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The ASDEX Upgrade Discharge Control System (DCS) is a distributed real-time control system executing 

complex control and monitoring tasks. Up to now, DCS control algorithms have been implemented by coding 
dedicated application processes with the C++ programming language. Algorithm changes required code 
modification, compilation and commissioning which only experienced programmers could perform. This was a 
significant constraint of flexibility for both control system operation and design. 

The new approach extends DCS with the capability of configuration-defined control algorithms. These are 
composed of chains of small, configurable standard function blocks providing general purpose functions like 
algebraic operations, filters, feedback controllers, output limiters and decision logic. In a later phase a graphical 
editor could help to compose and modify such configuration in a Simulink-like fashion. 

Building algorithms from standard functions can result in a high number of elements. In order to achieve a 
similar performance as with C++ coding, it is essential to avoid administrative bottlenecks by design. As a 
consequence, DCS executes a function block chain in the context of a single real-time thread of an application 
process. No concurrency issues as in a multi-threaded context need to be considered resulting in strongly simplified 
signal handling and zero performance overhead for inter-block communication. Instead of signal-driven 
synchronization, a block scheduler derives the execution sequence automatically from the block dependencies as 
defined in the configuration. All blocks and connecting signals are instantiated dynamically, based on definitions in 
a configuration file. Algorithms thus are not defined in the code but only in the configuration. 

The concept has been developed in view of Simulink block libraries and MARTe General Application Modules 
(GAM) but extends these with the DCS virtues of distributed computing and multi-threading. 

With growing diversity of general-purpose blocks the DCS framework will reach an unprecedented degree of 
universality and flexibility. Configuration-defined algorithms will gradually replace many existing DCS 
applications. Finally, the concept might also become of interest for the upcoming ITER plasma control system. 
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1. Introduction 

Thermo-nuclear fusion reactors are envisaged as 
future options for large-scale power generation. 
Currently, research is performed on experimental 
devices to explore operational aspects like material 
aptitude, optimal operating conditions, stability and 
controllability. Given the complex matter of the 
underlying physics and the large number of involved 
actuator and diagnostic plant systems the control system 
of such an experimental device must connect to a large 
number of heterogeneous subsystems and process huge 
amounts of sensor data with sophisticated algorithms but 
at the same time provide flexibility for evolution and a 
clear structure for operation. 

The ASDEX Upgrade Discharge Control System 
(DCS) addresses this challenge building on a framework 
concept that supplies infrastructure services and connects 
pluggable user-defined control and monitoring modules 
called Application Processes (AP) [1]. 

Up to now, control algorithms have been coded 
directly into dedicated application processes. While 

algorithm properties such as gains, dimensions and the 
linkage to signals were configurable, changes in the 
algorithm required code modification and subsequent 
iterations of testing and correction. DCS already 
employs libraries with re-usable function blocks for 
frequently used code patterns to reduce the effort of 
coding and the risk of introducing new errors. An even 
higher efficiency paired with better user experience 
could be gained, however, when application algorithms 
were formulated entirely in terms of such blocks and 
could be instantiated dynamically on user demand. This 
approach would extend the scope of configuration data 
from parameterization of algorithms further to the 
definition of algorithms. In the final goal of this vision, 
also physics operators without programming knowledge 
would be able to formulate and deploy control 
algorithms assisted by Simulink-like graphical editors. 
Potential application fields range from measurement pre-
processing over state identification and control to event 
detection and exception handling. 

To reach this goal, DCS is being extended with the 
capability of configuration-defined control algorithms. 



	

These are no longer implemented in terms of individual 
C++ code but are composed of linked, configurable 
building blocks providing general-purpose functions like 
algebraic operations, filters, comparators, feedback 
controllers, output limiters and decision logic. The DCS 
approach is inspired by Simulink block libraries [2], 
which allow to build complex simulation models from a 
repository of standard function blocks by interconnection 
with signal lines and translates this paradigm into 
distributed and multi-threaded real-time control context. 

The MARTe control system framework [3] also 
makes use of this idea. It implements function blocks in 
terms of Generic Application Modules (GAM), connects 
them via the Dynamic Data Buffer (DDB), employs a 
scheduler to sequentially execute the GAMs and 
provides dynamic instantiation based on a configuration 
file - concepts which are paralleled also in the new DCS 
approach. MARTe, however, does not yet provide a 
comprehensive library of standard function blocks such 
that GAM algorithms usually are custom codes 
programmed in C++. DCS block libraries are rather 
focussed on standard functions and in addition comprise 
handling of sample metadata like timestamp, quality and 
activity states, which are integral parts of DCS' local 
exception handling concept [4]. Moreover, DCS 
seamlessly integrates block-based algorithms with other 
control modules in a multi-threaded and distributed 
computation environment by virtue of its Shared Sample 
Buffer and sample-driven synchronisation features [5]. 

Compared to traditional application processes, 
algorithm decomposition in such standard blocks results 
in a considerably finer granularity and care must be 
taken to avoid performance penalties caused by 
scheduling and data transfer with a potentially large 
number of blocks. Such considerations have 
considerable impact on design choices, which are further 
detailed in section 2. Section 3 explains the integration in 
the global DCS context, while the status of 
implementation, and future plans and challenges are 
discussed in the outlook. 

2. Building Blocks 
Building blocks form the backbone of the 

configuration-defined algorithm approach. They are 
derived from existing DCS function libraries. Their 
function class elements are wrapped into a building 
block base class defining the uniform interface of all 
blocks for cloning, customisation, input/output signal 
administration, initialisation and execution. The block 
algorithms include local exception handling based on the 
quality state, which is part of the signal sample metadata. 
A filter block, for example, thus shows adequate 
behaviour even in the case of outlier samples marked as 
invalid. Division blocks react smartly, if the numerator 
approaches zero. Utilizing general-purpose blocks has 
the advantage that their correct functionality needs to be 
tested and commissioned just once but the validated 
block can be re-used arbitrarily often. 

Like application processes also blocks communicate 
via signals. Major aspects of proven signal concept 

publish/subscribe based automatic wiring have been 
adopted from the DCS core framework [6]. Owing to the 
before-mentioned performance considerations, however, 
block connection signals are subject to a number of 
simplifying restrictions:  

• Algorithm entities formed by blocks are executed in 
the scope of an Application Process, which occupies 
only a single real-time thread. This limitation avoids 
additional safety measures for thread concurrency 
and resource locking. Thus, a ring-buffer for sample 
exchange, associated with extra copy operations, is 
dispensable. It is sufficient to pass references to the 
output signal of a block to the consumers. 

• Signals between blocks have only internal visibility 
within the containing Application Process. 
Therefore, they are called Local Signals. This is a 
consequence of the lack of accessibility by 
concurrent threads. 

• Sample-driven synchronisation based on 
semaphores becomes obsolete. Instead, a block 
scheduler can call the block execution method as 
soon as the previous block has finished. 

• Grouping of Local Signals is not supported. Signal 
groups play a major role in the overall network 
exchange of global signals between Application 
Processes. But their rationales, efficient sample 
packaging and thread context switching are not 
relevant in a single thread context. 

Currently, a block scheduler derives a static 
execution sequence automatically from the block signal 
dependencies as defined in the configuration before the 
real-time phase. This ensures, that input signals are 
always updated before they are used for calculation. 
Algebraic loops are not permitted. The sorting algorithm 
follows rules outlined in the documentations of Simulink 
[7] and acslX [8] simulation tools. In a later stage, when 
support for conditional block workflows will be added, 
this design might change, because the optimal sequence 
could be state dependent and scheduling in real-time 
might become an attractive alternative despite the 
overhead it implies. 

3. Integration in DCS Application Processes 
In the DCS concept Application Processes have the 

role of algorithmic entities whose execution is solely 
defined by the availability of input data. The execution 
order of dependent Application Processes is thus 
determined by the dependency chain of their input and 
output signals. Independent algorithms, on the other 
hand, can be run concurrently. Therefore, the framework 
assigns them separated real-time execution threads, 
which might run on different CPU cores and even on 
distributed nodes. The framework supplies signal data 
transport across CPU and network boundaries 
transparent to the Application Processes and establishes 
a synchronising signal sample flow that automatically 
determines the thread scheduling such that the overall 
workflow is data-driven. 



	

Building blocks can be used to define the algorithm 
of an Application Process. However, algorithm inputs 
and outputs need to be transferred from the global signal 
domain of the Application Process to the domain of 
Local Signals exchanged among blocks and vice versa. 

Ports, a dedicated class of blocks assume this 
interface task. They comprise both a classical DCS 
signal or signal group with synchronisation, time-stamp 
based sample lookup and inherent signal archiving, and a 
set of corresponding Local Signals. Thus, they do not 
only act as gateways between function blocks and the 
external world but they also can provide convenient 
services like triggering application execution or 
externalising intermediate algorithm results for archiving 
and inspection. Figure 1 shows an example where 
neutral density calculation from ionization gauge current 
measurements is modelled in a block diagram of 11 

standard function blocks. Figure 2 illustrates, how the 
block diagram translates to DCS building blocks in an 
Application Process, which communicate with each 
other facilitated by a Local Signal Exchange Layer and 
with other control tasks via port blocks and the 
framework's Shared Sample Buffer. 

The Application Process is also responsible for 
dynamically instantiating and customising blocks as 
specified by the configuration. Their configuration is 
specified in a dedicated XML style called AP_CONF, 
which, apart from support for basic DCS elements like 
parameters and signals, also allows specification of 
composite types called DcsObjects [1]. As the Block 
class is derived from this base it can easily make use of 
the associated generic parsers and object factories. To 
complete the picture, each Application Process built 
from blocks features a block scheduler and a Local 
Signal Agent for setting up signal data exchange as 
described below. After the AP configuration has been 
parsed, block objects are dynamically instantiated by the 
DcsObject factories, and stored in an AP inventory for 
further management.  

Subsequently, all blocks announce their local signals 
to the Local Signal Agent which is in charge of the 
"wiring" from block output to input signals. This task is 
analogous to the one that Signal daemon (SignalDM in 
Fig. 2) performs for global signal communication across 
network boundaries. The block scheduler re-uses the 
signal map computed by the Local Signal Agent to 
compute the execution order sorting input ports to the 
beginning of the sequence and output ports to the end. 
Finally, the global signal components of the ports are 
registered at the framework's signal routing service for 
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Fig. 1: Example algorithm (neutral density calculation from 
ionization gauge currents) and corresponding block diagram 



	

connections with other control applications. 

During runtime operation, the first input port, 
designated as pacemaker, synchronises the application 
by waiting for its inputs, while the block scheduler will 
sequentially call each block's execution method 
according to the previously determined order. Output 
ports conclude the block chain execution and publish the 
algorithm outputs such that they become visible to the 
external world. Other control application threads waiting 
for the results can now be scheduled. 

4. Outlook 
Major parts of the configuration-defined algorithm 

concept such as the DcsObject base class, the AP 
inventory, Local Signals and the Local Signal Agent, as 
well as an initial stock of standard function blocks have 
been already implemented. The block scheduler and the 
factories will follow by September 2015. First operation 
is envisaged for the end of 2015. 

Future development is foreseen to augment the 
variety of functions in the block library. Advanced 
features like conditional branching and super-blocks 
consisting of other blocks will pose novel challenges. It 
is also planned to develop graphics-based and text-based 
editing tools, to ease the construction of configuration 
files even for non-expert users making rapid 
development and on-the-fly modifications of control 
algorithms feasible. 

Given the tempting possibility of accelerated 
development, however, the risk of introducing semantic 
errors in configuration-defined algorithm should not be 
underestimated. The fact that individual block behaviour 
is tested must not distract from the possibility that the 
combination of blocks can be defective. Thus, careful 
validation and commissioning of modified 
configurations using e.g. flight simulators is still 
indispensable. 

The new concept will further boost the universality 
and flexibility of the DCS framework. Control processes 
composed from building blocks will gradually replace 
many of the current DCS applications. 
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