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Figure 1: We predict the future of videos. (first row): the true future frame for ¢ 4-4. (second row): RGB extrapolation of [15]
which gets blurry quickly. (third row): our boundary extrapolation overlayed on the unobserved, true future frame, which
outlines the boundaries precisely and enables long term prediction.

Abstract

Boundary prediction in images and videos has been a
very active topic of research and organizing visual infor-
mation into boundaries and segments is believed to be a
corner stone of visual perception. While prior work has
focused on predicting boundaries for observed frames, our
work aims at predicting boundaries of future unobserved
frames. This requires our model to learn about the fate
of boundaries and extrapolate motion patterns. We experi-
ment on established real-world video segmentation dataset,
which provides a testbed for this new task. We show for
the first time spatio-temporal boundary extrapolation, that
in contrast to prior work on RGB extrapolation maintains
a crisp result. Furthermore, we show long-term prediction
of boundaries in situations where the motion is governed by
the laws of physics. We argue that our model has with min-
imalistic model assumptions derived a notion of “intuitive
physics”.

1. Introduction

Humans possess the skill to imagine future states of on
observed scene, which supports tasks ranging from plan-
ning to object manipulation. Observing a moving ball, we
have a reasonably good estimate about the future trajectory
of the ball, which e.g. is key for the goal keeper to catch the
ball.

This has inspired a recent line of research that aims
at capturing this type of intuitive understanding of scene
physics via machine learning techniques — which is often
called “intuitive physics”. E.g. [5] predicts futures states of
balls moving on a billiard table and [ 12, 13] predict the sta-
bility and future states of towers made out of blocks. These
models typically are parametric of some sort, are learnt
from data or only predict a qualitative outcome of the scene.
Moreover, both [5] and [12] have an “object notion”, mean-
ing that the model knows a priori the location or type of the
objects it is supposed to model.

Recently, full future frame predication of natural (RGB)
videos has been studied that is agnostic to the underlying



objects and causes of the change depicted in the sequence
[19, 15]. But up to now, only very short range predictions
of a few frames have been shown and blurriness/distortion
artifacts occur in the predicted future frames as shown in
Figure 1(second row) and also later evaluated in Figure 4a.

On the other hand, a lot of progress has been made in the
field of image and video segmentation supported by datasets
like VSB100 [7]. The segmented natural videos discard
many details of the full RGB videos mentioned above which
are hard for a model to learn and yet these segments still
capture the important structures and extents of objects. The
boundaries between segments gives rise to boundary im-
ages. The gray-scale boundary image encodes boundary lo-
cation information. In many scenarios this high frequency
information is crucial for meaningful predictions about the
future, e.g. on a billiard table the location of ball and ta-
ble boundaries in the past are necessary to infer the state of
the table (location of the balls) in the future. Figure 1(last
row) shows example results of our method that accurately
extrapolates such image boundaries into the future (over-
layed with groundtruth for reference), while also not being
subject to the before mentioned issues blur.

Our main contribution is the first model to extrapolate
future boundary frames of segmented videos and to explore
the performance of these models under structured motion —
deterministic and non-deterministic ones. We evaluate per-
formance both on natural video sequences from VSB100
and synthetic and real billiard table sequences. We demon-
strate that the boundaries predicted by our models are ac-
curate over long time horizons (Figure 4b shows the mean
squared error of predicted boundaries vs RGB) and can be
used for sharper RGB frame prediction. Moreover, we show
that our models can develop an intuitive understanding of
physics from raw visual input without any strong paramet-
ric model of the motion or “object notion” and is capable of
making accurate long term predictions under deterministic
settings.

2. Related work
RGB frame prediction. This problem has been re-
cently explored in [21, 19, 15]. The work of [21] fo-

cused on learning representations of video sequences. They
used an LSTM encoder unit to encode videos into a vec-
tor which they used for predicting future frames. How-
ever, they focused on low-resolution input sequences and
predicted frames has blurriness problems. In [19], the au-
thors focused on the problem of blurring caused by using
the mean squared loss as an objective function. They sought
to remedy this problem by discretizing the input through k-
means atoms and predicting on this vocabulary instead. The
work of [15] also focused on this problem. They proposed
using adversarial loss, which lead to improved results over
[19]. These approaches produce sharp short term predic-

tions (1 or 2 frames in the future) but still suffer from blur-
riness problems in the long term already starting at 3 frames
into the future. Moreover, these works have focused on nat-
ural videos or datasets like MNIST digits. The ability of
these models to learn the dynamics of deterministic motion
has not been explored. Works of [22, 16] predict frames
of videos of bouncing balls, but their dataset is very lim-
ited in size and resolution. Moreover, they do not consider
generalization with respect to the number of balls and their
velocities.

Fitting physics models to video. Works like that of [23, 17]
focus on predicting outcomes of physical events in videos or
images. In [23] the authors propose “Galileo” that estimates
the physical properties of objects and inverts a physics en-
gine to predict outcomes. While in [17], the authors predict
the motion of objects using a single query image using a
neural network which matches the image to a moment in a
video which is closest in describing the dynamics of motion
of the scene depicted in the image. A key difference to our
work is, that we are not relying on a “object notion”.
Intuitive physics. Developing an intuitive understanding of
physics from raw visual input has been recently explored in
[5, 12, 13]. [5] predicts future states of balls moving on a
billiard table. [12, 13] predict the stability of towers made
out of blocks. The work of [12] can also predict future lo-
cations of the blocks. However, both [5] and [12] have an
“object notion”. [13] focuses only on predicting the out-
come not the exact state.

Video segmentation.  Video segmentation as the task
of finding consistent spatio-temporal boundaries in a video
volume has received significant attention over the last years
[6, 18, 7, 2], as it provides an initial analysis and abstrac-
tion for further processing. In contrast, our approach aims
at extrapolating these boundaries into the future without any
video observed for the future frames.

3. Models

We base our models on the recent success of Deep Learn-
ing. We approach long-term extrapolation by recursive
schemes, which allows for efficient long term extrapolation.
However, this means that errors are potentially propagated
and accumulated over time. In order to mitigate such ef-
fects, we need very accurate models that consolidate infor-
mation. By analyzing prior work on frame prediction (see
section 2), we identify several key challenges such models
have to address.

Large Spatio-Temporal Receptive Field. The output
layer neurons should have a wide receptive field [8] to pre-
serve long range spatial and temporal dependencies and
learn about interaction with other boundaries in a spatio-
temporal context.

Preserving Resolution and Preventing Blurred Output.
The models must maintain resolution in order to derive
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Figure 2: Our model architectures.

a high fidelity output boundary map. Excessive pooling
or tight bottlenecks with fully connected layers have been
shown to be successful in classification tasks, but also have
shown to induce image degradations for image synthesis
tasks [19].

Globally Consistent Predictions from Local Models. In
order to generalize across diverse input sequences while
maintaining a tractable number of parameters, a patch based
approach is advised. Here, the models observe and ex-
trapolate on patches rather than the complete input image.
However, for accurate long term prediction, it is crucial
to ensure global consistency through communication be-
tween the patch extrapolators. Consider a video of a moving
ball. The trajectory of a ball might intersect with multiple
patches. To correctly extrapolate the motion far into the fu-
ture, instances of a model predicting on neighboring patches
need to be consistent especially during transition of the ball
between patches.

We propose the following model architectures for bound-
ary extrapolation to meet the key challenges described
above. We build upon the models used for frame prediction,
while adapting and improving them for long term boundary
prediction.

3.1. Convolutional-RNN (C-RNN)

We extend the model in [2 1] with convolutional layers as
shown in Figure 2a, which can extract high quality location
invariant features and have been very successful in various
tasks [9]. The model consists of an convolutional-encoder
GRU unit which reads in the input frame sequence one time
step at a time and produces a single vector as a summary.
This encoder unit contains of three convolutional layers
with pooling and ReLU non-linearities in between, which
extracts features which are then read by the GRU unit. The
convolutional layers have 32 filters each of size 3x3. The
summary vector is read by a convolutional-decoder unit to
produce the final output frame. The decoder unit consists of
a dense layer followed by convolutional layers with upsam-
pling in between to maintain resolution. Upsampling can be
thought of as convolution with a fractional stride. The dense
layer along multiple convolutional layers in the decoder unit
creates a wide receptive for the output layer neurons. Thus,
the model fulfills the first key challenge.

3.2. Convolutional Multi-Scale (CMS)

The previously discussed Convolutional-RNN can also
be understood as a type of auto-encoder [21] due to the in-
termediate summary vector, which acts a tight bottleneck
layer. Thus, it fails to meet our second key challenge. One
way to deal with this and to meet the second key challenge
is to use end to end convolutions instead. We consider a
Multi-Scale model architecture akin to a Laplacian pyramid
as shown in Figure 2b. Such a model architecture has been
used for generating natural images [3] and predicting future
natural frames [15] (also see section 2). It contains mul-
tiple levels which observes the input frame(s) at increas-
ing (coarse to fine) scales. The input [ to a certain level
(Lay) are the scaled input frame(s) X2, and the extrapolated
frame(s) O from the previous coarser level (L), which are
upsampled O to the scale at the current level.

I(Loy) = {sz,O(Lk)}

The coarse extrapolated frames O(Lk) act a guide for each
level of the model.

In detail, we use four levels, with scales increasing by a
factor of two. Each level of the model consists of five con-
volutional layers with 32, 64, 128, 64 and 32 filters respec-
tively of constant size 3x3. We use ReLU non-linearities
between every layer and a fanh at the end (ensures output
in range [0,1]). This creates a wide receptive field for the
output layer neurons and meets the first key challenge.

However, the receptive fields are not uniform in size.
The neurons at the boundary of the (2d) output layer have a
smaller receptive field compared to the neurons at the cen-
ter. This leads to a non-uniform (training and test) error
distribution at the output layer neurons. In Figure 3 we plot



the average error at the output layer neurons at increasing
distance from the patch border. Error increases consistently
from patch center (right) to the patch border (left).
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Figure 3: Mean squared error with increasing distance from

the patch border. The Convolutional Multi-Scale model
(red) has higher error near the patch boundary vs. Convolu-
tional Multi-Scale Context (blue).

3.3. Convolutional Multi-Scale with Context
(CMSO)

For the two models introduced previously, instances for
the model extrapolating on different patches cannot com-
municate and therefore do not address the third challenge.
To enable communication, we build upon the Convolutional
Multi-Scale described before and introduce a context. This
context model observes a central patch along with the di-
rectly neighbouring 8 patches — which we call the context.
However, the model only extrapolates the central patch.
While predicting recursively, the model observes its pre-
vious output along with the the output of the neighboring
patch extrapolators. This allows for communication and
constitutes a “read-write” architecture, enabling the learn-
ing for consistent prediction and hereby addressing our third
challenge.

To deal with the larger input size, we make each level
of the Muilt-Scale model deeper by doubling the number
of convolutional layers and introduce a moderate amount of
pooling (see Figure 2c). In addition, we double the number
of filters after each pooling step (32, 64 and 128). Pool-
ing is followed by upsampling layers to maintain resolu-
tion. This ensures large receptive fields at the output layer
of each level without introducing a tight bottleneck layer.
Hence, this model meets all three key challenges. More-
over, the addition context lead to uniform receptive fields
and a uniform error distribution as cann be seen in Figure 3.

3.4. Loss

We use the L2 loss during training of the previously de-
scribed models. In RGB frame prediction a variety of loss
functions have been explored in combination with L2 loss

e.g. Adverserial loss [15] to prevent blurring. This is be-
cause the probability distribution for an output pixel is mul-
timodal and L2 loss predicts the mean. In contrast, our pre-
dicted boundary maps are essentially binary which encode
boundary location information. Moreover, in a pilot study
we could not observe improvements by adding an advererial
loss for boundary prediction.

4. Experiments

We evaluate the models in section 3 both on natural
video sequences and sequences with structured, determin-
istic motion. We convert each video into 32x32 pixel
patches. The Convolutional-RNN and Multi-Scale models
are trained on these patches. The Multi-Scale model with
Context is trained on patches along with the eight neigh-
bouring patches which results in a context of size 96x96
pixels. We use the ADAM optimizer during training. As we
want sharp and accurate boundaries, we use the established
boundary precision recall (BPR) evaluation metric from the
video segmentation literature [7]. This metric is defined for
a set P of predicted boundary images and G of correspond-
ing ground truth boundary images as,
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where P is boundary precision, R is boundary recall and F’
is the combined F-measure.

4.1. Short term extrapolation on natural video se-
quences

Dataset and Training. We use the VSB100 dataset
which contains 101 videos with a maximum 121 frames
each. We randomly choose 30 videos for training and the
remaining 71 videos for testing from the VSB100 dataset.
The videos contain a wide range of objects of different sizes
and shapes. The videos also have a wide variety of both ob-
ject and camera motion. We use the hierarchical video seg-
mentation algorithm in [10] to segment these videos. The
output is a ultra-metric contour map (ucm). Boundaries
higher in the hierarchy typically correspond to semantically
coherent entities like animals, vehicles etc and are therefore
temporally more stable. We discard boundaries belonging
to the lowest level of the hierarchy, as they are temporally
very unstable. However, we keep the rest intact and use
their values as a confidence measure on boundary location
at a pixel.



0.2

o 1 —o— MS-(adv) [12] o —e— CMSC Boundaries
E 2 015 ||~ MS-(adv)[12] RGB
w
8 0.8 °
£ 5 01
gos g
=) @ 0.05
(5] c
c 04 S
£ £ o
t t+l t+2 t+3  t+4 t t+l t42 t+3 t+4
Timestep Timestep

(a) Tenengrad measure. (b) Mean squared error.
Figure 4: Error analysis of RGB and boundary prediction
with time.

Methods & baselines. We first evaluate and com-
pare RGB prediction to boundary extrapolation on VSB100.
Then, we evaluate the models in section 3 to extrapolate
boundaries of segmented VSB100 videos. Recall that, the
ground-truth boundaries (ucm) in VSB100 have different
confidence values. Thus, we threshold the extrapolations
before comparison to the groundtruth. We vary the thresh-
old to obtain a precision-recall curve and report the area un-
der the curve (AUC) along with the best F-measure across
all thresholds. We include a “last frame” baseline by using
the last input frame as constant extrapolation and a “Optical
flow” baseline. As many boundaries do not change between
frames in the videos of VSB100, the last input is not a bad
baseline especially when we are predicting one step into the
future. In case of the optic flow baseline, the optic flow is
calculated between the last and the second last input frames
(the frames at time t - 1 and t) using the Epic flow method
of [20]. The boundary pixels at time t are propagated us-
ing the calculated flow to generate extrapolations at t + 1,
t+ 2 and t + 4. We also include the Multi-Scale model
(MS - (adv)) from [15], which is trained on the segmented
VSB100 videos with a combination of L2 and adversarial
loss (with default parameters). We also evaluate the RGB
predictions on VSB100 using the model of [15].

RGB verses boundary prediction. We report the sharp-
ness of RGB frames (of VSB100) predicted by [!5] using
the Tenengrad measure [1 1] in Figure 4a. The Tenengrad
measure pools the gradient magnitude information of the
image. We observe that the model of [15] makes increas-
ingly blurry predictions into the future, which is also con-
firmed the visual result in Figure 4. We also compare the
mean squared error of RGB predictions of [15] and extrap-
olated boundaries of our Convolutional Multi-Scale Context
model in Figure 4b. We are a sharper increase in the error of
RGB predictions compared to boundaries in the long term.

Discussion of results on boundaries. We report the
quantitative results results in Figure 5a and Figure 5b and
the qualitative results in Figure 6.

Quantitative evaluation: Overall, our Convolutional Multi-
Scale Context model (MS - Context, red lines) significantly
outperforms the others. Our Convolutional Multi-Scale ar-
chitecture is second. This demonstrates the importance of

the large receptive fields and context (first and third key
challenge in section 3). The good performance of both of
the fully convolutional models versus the Convolutional -
RNN model, shows that tight bottleneck layers cause degra-
dation in performance (second key challenge section 3). In-
ferior performance of the Multi-Scale models [15] applied
to boundaries shows that Adversarial loss is not well suited
to the boundary extrapolation problem. The poor perfor-
mance of the “Optic flow” baseline is due to not accurate
flow information at object boundaries.

Qualitative evaluation: The boundaries produced by both
of our Convolutional Multi-Scale architectures are sharp in
case of deterministic and smooth motion e.g. the predic-
tions in Figure 6 from the videos airplane and dominoes.
However, the models are not able to deal with large or non-
deterministic motion (e.g. of human actors). The models in
such situations react by blurring the boundaries, as a con-
sequence of using the mean squared error. While predict-
ing recursively, this leads to loss of boundary confidence
and eventual vanishing boundaries. Both the Convolutional
- RNN and the Multi-Scale model of [15] produce blurry
boundaries. The “Optic flow” baseline produces discontin-
uous (jagged) boundaries. (See section 6 for more exam-
ples).

Sharpening RGB predictions with fusion. The sharp
boundaries produced by our models raises the prospect of
sharpening RGB predictions in a fusion scheme. We show
promising, initial results in Figure 7. We produce sharpened
fused RGB predictions by taking the derivative of the RGB
images and amplifying the gradients at the boundary loca-
tions (given by our extrapolated boundaries) in the spirit of
[4]). This procedure improves the Tenengrad measure at t
+ 2 from 0.81 to 0.96 and at t + 4 from 0.49 to 0.63 of the
Dominoes sequence.

4.2. Long term extrapolation on sequences with
structured deterministic motion

Dynamics of motion in the videos in the VSB100 dataset
is frequently very complex and involve difficult to pre-
dict and non-deterministic actions of actors. This con-
volves the challenges of long-term predictiong with a non-
deterministic that cannot be captured by our model and
hence would be treated as noise. Therefore we evaluate
the performance for long-term prediction of the models on
structured, deterministic motion. We evaluate on both real
and synthetic billiard ball sequences. The motion of the
balls in such sequences are deterministic and we aim to ex-
trapolate them over long time-steps. We begin by describing
how the sequences were collected.

Synthetic data generation. The synthetic billiard ball
sequences are sampled from worlds which consists of balls
moving on a frictionless surface with a boundary, akin to a
billiard table. We used pygame to create such worlds and
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Figure 5: Evaluation of the models in section 3 on VSB100.

Last Input Frame
Figure 6: Rows top to bottom: Extrapolations on dominoes and airplane sequences from VSB100. Correct boundaries
predictions are encoded in green. Missed boundaries are encoded in yellow. Wrong boundaries are encoded in red.

Extrapolation: t + 1

sample boundary images from them. The output images
contain boundaries that can stem from ball(s) or the table
and are binary (indicating a boundary at that location).
During evaluation, as the target is always a binary image,
we report only the best F-measure obtained by thresholding
the extrapolated boundary images and varying the threshold
parameter. We sampled synthetic billiard sequences using
the following parameters.
Table size:  Side length
{96,128,160,192,256} pixels.
Ball velocity: Randomly sampled from [{-3...,3},{-3,...3}]
pixels.

Ball size: Constant, with a radius of 13 pixels.

Initial Position: Uniformly over the table surface.

randomly sampled from

Real data collection. We captured a novel data-set of real
billiard table sequences on a mini-billiard table. Frame rate
was set to 120 per second to minimize motion blur. Each
sequences consisted of an actor (not visible) striking the ball
with a cue stick once. The only motion in the sequences

Extrapolation: t + 2 Extrapolation: t + 4

of the dataset are that of the cue stick and the balls. We

produce boundary images using the method of [14].

Evaluation on synthetic single ball worlds. = We gener-
ate a training set using parameters in subsection 4.2. How-
ever, to keep our training set as diverse as possible we prefer
short sequences. We restrict each sequence to a maximum
length of one or two collisions with walls and set a 50% bias
of the initial position of the balls being 40 pixels from the
walls. We sample 500 such sequences and train the models
(from section 3) on these sequences. We then test the mod-
els on 30 independent test sequences. We again include the
“last input” baseline as a constant extrapolator . We also
include a “blind” Convolutional multi-scale Context model
(CMSC-BL), which cannot see the table borders. To beat
this setup, our models need to learn the physics of ball-wall
collisions. We report the results in Table 1.

The Convolutional Multi-Scale Context (CMSC) model
performs the best with accurate predictions 20 time-steps
into the future — in particular also exceeding the “blind”
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context model. Red bounding boxes show areas of improvement.

Step Last Input C-RNN CMS CMSC-BL CMSC
t+1 0.141 0.013 0.282  0.957 0.987
t+5 0.038 0.006 0.101  0.841 0.900
t+20  0.002 0.005 0.066  0.347 0.632

Table 1: Evaluation of models on single ball billiard table
worlds

version (CMSC-BL) that cannot handle bounces. The
Convolutional-RNN (C-RNN) architecture (with its bottle-
neck layer) is unable to learn the physics of the world and
produces very blurred output. Without a context, the Con-
volutional Multi-scale model (CMS) produces inaccurate
results at patch borders and thus suffers heavily especially
at larger time-steps.

Evaluation on synthetic two and three ball worlds.
Worlds with more than one ball also involve ball-ball colli-
sions, which make the physics of such worlds much more
complex. To evaluate the models on such worlds we sam-
ple 100 and 50 training sequences with two and three balls
respectively with a maximum length of 200 frames. We
use a curriculum learning approach [1], where we initial-
ize the models with the weights learned on single and two
ball worlds respectively. We test the models on 30 inde-
pendent sequences containing two and three balls respec-
tively. We report the results in Table 2. We also include
Convolutional Multi-Scale Context models trained on sin-
gle ball worlds (CMSC-1B) and two ball worlds (CMSC-
2B) in the two and three ball world case respectively. To
beat these models learning the physics of ball-ball collisions
is necessary. Again, we see accurate extrapolation by the
Multi-Scale model even at 20 time-steps in the future. The
Convolutional-RNN (C-RNN) architecture performs just as
badly as in one ball worlds.

Extrapolation over very long time scales on synthetic

data. Although we evaluate only 20 timesteps into the
future in Table 1 and Table 2, our models are stable over
longer time-horizons. In Figure 8, we show 100 extrap-
olated frames into the future and visualize them by trails
obtained by superposition. We notice a few failure cases
where a ball reverse direction mid table and the ball(s) get
deformed or disappear altogether.

Evaluation on real billiard sequences. Extrapolation
on real billiard table sequences is a challenging test for our
models. The table fabric causes rapid deceleration of the
ball (compared to the constant velocity in the synthetic se-
quences). Spin is sometimes inadvertently introduced while
striking the ball as well as the segmentation algorithm on
the observed frames introduces artifacts. The boundaries
are not always consistent across frames of a sequence and
they are jagged and change shape. We collect 350 real bil-
liard table sequences, with one ball, as our training set. To
deal with deceleration, we experiment with increasing the
number of input frames. We train our Convolutional Multi-
Scale context model (CMSC-6in) with six input frames. We
report the results of evaluation (best F-measure) on 30 in-
dependent sequences in Table 3. The low performance of
our method compared to the last input is caused by the in-
stability and jaggedness of the static boundaries table and
hands. Our method is able to propagate the motion of the
ball. We show qualtitive results in Figure 9. The model
of [15] is not able to propagate the motion of the ball. We
also demonstrate cases as trails, where our model produces
stable extrapolations 20 and 50 time-steps into the future.

5. Conclusion

We demonstrate boundary extrapolation that yields accu-
rate and sharp results. Our proposed Convolutional Multi-
Scale Context architecture fulfils three key properties for
long-term boundary prediction: i) A wide receptive field



——— Evaluation on two ball worlds

——— Evaluation on three ball worlds

Step LastInput C-RNN CMSC-1B CMSC LastInput C-RNN CMSC-2B CMSC
t+1 0.246 0.013 0.966 0.969 0.246 0.023 0.967 0.968
t+5 0.114 0.008 0.848 0.896 0.118 0.012 0.890 0.892
t+20 0.101 0.007 0.612 0.681 0.090 0.011 0.664 0.700

Table 2: Evaluation of models on complex billiard table worlds

Figure 8: Trails produced by super-imposing extrapolated boundaries.

Trail up to t + 20
Figure 9: Top row compares RGB prediction of [15] to our extrapolated boundaries. Bottom row shows prediction trails
produced by super-imposing extrapolated boundaries.

Step Last Input CMSC-6in
t+1 0.253 0.180
t+5 0.247 0.174
t+20 0.242 0.167

Table 3: Evaluation of models on real ball billiard se-
quences

which allow the model to learn complex spatio-temporal de-
pendencies. ii) Accurate prediction at each time-step with
a fully convolutional setup without any bottleneck layers.
iii) The context which allows for the sharing of informa-

Trail up to t + 50

Trail up to t + 50

tion thus leading to global consistency. We present long-
term prediction results on synthetic scenes involving bil-
liard tables showing that this model can be used to accu-
rately predict the state of such worlds far into the future.
This also shows that the model developed an intuitive no-
tion of physics from raw visual input. Moreover, extrapo-
lated boundaries could be used for sharper RGB prediction
and could lend itself to formulating expectations over future
frames in advanced video segmentation methods. Finally,
we have shown first prediction results on real billiard video,
that still present many open challenges.
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6. Appendix

We include additional image and video results (as files)
in this section. We include the following video files (click
on the video name for link) with supporting descriptions in
this document,

e vsh100.mp4, (described in subsection 6.1).
o singleball_syn.mp4, (described in subsection 6.2).
e multipleball syn.mp4, (described in subsection 6.2).

e real billiards.mp4, (described in subsection 6.2).
6.1. Example extrapolations on VSB100.

We show extrapolations at one, two and four steps (t +
I,t+ 2, t +4) in the future from a fixed time point on the
dominoes and airplane sequences of VSB100. We include
all methods except the Convolutional Multi-Scale Context,
for which example extrapolations have been shown in Fig-
ure 6 of the main article. We show the extrapolations in
Figure 10.

As expected from the quantitative performance in Fig-
ure 5 of the main article, the “Optic flow” baseline does
not perform well. This method incorrectly translates the
boundaries which lead to many boundaries being missed es-
pecially at t + 4. The Convolutional - RNN model produces
very blurry extrapolations which leads to disappearance of
boundaries at t + 4. The Multi-Scale model of [15] with
Adversarial loss, produces jagged boundaries compared to
both of our Convolutional Multi-Scale architectures.

We also include as video, extrapolations using our best
performing Convolutional Multi-scale Context model at
one, two and four steps (t + 1, t + 2, t + 4) in the future
from all frames of the dominoes and airplane sequences of
VSB100 (vsb100.mp4). In the video, we see accurate ex-
trapolation in many cases up to four frames into the fu-
ture (due to mostly smooth motion in these sequences).
However, we see incorrect extrapolation in case of non-
deterministic motion and high acceleration.

6.2. Example extrapolations over very long time-
scales on billiard table sequences.

We include as video example extrapolations 100 time-
steps into the future for single and two ball synthetic
billiard table sequences (singleball_syn.mp4, multiple-
ball_syn.mp4). The Convolutional Multi-scale Context
model is given the first four input frames of each sequence.
The model then extrapolates the next 100 frames of the se-
quence. In case of single ball billiard worlds, we see accu-
rate extrapolation in most cases to up to about 75 frames.
After that we observe one or more of the following: i) De-
formation of the ball. ii) Curvature of the ball trajectory. iii)
Change in velocity of the ball. In case of multiple balls (in
multipleball_syn.mp4), additionally we observe that after
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ball-ball collisions, the direction of movement of the balls
is correct but speed is usually incorrect. We also include ex-
ample extrapolations 100 time-steps into the future for real
billiard table sequences as video (in real_billiards.mp4). We
observe that, our Convolutional Multi-scale Context model
is able to extrapolate the motion of the ball well initially
even in the presence of rapid deceleration. However, our
model is not able to deal with collisions (due to few ex-
ample collisions in the training data). The table and hand
boundaries are distorted with time, due to fluctuations in
the initial 6 input frames.


http://transfer.d2.mpi-inf.mpg.de/long_term_boundaries/vsb100.mp4
http://transfer.d2.mpi-inf.mpg.de/long_term_boundaries/singleball_syn.mp4
http://transfer.d2.mpi-inf.mpg.de/long_term_boundaries/multipleball_syn.mp4
http://transfer.d2.mpi-inf.mpg.de/long_term_boundaries/real_billiards.mp4

Multi-Scale with Adversarial loss [15]

Last Input Frame Extrapolation: t + 1 Extrapolation: t + 2 Extrapolation: t + 4
Figure 10: Groups of two rows, Top row in group to bottom in group: Extrapolations on dominoes and airplane sequences
from VSB100. Correct boundaries predictions are encoded in green. Missed boundaries are encoded in yellow. Wrong
boundaries are encoded in red. Columns left to right: Last frame that the models observe (overlayed with RGB), extrapolation
one, two and four time-steps into the future.
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