Supporting Information

Hydrothermal carbon enriched with oxygenated groups from biomass glucose as efficient carbocatalyst

Guodong Wen,^[a] Bolun Wang,^[a] Congxin Wang,^[b] Zhijian Tian,^[b] Robert Schlögl,^[c] and Dang Sheng Su*^[a,b]

^a Shenyang National Laboratory for Materials Science

Institute of Metal Research, Chinese Academy of Sciences

72 Wenhua Road, Shenyang 110016, China

^b Dalian National Laboratory for Clean Energy

Dalian Institute of Chemical Physics, Chinese Academy of Sciences

457 Zhongshan Road, Dalian 116023, China

^c Fritz Haber Institute of the Max Planck Society

Faradayweg 4-6, Berlin 14195, Germany

* Corresponding author. E-mail: dssu@imr.ac.cn

Table S1. Textural properties of HTC and zeolite samples.

Sample	$S_{\rm BET} ({\rm m}^2/{\rm g})$	Smicro (m ² /g)	$V_{\rm p}^{\rm a} ({\rm cm}^3/{\rm g})$	$D_{\rm p}^{\ \ b} ({\rm nm})$
HTC-10G	6.5	0	0.01	5.5
HTC-5G	7.8	0	0.01	6.1
HTC-2.5G	17.0	0	0.03	6.6
HTC-10GPVA	19.8	0	0.03	5.4
HTC-10G1A	9.0	0	0.01	6.5
HTC-10G3.3A	5.5	0	0.01	6.4
HTC-10G10A	13.9	0	0.04	10.7
HTC-10G10A300	34.0	0	0.05	7.6
HTC-10G10A300m	151.6	118.0	0.10	7.6
НҮ	323.7	0	0.61	5.7
HZSM-5	368.4	225.1	0.20	3.9

^a Pore volume measured at the single point of $P/P_0 = 0.99$.

^b BJH desorption average pore diameter.

Table S2. Reduction of nitrobenzene using organic model molecules as catalysts. [a]

Model molecule	Conversion (%)	Aniline selectivity (%)	
Blank ^[b]	23.2	79.8	
ОН	17.9	84.1	
0	20.7	66.6	
НО	74.6	87.3	
0	33.8	80.2	

^a Reaction conditions: 0.3 mmol model molecules, 1.2 g nitrobenzene, 6.0 equivalent hydrazine monohydrate (3.4 g), 100 °C, 4 h.

^b Blank experiment was conducted in the absence of any model molecules.

Table S3. Beckmann rearrangement of cyclohexanone oxime using organic model molecules as catalysts. [a]

Madal malami	C(0/)	Lactam	Cyclohexanone
Model molecule	Conversion (%)	selectivity (%)	selectivity (%)
blank ^b	10.3	72.8	27.2
СН₃СООН	11.0	0	100
СООН	32.4	82.4	17.6
СООН	14.1	0	100
СООН	14.4	0	100

 $^{^{\}rm a}$ Reaction conditions: 115 mg cyclohexanone oxime, 10 mL solvent benzonitrile, 0.4 mmol model molecules, 130 $\,^{\circ}$ C, 1.5 h.

^b Blank experiment was conducted in the absence of any model molecules.

Figure S1. TEM images of HTC samples. (a) HTC-10G, (b) HTC-5G, (c) HTC-2.5G, (d) HTC-GPVA.

Figure S2. Raman spectra of HTC samples. (a) HTC-10G, (b) HTC-5G, (c) HTC-2.5G, (d) HTC-GPVA.

Figure S3. XPS spectra of HTC-10G (total surface O atom percentage is 13.0 at.%).

Figure S4. TEM images of HTC samples. (a) HTC-10G, (b) HTC-10G1A, (c) HTC-10G3.3A, (d) HTC-10G10A, (e) HTC-10G10A300, (f) HTC-10G10A300m.

Figure S5. Raman spectra of carboxyl enriched HTC samples. (a) HTC-10G, (b) HTC-10G1A, (c) HTC-10G3.3A, (d) HTC-10G10A, (e) HTC-10G10A300, (f) HTC-10G10A300m.

Figure S6. Evolution profiles of CO_2 (m/z=44) during the TPD test of carboxyl enriched HTC.