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Abstract: 34 

Ambient temperature has a large impact on reproductive development and grain yield in 35 

temperate cereals. However, little is known about the genetic control of development under 36 

different ambient temperatures. Here, we demonstrate that in barley high ambient 37 

temperatures accelerate or delay reproductive development depending on the photoperiod 38 

response gene Ppd-H1 and its upstream regulator EARLY FLOWERING 3 (HvELF3). A 39 

natural mutation in Ppd-H1 prevalent in spring barley delayed floral development and 40 

reduced the number of florets and seeds per spike, while the wild-type Ppd-H1 or a mutant 41 

Hvelf3 allele accelerated floral development and maintained the seed number under high 42 

ambient temperatures. High ambient temperature delayed the expression phase and reduced 43 

the amplitude of clock genes and repressed the floral integrator gene FLOWERING LOCUS 44 

T1 (HvFT1) independently of the genotype. Ppd-H1 dependent variation in flowering time 45 

under different ambient temperatures correlated with relative expression levels of the 46 

BARLEY MADS-box genes VERNALIZATION1 (HvVRN1), HvBM3 and HvBM8 in the leaf. 47 

Finally, we show that Ppd-H1 interacts with regulatory variation at HvVRN1. Ppd-H1 only 48 

accelerated floral development in the background of a spring HvVRN1 allele with a deletion 49 

in the regulatory intron. The full-length winter Hvvrn1 allele was strongly downregulated and 50 

flowering was delayed by high temperatures irrespective of Ppd-H1. Our findings 51 

demonstrate that the photoperiodic and vernalization pathways interact to control flowering 52 

time and floret fertility in response to ambient temperature in barley. 53 

  54 
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Introduction: 55 

Climate models predict that an increase in global average temperature will have large impacts 56 

on crop yield (Lobell et al., 2011). High temperatures are particularly critical during plant 57 

reproductive development and affect flowering time, flower fertility and seed set. To sustain 58 

high crop yields under changing climatic conditions, it is important to understand the genetic 59 

basis of plant development in response to ambient temperature.  60 

Temperature-dependent flowering is regulated by the vernalization and ambient 61 

temperature pathways. Whereas vernalization requires long periods of cold during the winter, 62 

the ambient temperature pathway modulates flowering in response to short-term temperature 63 

changes (Wigge, 2013). Research in the model plant Arabidopsis thaliana (Arabidopsis), a 64 

facultative long day plant, has demonstrated that the temperature and photoperiod pathways 65 

interact to control reproductive development. For example, high temperature accelerates 66 

flowering and overcomes the delay in flowering commonly observed under short 67 

photoperiods in Arabidopsis (Balasubramanian et al., 2006). Early flowering in response to 68 

high temperature was correlated with an increase in the expression of the floral pathway 69 

integrator gene FLOWERING LOCUS T (FT) independently of day length (Halliday et al., 70 

2003; Balasubramanian et al., 2006). The FT protein acts as a long-distance signal (florigen) 71 

that conveys the information to induce flowering from leaves to the shoot meristem 72 

(Corbesier et al., 2007; Jaeger and Wigge, 2007; Kobayashi and Weigel, 2007; Mathieu et al., 73 

2007; Tamaki et al., 2007). In addition, recent studies have identified EARLY FLOWERING 3 74 

(ELF3), a repressor of light signals to the circadian clock as an essential component of 75 

ambient temperature response (Thines and Harmon, 2010). ELF3 forms together with EARLY 76 

FLOWERING 4 (ELF4) and LUX ARRHYTHMO (LUX), the so-called ‘evening complex’ 77 

(EC) that functions as a night-time repressor of gene expression in the circadian clock of 78 

Arabidopsis (Nusinow et al., 2011; Herrero et al., 2012). The circadian clock is an 79 

autonomous oscillator that produces endogenous biological rhythms with a period of about 24 80 

hours and consists of at least three interlocking feedback loops. The core loops comprise (a) 81 

the inhibition of EC genes by CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and LATE 82 

ELONGATED HYPOCOTYL (LHY) late at night, (b) the inhibition of PSEUDO 83 

RESPONSE REGULATOR genes by the EC early at night, and (c) the inhibition of 84 

LHY/CCA1 by TIMING OF CAB EXPRESSION1 (TOC1/PRR1) in the morning (Pokhilko 85 

et al., 2012).  86 
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Several independent studies have recently found that elevated temperatures, 87 

specifically during dark periods, inhibit the activity of the EC by an unknown mechanism 88 

(Box et al., 2014; Mizuno et al., 2014; Thines et al., 2014; Raschke et al., 2015) leading to 89 

increased expression of PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) (Koini et al., 90 

2009). PIF4 binding to the promoter of FT and consequent transcriptional activation of FT is 91 

promoted by an improved chromatin accessibility through temperature dependent histone 92 

modifications at the FT promoter (Kumar and Wigge, 2010, Kumar et al, 2012). However, 93 

high temperature also accelerated flowering in pif4 mutants under long photoperiods, 94 

suggesting that a PIF4-independent thermoresponsive flowering pathway acts through 95 

components of the photoperiod pathway (Koini et al., 2009; Press et al., 2016).  96 

In addition, the MADS-box genes SHORT VEGETATIVE PHASE like (SVP), FLOWERING 97 

LOCUS C (FLC) and FLOWERING LOCUS M (FLM; MAF1) play a role in the 98 

thermosensory regulation of flowering in Arabidopsis (Balasubramanian et al., 2006; Lee et 99 

al., 2007; Gu et al., 2013). Loss of function of either SVP or FLM results in partial 100 

temperature-insensitive early flowering (Balasubramanian et al., 2006; Lee et al., 2007; 2013; 101 

Posé et al., 2013). Moreover, FLM is subject to temperature dependent alternative splicing 102 

(Balasubramanian et al., 2006, Sureshkumar et al., 2016) resulting in two major splice forms, 103 

that either facilitate or inhibit SVP dependent repression of FT, and the floral homeotic genes 104 

SUPPRESSOR OF OVEREXPRESSION 1 (SOC1) and SEPALLATA (SEP3) (Posé et al., 105 

2013). Interestingly, a structural polymorphism in the first intron of FLM affects its 106 

expression, splicing and also regulates flowering predominantly at lower ambient 107 

temperatures (Lutz et al., 2015). Such structural polymorphisms within the first intron are 108 

typical within the family of MADS-box transcription factor genes and play an important role 109 

for expression variation and possibly adaptation to different environments across different 110 

species (Hong et al., 2003; Distelfeld et al., 2009; Schauer et al., 2009; Yoo et al., 2011).  111 

While flowering time control in response to temperature is well described in Arabidopsis, 112 

little is known about the genetic determinants of ambient temperature response in cereal 113 

grasses (Bullrich et al., 2002; Appendino and Slafer, 2003; Lewis et al., 2008; Hemming et 114 

al., 2012). In barley, a complex interplay between day length and temperature in the 115 

regulation of flowering has been reported. Under long-day (LD) conditions, barley plants 116 

accelerated reproductive development at 25 °C compared with 15 °C, whereas the opposite 117 

was the case in SDs (Hemming et al., 2012). In contrast to Arabidopsis, the transcript level of 118 

the barley homolog of FT was not influenced by temperature and no clear candidate genes for 119 
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the integration of thermal signals into the flowering time pathways have been identified so far 120 

(Hemming et al., 2012). Barley is a facultative long day plant and is characterized by winter 121 

and spring growth habits as determined by natural variation at the two vernalization genes 122 

HvVRN1 (HvBM5a) and HvVRN2 (Yan et al., 2003; Yan et al., 2004; Trevaskis et al., 2006). 123 

Winter types accelerate flowering after a prolonged period of cold (vernalization), whereas 124 

spring barley does not respond to vernalization.  The MADS-box gene HvVRN1 is 125 

characterized by a series of different deletions and insertions in the first regulatory intron 126 

which has been linked to differences in vernalization response and flowering behavior 127 

(Hemming et al., 2009). Photoperiod response, rapid flowering under long days is determined 128 

by natural variation at the PHOTOPERIOD-H1 (Ppd-H1) gene, which is homologous to the 129 

PSEUDO RESPONSE REGULATOR genes of the circadian clock in Arabidopsis (Turner et 130 

al., 2005). The wild-type allele is prevalent in winter barley, while a natural mutation in the 131 

conserved CCT domain of Ppd-H1 causes a delay in flowering under LDs and is predominant 132 

in spring barley from cultivation areas with long growing seasons (Turner et al., 2005; von 133 

Korff et al., 2006;2010; Wang et al., 2010) Ppd-H1 induces flowering under LDs by 134 

upregulating HvFT1, the barley homolog of FT in Arabidopsis (Turner et al., 2005; Campoli 135 

et al., 2012). Ppd-H1 is repressed during the night by HvELF3, HvLUX1, and 136 

PHYTOCHROME C, and mutations in these genes result in a day-neutral upregulation of 137 

HvFT1 and early flowering (Faure et al., 2012; Zakhrabekova et al., 2012; Campoli et al., 138 

2013; Pankin et al., 2014). Consequently, the major vernalization and photoperiod response 139 

genes are known in barley, if these also play a role for thermoresponsive flowering is not 140 

known.  141 

In Arabidopsis, commonly used macroscopic indicators of reproductive phase change or 142 

floral transition are time to bolting or rosette leaf number under the first open floral bud 143 

(Pouteau and Albertini, 2009).  Under optimal conditions, floral transition, bolting and 144 

flowering are well correlated in Arabidopsis. In barley, most stages of reproductive 145 

development including flowering occur within the leaf sheath and can therefore only be 146 

scored upon dissection of the shoot. Waddington et al. (1983) developed a quantitative scale 147 

for barley and wheat development based on the morphogenesis of the shoot apex and carpels. 148 

This scale is based on the progression of the most advanced floret primordium and carpel of 149 

the inflorescence. The enlargement of the apical dome at Waddington stage (W) 1.0 150 

represents an apex that is transitioning to a reproductive state and indicates the end of the 151 

vegetative phase. The emergence of the first floret primordia on the shoot apex at the double 152 
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ridge stage (W2.0) specifies a reproductive shoot apical meristem (SAM). At the stamen 153 

primordium stage (W3.5), the first floral organ primordia differentiate, and stem elongation 154 

initiates. In barley, the induction of floret primordia on the inflorescence continues until the 155 

awn primordium stage (W5.0). Anthesis and pollination of the most advanced floret occurs at 156 

the last stage of the Waddington scale (W10.0). This last step can be scored macroscopically 157 

because it is marked by the emergence of awn tips from the top of the leaf sheath (heading). 158 

Most commonly, flowering is scored as heading in barley. However, the different phases of 159 

shoot apex development differ in their sensitivity to environmental cues and are controlled by 160 

different genetic factors, so that floral transition and flowering may not be correlated and 161 

separated in time by many weeks (Digel et al. 2015). Variation in the timing of different 162 

developmental phases in turn affects the number of floret primordia, fertile flowers and seeds 163 

per spike (Digel et al. 2015). To better understand the effects of temperature on development 164 

it is therefore important to investigate the effects of environmental and genetic variation on 165 

individual phases of shoot apex development.  166 

The objective of present study was to elucidate the genetic control of reproductive 167 

development under high ambient temperature in barley.  We show that high ambient 168 

temperature delays the phase and reduces the amplitude of clock gene expression. Further, we 169 

demonstrate that under high ambient temperature flowering time and seed number are 170 

controlled by interactions between Ppd-H1 and HvVRN1 and correlate with expression levels 171 

of the BARLEY MADS-box genes HvBM3 and HvBM8 in the leaf. These findings provide 172 

new insights into the genetic and molecular control of flowering time and inflorescence 173 

development under high ambient temperature in barley.   174 

175 
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RESULTS 176 

High ambient temperature delays reproductive development and reduces seed set in 177 

spring barley 178 

To examine the effect of high ambient temperature on flowering in barley, we scored the 179 

spring barley genotypes Bowman and Scarlett for days to flowering under control (20/16°C) 180 

and high temperatures (28/24°C) in long days (LDs). These genotypes carry a mutated ppd-181 

H1 allele, a functional HvELF3 allele, and a spring HvVRN1 allele and therefore do not 182 

respond to vernalization and are late flowering under long days. Flowering was significantly 183 

delayed in both Bowman and Scarlett under high temperature as compared to control 184 

temperatures (Fig. 1A). In addition, high temperature reduced floret and seed number per 185 

spike in both genotypes (Fig. 1B, C). The total number of florets and seeds per spike were 186 

reduced in Bowman by 19% and 34% and in Scarlett by 30% and 74%, respectively, at high 187 

compared to control temperatures (Fig. 1B, C). Under short-day condition (8h light/16h 188 

dark), Bowman and Scarlett plants never flowered neither under control nor under high 189 

ambient temperature conditions (data not shown). 190 

The effect of increased temperature on floral development was evaluated by monitoring the 191 

progression of the main shoot apex (MSA) in Bowman and Scarlett plants grown at 20/16°C 192 

and 28/24°C according to the Waddington scale (W, Waddington et al., 1983). Microscopic 193 

dissection of the main shoot apex (MSA) revealed that high temperature did not have a strong 194 

effect on floral transition (W2.0), but greatly delayed the late reproductive phase of 195 

inflorescence development (after W3.5) both in Bowman and Scarlett (Fig. 2A, C). In 196 

summary, high ambient temperature primarily delayed inflorescence development and 197 

reduced the number of seeds per spike in the spring barley genotypes Bowman and Scarlett. 198 

 199 

High ambient temperature accelerates flowering time in genotypes with a non-200 

functional Hvelf3 allele and a dominant Ppd-H1 allele  201 

In Arabidopsis, the circadian clock and photoperiod pathways modulate ambient temperature 202 

responses to regulate flowering. Therefore, we further characterized reproductive 203 

development in introgression lines with a non-functional  Hvelf3 or dominant Ppd-H1 alleles  204 

under control and high ambient temperatures. HvELF3 is a component of the evening 205 

complex in Arabidopsis and represses Ppd-H1 expression in the night in barley (Faure et al. 206 
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2012). Therefore, the barley Hvelf3 mutant plant is characterized by high expression of Ppd-207 

H1 during the night (Faure et al. 2012). The introgression line (IL) Bowman(eam8) carrying a 208 

non-functional Hvelf3 allele in the background of Bowman and the ILs S42-IL107 and 209 

Bowman(Ppd-H1) with the wild-type Ppd-H1 gene in the background of Scarlett and 210 

Bowman were analyzed along with the parental genotypes for flowering time, floret fertility 211 

and seed set. In addition, the microscopic development of the MSA was evaluated in Scarlett, 212 

Bowman, S42-IL107 and Bowman(eam8) under control and high ambient temperatures.  213 

Microscopic dissection of the MSA revealed that in contrast to Bowman with a delayed 214 

development under high temperatures, Bowman(eam8) showed an accelerated MSA 215 

development at 28/24°C compared to 20/16°C (Fig. 2B). As a result, Bowman(eam8) plants 216 

flowered on average 5 days earlier at 28°C compared to 20°C (Fig. 1A).  217 

Since HvELF3 might control flowering time through its downstream target Ppd-H1, we 218 

evaluated if variation at Ppd-H1 mediated the flowering response under high ambient 219 

temperature. In contrast to the parental lines, S42-IL107 and Bowman(Ppd-H1) plants 220 

flowered on average 7 and 2 days earlier under high ambient compared to control 221 

temperatures (Fig. 2D). The dissection of the MSA in Scarlett and S42-IL107 revealed that 222 

high ambient temperature accelerated in particular the phase of stem elongation and 223 

inflorescence development (Fig. 2D). In addition, the analysis of variance for floret and seed 224 

number revealed a significant interaction between Ppd-H1 and ELF3 with temperature 225 

(Supplementary Table 1). High ambient temperatures caused a larger reduction in floret and 226 

seed number in Bowman and Scarlett than in the ILs Bowman(eam8),  S42-IL107 and 227 

Bowman(Ppd-H1) (Fig.1B, C, Supplementary Table 1).  228 

Taken together, high ambient temperature affected inflorescence development and flowering 229 

time in a HvELF3 and Ppd-H1 dependent manner. Quantitative variation in the reduction of 230 

seed number under high ambient temperatures was dependent on HvELF3 and Ppd-H1. 231 

Variation at HvVRN1 affects reproductive development under high ambient 232 

temperature 233 

Natural variation in the length of the first regulatory intron of HvVRN1 has a strong effect on 234 

vernalization response in barley. Therefore, we examined whether this variation also affected 235 

the response to ambient temperature variation in barley. For this purpose, we compared the 236 

development of Scarlett with that of S42-IL176. Scarlett carries a spring HvVRN1 allele with 237 
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a deletion in the first regulatory intron, S42-IL176 carries an introgression of the full-length 238 

winter Hvvrn1 allele. Although high ambient temperature delayed reproductive development 239 

in both genotypes, the effect was more pronounced in S42-IL176 which did not undergo 240 

floral transition and did not flower until 160 days after emergence (DAE) when the 241 

experiment was stopped (Fig. 2F, 1A). Consequently, the full-length intron of Hvvrn1 was 242 

correlated with a strong delay in  floral transition under high ambient temperatures. In order 243 

to assess if variation at HvVRN1 was also associated with inflorescence development in 244 

response to ambient temperature, we shifted Scarlett and S42-IL176 plants from 20/16°C to 245 

28/24°C only after floral transition (W2.0). Under these conditions, the IL with the winter 246 

Hvvrn1 allele also showed a strong delay in inflorescence development under high ambient 247 

temperatures compared to control conditions (Supplementary Figure 1B). Flowering was 248 

delayed by about two weeks under 28/24°C compared to 20/16°C. However, S42-IL176 249 

plants were able to produce flowers and seeds, when the temperature treatment was started 250 

after floral transition (Supplementary Figure 1C). 251 

High ambient temperature affects the expression of clock genes 252 

To further characterize the Ppd-H1, HvELF3, and HvVRN1 dependent effects of high 253 

temperature on barley development, we analyzed the expression of barley genes from the 254 

circadian clock, photoperiod and vernalization response pathways in the parental and 255 

introgression lines. Because the barley clock is plastic under abiotic stresses, we first tested 256 

the effects of high ambient temperature on variation in the diurnal pattern of clock gene 257 

expression. Under control conditions, the circadian clock genes showed a diurnal pattern of 258 

expression with clock genes peaking at different times of the day corroborating previous 259 

results (Campoli et al., 2012; Habte et al., 2014). The expression phase of clock genes did not 260 

differ between the parental lines Scarlett, and the ILs S42-IL107 and S42-IL176, suggesting 261 

that Ppd-H1 and HvVRN1 did not affect diurnal clock oscillations. By contrast, the 262 

expression phase and shape of clock genes were significantly different between Bowman and 263 

Bowman(eam8). The expression phase of the clock genes in Bowman(eam8) was advanced 264 

by two hours. The expression peaks were less defined and broader in Bowman(eam8) than in 265 

Bowman. Moreover, Bowman(eam8) exhibited higher levels of Ppd-H1 expression at most 266 

time points during the day compared to Bowman. Consequently, the loss of function mutation 267 

in HvELF3 affected the diurnal pattern of clock gene expression and caused a strong increase 268 

in Ppd-H1 expression independent of the ambient temperature.  269 
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High ambient temperatures caused a decrease in the expression of clock genes as seen for 270 

most clock genes in Scarlett and for HvCCA1 and HvPRR1 in Bowman (Fig.3, 4). In 271 

addition, the expression phase of clock genes was delayed by four hours under high ambient 272 

temperature compared to control conditions in Scarlett and Bowman. This reduction in 273 

expression amplitude and the shift in the expression phase were also observed in all ILs 274 

suggesting that temperature affected the phase of clock gene expression independently of the 275 

genotype. 276 

High ambient temperature reduces expression of flowering time genes 277 

As the clock genes are putative upstream regulators of flowering time genes, we investigated 278 

whether the temperature dependent changes in clock gene expression correlated with changes 279 

in the expression of flowering time genes. As observed for the clock genes, most flowering 280 

time regulators showed a significantly lower expression under high ambient temperature. 281 

Ppd-H1 exhibited a reduction in expression in Scarlett, Scarlett derived ILs and 282 

Bowman(eam8), but not in Bowman under high ambient temperature. The expression levels 283 

of HvCO1, the barley homolog of the major Arabidopsis photoperiod response gene 284 

CONSTANS, were reduced and the peak expression was delayed by approximately four 285 

hours under high ambient temperature in Scarlett and Scarlett derived ILs (Supplementary 286 

figure 4). While in Bowman HvCO1 expression peaked at dusk (T16) under control 287 

temperature, it showed an expression peak in the night at T20 under high ambient 288 

temperature (Supplementary figure 5). This suggested that HvCO1 expression was controlled 289 

by the clock and a temperature dependent phase shift of clock genes. However, no consistent 290 

changes in the level and peak time of HvCO1 expression were observed in Bowman and 291 

Bowman(eam8) (Supplementary figure 5).  292 

The expression levels of the HvFT1, a putative target of Ppd-H1, were significantly 293 

downregulated under high temperature in all genotypes. In addition, HvFT1 expression levels 294 

were overall significantly different between genotypes with higher transcript abundance in 295 

S42-IL107 and Bowman(eam8) and lower transcript levels in S42-IL176 compared to the 296 

parental lines (Fig. 5, 6).  297 

The MADS-box genes HvVRN1, HvBM3 and HvBM8 were also strongly downregulated 298 

under high versus control temperatures. In S42-IL176, the expression levels of the winter 299 

Hvvrn1 allele were 90-fold lower, while the expression levels of the spring HvVRN1 allele in 300 

Scarlett were only 2-fold lower under high ambient compared to control temperature (Fig. 5). 301 
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This suggested that the winter allele of HvVRN1 was repressed by high ambient temperatures 302 

(Fig.5). The expression patterns of HvBM3 and HvBM8 were comparable to those of 303 

HvVRN1 with a stronger temperature dependent downregulation in S42-IL176 compared to 304 

Scarlett. In contrast, S42-IL107 with a dominant Ppd-H1 allele exhibited an upregulation of 305 

HvVRN1, HvBM3, and HvBM8 under high compared to control temperatures (Fig.5). In 306 

Bowman(eam8) expression levels of the HvBM genes were approximately 10-fold higher 307 

compared to Bowman under control and high ambient temperature conditions. In addition, 308 

HvVRN1 and HvBM3 were only slightly downregulated under high versus control 309 

temperatures, while expression of HvBM8 was not significantly different between control and 310 

high-temperature conditions (Fig.6). HvOS2, a repressor of flowering and homolog of the 311 

major Arabidopsis vernalization gene FLOWERING LOCUS C (Greenup et al. 2010, Ruelens 312 

et al. 2013), was upregulated under high versus control temperatures and was controlled by 313 

Ppd-H1, HvELF3, and HvVRN1. Expression levels of HvOS2 were upregulated under high 314 

ambient temperature in Scarlett and Bowman, but very low during the day in S42-IL107 and 315 

Bowman(eam8) under both temperatures. HvOS2 expression levels were further increased 316 

under high temperatures in S42-IL176 with the winter Hvvrn1 allele and no detectable 317 

expression of Hvvrn1. HvOS2 expression levels were consequently negatively correlated with 318 

HvVRN1 expression and controlled by ambient temperature. 319 

Variation at Ppd-H1 and HvELF3, therefore, correlated with the temperature-dependent 320 

regulation of the MADS-box transcription factor genes. It is interesting to note, that in S42-321 

IL107 the expression patterns of HvFT1 and the HvBM genes were not correlated under the 322 

different temperature regimes, as the HvBM genes were upregulated, but HvFT1 was 323 

downregulated under high compared to control temperatures. The expression patterns of the 324 

HvBM genes, but not of HvFT1, correlated with the differential flowering time in response to 325 

high ambient temperatures. Low expression of the HvBM genes under high temperatures in 326 

Scarlett and Bowman coincided with a delay in reproductive development, while accelerated 327 

inflorescence development in S42-IL107 correlated with an upregulation of the HvBM genes 328 

under high ambient versus control temperatures. In Bowman(eam8) with accelerated 329 

development under high temperatures, the expression of HvBM3 and HvBM8 was strongly 330 

increased compared to Bowman and not very different between temperature regimes. In S42-331 

IL176 with a winter Hvvrn1 allele, a complete downregulation of HvFT1 and HvBM genes 332 

correlated with a strong delay in reproductive development as this genotype did not undergo 333 

floral transition under high temperatures.  334 
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Taken together, the wild type Ppd-H1 and a loss-of–function Hvelf3 allele correlated with an 335 

accelerated development under high compared to control temperatures and a higher 336 

expression of HvBM genes under high compared to control temperatures. In addition, 337 

variation in the regulatory region of the first intron in HvVRN1 controlled the expression of 338 

HvVRN1 itself, of the related HvBM genes and reproductive development under high ambient 339 

temperatures.  340 

Ppd-H1 and HvVRN1 interact to control inflorescence development under high ambient 341 

temperatures 342 

Our results showed that variation at Ppd-H1 was correlated with the expression of HvBM 343 

genes including HvVRN1 under high relative to control temperatures. Therefore, we 344 

examined if Ppd-H1 and HvVRN1 interacted to control reproductive development under 345 

different ambient temperatures. For this purpose, we analyzed MSA development and gene 346 

expression of HvVRN1 in F3 families selected from a cross between the winter barley variety 347 

Igri and the spring barley variety Golden Promise. The F3 families segregated for variation at 348 

Ppd-H1 and HvVRN1 but were fixed for the spring alleles at the other major flowering loci 349 

HvVRN2  and HvFT1. Reproductive development was delayed under high ambient 350 

temperatures in F3 plants with a spring ppd-H1 allele irrespective of the HvVRN1 allele as 351 

seen for Scarlett and S42-IL176. In addition, under high ambient temperature, the dominant 352 

Ppd-H1 allele accelerated development in the background of a spring HvVRN1 allele as 353 

observed for S42-IL107. F3 plants carrying a winter Hvvrn1 allele and a wild-type Ppd-H1 354 

allele exhibited a delay in MSA development under high ambient temperature compared to 355 

control conditions (Fig. 7A). Consequently, Ppd-H1 interacted with HvVRN1 to control the 356 

development under high temperatures, where only plants with a dominant Ppd-H1 and a 357 

spring HvVRN1 allele showed an accelerated development under high versus control 358 

temperatures. Gene expression analysis showed that the spring HvVRN1 allele was not 359 

affected in the presence of dominant Ppd-H1 allele under high ambient versus control 360 

temperatures. However, the winter Hvvrn1 allele was downregulated in the Ppd-H1 and ppd-361 

H1 backgrounds under high compared to control temperature (Fig. 7B). The winter Hvvrn1 362 

allele was stronger downregulated than the spring HvVRN1 allele as shown for Scarlett and 363 

S42-IL176. These results indicated that Ppd-H1 interacts with HvVRN1, where a dominant 364 

Ppd-H1 allele only accelerated floral development under high ambient temperature in the 365 

background of a spring HvVRN1 allele. 366 
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Discussion 367 

Understanding how ambient temperature controls plant development and eventually grain 368 

yield in crop plants is gaining importance in the light of a predicted increase in average global 369 

temperatures. The circadian clock influences plant adaptation to different abiotic stresses and 370 

controls many different output traits including plant development. Furthermore, the circadian 371 

clock itself is altered in response to changing environmental conditions. For example, 372 

osmotic stress increased the amplitude and advanced the expression phase of clock genes in 373 

barley, and high salinity resulted in a lengthening of the circadian period in wheat (Erdei et 374 

al., 1998; Habte et al., 2014). We found that an increase in ambient temperature from 375 

20/16°C to 28/24°C decreased expression levels and delayed the phase of clock gene 376 

expression. Although the clock is temperature-compensated and maintains a ca. 24h period 377 

over a range of ambient temperatures (Pittendrigh, 1954; Gould et al., 2006; Salomé et al., 378 

2010), previous studies have reported changes in the expression phase and amplitude of 379 

oscillator components under different temperatures. For example, in Arabidopsis peak 380 

expression levels CCA1 and LHY RNA rhythms increased in amplitude as temperatures 381 

decreased from 17 to 12°C (Gould et al., 2006; Mizuno et al., 2014). Temperatures of above 382 

30°C are considered as heat stress for temperate cereals (Barnabas et al. 2007). However, an 383 

induction of a stress response when increasing the temperature from 20°C to 28°C cannot be 384 

excluded. Therefore, the observed changes in clock oscillations in this work may be related to 385 

changes in the level of stress response hormones. In Arabidopsis, application of the stress 386 

hormone abscisic acid (ABA) lengthened the period of the Arabidopsis clock (Hanano et al., 387 

2006), probably through evolutionary conserved ABREs present in the promoters of TOC1, 388 

LHY, and CCA1 (Bieniawska et al., 2008; Spensley et al., 2009; Picot et al., 2010; Habte et 389 

al., 2014). In addition, the heat shock transcription factor HsfB2b repressed transcription of 390 

PSEUDO-RESPONSE REGULATOR 7 (PRR7) at high temperatures and in response to 391 

drought (Kolmos et al., 2014). (Salomé et al., 2010; Kolmos et al., 2014) found that the PRR 392 

genes are important for the temperature compensation of the clock in Arabidopsis, as high 393 

temperature led to overcompensation and lengthening of the period in a HsfB2b 394 

overexpression line or double prr7/9 mutant. In our study, the changes in clock gene 395 

expression under high ambient temperature were also observed in S42-IL107 and 396 

Bowman(eam8) suggesting that these temperature mediated changes of the clock were not 397 

controlled by the PRR homolog Ppd-H1 or its upstream regulator HvELF3. In addition, the 398 

downregulation of all PRR genes under high ambient temperature suggested that the 399 
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repressive evening complex (EC) consisting of HvELF3, HvELF4 and HvLUX1 was not 400 

reduced in its activity under high temperature in barley as demonstrated for Arabidopsis 401 

(Mizuno et al., 2014). 402 

Although the function of clock plasticity under different environmental conditions is not well 403 

understood, it may affect the expression of different clock output genes and corresponding 404 

traits. We observed that the altered clock expression patterns correlated with changes in the 405 

diurnal expression patterns of flowering time genes. Similar to the reduction in the expression 406 

amplitudes of clock genes, the expression levels of the majority of flowering time genes 407 

including Ppd-H1 and its downstream target HvFT1 were strongly reduced under high 408 

ambient temperatures. However, in contrast to the clock genes, temperature dependent 409 

changes in the expression of flowering time genes were controlled by Ppd-H1, HvELF3, and 410 

HvVRN1. Ppd-H1 and HvFT1 transcripts were reduced under high compared to the control 411 

temperatures in all genotypes. In contrast, relative expression patterns of BARLEY MADS-box 412 

(BM) genes HvBM3, HvVRN1 (HvBM5a) and HvBM8 were genotype and condition specific. 413 

While in Scarlett HvVRN1, HvBM3, and HvBM8 were downregulated, they were not 414 

downregulated or even up-regulated under high versus control temperature in S42-IL107 and 415 

Bowman(eam8). This indicated that Ppd-H1 and HvELF3 controlled the relative expression 416 

levels of BM genes under different ambient temperature conditions. HvBM3 and HvBM8 are 417 

known targets of Ppd-H1 under long day conditions and their expression patterns correlate to 418 

the development of the inflorescence (Digel et al., 2015; Digel et al., 2016). In the present 419 

study, we show that the effect of Ppd-H1 on HvBM3 and HvBM8 expression and flowering 420 

time was temperature dependent. Scarlett and Bowman with a mutated ppd-H1 allele showed 421 

a relatively lower expression of HvBM3, HvVRN1 and HvBM8 and a delay in floral 422 

development under high versus control temperatures. S42-IL107, with a wild type Ppd-H1 423 

allele, exhibited a relatively higher expression of HvBM3, HvVRN1, and HvBM8, and was 424 

characterized by a faster inflorescence development under high versus control temperatures. 425 

Interestingly, functional variation at Ppd-H1 also had a strong effect on the number of florets 426 

and seeds per main spike under high ambient temperatures. While in Scarlett and Bowman 427 

the mutated ppd-H1 allele was correlated with a strong reduction of the number of seeds per 428 

main spike, S42-IL107 did not show a significant reduction in seed number under high 429 

temperatures. This suggested that Ppd-H1 affected floret fertility and seed set under high 430 

ambient temperatures, possibly controlling the rate of development of the inflorescence.   431 
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A previous study found that high ambient temperatures accelerated flowering time under 432 

LDs, but delayed development under SDs in a winter barley with a wild-type Ppd-H1 allele 433 

(Hemming et al., 2012). The authors suggested an interaction between the photoperiod and 434 

thermosensitive pathway. Our study demonstrates that this interaction is mediated by Ppd-H1 435 

which is functional under LDs, but not under SDs (Digel et al., 2015). Furthermore, we show 436 

that the effect of Ppd-H1 on early reproductive development under high temperatures is 437 

dependent on HvVRN1. Only in the background of a spring HvVRN1 allele or after 438 

upregulation of Hvvrn1 by vernalization, the wild-type Ppd-H1 allele is capable of 439 

accelerating early reproductive development under high ambient temperatures.  440 

Among the BM genes, HvVRN1 has been extensively characterized for its role in 441 

vernalization response. The winter HvVRN1 allele is upregulated by a prolonged exposure to 442 

cold to allow flowering after winter. Our results suggest that HvVRN1 expression is 443 

negatively regulated by high ambient temperature and this downregulation of the winter 444 

Hvvrn1 allele correlated with a strong delay in reproductive development. The full-length 445 

winter Hvvrn1 allele in S42-IL176 was more strongly downregulated by high ambient 446 

temperature compared to the spring HvVRN1 allele with a deletion in the first intron. 447 

Interestingly, a recent study has revealed that natural variation in the first intron of MADS-448 

box gene FLM was responsible for differential temperature response in Arabidopsis (Lutz et 449 

al. 2015). Consequently, structural variation in related MADS-box transcription factors may 450 

play a role in temperature adaptation across different species. In Arabidopsis, high ambient 451 

temperature accelerates plant development and growth. However, different Arabidopsis 452 

ecotypes show substantial variation in the thermosensitive response mediated by natural 453 

variation at the vernalization gene and floral repressor FLC. High expression levels of FLC in 454 

autonomous pathway mutants functioned as a potent suppressor of thermal induction 455 

(Balasubramanian et al., 2006). HvOS2, the putative barley homolog of FLC, was 456 

upregulated under high ambient temperature in a HvVRN1 dependent manner. The barley 457 

vernalization gene and floral inducer HvVRN1, in turn, was downregulated by high 458 

temperature and this correlated with a downregulation of HvBM3 and HvBM8 and a delay in 459 

floral development. Different vernalization genes might, therefore, mediate thermosensitive 460 

flowering across different species.  461 

Conclusion: 462 
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Our study demonstrates that an interaction of Ppd-H1 and HvVRN1 controls reproductive 463 

development and the number of seeds per spike under high ambient temperatures. These 464 

genetic interactions between Ppd-H1 with HvVRN1 are important to consider for breeding 465 

barley better adapted to climate change.   466 

 467 
Materials and Methods 468 

Plant material, growth conditions, and phenotyping: 469 

Flowering time, development of the shoot apical meristem (SAM), flower fertility, and seed 470 

set were scored in the spring cultivars Bowman and Scarlett and four derived introgression 471 

lines (ILs). Bowman and Scarlett are characterized by a mutation in the CCT domain of Ppd-472 

H1 and the spring allele (HvVRN1-1, Hemming et al., 2009) at the vernalization response 473 

gene HvVRN1. The introgression line Bowman(eam8.w) carries a base pair mutation leading 474 

to a premature stop codon in HvELF3, orthologous to ELF3 in Arabidopsis (Faure et al., 475 

2012). Bowman(Ppd-H1) carries an introgression of the dominant Ppd-H1 allele from wild 476 

barley (Druka et al., 2011). The Scarlett derived introgression lines S42-IL107 and S42-477 

IL176 carry a dominant allele of Ppd-H1 and a recessive winter Hvvrn1 allele, respectively, 478 

both derived from wild barley (von Korff et al., 2006; Schmalenbach et al., 2008; Wang et 479 

al., 2010). In addition, development of the main shoot apex and expression of HvVRN1 were 480 

analyzed in selected F3 families derived from a cross between the winter barley Igri and the 481 

spring barley Golden Promise. These F3 families segregated for natural variation at Ppd-H1 482 

and HvVRN1 and were fixed for the spring alleles at HvFT1 and VRN-H2 (locus deleted). 483 

For scoring of shoot apex development, flowering time, floret number, and seed number per 484 

spike plants were stratified at 4°C for 5d for even germination followed by a transfer to 485 

controlled growth chambers with day/night temperatures of 20/16°C or 24/28°C, a light 486 

intensity of ~300uM and long photoperiods (LD, 16h light/8h dark). Light and temperature 487 

were monitored throughout the experiments using WatchDog series 1000 light sensors. Plants 488 

were fertilized once per week and trays were shuffled twice a week to normalize for position 489 

effects. Plants were either shifted to high ambient temperatures after stratification or after 490 

floral transition as determined by the formation of a double ridge SAM (Waddington et al. 491 

1983). Experiments were replicated 2-3 time using different randomizations to minimize the 492 

environmental effects.  493 
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The main shoot apex (MSA) of three to four representative plants per genotype (Bowman, 494 

Bowman(eam8), Scarlett, S42-IL107 and S42-IL176) and treatment were dissected every 495 

three to seven days starting from the 3rd day after emergence (DAE) until 36 DAE. At each 496 

time point, the developmental stage of the MSA was determined according to the quantitative 497 

scale of Waddington et al. (1983), which rates the development of the most advanced floret 498 

primordium. Images of apices were obtained using the Nikon imaging software and a stereo 499 

microscope (Nikon SMZ18) equipped with a digital camera (Nikon digital sight DS-U3).  500 

The apex was dissected with a microsurgical stab knife (5 mm blade at 15° (SSC#72-1551), 501 

Sharepoint, Surgical Specialties) under the stereo microscope to confirm the developmental 502 

stage of each harvested MSA. In addition, morphological phenotypes of the main shoot, i.e., 503 

heading date (at Z49, ZADOKS et al., 1974), the number of florets per spike, and the number 504 

of grains per spike were recorded during development at plant maturity for 20 plants per 505 

genotype.  506 

Leaf sampling, RNA extraction and gene expression analysis 507 

For the analysis of diurnal expression variation in clock and flowering time genes in Scarlett, 508 

S42-IL107, S42-IL176, Bowman and Bowman(eam8.w), plants were grown in 96-well trays 509 

(Einheitserde) under day/night temperatures of 20/16°C or 24/28°C, a light intensity of 510 

~300uM and long photoperiods (LD, 16h light/8h dark). Leaf samples were harvested 21 511 

DAE at 2h intervals starting from the onset of light (ZT0) to the end of the night (T22). For 512 

all genotypes and treatment conditions, three biological replicates of two pooled plants were 513 

sampled per time point. Total RNA extraction, cDNA synthesis, and qRT-PCRs using gene-514 

specific primers as detailed in Supplementary Table 2 were performed as explained in 515 

Campoli et al. (2012). The expression of target genes was normalized against the geometric 516 

mean of the three internal controls HvACTIN, HvGAPDH and HvβTUBULIN (Supplementary 517 

Table 1). Two technical replicates were used for each sample and each data point was 518 

quantified based on the titration curve for each target gene and normalized against the 519 

geometric mean of the three housekeeping genes using the LightCycler 480 Software (Roche; 520 

version 1.5). 521 

Statistical analysis 522 

Significant differences in flowering time, floret, and seed number were calculated with a two-523 

factorial ANOVA with the factors genotype and temperature treatment. In addition, least 524 

square means for each gene by temperature combination were calculated followed by a 525 
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Tukey’s multiple comparison test. Significant differences in HvVRN1 expression were 526 

calculated with an ANOVA including temperature treatment, HvVRN1 and Ppd-H1 genotype 527 

and all possible interaction effects. Statistical differences in the MSA development between 528 

temperature regimes were calculated using a polynomial regression model at 95% confidence 529 

interval (Loess smooth line). 530 

  531 
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 534 
Figure S1: HvVRN1 affects reproductive development in response to ambient temperature after floral 535 
transition. 536 
Figure S2: Diurnal expression of circadian clock genes HvPRR73 and HvPRR95 in Scarlett, S42-537 
IL107, and S42-IL176 under control and high ambient temperatures. 538 
 539 
Figure S3: Diurnal expression of circadian clock genes HvPRR73 and HvPRR95 in Bowman and 540 
Bowman(eam8) under control and high ambient temperatures 541 
 542 
Figure S4: High ambient temperature downregulates the expression of flowering time gene HvCO1 in 543 
Scarlett, S42-IL107, and S42-IL176. 544 
 545 
Figure S5: Effect of high ambient temperature on diurnal expression of flowering time gene HvCO1 546 
in Bowman and Bowman(eam8). 547 
 548 
Table S1. Two-factorial ANOVA and least square means for heading date, floret and seed number  549 
 550 
Table S2. List of primers used in this study. 551 
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Figure Legends 564 

Figure 1. High ambient temperature affects flowering time, floret, and seed number per main 565 
spike in barley. Days to flower A), the number of  florets B), and the number of seeds per main spike 566 
C) under control (blue, 20/16°C, day/night) and high ambient temperatures (pink, 28/24°C, day/night) 567 
in the spring barley varieties Bowman and Scarlett and and the derived introgression lines 568 
Bowman(eam8) (Hvelf3), Bowman(Ppd-H1), S42-IL107 (Ppd-H1), S42-IL176 (Hvvrn1). Flowering 569 
time, floret, and seed number were recorded for 20 plants per genotype and treatment under long days 570 
(16h light/8h night). N.F indicates non-flowering plants. Statistical differences were calculated by a 571 
two-factorial ANOVA and a posthoc Tukey’s multiple comparison test: *P < 0.05, **P < 0.01, ***P 572 
< 0.001., n.s= non-significant. 573 

Figure 2. High ambient temperature affects shoot apex development (SAM) in barley. 574 
Microscopic development of the main shoot apex (MSA) was scored under control (blue, 20/16°C, 575 
day/night) and high ambient (pink, 28/24°C, day/night) temperatures every three days according to 576 
the Waddington scale (Waddington et al., 1983). MSA development was delayed under high 577 
compared to control temperature in Bowman (A) and Scarlett (C, E), accelerated in Bowman(eam8) 578 
(B) and S42-IL107 (D), and further delayed floral transition in S42-IL176 (F). 3-4 plants per genotype 579 
were dissected at each time point in each treatment under long days (16h light/8h night). Statistical 580 
differences (p<0.05) were calculated using a polynomial regression model at 95% confidence interval 581 
(Loess smooth line). 582 

Figure 3. Diurnal expression patterns of circadian clock genes in Scarlett, S42-IL107, and S42-583 
IL176 under control and high ambient temperatures. Diurnal expression of circadian clock genes 584 
was assayed every two hours for 24 hours under control (blue, 20/16°C, day/night) and high ambient 585 
(pink, 28/24°C, day/night) temperatures under long days (16h light/8h night). Grey boxes indicate 586 
nights. Error bars indicate +SD of three biological replicates. 587 

Figure 4. Diurnal expression of circadian clock genes in Bowman, and Bowman(eam8) under 588 
control and high ambient temperatures. Diurnal expression of circadian clock genes was assayed 589 
every two hours for 24 hours under control (blue, 20/16°C, day/night) and high ambient (pink, 590 
28/24°C, day/night) temperatures under long days (16h light/8h night) are shown. Grey boxes indicate 591 
nights. Error bars indicate +SD of three biological replicates. 592 

Figure 5. High ambient temperature affects the expression of flowering time genes in Scarlett, 593 
S42-IL107, and S42-IL176 under control and high ambient temperatures. Diurnal expression of 594 
flowering time genes was assayed every two hours for 24 hours under control (blue, 20/16°C, 595 
day/night) and high ambient (pink, 28/24°C, day/night) temperatures under long days (16h light/8h 596 
night) are shown. Grey boxes indicate nights. Error bars indicate +SD of three biological replicates. 597 

Figure 6. Diurnal expression of flowering time genes in Bowman and Bowman(eam8) under 598 
control and high ambient temperatures. Diurnal expression of flowering time genes sampled every 599 
two hours for 24 hours under control (blue, 20/16°C, day/night) and high ambient (pink, 28/24°C, 600 
day/night) temperatures under long days (16h light/8h night) are shown. Grey boxes indicate nights. 601 
Error bars indicate +SD of three biological replicates. 602 

Figure 7. Ppd-H1 and HvVRN1 interact to control the development of the main shoot apex 603 
(MSA) under different ambient temperatures. Microscopic changes in MSA development were 604 
scored under control (blue, 20/16°C, day/night) and high ambient (pink, 28/24°C, day/night) 605 
temperatures under long days (16h light/8h night) in F3 families derived from a cross between the 606 
winter barley Igri and the spring barley Golden Promise. Selected F3 families segregated for Ppd-H1 607 
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and HvVRN1 and were fixed for the spring alleles at HvVRN2 (deleted) and HvFT1. Early MSA 608 
development was accelerated under high temperature in Ppd-H1/HvVRN1 and delayed in Ppd-609 
H1/Hvvrn1, ppd-H1/HvVRN1, and ppd-H1/Hvvrn1. Significant differences were determined by a two-610 
way ANOVA and a Tukey HSD pairwise comparison test: *P < 0.05, **P < 0.01, ***P < 0.001., n.s= 611 
non-significant. 612 
  613 
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Figure 1: High ambient temperature affects flowering time, floret and seed number per main spike in
barley. Days to flower A), the number of florets B), and the number of seeds per main spike C) under control (blue,
20/16◦C, day/night) and high ambient temperatures (pink, 28/24◦C, day/night) in the spring barley varieties Bowman
and Scarlett and the derived introgression lines Bowman(eam8 )(Hvelf3 ), Bowman(Ppd-H1 ), S42-IL107 (Ppd-H1 ), S42-
IL176 (Hvvrn1 ). Flowering time, floret, and seed number were recorded for 20 plants per genotype and treatment
under long days (16h light/8h night). N.F indicates non-flowering plants. Statistical differences were calculated by
a multi-factorial ANOVA and a posthoc Tukeys HSD pairwise comparison test: *P <0.05, **P <0.01, ***P <0.001,
n.s.= non-significant.

 www.plantphysiol.org on November 22, 2016 - Published by www.plantphysiol.orgDownloaded from 
Copyright © 2016 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/
http://www.plantphysiol.org


Floral transition

Stamen primordia

Figure 2: High ambient temperature affects shoot apex development in barley. Microscopic development
of the main shoot apex (MSA) was scored under control (blue, 20/16◦C, day/night) and high ambient (pink, 28/24◦C,
day/night) temperatures every three days according to the Waddington scale (Waddington et al., 1983). MSA devel-
opment was delayed under high compared to control temperature in Bowman (A) and Scarlett (C, E), accelerated in
Bowman(eam8 ) (B) and S42-IL107 (D), and further delayed floral transition in S42-IL176 (F). 3-4 plants per geno-
type were dissected at each time point in each treatment under long days (16h light/8h night). Statistical differences
(p<0.05) were calculated using a polynomial regression model at 95% confidence interval (Loess smooth line).
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Figure 3: Diurnal expression patterns of circadian clock genes in Scarlett, S42-IL107, and S42-IL176 under
control and high ambient temperatures. Diurnal expression of circadian clock genes was assayed every two hours for
24 hours under control (blue, 20/16◦C, day/night) and high ambient (pink, 28/24◦C, day/night) temperatures under long
days (16h light/8h night). Grey boxes indicate nights. Error bars indicate ±SD of three biological replicates.
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Figure 4: Diurnal expression of circadian clock genes in Bowman, and Bowman(eam8) under control
and high ambient temperatures. Diurnal expression of circadian clock genes was assayed every two hours for
24 hours under control (blue, 20/16◦C, day/night) and high ambient (pink, 28/24◦C, day/night) temperatures under
long days (16h light/8h night). Grey boxes indicate nights. Error bars indicate ±SD of three biological replicates.
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Figure 5: High ambient temperature affects the expression of flowering time genes in Scarlett, S42-IL107,
and S42-IL176 Diurnal expression of flowering time genes was assayed every two hours for 24 hours under control (blue,
20/16◦C, day/night) and high ambient (pink, 28/24◦C, day/night) temperatures under long days (16h light/8h night). Grey
boxes indicate nights. Error bars indicate ±SD of three biological replicates.
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Figure 6: Diurnal expression of flowering time genes in Bowman and Bowman(eam8) under control
and high ambient temperatures. Diurnal expression of flowering time genes was assayed every two hours for 24
hours under control (blue, 20/16◦C, day/night) and high ambient (pink, 28/24◦C, day/night) temperatures under long
days (16h light/8h night). Grey boxes indicate nights. Error bars indicate ±SD of three biological replicates. www.plantphysiol.org on November 22, 2016 - Published by www.plantphysiol.orgDownloaded from 
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Figure 7: Ppd-H1 and HvVRN1 interact to control the development of the main shoot apex
(MSA) under different ambient temperatures. Microscopic changes in MSA development were scored
under control (blue, 20/16◦C, day/night) and high ambient (pink, 28/24◦C, day/night) temperatures under
long days (16h light/8h night) in F3 families derived from a cross between the winter barley Igri and the
spring barley Golden Promise. Selected F3 families segregated for Ppd-H1 and HvVRN1 and were fixed for
the spring alleles at HvVRN2 (deleted), HvFT1, and HvFT3. Early MSA development was accelerated under
high temperature in Ppd-H1/HvVRN1 and delayed in Ppd-H1/Hvvrn1, ppd-H1/HvVRN1, and ppd-H1/Hvvrn1.
Significant differences were determined by a multi-factorial ANOVA and a Tukey HSD pairwise comparison test:
*P <0.05, **P <0.01, ***P <0.001, n.s= non-significant.
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Supplementary Figure 1: HvVRN1affects reproductive development in response to ambient temperature after floral transition. Development of
the main shoot apex (MSA) was scored under control (blue) and high ambient (pink) temperatures every ten days according to the Waddington scale (Waddington
et al., 1983). MSA development was not affected under high compared to control temperatures in Scarlett (A) and delayed inflorescence development in the derived
introgression line S42-IL176 (Hvvrn1 ) (B). Plants were grown at control temperature (blue, 20/16◦C, day/night) and transferred to high temperature (pink, 28/24◦C,
day/night) at floral transition (W2.0). 3-4 plants per genotype were dissected at each time point in each treatment under long days (16h light/8h night). Statistical
differences were calculated using a polynomial regression model at a 95% confidence interval (Loess smooth line). (C) Days to flowering of the MSA under control
(blue, 20/16◦C, day/night) and high ambient temperatures (pink, 28/24◦C, day/night) in the spring barley variety Scarlett and the derived introgression line S42-IL176
(Hvvrn1 ). Flowering time was recorded for 6-8 plants per genotype and treatment. Statistical differences were calculated by an ANOVA and a posthoc Tukeys HSD
pairwise comparison test: *P <0.05, **P <0.01, ***P <0.001, n.s=non-significant.
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Supplementary Figure 2: Diurnal expression of circadian clock genes HvPRR73 and HvPRR95 in Scarlett, S42-IL107, and S42-IL176 under
control and high ambient temperatures. Gene expression was assayed every two hours for 24 hours under control (blue, 20/16◦C, day/night) and high ambient
(pink, 28/24◦C, day/night) temperatures under long days (16h light/8h night). Grey boxes indicate nights. Error bars indicate ±SD of three biological replicates.
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Supplementary Figure 3: Diurnal expression of circadian clock genes HvPRR73 and HvPRR95 in Bowman and Bowman(eam8) under control and
high ambient temperatures Gene expression was assayed every two hours for 24 hours under control (blue, 20/16◦C, day/night) and high ambient (pink, 28/24◦C,
day/night) temperatures under long days (16h light/8h night). Grey boxes indicate nights. Error bars indicate ±SD of three biological replicates.
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Supplementary Figure 4: High ambient temperature downregulates the expression of flowering time gene HvCO1 in Scarlett, S42-IL107, and
S42-IL176. Diurnal expression of HvCO1 was assayed every two hours for 24 hours under control (blue, 20/16◦C, day/night) and high ambient (pink, 28/24◦C,
day/night) temperatures under long days (16h light/8h night). Grey boxes indicate nights. Error bars indicate ±SD of three biological replicates.
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Supplementary Figure 5: Effect of high ambient temperature on diurnal expression of flowering time gene HvCO1 in Bowman and Bowman(eam8).
Diurnal expression of HvCO1 was assayed every two hours for 24 hours under control (blue, 20/16◦C, day/night) and high ambient (pink, 28/24◦C, day/night)
temperatures under long days (16h light/8h night). Grey boxes indicate nights. Error bars indicate ±SD of three biological replicates.
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Supplementary Table 1: A) Two-factorial ANOVA, F values and significances (**p<0.01, *** 

p<0.001, ns = non-significant) and B) Least square means for heading date, floret and seed number for 

each genotype (P = Parental genotype, Scarlett or Bowman, V = Introgression line for HvELF3, PPD-

H1 or HvVRN1) by environment combination (C = Control, H= High ambient temperatures). Small 

letters indicate significant differences (p<0.05).  

A 

Factor Heading Floret number Seed number 

 F Value F Value F Value 

HvELF3    

Temperature 44*** 27*** 10** 

HvELF3 1102*** 310*** 15*** 

HvELF3*Temp 178*** 22*** 15*** 

Ppd-H1    

Temperature 50*** 35*** 53*** 

PPD-H1 2098*** 117*** 12*** 

PPD-H1*Temperature 189*** 10*** 19*** 

HvVRN1       

Temperature 6995*** 732*** 363*** 

HvVRN1 6131*** 236*** 23*** 

HvVRN1*Temp 4617*** 235*** 1 ns 

B 

Factor P/C P/H V/C V/H 

HvELF3     

Heading 40a 51c 29.8b 26d 

Floret number 21a 17c 13b 13b 

Seed number 9a 3b 9a 9a 

PPD-H1     

Heading 42a 52b 26c 23d 

Floret number 26a 19c 16b 14b 

Seed number 15a 4c 14ab 11b 

HvVRN1     

Heading 46a 56c 52b >106d 

Floret number 30a 22b 30a 0c 

Seed number 23a 5c 19b 0d 
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Supplementary Table 2: List of q-PCR primers used in this study. 

Gene ID Gene name Forward primer sequence Reverse primer sequence Source 

AY145451 HvACTIN CGT GTT GGA TTC TGG TGA TG AGC CAC ATA TGC GAG CTT CT Campoli et al.2012a 

AJ249143 HvBM3 GCC GTC ACC AGC ACA AGC AA CCC CAT TCA CCC TGT AGC AAA GA Digel et al. 2015 

AJ249146 HvBM8 CCA CAG CAG CCG ACA CCT A TGC CTT TGG GGG AGA AGA CG Digel et al. 2015 

JN603242 HvCCA1 CCT GGA ATT GGA GAT GGA GA TGA GCA TGG CTT CTG ATT TG Campoli et al.2012b 

AF490468 HvCO1 CTG CTG GGG CTA GTG CTT AC CCT TGT TGC ATA ACG TGT GG Campoli et al.2012a 

DQ100327 HvFT1 GGT AGA CCC AGA TGC TCC AA TCG TAG CAC ATC ACC TCC TG Campoli et al.2012a 

AK362208 HvGAPDH GTG AGG CTG GTG CTG ATT ACG AGT GGT GCA GCT AGC ATT TGA GAC unpublished 

AY740524 HvGI TCA GTT AGA GCT CCT GGA AGT GGT AGT TTG GGC TTT GGA TG Campoli et al.2012b 

Hv.20312 HvLUX1 AAT TCA GTC CAC GGA TGC TC CTT CAC TTC AGC TCC CCT TG Campoli et al.2012 

HM130525 HvOS2 CAA TGC TGA TGA CTC AGA TGC T CGCTATTTCGTTGCGCCAAT Green up et al. 2010 

JN603243 HvPRR1 GAG CAT AGC ATG GCA CTT CA TGT CTT TCC TCG GAA ATT GG Campoli et al.2012b 

AK361360 HvPRR59 GAA ATT CCG CAT GAA AAG GA TTC CGC ATC TTC TGT TGT TG Campoli et al.2012b 

AK376549 HvPRR73 GCG CCG TAG AGA ATC AGA AC CAT GTC GGG TAC AGT CAT CG Campoli et al.2012b 

AK252005 HvPRR95 CAG AAC TCC AGT GTC GCA AA TGC TGT TGC CAG AGT TGT TC Campoli et al.2012b 

Y09741 HvßTUBLIN GTG CAT GGT TCT TGA CAA CG GCA TGT GAC TCC ACT CAT GG unpublished 

AY750995 HvVRN1 CTG AAG GCG AAG GTT GAG AC TTC TCC TCC TGC AGT GAC CT Campoli et al.2012a 

AY970701 PPD-H1 GAT GGA TTC AAA GGC AAG GA GAA CAA TTG GCT CCT CCA AA Campoli et al.2012a 
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