum superradiant efficiency we observed, defined to
be the change in black hole mass divided by the change in
charge energy of the black hole, was η = 0.61. If the ef-
ficiency is defined instead by comparing the total Bondi
mass loss with the energy of the initial ingoing scalar
field pulse, η̂ = 0.73 is obtained. In the non-superradiant
regime (increasing black hole mass) we found a somewhat
anomalous case in which the black hole charge decreased
even though the scalar field charge was positive. Our su-
perradiant evolutions include near-extremal black holes

FIG. 9. Absolute value of the scalar field at the horizon (up-
per red curve) and at future null infinity (lower blue curve)
as functions of time in a log-log plot. The predicted exponen-
tial decay during the quasi-normal mode phase (dashed line
on the left) and the power-law decay during the tail phase
(dashed lines on the right) are shown for comparison. The
same parameters as in Fig. 3 are used (M = 1, Q = 0.282,
m = 0, q = 28.2, ω = 2.4, r̄0 = 20, σ̄ = 1, A = 0.01).

(Q/M = 0.987) and nonzero scalar field mass (m = 0.5).
It is clear that the massive case is challenging numeri-
cally due to the terms ∼ φ̃m2/Ω2 in the scalar field evo-
lution equation (18), which are formally singular at I+

(and which vanish analytically only because the massive
scalar field falls off faster than any power of Ω at I+

[22]). While the evolutions presented here are stable, we
do observe a numerical instability for scalar field masses
in the range 10−3 . m . 10−1 that we have not been
able to cure.

We also analyzed the late-time decay of the mass-
less scalar field and found approximate agreement with
known perturbative results on quasi-normal modes and
power-law tails.

A nice by-product on the theoretical side is the con-
struction of a conserved current using the Kodama vector
field, which we related to the Hawking mass as in [16].
This enabled us to derive a Bondi mass loss formula.
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Appendix A: Einstein evolution equations and

regularity at future null infinity

Here we provide the (redundant) Einstein evolution
equations that we do not enforce actively but monitor
during the evolution. The evolution equation for the con-
formal factor is

Ω̇ = rXΩ′ −XΩ+ Ñ(12Ωr
2Π− 1

3K), (A1)

and the traceless momentum obeys

Π̇ = rXΠ′ + 3XΠ+ 2
3r

−1(r−1Ñ ′)′

+Ñ
[
− 4

3Ω
−1r−1(r−1Ω′)′ − 2

3Ω
−1KΠ

− 1
2r

2Π2 + 8πΩ2r−2S̃tr rr
]

, (A2)

where

S̃tr rr =
2

3

[

|φ̃′|2 + iqãr
(

φ̃φ̃′∗ − φ̃∗φ̃′
)

+q2|φ̃|2(ãr)2 +Ω−1Ω′
(

φ̃∗φ̃′ + φ̃φ̃′∗
)

+Ω−2|φ̃|2Ω′2 − 1

4π
(Ẽr)2

]

. (A3)

Though formally singular at I+ , equation (A2) is actu-
ally regular provided the constraint equations hold (see
[10] for the general analysis).

In our case these conditions imply

Ω =̂ 0, (A4)

Ω′ =̂ rΩ′′ =̂ − 1

3
K, (A5)

Ω′′′ =̂ −8π|φ̃|2Ω′3, (A6)

Π =̂ 0, (A7)

Π′ =̂ −8πr−2|φ̃|2Ω′2, (A8)

rÑ ′ =̂ Ñ , (A9)

Ñ ′′ =̂ r−2Ñ − 12πÑ |φ̃|2Ω′2, (A10)

rX =̂ −Ñ, (A11)

X ′ =̂ 0, (A12)

X ′′ =̂ 12πr−1Ñ |φ̃|2Ω′2, (A13)

where =̂ denotes equality at I+ .
If the scalar field mass is nonzero, m 6= 0, then the

scalar field falls off faster than any power of Ω towards
I+ [22], which implies φ̃ =̂ 0.

Appendix B: Alternative gauge conditions for the

electromagnetic field

Here we present the different gauges we tried and ex-
plain why we choose (12) for our calculations. An obvious
choice would be the physical Lorenz gauge ∇µA

µ = 0.
Rewriting this in terms of the conformal quantities yields

∇̃µÃ
µ = 2Ω−1

[

ãiΩ,i +
1

3
Φ̃
(

K − ΩK̃
)]

, (B1)

which is manifestly singular at I+ . In particular, the
evolution equation for Φ̃ implied by this gauge condition
as well as the scalar field evolution equation (18) for ψ̃
would be singular. Therefore we discard this gauge.
Another choice is the conformal Lorenz gauge ∇̃µÃ

µ =

0. The evolution equation for Φ̃ then becomes

˙̃Φ =
(

rXΦ̃
)′

+ 2XΦ̃− r−2
(

r2Ñ ãr
)′

. (B2)

Using the functions f and a defined in (43) and (44), the
Reissner-Nordström background solution takes the form

Φ̃ =
Qf

rB
, ãr = −Qa

rB
, (B3)

where

B = 1− 2M

r
+
Q2

r2
. (B4)

Unfortunately a→ ∞ and hence ãr → ∞ at I+ , and so
we discard this gauge condition as well.
A suitable gauge is Φ̃ = 0, which leads to the condition

Ñ∇̃µÃ
µ = r−2

(

r2Ñ ãr
)′

. (B5)

This allows us to specify manifestly regular initial data,
see Sec. III.
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