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Abstract

Pegvisomant (PEG), an antagonist of growth hormone (GH)-receptor (GHR), normalizes 

insulin-like growth factor 1 (IGF1) oversecretion in most acromegalic patients unresponsive 

to somatostatin analogs (SSAs) and/or uncontrolled by transsphenoidal surgery. The 

residual GH-secreting tumor is therefore exposed to the action of circulating PEG. However, 

the biological effect of PEG at the pituitary level remains unknown. To assess the impact 

of PEG in vitro on the hormonal secretion (GH and prolactin (PRL)), proliferation and 

cellular viability of eight human GH-secreting tumors in primary cultures and of the rat 

somatolactotroph cell line GH4C1. We found that the mRNA expression levels of GHR 

were characterized in 31 human GH-secreting adenomas (0.086 copy/copy β-Gus) and the 

GHR was identified by immunocytochemistry staining. In 5/8 adenomas, a dose-dependent 

inhibition of GH secretion was observed under PEG with a maximum of 38.2 ± 17% at  

1 μg/mL (P < 0.0001 vs control). A dose-dependent inhibition of PRL secretion occurred in 

three mixed GH/PRL adenomas under PEG with a maximum of 52.8 ± 11.5% at 10 μg/mL  

(P < 0.0001 vs control). No impact on proliferation of either human primary tumors or 

GH4C1 cell line was observed. We conclude that PEG inhibits the secretion of GH and PRL 

in primary cultures of human GH(/PRL)-secreting pituitary adenomas without effect on cell 

viability or cell proliferation.

Introduction

Acromegaly is a rare disease with a prevalence of around 
40–130 cases per million inhabitants (Chanson et al. 2014). 
It is caused by oversecretion of the growth hormone (GH), 

mainly by a pituitary GH-secreting adenoma (Chanson 
et  al. 2014). Treatment of GH-secreting adenomas 
consists primarily of transsphenoidal surgery followed 

Endocrine-Related Cancer  
(2016) 23, 509–519

http://dx.doi.org/10.1530/ERC-16-0140
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
mailto:anne.barlier@univ-amu.fr


510Research T Cuny et al. Impact of pegvisomant on 
GH-secreting cells

En
d

o
cr

in
e-

R
el

at
ed

 C
an

ce
r

DOI: 10.1530/ERC-16-0140
http://erc.endocrinology-journals.org� © 2016 Society for Endocrinology

Printed in Great Britain
Published by Bioscientifica Ltd.

23:7

by a personalized medical therapeutic approach (whose 
indications can be discussed at every step of the therapeutic 
strategy) and in some cases radiotherapy (Giustina et al. 2014, 
Katznelson et al. 2014). Somatostatin analogs (SSAs) with 
long-acting release (octreotide and lanreotide) represent 
medical therapies of choice in acromegaly to control GH and 
IGF1 oversecretion because these agents specifically bind to 
the somatostatin receptor subtype 2, a membrane receptor 
highly expressed in somatotroph cells and whose activation 
leads to both antisecretory and antiproliferative effects 
(Chanson 2015). Their efficacy varies from one patient to 
another: a recent meta-analysis reported an overall control 
rate of 56% for mean GH and 55% for IGF1 normalization in 
SSA-treated patients (Carmichael et al. 2014). Patients totally 
or partially resistant to SSA are therefore good candidates 
for the GH-receptor (GHR) antagonist pegvisomant 
(PEG), administered alone or in combination with a SSA  
and/or dopamine agonists (Neggers et  al. 2016). The 
exon 3 deleted GHR isoform (d3-GHR) is associated with 
better response to PEG therapy in acromegaly (Bernabeu 
et  al. 2010). This isoform results from a homologous 
recombination of two almost identical retroelements 
flanking exon 3 that produce a 2.7 kb deletion, giving rise 
to two different isoforms of GHR (full-length (fl-GHR) and 
d3-GHR).

PEG is a genetically engineered and pegylated 
analog of human GH developed in the late 1980s, 
which functions as a selective GHR antagonist thereby 
inhibiting the synthesis and release of IGF1 by the liver 
by abrogating the STAT5-mediated GHR signalization 
(Kopchick et  al. 2002). PEG binds to a preformed GHR 
dimer, but without binding properly the site 2 necessary 
to induce intracellular GHR signaling (Chen et al. 1991).

From a clinical perspective, a majority of acromegalic 
patients achieve a normalization of IGF1 levels in 
controlled clinical trials when an optimal dose titration of 
PEG is insured at successive endpoints (van der Lely et al. 
2001). Clinical studies in daily practice rather report that 
around 70% of patients are biochemically controlled by 
PEG, although with a significant impact on acromegalic 
comorbidities (Kuhn et al. 2015).

Although the peripheral effect of PEG on different 
tissues (lung, breast and colon) has been well studied 
(Kopchick et  al. 2002), little is known about its 
impact at the pituitary level, especially on the normal 
and tumoral GH cells. After injection, PEG may 
reach the pituitary gland and, possibly, any residual 
unresectable GH-secreting tumor via the bloodstream. 
As GHR is expressed in both normal and tumoral 

somatotroph cells (Mertani et al. 1995, Kola et al. 2003,  
Beuschlein et  al. 2005) and patients treated with PEG 
display an increase in circulating endogenous GH  
(van der Lely et al. 2001), questions have arisen about the 
possibility that PEG could promote growth of residual 
tumors either directly via GHR or indirectly through the 
increase in endogenous GH.

The purpose of this study was to investigate the effect 
of PEG in vitro both on hormonal secretion and cellular 
viability of both primary cultures of human GH-secreting 
pituitary adenomas and of the rat somatolactotroph 
GH4C1 cell line.

Design and methods

Patients

This in vitro study included somatotroph tumors from 
patients undergoing transsphenoidal surgery at the 
Neurosurgery Department of Marseille and Munich 
hospitals. This study was approved by the Ethics 
Committee of the University of Aix-Marseille II (Aix-
Marseille, France) and informed consent was obtained 
from each patient. The endocrine and neuroradiological 
characteristics of the tumor were documented before 
any treatment. All tumor fragments were subjected to 
anatomopathology analysis that confirmed the GH or 
GH/PRL phenotype by immunohistochemistry. Thirty-
one somatotroph tumors were included in this study. 
Among them, eight were used for in vitro experiments 
(Table 1). Three patients (cases 3, 4, and 6) were pretreated 
with SSA before finally undergoing surgery.

Pharmacological compounds

PEG was provided by Pfizer and used at concentrations 
ranging from 0.1 to 10 μg/mL. The range of concentrations 
of PEG required to antagonize GHR on the somatotroph cell 
was arbitrarily established by considering the endogenous 
GH secretion released in the medium from 20,000 GH 
adenoma cells over an 8-h period (Saveanu et al. 2002). 
Octreotide was a kind gift of Novartis International AG 
(Basel, Switzerland).

Cell culture

Primary culture of human pituitary 
adenomas  Tumor fragments obtained from 
transsphenoidal surgery were submitted to mechanical 
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and enzymatic dissociation with collagenase at 37°C 
for 60 min. Total cell amounts were 4 × 106 to 65 × 106, 
depending on the tumor. Antifibroblast microbeads 
(Anti-Fibroblast Microbeads, human; Miltenyi Biotec, 
Paris, France) were used to eliminate fibroblasts, 
according to the manufacturer’s protocol. Adenoma cells 
were plated on well dishes or glass coverslips, coated 
with extracellular matrix of bovine corneal epithelial 
cells (ECM) as described previously (Jaquet et al. 1985). 
For hormonal assays, tumor cells were plated at a 
density of 50 × 103 cells in 24-well cultures dishes. The 
cells were cultured in appropriate DMEM, depleted in 
l-valine (d-valine was indeed used instead of l-valine 
to block fibroblast proliferation), and supplemented 
with 10% fetal calf serum (FCS), penicillin (100 U/mL), 
streptomycin (100 U/mL), and glutamine (100 U/mL) 
and maintained at 37°C in an atmosphere containing 
7% CO2. They were then washed and the medium 
replaced by d-valine DMEM containing 1% FCS referred 
to hereafter as ‘low serum medium’ (Jaquet et al. 1985).

Culture of the rat somatolactotroph cell line 
GH4C1  The rat somatolactotroph GH4C1 cell line 

(ATCC CCL-82.2, USA) was grown in Ham’s F-10 medium 
supplemented with 15% horse serum (Eurobio, France), 
2.5% FCS, penicillin (50 U/mL), and streptomycin  
(50 μg/mL) and was maintained at 37°C in an atmosphere 
of 7% CO2. Cells were subcultured weekly and the 
medium was changed twice a week.

Determination of GHR mRNA levels by real-time PCR

Total mRNAs were extracted from somatotroph fragments 
using the RNeasy Mini kit (Qiagen, Cat. no. 74104) and 
from GH4C1 cell pellets using the RNeasy Micro kit 
(Qiagen, Cat. no. 74004). One microgram of total RNA 
was used for cDNA synthesis during reverse transcription 
using the First-Strand cDNA Synthesis Kit (GE Healthcare 
Life Sciences). Human GHR mRNA was detected by real-
time quantitative PCR using TaqMan Gene Expression 
Assay (Applied Biosystems, Assay ID Hs00174872_m1 
and Hs00168739_m1) and rat GHR (rGHR), using 
Rn_Ghr_1_SG primer assay (Qiagen). The human GHR 
mRNA levels were normalized to the beta-glucuronidase 
(β-Gus) mRNA level and rGHR to the rat β-actin mRNA 
level. Standard curves were drawn using dilution plasmid 
gamma verified by PCR and linearized.

Table 1  Clinical and in vitro characteristics of the eight human GH-secreting tumors.

Case no Sex
Age 

(year)
Tumor size  
(mm)

Hormone secretion  
(in vivo)

Hormone secretion  
(in vitro)*

GHR mRNA level 
(copy/copy β-Gus)

GH  
(ng/mL)

IGF1  
(ng/mL) 
(normal 
range)

PRL level 
(ng/mL) 
(N < 15 

(male) <25 
(female))

GH  
(ng/mL)

PRL  
(ng/mL)

Max GH 
inhibition 
(%) under 

PEG

Max PRL 
inhibition 
(%) under 

PEG

1** M 55 Macro 
(19)

1.5 404  
(54.6–185.7)

189 54 49 27 54 0.219

2 F 23 Macro 
(NA)

26.6 993  
(149.1–332.3)

60 28 Un 65 NA 0.407

3 M 26 Macro 
(NA)

2.4 1105 
(96.4–227.8)

NA 404 Un 15*** NA 0.01

4 F 79 Macro 
(20)

5.3 1352 
(54–204.4)

25 312 Un 39 NA 0.020

5** F 45 Macro 
(NA)

8.3 804  
(92.7–244.6)

72 12 38 12*** 33 0.085

6 F 59 Macro 
(16)

8.8 718  
(54–204.4)

10 276 Un 0*** NA 0.015

7** M 56 Macro 
(20)

3.3 711  
(54.6–185.7)

102 385 45 31 46 0.476

8 F 59 Micro (8) 3 930  
(54–204.4)

10 310 Un 24 NA 0.185

*GH and PRL release by 50 × 103 cells cultured during 72 h, expressed as nanograms in 1 mL of culture medium; **Cases 1, 5, and 7 were mixed GH/PRL 
adenomas; ***Cases 3, 5, and 6 were considered as non-responsive to pegvisomant in our work when considering inhibition of GH secretion (maximal GH 
inhibition ≤15%).
NA, not available; Un, undetectable.
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Somatic analysis of human GHR sequence   
Genomic DNA from 21 of the 31 human somatotroph 
tumors was extracted and the coding exons and exon–
intron boundaries of the GHR gene were screened by a 
direct PCR sequencing. A multiplex PCR procedure was 
performed to identify fl-GHR and d3-GHR alleles, as 
described previously (Pantel et al. 2000).

Immunocytochemistry of GHR and rGHR  The 
expression and localization of the human and rat GHR were 
assessed by immunocytochemistry on human somatotroph 
cells and GH4C1, respectively. Human cells were grown on 
14-mm extracellular matrix-coated glass coverslips and 
GH4C1 on 14-mm poly-lysine-coated glass coverslips. 
After fixing, the cells were incubated overnight at 4°C with 
an anti-GHR antibody (Abcam ab78426, Abcam) diluted 
to 1/100 in PBS supplemented with 1% bovine serum 
albumin (Sigma). The immunostaining was visualized 
using Alexa 488-conjugated goat antirabbit IgG (Molecular 
Probes, Invitrogen) diluted to 1/800 in PBS containing 10% 
normal goat serum. The nucleus of each cell was visualized 
through DAPI counterstain (in blue). Confocal images were 
acquired on a Zeiss LSM780 laser-scanning microscope and 
the image editing was performed using Adobe Photoshop. 
To quantify GHR immunostaining, gray-scale images 
were adjusted with a common minimum and maximum 
threshold, and the integrated density was measured using 
ImageJ (1.40g software).

PEG pharmacological studies

For human tumoral somatotroph cells, 2 × 104 cells were 
incubated in low serum medium with or without increasing 
doses of PEG for 3 days. Each experimental condition was 
assayed in triplicate wells. After 3 days, cell viability was 
assessed by a luminescent cell viability assay (CellTiter-
Glo, Promega) according to the manufacturer’s protocol. 
Supernatants were collected, clarified by centrifugation at 
400 g, and frozen before measuring hormonal levels.

For bromodeoxyuridine (BrdU) incorporation, 
5 × 103 human tumoral cells were plated in a 24-well 
plate. After 24 h, the cells were incubated in a low serum 
medium and treated or not with increasing doses of PEG 
for 3 days. On the third day, BrdU was added to a final 
concentration of 1 μM. After incubation for 16 h, DNA 
synthesis was assayed with the Cell Proliferation ELISA 
BrdU (Roche Molecular Biochemicals, Meylan, France). 
The newly synthesized BrdU-DNA was determined using 

a microplate reader (Berthold Technologies, Thoiry, 
Yvelines, France).

For GH4C1, 2.5 × 104 cells were plated in 24-well 
dishes for 48 h before medium removal and replacement 
with appropriate low serum medium (5% horse serum 
(HS), 0.8% FCS), with or without PEG. Cell viability was 
then assessed by luminescence assay (CellTiter-Glo).

For 5-ethynyl-2′-deoxyuridine (EdU) (i.e. a BrdU 
analog) incorporation analysis, 104 GH4C1 cells were 
plated in a black 96-well plate. After 24 h, the cells were 
incubated in low serum medium and treated with or 
without the drug for 3 days. Each day, EdU was added to a 
final concentration of 10 μM. After incubation for 16 h, DNA 
synthesis was assayed with the Click-iT EdU Alexa Fluor 
647 HCS Assay (Invitrogen, Molecular Probes). The newly 
synthesized EdU-DNA was determined using a microplate 
reader (Berthold Technologies, Thoiry, Yvelines, France) 
and reported to cell number (incorporation/cell number 
ratio) determined by HCS Nuclear Mask blue staining.

Hormonal assays

Endogenous GH was assayed using a PEG-insensitive 
based two-site immunoassay utilizing specific monoclonal 
antibodies as described previously (Veldhuis et al. 2010, 
Manolopoulou et al. 2012). The assay was calibrated against 
22-kDa recombinant human GH (International Reference 
Preparation 98/574). To adjust for matrix differences, 
standard curves were prepared in the respective cell culture 
media. In this setting, intra- and inter-assay variabilities 
were below 4.8 and 9.2%, respectively.

Endogenous PRL levels were measured using a 
commercial PRL IRMA kit (PRL IRMA Kit, Beckman Coulter 
Immunotech, Marseille, France) with a detection limit above 
1 ng/mL. The coefficients of intra- and inter-assay variations 
were less than or equal to 2.8 and 8%, respectively.

GHR pathway analysis by western blot

The JAK2 and STAT5 activation levels were assessed 
by western blot analysis on human somatotroph 
tumoral cells (Romano et  al. 2003). Briefly, 1 × 106 
cells were plated in 6-well dishes and incubated with 
10 μg/mL PEG for 5 min in low serum medium. Then, 
total denatured proteins were separated on 10% SDS-
PAGE gels and transferred to polyvinylidene difluoride 
membranes (PerkinElmer). Immunodetection of JAK2 
was performed using a JAK2 rabbit monoclonal-specific 
antibody (1:1000; D2E12; Cell Signaling Technology) 

http://dx.doi.org/10.1530/ERC-16-0140
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and the phosphorylated form of JAK2 on tyrosine 
residues 1007/1008 was immunodetected by a specific 
phospho-JAK2 monoclonal antibody (1:1000, C80C3, 
Cell Signaling Technology). Immunodetection of 
both STAT5 and phospho-STAT5 was performed using 
a STAT5 rabbit monoclonal antibody (1:1000; 3H7;  
Cell Signaling Technology) and a rabbit monoclonal 
antibody able to bind to phosphorylated residue 
tyrosine 694 of STAT5 (1:1000; C71E5; Cell Signaling 
Technology). Blots were developed with the enhanced 
chemiluminescence CDP-Star detection system (Applied 
Biosystems) and quantified with a GBox (Ozyme, France).

Statistical analysis

GHR mRNA levels were presented as the median and 
hormonal results as the mean ± s.e.m. Statistical significance 
between groups was determined by the ANOVA Tukey’s 
multiple-comparison test. A P value <0.05 was considered 
to be significant for all tests. To measure the strength of 
association between pairs of variables without specifying 
dependency, Spearman’s rank-order correlations were 
run. The differences were considered to be statistically 
significant at P < 0.05.

Results

Characterization of the GHR in human  
somatotroph tumors

From our series of 21 human somatotroph tumors, no 
mutations of GHR were found, including the p.His49Lys 
mutant known to impair GHR function (Asa et al. 2007). 
Two tumors (2/21, 9.5%) were homozygous for the 
d3-GHR isoform, a roughly similar rate to that observed 
in the study conducted by Pantel et al. (2000).

Overall, 31 human GH-secreting tumors were 
analyzed for the GHR mRNA expression. Among them, 
eight were subjected to in vitro pharmacological studies: 
five pure somatotroph and three somatolactotroph 
adenomas (Table 1). GHR expression was found in all the 
tested tumors, with a median of 0.086 copy/copy β-Gus 
and most of them (n = 18) displaying a higher expression 

Figure 1
Expression of the GHR in human GH-secreting adenomas. (A) mRNA 
expression of GHR assessed by real-time PCR in human liver (n = 3), 
normal pituitary tissue (n = 2), and GH-secreting pituitary adenomas 
(n = 31). Note that 18 out of 31 adenomas display a higher mRNA level of 
GHR than the normal pituitary tissue. (B and C) GHR immunostaining as 
described in the ‘Design and methods’ section in a representative 
primary culture of a GH-secreting adenoma (63×, zoom factor 1) at T0 
(B) and at T24 (hours) of pegvisomant 10 μg/mL (C). Nucleus is stained in 
blue (DAPI) and GHR is shown as green spots (arrows). (D) Mean 
quantification of fluorescence of the GHR in both the cytoplasm and the 
nuclear compartment of GH-secreting cells from the tumor case no. 8. 
C/N, cytoplasm/nuclear ratio.

Figure 2
Cell viability of human GH-secreting adenomas (n = 6) in primary culture. 
Cell viability was assessed by CellTiter-Glo (see ‘Design and methods’ 
section) under increasing doses of PEG ranging from 0.1 to 10 μg/mL and 
measured after 72 h of treatment. CTRL, control. Because of an 
insufficient amount of cells collected after dissection, tumors of cases 1 
and 5 have not been included in this experiment.

http://dx.doi.org/10.1530/ERC-16-0140
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of GHR than that found in the normal pituitary (n = 2, 
0.076 copy/copy β Gus), although markedly less than the 
expression observed in the liver (n = 3, 1.15 copy/copy  
β-Gus) (Fig. 1A).

Once the endogenous GH is bound, a conformational 
switch for the GHR occurs with a subsequent translocation 
within the nuclear compartment (Conway-Campbell et al. 
2007). We assessed the subcellular localization of the GHR 
by immunofluorescence in human somatotroph cells both 
in basal (Fig.  1B) and PEG-treated conditions (Fig.  1C). 
The GHR immunolabeling showed predominant cytosolic 
spots in basal conditions without significant change of 
the labeling profile after 24 h of PEG 10 μg/mL (Fig. 1D).

Impact of PEG on cellular viability, hormonal secretion, 
sensitivity to octreotide and GHR activation of human 
somatotroph adenomas

No impact of PEG was observed over the 72-h treatment 
period either on cellular viability (Fig. 2) or incorporation 
of BrdU (data not shown) in the six tested tumors whatever 
the concentration used.

Moreover, PEG did not induce an increase in GH 
secretion in the eight tested tumors. Conversely in five 
of the eight tumors tested, a dose-dependent inhibition 
of GH secretion occurred (Fig. 3A). We arbitrarily defined 
a tumor as being sensitive to PEG when the maximal GH 
inhibition under PEG was more than 15% compared with 

Figure 3
Effect of PEG on hormonal secretions of primary 
cultures of human pituitary adenomas. (A and B) 
Mean dose–response GH suppression obtained in 
cell cultures from eight GH-secreting adenomas 
(Table 1) under PEG (0.1–10 μg/mL) categorized as 
five PEG-responsive tumors (A) (****P < 0.0001 vs 
CTRL) and three PEG-non-responsive tumors (B). 
(C) Correlation between maximal inhibition of GH 
secretion under PEG 1 μg/mL and GHR mRNA 
expression levels in eight GH-secreting adenomas 
(r = 0.68, P = 0.07). (D) Inhibition of GH secretion in 
two secreting adenomas (cases 1 and 4) after 72 h 
of octreotide 10–9 mol/L alone (OCT 10–9), PEG 
alone 10 μg/mL (PEG), or combination of both 
(OCT 10–9 + PEG). **P < 0.01. (E) Mean dose–
response of PRL suppression obtained in cell 
cultures from three mixed GH/PRL adenomas 
(cases 1, 5, and 7) under PEG (0.1–10 μg/mL) 
***P < 0.001, ****P < 0.0001 vs CTRL. (F) Western 
blot analysis of phospho-STAT5/STAT5 and 
phospho-JAK2/JAK2 in two GH-secreting 
adenomas (cases 2 and 8) after 5 min of treatment 
by PEG (10 μg/mL). Upper panel: representative 
blot of one tumor (case 2). Lower panel: 
quantification of both phospho-STAT5/STAT5 and 
phospho-JAK2/JAK2 on the immunoblot of the 
two tumors. *P < 0.05 vs CTRL.

http://dx.doi.org/10.1530/ERC-16-0140
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controls (Table 1). In those five tumors, the mean maximal 
inhibitory effect observed with the dose of 1 μg/mL reached 
38.2 ± 17% (P < 0.0001 vs CTRL). In the three remaining 
tumors, PEG did not significantly impact the GH secretion 
whatever the concentration of the drug used (Fig.  3B). 
Although the analysis did not reach statistical significance, 
probably due to the low number of tumors, we observed a 
trend for a positive correlation between the expression level 
of GHR mRNA and the percentage of maximal inhibition of 
GH secretion under PEG 1 μg/mL (r = 0.68, P = 0.07, Fig. 3C). 
Insufficient tumoral material was available to screen for 
the d3-GHR isoform in these tumors. When combined 
with octreotide (10–9 mol/L), PEG (10 μg/mL) did not result 
in an additive effect on the inhibition of GH secretion in 
any of the tumors tested (Fig. 3D).

When considering the PRL secretion in the three mixed 
GH/PRL adenomas, we also observed dose-dependent 
inhibition of secretion under PEG with a maximum of 
52.8 ± 11.5% (P < 0.0001 vs control) at 10 μg/mL (Fig. 3E).

Because the effect of PEG on both GH and PRL secretion 
was unexpected, we investigated the effect of PEG on 
the phosphorylation pattern of the two main proteins 
involved in the GHR transduction pathway. Accordingly, 
PEG (10 μg/mL) decreased the phosphorylated form of 
both JAK2 and STAT5 (Fig. 3F).

Impact of PEG on the cellular viability of the 
somatolactotroph cell line GH4C1

Because human GH-secreting adenoma cells displayed 
a low proliferation rate in the primary culture, we 
analyzed both cell viability and proliferation of the 
somatolactotroph GH4C1 cell line. The GHR was 
expressed both at the mRNA (0.4 copy/copy actin × 106) 
and at the protein levels in these cells. Similar to the 
human tumor, the GHR was expressed both in diffuse and 
spot patterns mainly in the cytosol (Fig. 4A).

Figure 4
Expression of rat GHR and cell viability and 
proliferation under pegvisomant in GH4C1 cell 
line. (A) Confocal microscopy (63×, zoom factor 
1). Left panel, control without primary antibody. 
Right panel, rGHR is labeled in green (arrows) 
when cells were incubated with the primary 
(directed against rGHR) and the secondary 
antibody. Nucleus is stained in blue (DAPI). (B) No 
effect of 72 h PEG (0.1–10 μg/mL) on the cell 
viability of GH4C1 assessed by CellTiter-Glo (n = 3 
experiments). (C) Proliferation of GH4C1 cell lines 
assessed by EdU incorporation from day 1 to day 
3 under PEG 10 μg/mL compared with control 
(CTRL) NS, no significant. (D) Impact of PEG 
(10 μg/mL) on the EdU incorporation/cell number 
ratio of GH4C1 cell lines after 3 days, compared 
with control (CTRL).
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No effect on cell viability was observed after 3 days 
of increasing doses of PEG (Fig. 4B). PEG (10 μg/mL) had 
no impact on the proliferative rate of GH4C1 cells in low 
serum medium from day 1 to day 3 (Fig. 4C). Moreover, 
the EdU incorporation/cell number ratio was not different 
after 3 days of 10 μg/mL PEG (Fig. 4D).

Discussion

The treatment of acromegaly remains a real challenge 
in spite of the numerous drugs developed in this field, 
which have gradually enriched the panel of therapeutic 
tools (Chanson 2015, Neggers et  al. 2016). In cases of 
incomplete surgery and/or resistance to the SSAs, the 
GHR antagonist PEG, represents a suitable option and 
rapidly leads to IGF1 normalization in most patients 
when appropriately titrated. Once injected, PEG does not 
cross the blood–brain barrier and therefore does not exert 
a biological effect on the CNS (Veldhuis et al. 2010). In 
contrast, the pituitary gland and any adenoma that has 
developed within are not ‘protected’ by the blood–brain 
barrier and are potentially exposed to the circulating PEG 
if this one can cross the capillary wall in the anterior 
pituitary. Latter is a sine qua non condition whose veracity 
remains to be determined for suspecting a secondary 
effect of PEG at the pituitary cell level. Yet, evidences exist 
to support the idea that (a small amount of) PEG indeed 
crosses the capillary wall within the anterior pituitary: 
Nass et al. (2000) showed that injection of an analog of 
PEG in the cerebroventricular space (on the other side of 
the blood–brain barrier) of rats led to an increase of GH 
secretion, which suggests a central regulation of GH on its 
own secretion (negative feedback loop), occurring at the 
hypothalamic levels where the permeability of capillaries 
is roughly the same as for those found in the anterior 
pituitary. Moreover, other bigger molecules than PEG 
(whose molecular mass is around 40–50 kDa) have been 
recently proposed to potentially cross the capillary wall, 
like ipilimumab, a recombinant monoclonal antibody 
of 148 kDa directed against cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4), which can trigger an 
hypophysitis state in humans by binding the CTLA-4 
when expressed on the pituitary cells (Iwama et al. 2014).

In light of the so-called Nelson’s syndrome secondary 
to bilateral adrenalectomy and abolition of the cortisol-
induced negative feedback, the issue concerning the role 
of PEG in promoting growth of a residual GH-secreting 
tumor by decreasing the IGF1 plasma concentration has 
been raised (Marazuela et al. 2011) and remains unclear.

Our study focused on the effects of PEG on the secretion 
and viability of human GH-secreting pituitary adenomas. 
We then demonstrated that the GHR is expressed both 
at the mRNA and protein levels in human GH-secreting 
pituitary adenomas. We then wondered whether PEG 
might influence the proliferation of GH tumoral cells 
by binding to the GHR. In our experimental model, PEG 
does not affect the cell viability of either human or rat 
somato(lactotroph) tumoral cells; however, two obvious 
limitations need to be discussed: first, the size of our tumor 
sample is pretty limited and extrapolating data from our 
results to establish a general conclusion appears to be 
anticipated unless other studies confirmed roughly similar 
results in future works. The second point concerns the 
eight pituitary tumors, randomly selected in our work and 
for which the natural history cannot be precisely known 
until a progression and/or a relapse happen. As a proof-
of-concept in clinical trial, our study has the advantage 
to be the first one to investigate in human GH adenomas 
primary cultures the impact of PEG at the pituitary level in 
presence of a functional GH receptor and would hopefully 
pave the way for further investigations in this direction. 
It needs to be made clear that even though proliferation 
may not be the optimal parameter to conclude about a 
potential PEG effect (because such tumors exhibit a really 
low rate of proliferation), results we have concerning 
both the DNA nucleoside incorporation and the GH4C1 
experiments strongly suggest that PEG does not modify at 
all the cellular replication homeostasis even in the short 
term. This observation aligns closely with the clinical and 
MRI data originating from the ACROSTUDY, where no 
significant increase in pituitary size was observed under 
PEG in 141 acromegalic patients over a median period 
of 4.9 years (Neggers et  al. 2014). Nevertheless, it must 
be noted that in this cohort, acromegalic patients were 
systematically treated with PEG in combination with SSA 
whose antiproliferative effect may partly obscure the real 
effect of PEG on tumor mass. Likewise, in the German 
PEG observational study, 18 of the 307 (5.9%) patients 
treated with PEG for an average of 86 weeks showed an 
increase in tumor mass, but only eight of these apparent 
progressions were confirmed after centralized image 
reevaluation (Buchfelder et  al. 2009). Throughout the 
literature, the percentage of patients with authentic tumor 
growth under PEG therapy remains minimal, between 
3 and 6% (Jimenez et  al. 2008, Buchfelder et  al.  2009,  
van  der  Lely et  al. 2012). Note that for this small 
proportion of patients, it is still unclear to distinguish 
so far a potential proliferative effect of the PEG from 
the natural history of the tumor. Indeed, most of these 
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patients were candidates to PEG, insufficiently controlled 
by SSAs, a condition known to be associated with a more 
aggressive behavior of the adenoma (Larkin et al. 2013).

The second aspect of the study concerns the effect 
of PEG on the secretion of GH by the pituitary tumor 
itself. Unexpectedly, we observed a significant and dose-
dependent decrease in GH secretion by the tumoral cells 
when treated by PEG. It appeared as a paradoxical result 
because the concentration of GH has previously been 
shown to increase in patients treated with PEG (van der 
Lely et  al. 2001, Veldhuis et  al. 2001). However, in the 
particular case of GH-secreting primary cultures, the 
negative IGF1 feedback known to occur in vivo (Berelowitz 
et al. 1981) no longer occurs. Yet, IGF1 has been shown 
to inhibit and accurately regulate the secretion of GH 
both directly on the somatotroph cells and indirectly 
through modulation of GHRH and somatostatin release 
(Berelowitz et al. 1981, Gahete et al. 2013). Moreover, a 
previous study showed that addition of IGF1 (100 nM) 
to primary cultures of somatotropinomas indeed leads 
to a significant decrease of GH secretion in 5/8 tumors, 
while increasing the PRL secretion of prolactinomas 
(Atkin et  al. 1994). In our cultured somatotroph cells, 
PEG decreased the phosphorylation of JAK2 and STAT5, 
which suggests a certain degree of basal activation of 
the GHR by the endogenous GH. The dose-dependent 
inhibition of GH secretion under PEG further supports 
the concept of an autocrine/paracrine pattern of 
action via the GHR and that this activation probably 
participates in the synthesis and release of GH by the 
somatotroph, as it has been reported in other models 
(Zhou et  al. 2004a,b). Moreover, we found a trend for 
a positive correlation between GH inhibition and the 
GHR mRNA expression. However, it was not possible to 
assess the impact of the 20-kDa isoform of GH (which 
would not interfere with the measurement of GH) on the 
secretion of the 22-kDa isoform because the latter was 
released within the supernatant and is known to bind to 
GHR with a better affinity than the 20-kDa isoform (Sigel 
et al. 1981, Smal et al. 1986).

The concept of autocrine production of GH through 
GHR activation (and JAK2/MAPK signaling pathway 
activation) has already been suggested by Zhou et  al. 
(2004b) and more recently by the group of Melmed, who 
showed that STAT3 upregulation in pituitary somatotroph 
cells led to GH hypersecretion which in turn promoted 
STAT3 expression (Zhou et al. 2015). Interestingly, the same  
group demonstrated that the GH gene was a transcriptional 
target for p53 in the pituitary and that p53 activation was 
correlated with an increase in GH gene transcription as 

well as GH secretion (Chesnokova et  al. 2013). Whether 
p53 is activated by STAT3/5 within the GH cells remains 
elusive today; however, STAT transcription factors have 
been shown to activate the p53 pathway in several 
other experimental models (Chapman et  al. 2000, 
Wittig & Groner 2005, Pencik et al. 2015). In our model, 
one hypothesis could be that PEG leads to inhibition 
of GH secretion by decreasing STAT phosphorylation 
downstream of the GHR and by the inhibition of p53 
activation. Complementary investigations are obviously 
required to clarify such a hypothesis. Finally, in our 
experiment, we did not observe any additivity on the 
inhibition of GH secretion when the PEG and octreotide 
were used in combination. We hypothesize that because 
octreotide results in an inhibition of GH secretion in our 
primary cultures, the GHR is not activated anymore by the 
autocrine loop and consequently the inhibition effect of 
PEG no longer occurs.

Besides inhibition of GH secretion, PEG led to a 
significant inhibition of PRL secretion in the primary 
cultures of all the three mixed GH/PRL adenomas tested. 
To our knowledge, there are currently no reports in the 
literature looking at PRL levels in patients treated with 
PEG and diagnosed with mixed GH/PRL adenomas. 
In vitro, PRL can inhibit its own secretion by binding its 
own receptor PRLR in an autocrine/paracrine manner both 
in humans and in rat pituitary glands extract (Melmed 
et al. 1980, Kadowaki et al. 1984). Because PEG does not 
bind to the PRLR (Goffin et al. 1999), it is unlikely that 
PEG-induced PRL inhibition involves the PRLR. However, 
a more suitable hypothesis is that PEG actually inhibits 
simultaneously cosecretion of GH and PRL given the fact 
that those two hormones coexist within the same secretory 
granule in the somatolactotroph cell (Bassetti et al. 1986). 
This would imply that molecular pathways triggered by 
PEG and responsible for PRL inhibition are more or less 
the same as those involved in GH inhibition, assuming 
that inhibition of both GH and PRL is due to a blockade in 
secretory granule exocytosis. Another hypothesis would 
be that the decrease in PRL observed may be the direct 
consequence of the GH inhibition in a system in which 
GH would be a stimulatory hormone for the neighboring 
lactotroph; however, there are currently no evidences for 
such a functional interaction. Nonetheless, this appears 
unlikely because of normal prolactinemia plasma levels 
observed in certain acromegalic patients despite really 
high GH plasma levels.

To the best of our knowledge, our work is the first that 
has focused on the in vitro effect of PEG on the growth 
and hormonal secretion of GH-secreting pituitary tumors. 
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Clearly, PEG has no proliferative impact on human 
GH-secreting tumor cells, in keeping with the observations 
made in clinical studies. Moreover, we demonstrate for 
the first time that in vitro PEG inhibits GH secretion of 
human somatotroph adenomas and PRL release of mixed 
GH/PRL adenomas. Challenging perspectives arise from 
this work, especially concerning the intricate mechanisms 
involved in the effect of PEG that still need to be clarified.
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