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Intensity-dependent loss properties of window materials at
248 nm
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Transmission of fused silica, CaF, LiF, and MgF's is measured using 450-fsec, 248-nm pulses in the range 10-120
GW/cm? Different loss mechanisms such as scattering of transmitted radiation, color-center formation, and
multiphoton absorption were studied separately. For fused silica a two-photon absorption mechanism is found,
while for CaFy, LiF, and MgF, three-photon absorption and absorption due to color-center formation are found as

dominant absorption mechanisms.

With existing high-brightness KrF laser systems, opti-
cal powers of the order of typically 10-100 GW are
generated.’-7 The power densities of the output
beams of these systems typically range from 10 to 100
GW/cm2. At those high power densities nonlinear-
optical properties of window materials become impor-
tant.

Previous studies of two-photon absorption were
performed at 355 and 266 nm.® Measurements of
nonlinear absorption of window materials at 248 nm
were recently reported in Refs. 6,9, and 10. However,
the relative contributions of the different loss mecha-
nisms (multiphoton absorption, color-center forma-
tion, and scattering) were not considered. In Ref. 8
the two-photon absorption mechanism found for
fused silica was simply adapted for CaF,. Surprising-
ly, the two-photon coefficient of CaF; was dependent
on the sample studied. Even in the case of LiF and
MgF;, where two-photon absorption is improbable, an
upper bound for a two-photon absorption coefficient

was defined. In addition, the results reported in the

publications cited above are not in total agreement.

The above problems and the importance and neces-
sity of having exact data led us to carry out compara-
tive measurements on the intensity-dependent trans-
mission of UV windows of different materials and
from different suppliers. In this Letter we report on
the nonlinear loss mechanisms observed in fused sili-
ca, CaFs, LiF, and MgF; using 450-fsec pulses at 248
nm. While for fused silica our results show good
agreement with the two-photon absorption mecha-
nism found in Refs. 8 and 9, we found that the data for
CaF', LiF, and MgF; cannot simply be approximated
by two-photon absorption but can be described by the
combined effect of three-photon absorption, scatter-
ing, and color-center formation.

For the transmission measurements, 8-md, 450-fsec
pulses at 248 nm from a high-power KrF laser system®
were used. The pulse energy is measured with a Gen-
tec ED-500 detector. The pulse duration is deter-
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mined by an autocorrelation measurement using two-
photon ionization in NO.261L12 From the autocorre-
lation trace a +£4% fluctuation is obtained for the
energy and the pulse width. The amplified spontane-
ous emission is ~5% of the total energy.

The experimental setup is as follows: The relative-
ly homogeneous middle part of the beam is selected by
an approximately 3.5-mm-diameter circular aperture.
The plane of this aperture is imaged onto the sample

by a 1-m focal-length fused-silica lens. The spot size

and the intensity distribution on the sample were
checked by a linear diode array placed in the position
of the sample. The intensity incident upon the sam-
ple is varied by a variable attenuator put just before
the aperture. The sample serves as output window of
an evacuated tube that is used to prevent air break-
down in the focus. The CaF; input window of this
tube is just behind the imaging lens.

The transmitted energy through the sample is mea-
sured by a Laser Precision RJP 735 pyroelectric detec-
tor attached to a sample-and-hold circuit and a chart
recorder at a series of well-defined settings of the vari-
able attenuator. The energy incident upon the sam-
ple is measured at the same settings of the attenuator.
For this measurement the input window of the vacu-
um tube is disassembled and placed into the beam
with the energy meter just behind it. The intensity on
the sample ranged from 10 to 120 GW/cm?. The val-
ues of initial transmission corresponding to zero inten-
sity were determined using a Perkin-Elmer Lambda 7
spectrophotometer. The pulse duration seen by the
sample was determined by an autocorrelation mea-
surement at the position of the sample. It is worth
noting that the optical components traversed by the
beam broadened the pulse duration from 400 to 450
fsec through group-velocity dispersion.

The results of the transmission measurements
showed that the overall transmission of the samples is
given by the combined effect of multiphoton absorp-
tion, light scattering, and color-center formation. In
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Fig. 1. Measured values of transmission as a function of intensity for fused silica, CaFy, LiF, and MgF,;. The solid curves are
the best fits to the measured data assuming a two-photon absorption mechanism for fused silica and a three-photon absorption

mechanism for CaFy, LiF, and MgF,.

order to get information on the net effect of multipho-
ton absorption, the sample was illuminated only for a
limited number of shots, until absorption due to color-
center formation became important. Care was taken
to collect all the transmitted energy, including the
scattered part, which was distributed in a solid angle
of ~10~2sr. The transmission values showing the net
effect of multiphoton absorption are indicated in Fig.
1 for different materials as a function of power density
incident upon the sample. The fused-silica sample
was Suprasil, supplied by Heraeus, the CaF; samples
were from Oyokoden and Caramant, and the LiF, and
MgF'; samples were from Korth.

For fused silica the measured data can be fitted
assuming a two-photon absorption process, while for
CaFy, LiF, and MgF; the best fits are found assuming a
three-photon absorption mechanism. To determine
the two-photon and three-photon absorption coeffi-
cients, we assumed that only a single multiphoton
process is involved and that the input intensity I;,(¢) is
spatially uniform and temporally sech?(¢) shaped.
The general expression describing the change of inten-
sity as the pulse propagates through a sample is dI/dz
= —al", where « is the absorption coefficient and n = 2
and 3 denotes two-photon and three-photon absorp-
tion, respectively. The solution of this equation, as-
suming a sech?(t) pulse shape and a reflection R at
each surface of the sample of thickness J, is

I out(t )
{(n — Dad[(1 = R)IJ"™ + [sech(t)] 2= Dj/o=D)

(1)

where I; is the peak input intensity. By integrating
Eq. (1), the transmission can be calculated as

_(1-R)*
T= 2

X f ) de )
—o {(n — Ded[(1 — R)]™ + [sech(s)] 2 Dp/n=D
(2)

Best fits of Eq. (2) to the measured data are given in
Fig. 1 by the solid curves. For the absorption coeffi-
cients, the values listed in Table 1 are found. The
relative uncertainty of the transmission measure-
mentsis £10%. (Note that each experimental pointin
Fig. 1 represents an average over 10 shots.) The vy
value of CaF is practically independent of the sam-
ples from different suppliers.

The interpretation of the results is straightforward
for fused silica, LiF, and MgF,. For fused silica, since
its band-gap energy (7.8 eV) lies well below the energy

“of two 248-nm photons (10 eV), two-photon absorp-

tion is permitted. For LiF and MgF,, having band-

Table 1. Multiphoton Absorption Coefficients at

248 nm
Absorption
Material Mechanism  Absorption Coefficient
Fused silica n=2 B8 =5.8 X 10" cm/W
CaF, n=3 ¥ = 3.8 X 10~23 cm3/W?
LiF n=3 v =1.6 X 10~23 crn3/W?
MgF, n=3 v =1.1X10~23 cm3/W?
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Fig.2. Transmission of fused silica, CaFy, LiF, and MgF; as
a function of the number of shots at 120 GW/cm2.

Table 2. Ratio of the Scattered to the Incident
Energy for Different Materials at 120 GW/cm?

Fused Silica CaF,; LiF  MgF,
I
—I?M 0.06 033 005 0.11

incident

gap energies of 11.6 and 11.8 eV, respectively, two-
photon absorption is not allowed but three-photon
absorption is certainly possible.

The situation with CaF; is somewhat more compli-
cated, since its band-gap energy (10 eV) is just equal to
the two-photon energy of 248-nm radiation. Howev-
er, one might expect that the probability of two-pho-
ton absorption is not a steplike function of the photon
energy but can be described by a continuous function
that reaches its maximum only at higher photon ener-
gies. This means that the two-photon absorption co-
efficient of CaFy just at 248 nm is probably small
compared with the three-photon coefficient, which
can explain the observed behavior.

Besides the multiphoton processes, the other loss
mechanisms, excluded in the above measurements,
were also studied in a separate measurement. One of
these processes is absorption due to color-center for-
mation. We tested this effect at 120 GW/cm?2. In Fig.
2 the change of transmission of the samples is dis-
played as the number of pulses incident upon the same
area of the sample increases. This implies that for a
careful measurement of multiphoton absorption, es-
pecially at power densities exceeding ~100 GW/cm?, a
new area must always be irradiated and only the first
few shots give true information on the material con-
stants.

An additional observation is strong scattering of
transmitted radiation at powers exceeding ~100 GW/
cm2. This effect is likely due to nonlinear refraction.

Considering that the intensity distribution is not flat-
topped but modulated, any kind of intensity-depen-
dent refractive-index change results in significant
scattering. At 120 GW/ecm? we measured that portion
of the transmitted energy that travels in the original
direction defined as the direction of the beam at low
(10 GW/cm?) intensity. The remaining scattered por-
tion we then related to the incident energy, as listed in
Table 2. Although the values in Table 2 are also
connected to our specific beam profile, their relative
;rllagnitudes are characteristic of the different materi-

S.

In conclusion, intensity-dependent loss mecha-
nisms occurring in window materials at 248 nm were
studied. Itis found that the loss is partly due to light
scattering and absorption. Absorption in fused silica
is mainly two-photon absorption, while in CaFy, LiF,
and MgF; the combined effect of color-center forma-
tion and three-photon absorption must be considered.
The evolution of the absorption due to color-center
formation and the values of the two- and three-photon
absorption coefficients for the different materials are
also given.
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