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Abstract

The critical behavior of an Ising model coupled to elastic degrees of freedom is examined. If
linear elasticity theory is assumed, the latter can be eliminated in the theoretic model. The
theory then predicts a second order phase transition with Fisher renormalized exponents in the
constant volume case. The model used in simulation however, includes all elastic interactions.
Evaluation shows, that in the present case there is no evidence for Fisher renormalization.
Instead, within precision the standard Ising values of the critical exponents are found.

An alternative set of parameters is proposed in order to increase the effect of elastic coupling.
In a first step the ground state is examined with the second set of parameters. It is found, that
additional to the magnetic phase transition, there is a structural transition from a clustered to
an unclustered state.
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1 Introduction

Since the Ising model was invented in 1920 it has been subject to ongoing research. Applications
of the Ising model include not only the modeling of magnets, but also binary alloys [1] lattice
gases, spin glasses and even the modeling of neurons [2]. From a physicists’ point of view, it
seems only natural to consider the addition of elastic degrees of freedom, since real bodies are
always to some extent elastic.

In the present work, Monte Carlo simulations of a microscopic model are conducted in order
to examine the influence of the elastic coupling on the critical behavior. In comparison to
experiment, simulations offer the advantage, that a very strong coupling can be chosen, which
should result in a more distinct effect of the elastic degrees of freedom.

There already exists some theoretical research on this topic. It was argued, that for constant
volume there should be a second order phase transition with Fisher renormalized critical ex-
ponents [3, 4, 5, 6, 7, 8], where the renormalized exponents are actually in better agreement
with experimental values, than the regular Ising exponents [3]. In the references cited above,
a linear theory of elasticity was assumed. This allows for the elimination of the microscopic
elastic degrees from the effective Hamiltonian.

That an effective Hamiltonian of this kind does indeed produce Fisher renormalized exponents
has been confirmed by simulation by A. Tröster [9]. The model simulated in the present work,
however, does include all elastic degrees of freedom. The objective is, to test the validity of the
assumptions made in theory, by using a model, that still includes all the interactions.

The structure of the present thesis is as follows: In Chapter 2, a review of the field theory of the
regular Ising model is given. This is used as basis to derive an effective Hamiltonian by adding
terms of the elastic energy and coupling. Also the methods, that are later used to evaluate the
data, are discussed. This includes finite-size scaling, the multi histogram reweighting method
and the blocking method for calculating error values from correlated data. It is shown, that the
Swendsen-Wang cluster algorithm is indeed a valid simulation method for the present model.
Finally, The microscopic model as it is simulated in this work is introduced and the details of
implementation are discussed.

In Chapter 3, a finite-size scaling analysis is conducted to determine the critical exponents of
the system. An alternative parameter set is proposed and the structural properties of the ground
state are examined for said parameters. Also, the magnetic properties for T > 0 are reviewed.
It follows a summary and an outlook for the future work that can be done on this topic.
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2 Theory

In this chapter, the theoretical basis of this work is given. We will start by giving a brief repetition
of the standard Ising model without any elastic degrees of freedom. The Landau-Ginzburg-
Wilson (LGW) Hamiltonian is motivated to provide a field theoretical description of the Ising
model on the basis of the order parameter.

The transition to the compressible Ising model is done by adding expressions for the elastic
energy and the coupling energy to the LGW Hamiltonian. The critical behavior of the effective
Hamiltonian is then discussed for constant pressure and constant volume.

In the next section, the methods of finite-size scaling are outlined. Several relations are
derived, which are used to determine the critical exponents of the compressible Ising model
later on.

The multi histogram reweighting method is described in the following section. It is a powerful
tool, that can be used to combine the statistical data from multiple simulations and reweight
observables to temperatures, where no actual simulations have been done.

Next, the blocking method for error calculations is discussed. Since Monte Carlo simulations
are Markov chains, the individual data points are intercorrelated and we cannot use simple
Gaussian statistics to compute the errors. With the blocking method the data set is reduced to a
stage, where only uncorrelated points remain. These can in turn be used, to compute the correct
error by ordinary Gaussian statistics.
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2.1 The “Rigid” Ising Model

The Ising model is one of the most established models to describe a phase transition. Magnetic
dipole moments are represented by spins Si on a lattice as illustrated in Fig. 2.1. The spins can
take exactly two states, namely Si = ±1 and are coupled to their nearest neighbors by a coupling
constant J . The Hamiltonian of the Ising model is

HIsing = −J
∑

〈i j〉

SiS j −H
∑

i

Si, (2.1)

where H is an optional external magnetic field, which couples to all the spins. Angular brackets
indicate, that only pairs i, j of nearest neighbors are taken into account in the sum. If the
coupling constant J is positive, the system is ferromagnetic. As a consequence parallel spins
will reduce the total energy. In the absence of an external field, i.e. H = 0, the Hamiltonian
is symmetric under spin inversion Si → −Si. The order parameter of the Ising model is the
magnetization m:

m=
1
N

N
∑

i=1

Si, (2.2)

where N is the number of spins in the system. In the ordered state, which has lower symmetry,
the majority of spins will have the same state and therefore m 6= 0. In the disordered state,
being the state with higher symmetry, the value of the spins is random and m = 0. The order
parameter is therefore a measure of the deviation from the symmetrical state. However, this
only holds in the thermodynamic limit (i.e. systems of infinite size). In finite systems, there is
no phase transition in the strict sense. In this case, the system jumps between two equivalent
magnetizations ±msp effectively yielding 〈m〉= 0. For an example see Fig. 2.2. For the Metropo-
lis algorithm this becomes less likely with increasing system size, as the statistical weight of the
connecting states decreases. This problem can however be circumvented by the Swendsen-Wang
algorithm, which flips clusters of spins rather than individual spins (See Sec. 2.6). Despite the
fact, that 〈m〉= 0 in finite systems, we can differentiate between ordered and disordered systems
by simply sampling the symmetrized order parameter |m|.

Figure 2.1: Illustration of the d = 2 Ising model as spins on a lattice
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Figure 2.2: Time series of the magnetization m computed with the Metropolis Algorithm with
κ= 1, K = 3, L = 10 and T = 6.7< Tc. Throughout the time series, the system stays
at one magnetization msp for several thousand steps before switching to the equiv-
alent magnetization −msp. For short runs, this leads to an asymmetric distribution
P(m).

In d = 3, the temperature driven phase transition of the Ising model is of second order. When
the temperature is increased starting at T = 0, the order parameter will drop continuously, until
it becomes zero at the critical temperature Tc. This is contrary to first order phase transitions,
where the order parameter has a discontinuous jump at Tc. For second order phase transitions
however, the decrease of the order parameter near Tc is well described by a power law. In the
Ising model we can write

|m| ∝ |T − Tc|
β (2.3)

for T ® Tc. In a system of finite-size, the correlation length cannot diverge. As a consequence,
the curve flattens out near Tc. This is illustrated in Fig. 2.3 (also see 2.9), where data from the
simulation of a finite system is compared with the theory of infinite systems. Correlation length
ξ, susceptibility χ and heat capacity C diverge at the critical temperature with the power laws

ξ∝ |T − Tc|
−ν, (2.4)

χ∝ |T − Tc|
−γ, (2.5)

C ∝ |T − Tc|
−α. (2.6)

In finite systems, these divergences become peaks of bounded height.
The theory of finite-size scaling makes use of the fact, that those deviations from the ideal

case obey strict laws themselves. This enables us to obtain very exact estimates of the critical
temperature and exponents, even though only relatively small systems are simulated. For a
derivation of the power laws above, as well as finite-size scaling relations see Sec. 2.3.

In order to describe the dependence of the energy on the order parameter we will use the
Landau-Ginzburg-Wilson (LGW) field theory. Here, the order parameter φ(r) is allowed to
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Figure 2.3: Behavior of the magnetization |m| near the critical temperature Tc. The blue line is
the power law given in Eq. (2.3). The red line is taken from simulation and illustrates
the flattening of the curve due to finite size effects.

fluctuate in space (φ(r) is also called ‘order parameter field’). The Hamiltonian of the LGW
theory is given by the integral

HLGW =

∫

ddr
�

R
2
(∇φ(r))2 +

r0

2
φ2(r) +

u0

4!
φ4(r)−Hφ(r)

�

. (2.7)

The first term is the interfacial energy with R > 0. In those points, where two regions with
different order parameter meet, the gradient of the order parameter is non-zero. Since the
interfacial energy is independent of the direction of the gradient, the second order term is the
first relevant term in Taylor expansion.

The next two terms correspond to a power series expansion of the free energy up to the fourth
order. For the parameter of the second order term r0 ∝ T − T MF

c holds, T MF
c being the critical

temperature in mean field approximation. For the parameter of the fourth order term we will
(for now) assume, that only even powers are included in the power series expansion, in order
to ensure spin inversion symmetry. The last term takes into account an external magnetic field
H and adds a bias towards φ > 0 or φ < 0.

In order to give an intuition of the LGW-Hamiltonian, we set H = 0 and do the mean field
approximation φ(r)→ φ. This way we can evaluate the integral and receive

H MF
LGW = V

� r0

2
φ2 +

u0

4!
φ4
�

, (2.8)

which just corresponds to a Landau expansion of the free energy up to the fourth order
[10, 11, 12]. The Landau free energy (2.8) is plotted in Fig. 2.4 for different temperatures.
As the temperature approaches T MF

c from high temperatures, the fourth order term becomes in-
creasingly dominant and results in a broad minimum at T = Tc, allowing for strong fluctuations.
Moving below T MF

c , the second order term becomes negative and two minimums develop at the
origin. They move apart continuously as temperature is decreased further, which is the typical

9



fr
ee

en
er

gy

order parameter

T > Tc
T = Tc
T < Tc

Figure 2.4: Landau free energy for different temperatures. The power series expansion was car-
ried out up to the fourth order.

second order phase transition behavior. Since the order parameter minimizes the free energy in
thermal equilibrium, these two minimums correspond to two equivalent ordered phases. In the
Ising model, these are the spontaneous magnetizations ±msp.
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2.2 The Compressible Ising Model

The compressible Ising model can be imagined as a standard Ising model on a elastic lattice. In
the following, we will assume a lattice with cubic symmetry.

The interaction energy of the compressible Ising model is composed of three parts: The mag-
netic energy, the elastic energy and the coupling energy, resulting from the coupling between
magnetic and elastic degrees of freedom. For the magnetic interaction, the Landau-Ginzburg-
Wilson Hamiltonian from the standard Ising theory is used. A linear theory of elasticity is used,
in order to derive an expression for the elastic energy. The expression for coupling is of the
lowest order agreeing with the systems symmetries. From the sum of the three contributions
an effective Hamiltonian is derived, which is then used to predict the critical behavior of the
system.

2.2.1 Elastic Energy

The following derivations are largely taken from [4]. For the computation of the elastic energy,
consider a d-dimensional isotropic solid with volume V = Ld . A small macroscopic deformation
of the box can be described by the coordinate transformation

r′ = (1+ E)r̃, (2.9)

where r̃ is the coordinate vector before deformation, r′ is the coordinate vector after deformation
and 1 is the unit matrix. Since a macroscopic rotation is not of interest, the macroscopic strain
tensor E must be symmetric.

Additionally, we would like to consider small microscopic fluctuations, which we describe by
the displacement u0(r) of a volume element from its original position r

r̃= r+ u0(r). (2.10)

The total deflection u is then made up of both macroscopic deformation and microscopic
fluctuation:

u(r) =r′ − r

=u0(r) + Er+ Eu0(r).
(2.11)

Assuming, that E and u0 are small, this can be linearized to

u(r) = Er+ u0(r). (2.12)

In the next step, we use the Fourier representation of the displacement field u0:

u(r) = Er+
∑

k6=0

d−1
∑

λ=0

ũ(λ)(k)ε(λ)(k)exp(ik · r). (2.13)

The vector k is quantized like k= 2πn/L with n ∈ Zd . The value k = 0 is omitted, since it
merely represents a simple translation of the whole box. Different polarizations are represented
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by the unit vectors ε(λ), where λ = 0 gives the longitudinal polarization ε(0) ‖ k, and λ =
1, . . . , d − 1 give the transversal polarizations ε(i) ⊥ k. These so called polarization vectors are
orthonormalized, i.e. ε(λ) · ε(µ) = δλµ. Additionally, for the displacement field u(r) to be real,
the symmetry relations

ε(λ)(−k) =− ε(λ)(k), (2.14)

ũ(λ)(−k) =−
�

ũ(λ)(k)
�∗

(2.15)

must be satisfied.
For the next step, we introduce the microscopic strain tensor eαβ . Note, that in the following

the Einstein summation convention is used, which implies the summation over all double Greek
indexes in one term. For small displacements, the microscopic strain tensor is linked to the
displacement as follows [13]:

eαβ =
1
2

�

∂ uα
∂ rβ

+
∂ uβ
∂ rα

�

. (2.16)

From the definition it is obvious, that the microscopic strain tensor is symmetric. Since for every
tensor the trace is conserved under coordinate transformation, a natural way of representing a
symmetric tensor, is to split it up into the sum of a multiple of the unit tensor and a traceless,
symmetric tensor:

eαβ =
1
d
δαβ eγγ +

�

eαβ −
1
d
δαβ eγγ

�

. (2.17)

The first term in Eq. (2.17) represents a pure compression/dilation, whereas the second term
represents a pure shear.

For the derivation of the elastic free energy density f in terms of the strain tensor eαβ , we
will assume small deformations and expand f into powers of eαβ . In the undeformed state, the
internal stresses in the body must be zero, i.e. σαβ = 0. The stress tensor σαβ is defined as

σαβ =
∂ f
∂ uαβ

. (2.18)

This means, that there cannot be any linear terms in the expansion of f in powers of eαβ . We
can therefore assume a quadratic dependence of f , neglecting higher orders. Also the terms of
f must be scalar, since f itself is scalar. Because eαβ is symmetric, it can be decomposed into
two independent scalars of second order. These are the square of the trace eγγeδδ and the trace
of the square eαβ eαβ . The general form of the elastic free energy density is then given by

f = f0 +
1
2
λeγγeδδ +µeαβ eαβ , (2.19)

where λ,µ are called the Lamé coefficients and f0 is a negligible constant. Substituting the
decomposition from Eq. (2.17), we get:

f =
K
2

eγγeδδ +µēαβ ēαβ , (2.20)
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where ēαβ = eαβ −
1
dδαβ eγγ represents the traceless part of the microscopic strain tensor. The

constant K = λ+ 2µ/d > 0 is well known as the bulk modulus or modulus of compression, as is
µ > 0, the shear modulus or modulus of rigidity. Using the amplitudes ũ(k) and the tensor E as
independent degrees of freedom, we can write the elastic Hamiltonian of the system as follows:

Hel =

∫

V

ddr
�

K
2

eγγeδδ +µēαβ ēαβ

�

. (2.21)

Analogous to the microscopic strain tensor, the macroscopic strain tensor can also be decom-
posed into trace and traceless part:

Eαβ =
1
d

E0δαβ + Ēαβ , (2.22)

where E0 = Eγγ describes the change in volume. Using the Fourier expansion of u, Eq. (2.13)
and substituting it in the definition of eαβ , Eq. (2.16), yields

eαβ = Eαβ +
i
2

∑

k 6=0

d−1
∑

λ=1

exp(ik · r)ũ(λ)(k)
�

kαε
(λ)
β
+ kβε

(λ)
α

�

, (2.23)

as well as

eγγ = E0 + i
∑

k

exp(ik · r)kũ(0)(k). (2.24)

With the relation
∫

V

ddrexp(i(k− q) · r)) = Vδkq, (2.25)

the elastic Hamiltonian can finally be written as

Hel

V
=

K
2

E2
0 +µĒαβ Ēαβ

+
1
2

�

K + 2
�

1−
1
d

�

µ

�

∑

k

k2
�

�ũ(0)(k)
�

�

2

+
µ

2

∑

k

d−1
∑

λ=1

k2
�

�ũ(λ)(k)
�

�

2
.

(2.26)

The first line in Eq. (2.26) accounts for macroscopic deformation in form of compression and
shear. The second line gives the elastic energy of the longitudinal modes and the third line gives
the energy of the transversal modes. From Eq. (2.26) we see, that longitudinal and transversal
modes have different elastic constants: While the longitudinal modes depend both on bulk and
shear modulus, the transversal modes depend only on the shear modulus. Also, for d > 1, the
macroscopic compression exhibits a smaller elastic constant than the longitudinal modes. We
define

K ′ = K + 2
�

1−
1
d

�

µ. (2.27)
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2.2.2 Order Parameter and Coupling Energy

For the magnetic interaction we will assume, that without coupling the system is described by a
Landau-Ginzburg-Wilson Hamiltonian (see Sec. 2.1.):

HLGW =

∫

ddr
�

R
2
(∇φ(r))2 +

r0

2
φ2(r) +

u0

4!
φ4(r)−Hφ(r)

�

. (2.28)

The order parameter φ(r) is a scalar field, which in Fourier space is represented by

φ(r) =
∑

k

φ̃(k)exp(ik · r) = φ0 +
∑

k6=0

φ̃(k)exp(ik · r). (2.29)

With this, the LGW Hamiltonian can be transformed into Fourier space as well:

HLGW

V
=

R
2

∑

k

k2
�

�φ̃(k)
�

�

2
+

r0

2

∑

k

�

�φ̃(k)
�

�

2

+
u0

4!

∑

k1k2k3

φ̃(k1)φ̃(k2)φ̃(k3)φ̃(−k1 − k2 − k3).
(2.30)

For the coupling energy, we will use the lowest order coupling compliant with the systems
symmetries. For small fields φ(r) and small elastic distortions, the lowest order coupling is
given by

Hc = g

∫

ddrφ2(r)eαα. (2.31)

The parameter g determines the coupling strength. We use this form, because rotation invari-
ance must be given and the trace is the only invariant scalar, which can be extracted from a
second rank tensor. Also, the square of the order parameter must be used in order to provide
for spin inversion symmetry. Next, consider the substitution φ2 = ψ, where ψ can again be
expressed in terms of the Fourier transform

ψ(r) =
∑

k

ψ̃(k)exp(ik · r) =ψ0 +
∑

k6=0

ψ̃(k)exp(ik · r). (2.32)

This can be used to rewrite the coupling Hamiltonian as

Hc

V
= gψ0E0 + ig

∑

k6=0

kψ̃∗(k)ũ0(k). (2.33)

From this form we see, that the shear component of macroscopic deformation Ēαβ and the
transversal elastic modes ũ(λ) with 0 < λ < d do not couple at all with the order parameter.
Since both those quantities occur quadratically in the elastic Hamiltonian Eq. (2.26), they can
be eliminated by Gaussian integration1.
1 This is possible, since all the relevant information is coded in the partition function Z ∝

∫

dΓ exp(−βH (Γ )).
A quadratic summand in the Hamiltonian will therefore result merely in a constant factor in the partition
function and will not interfere with any thermodynamic averages.
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We can then write the sum of elastic and coupling Hamiltonian as

Hel +Hc

V
=−

g2

2K
ψ2

0 −
g2

2K ′

∑

k6=0

�

�ψ̃(k)
�

�

2
+

K
2

�

E0 +
g
K
ψ0

�2

+
K ′

2

∑

k 6=0

�

�

�kũ0(k)− i
g
K ′
ψ̃(k)

�

�

�

2
.

(2.34)

It becomes clear, that like the transversal elastic fluctuations, the longitudinal fluctuations can
be eliminated as well for analogous reasons. The last term can therefore be omitted completely.
By incorporating the k= 0 modes into the sum, this can be rewritten as

Hel +Hc

V
=− Jψ2

0 −
g2

2K ′

∑

k

�

�ψ̃(k)
�

�

2
+

K
2

�

E0 +
g
K
ψ0

�

, (2.35)

where a coupling parameter

J =
g2

2

�

1
K
−

1
K ′

�

> 0 (2.36)

was introduced. Since

∑

k

�

�ψ̃(k)
�

�

2
=

1
V

∫

ddrψ2(r) =
1
V

∫

ddrφ4(r), (2.37)

the second term of Eq. (2.35) can be absorbed in the LGW Hamiltonian with a redefinition of
the parameter u0:

u0

4!
→

u
4!
=

u0

4!
−

g2

2K ′
. (2.38)

This means, that depending on the strength of the coupling g, the parameter u will be positive
or negative. As we will see later, this will have an important effect on the nature of the phase
transition. With the reparametrization HLGW →H ′

LGW, the effective Hamiltonian of the system
is given by

H
V
=
H ′

LGW

V
− J

�

∑

k

�

�φ̃(k)
�

�

2

�2

+
K
2

�

E0 +
g
K

∑

k

�

�φ̃(k)
�

�

2

�2

. (2.39)

In the case of constant pressure, the volume and therefore the trace of the macroscopic strain
tensor E0, is allowed to fluctuate. The last term of the effective Hamiltonian can then again be
eliminated by Gaussian integration, leaving a coupling term with J > 0 as defined in Eq. (2.36).

In the case of constant volume, E0 is constant as well and the square bracket in the last term
can be expanded. First, this yields a constant term proportional to E2

0 , which can be omitted

right away. The second term is proportional to
∑

k

�

�φ̃(k)
�

�

2
and can be absorbed in H ′

LGW with
the reparametrization

r0→ r = r0 + E0g, (2.40)
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which just corresponds to a shift in critical temperature. The third and last term is proportional

to
�

∑

k

�

�φ̃(k)
�

�

2�2
and can be absorbed in a redefinition of the coupling constant

J = −
g2

K ′
< 0, (2.41)

which in this case is smaller than zero, since K ′ > 0 (see Eq. (2.27)). This means, that for both
constant pressure and constant volume an effective Hamiltonian

H
V
=
H ′

LGW

V
− J

�

∑

k

�

�φ̃(k)
�

�

2

�2

(2.42)

remains, where J > 0 for p = const. and J < 0 for V = const.
Before distinguishing between the two cases, we will discuss the case of strong coupling. As

stated above, a large coupling g will lead to a negative coefficient u inH ′
LGW. In order to allow

for stable solutions, the Landau expansion in the order parameter must then be carried out up
to sixth order, which then in turn must have a positive coefficient. It is well known, that this
form produces a first order phase transition (see e.g. [11]). This becomes evident by looking

fr
ee

en
er

gy

order parameter

T > T ∗∗
T = T ∗∗
T = Tc
T = T ∗
T < T ∗

Figure 2.5: Landau free energy for different temperatures. The fourth order coefficient u is neg-
ative and the power series expansion therefore carried out up to sixth order.

at the temperature dependence of the Landau free energy (see Fig. 2.5): Coming from high
temperatures, two local minima start to form as T passes a certain temperature T ∗∗. These
minima become global at T = T MF

c . This corresponds to the typical jump of the order parameter
in first order phase transitions. At this point, there are three phases, that minimize free energy:
φ = 0 and φ = ±φsp. This corresponds to a triple point in the H-T diagram at H = 0. As
temperature decreases further, only two phases ±φsp remain.

Assuming, that fluctuations in the order parameter are small, the interfacial energy term in
H ′

LGW can be neglected. On these grounds, we can transfer the behavior described above to
the present case. This means, that a first order phase transition is expected for strong coupling,
regardless of the sign of J .

For weak coupling though, one has to differentiate between the cases J > 0 for constant
pressure and J < 0 for constant volume.
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2.2.3 Constant Pressure or J > 0

For the case of constant pressure, we start by examining the partition function, which is defined
by the functional integral

Z ∝
∫

Dφ exp(−βH (φ)), (2.43)

with β = 1/(kBT ) . We use the Hubbard-Stratonovic transformation

s

π

a
exp

�

b2

4a

�

=

∫ ∞

−∞
dx exp

�

−ax2 − bx
�

(2.44)

with a > 0, in order to reduce the fourth order interaction in Eq. (2.42) to second order. This
in return gives us an additional variable x . Now the partition function can be written as

Z ∝
∫ ∞

−∞
dx

∫

Dφ exp

�

−βHLGW(r)−
x2

4βV J
− x

∑

k

�

�φ̃(k)
�

�

2

�

, (2.45)

where the argument r ofHLGW denotes the parameter in Landau expansion and not distance.
The remaining φ-dependent term can again be absorbed inHLGW, leaving us with

Z ∝
∫ ∞

−∞
dx

∫

Dφ exp

�

−βHLGW

�

r +
2
βV

x
�

−
x2

4βV J

�

. (2.46)

In the next step, we use the free energy density f0(r) from the undisturbed LGW system, from
which we know at least the asymptotic critical behavior. The integration over φ can then be
carried out yielding

Z ∝
∫ ∞

−∞
dx exp

�

−βV f0

�

r +
2
βV

x
�

−
x2

4βV J

�

. (2.47)

We now transform to the deviation from criticality with y = r + 2x/(βV ) − rc, where rc is the
value of r, at whichHLGW is critical. With f (y) = f0(r + 2x/(βV )) = f0(y + rc) this gives us

Z ∝
∫ ∞

−∞
dy exp

�

−βV f (y)−
βV
16J
(y − r + rc)

2
�

. (2.48)

Since the integration only extends to one variable, we can in thermodynamic limit find the
solution by just minimizing the free energy

f (y) +
1

16J
(y − r + rc)

2 !
=min. (2.49)

This can be done by finding the root of the derivative:

−8J f ′(y) = y − r + rc. (2.50)
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Near criticality, f will have the form f (y) = −A|y|2−α, where A> 0 is a critical amplitude and
α is the critical exponent of the specific heat in the original LGW system. Here, only α > 0 is
considered. This is the case, if HLGW describes the rigid Ising model in d = 3 dimensions. We
receive

g(y) := 8JA(2−α)|y|1−αsign(y) = y − r + rc. (2.51)

The left hand side flattens out with weakening coupling J . The right hand side is just a line
with slope 1 going through the origin for T = Tc. It is shifted downward for T > Tc and upward
for T < Tc. A solution can be obtained by finding the points of intersection graphically, as
illustrated in Fig. 2.6. There is exactly one solution for high and low temperatures, whereas

g(
y)

y

-2

-1

0

1

2

-2 -1 0 1 2

Figure 2.6: Graphical solution of Eq. (2.51) for J > 0 in arbitrary units. The blue lines are the
right hand side for different temperatures. The red curve is the left hand side g(y).

near the critical temperature there are three solutions.
A solution y is only then stable, if it corresponds to a minimum of the free energy and not a

maximum. This is the case, if the second derivative of Eq. (2.49) is bigger than zero, i.e.

f ′′(y) +
1

8J
> 0. (2.52)

Since g(y) = −8J f ′(y), we can alternatively demand g ′(y) < 1. This means, that a solution is
stable, if the slope of g is less than the slope of the line at the point of intersection. This holds
for both solutions on the outside, but not for the one in the center. As temperature passes Tc the
system jumps from one solution to the other corresponding to a first order phase transition.

2.2.4 Constant Volume or J < 0

For the case of constant volume it is assumed, that it is possible to analytically extend the
method above with respect to J < 0. This is quite daring, but will yield the same results as
renormalization group techniques [6, 7]. The first step is again the graphical solution of Eq.

18



g(
y)

y

-2

-1

0

1

2

-2 -1 0 1 2

Figure 2.7: Graphical solution of Eq. (2.51) for J < 0 in arbitrary units. The blue lines are the
right hand side for different temperatures. The red curve is the left hand side g(y).

(2.51), as illustrated in Fig. 2.7. After the analytical continuation, the stability criterion will be
different, but since in any case there is only one solution anyway, this is of no concern. We will
therefore expect a second order phase transition. By expanding Eq. (2.51) up to leading order,
we find, that near the critical point

y∝ |r − rc|
1/(1−α) (2.53)

holds. This relation is the subject of Fisher’s hidden variable theory [3]. His analysis predicts
Fisher renormalized critical exponents

βF =
β

1−α
, (2.54)

νF =
ν

1−α
, (2.55)

γF =
γ

1−α
, (2.56)

αF =−
α

1−α
. (2.57)

The most distinct sign of Fisher renormalization is the change of sign of the specific heat expo-
nent α. This means, that the specific heat will no longer diverge at the critical point, but form a
cusp singularity. The existence of Fisher renormalized exponents has been confirmed by simula-
tion by A. Tröster [9]. In his work, he uses a similar effective Hamiltonian without microscopic
elastic fluctuations.
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2.3 Scaling Principles

Second order phase transitions are always connected with the divergence of a correlation length
ξ. In the case of the Ising model this is the spin-spin correlation length ξ. The divergence of ξ
is of course only possible in the thermodynamic limit N →∞. In a finite system however, the
correlation length is bounded by the linear system size L. As a consequence, critical divergences
are rounded and shifted over some region in temperature. As N →∞, the width of this region
smoothly converges to zero. The finite-size scaling method makes use of the fact, that the
smearing of the phase transition in finite systems occurs by well defined systematics. In the
following, critical exponents are motivated and a number of scaling relations are derived. Most
of the following derivations are taken from [14].

2.3.1 Critical Exponents

In simulation, the divergence of the correlation length corresponds to the growth of a cluster
with constant order parameter. A critical cluster has only two natural length scales: The micro-
scopic scale a (e.g. the lattice constant) and the linear box size L, which is the maximum cluster
size possible. Consider now a system in the infinite size limit, where the scales L and a play no
role. When there is no natural length scale, the sample must look the same, regardless of the
degree of magnification. This is a property of self-similarity and therefore leads to power law
behavior.

For two spins Si and S j at distance r and in the vicinity of the critical point, the correlation
function is denoted by G(r) =




SiS j

�

. If we scale the distance r by a factor λ > 1, the correlation
function scales as

G(λr) = φ(λ, r)G(r), (2.58)

where φ is the rescaling function. Of course φ(1, r) = 1. Since λ and φ are dimensionless, φ
cannot depend on r. If this were the case, there had to be another length scale ζ, such that
r/ζ would result in a dimensionless value. By definition of criticality, such a length scale cannot
exist, and therefore φ is independent of r. By repeated application of Eq. (2.58) one easily sees,
that

φ(λµ) = φ(λ)φ(µ). (2.59)

Taking the logarithmic derivative with respect to µ yields

λ
φ′(λµ)
φ(λµ)

=
φ′(µ)
φ(µ)

. (2.60)

Setting µ= 1 and using φ(1) = 1 gives us then

φ′(λ) = φ′(1)
φ(λ)
λ
∝
φ(λ)
λ

. (2.61)

This means, that the rescaling function φ must have the form of a power law. We then define
the critical exponent η by

φ(λ) = λ−(d−2+η), (2.62)
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where d is the spatial dimension of the system. By setting λ= a/r we find, that

G(r)∝ r−(d−2+η) (2.63)

at criticality.
Considering the reduced temperature

t = 1−
T
Tc

, (2.64)

similar arguments hold: Near the critical point, there should be no particular nonzero values of
t, that are characteristic of the system. This leads to the power-law relation for the correlation
length

ξ(t)∝ |t|−ν. (2.65)

Away from the critical point, the correlation function G should only depend on the ratio r/ξ.
We therefore write

G(r,ξ) = r−(d−2+η)G̃
�

r
ξ

�

, (2.66)

with G̃ → const. as r/ξ→ 0. This way, G̃ can be seen as a measure of the deviation from the
critical case given by Eq. (2.63). We use this as basis to derive the other critical exponents via
scaling laws.

Consider the magnetization m, which is defined by

m= L−d
∑

i

Si. (2.67)

The magnetic susceptibility χ is related to the magnetization m by the fluctuation relation

χ =
Ld

kBT

�


m2
�

− 〈m〉2
�

, (2.68)

where L is the linear size of the system. Alternatively, the susceptibility can be obtained by

χ∝
∫

ddr G(r,ξ). (2.69)

We can use the factorization of the correlation function Eq. (2.66), to solve the integral by
transforming to r/ξ:

χ∝
∫

ddr r−(d−2+η)G̃
�

r
ξ

�

∝
∫ ∞

0

dr r1−ηG̃
�

r
ξ

�

=ξ2−η
∫ ∞

0

dx x1−ηG̃(x).

(2.70)
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Near criticality, this gives us the scaling relation of the susceptibility

χ∝ ξ2−η∝ |t|−ν(2−η), (2.71)

with the critical exponent

γ= ν(2−η). (2.72)

This conveys, that the divergence in susceptibility at the critical point is generated from the
increasing range of spin-spin correlations.

Now consider two spins Si and S j at a distance r � ξ. The correlation between them is
approximately the same as the magnetic correlation of two spin subblocks of size ξd:

〈SiS j〉 ≈ 〈mI mJ〉, (2.73)

where

mI =
ad

ξd

∑

i∈I

Si. (2.74)

I denotes a set of spins within a region in space of the size of the correlation volume. If we scale
ξ→ λξ and r → λr such that ξ/λ remains constant, the correlation function scales as G →
λ−(d−2−η)G. For consistency reasons, the magnetization must rescale like mI → λ− (d−2+η)/2 mI .
This must not only hold for a correlation volume, but also for the system as a whole:

m(λξ) = λ− (d−2+η)/2 m(ξ). (2.75)

By setting λ= a/ξ , we obtain the scaling relation

m∝ ξ−(d−2+η)/2∝ |t|ν(d−2+η)/2 . (2.76)

This yields the critical exponent of magnetization

β = ν(d − 2+η)/2 . (2.77)

Eq. (2.77) is a hyperscaling relation, as are all relations involving the spacial dimension d. Hy-
perscaling relations are only valid at and below a critical upper dimension dc. For higher dimen-
sions, hyperscaling, and therefore the standard finite-size scaling apparatus, is not valid. In the
Ising model, as well as in φ4 theories in general, dc = 4.

For the derivation of the critical exponent of the specific heat, we argue that the free energy
of a correlation volume should be of order kBT :

F ∝
Ld

ξd
kBT (2.78)

This means, that for the free energy per volume

f = L−d F ∝ ξ−d ∝ |t|dν (2.79)

holds. Taking twice the derivative with respect to t gives the relation for the critical exponent
of heat capacity

α= 2− dν, (2.80)

a hyperscaling relation as well.
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2.3.2 Finite-Size Scaling

The idea of finite-size scaling strongly relies on the order parameter probability density function
P(m). The exact expectation value of the magnetization is always zero in finite systems, since P
is symmetric around m= 0 (See Fig. 2.8):

〈m〉=
∫

dm mP(m, T, L) = 0. (2.81)

This is another consequence of the fact, that phase transitions can only happen in the ther-
modynamic limit. Below Tc there are two equivalent ordered phases with the spontaneous
magnetizations m= ±msp(T ). In a system of finite-size, there are always states connecting both
ordered phases, allowing the system to go from one phase to the other. For increasing system
size L, the statistical weight of those connecting states becomes less until they vanish completely
in the thermodynamic limit. This means the system is then trapped in one of the two equivalent
ordered states. Well below Tc the two peaks centered around ±msp are described in good ap-
proximation by Gaussians. This is, because for ξ� L we can consider the system to be a large
sum of independent parts and apply the Central Limit Theorem [15]:

P(m) =
1
2

√

√ Ld

2πkBTχ ′

�

exp

�

−
Ld(m−msp)2

2kBTχ ′

�

+ exp

�

−
Ld(m+msp)2

2kBTχ ′

��

. (2.82)

Here we introduced the finite-lattice susceptibility2

χ ′ =
Ld

kBT

�


m2
�

− 〈|m|〉2
�

. (2.83)

For T � Tc, there is only one phase with m= 0 and the probability density is in good approxi-
mation a single Gaussian for analogous reasons. In Fig. 2.8 there are some example probability
density functions sampled from simulation at different temperatures.

For the scaling behavior of P(m,ξ, L) we can make some general assumptions. One considera-
tion is, that a dilation of the correlation length ξ→ λξ (from now on ξ is always the correlation
length of the corresponding infinite system) can be compensated by scaling the system size like
L → λL. After this transformation it should be equally likely to find a magnetization m in the
original system, as it is to find a magnetization λ−β/νm in the new system:

P(m,ξ, L)dm= P
�

λ−β/νm,λξ,λL
�

d
�

λ−β/νm
�

. (2.84)

With the choice λ= a/L this becomes

P(m,ξ, L) = L β/ν P̃
�

L β/νm,ξ/L
�

, (2.85)

2 The regular, infinite lattice susceptibility is defined as χ = Ld
�


m2
�

− 〈m〉2
�

/kBT . Since this is zero in finite
systems, we use the alternative definition with the symmetrized order parameter.
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Figure 2.8: Histograms of the magnetization m at L = 48, κ = 1, K = 3 and different tempera-
tures above and below Tc ≈ 7.01.
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where P̃ is a scaling function much like G̃ in Eq. (2.66). This can then be used to derive the
relation




|m|k
�

=

∫

dm |m|kP(m,ξ, L)

=L− kβ/ν µ̃k(ξ/L )

=L− kβ/ν µ̃k

�

L 1/ν t
�

(2.86)

for the scaling behavior of the magnetic moments. From this follows for the susceptibility:

χ ′ =L d−2β/ν χ̃ ′
�

L 1/ν t
�

=L γ/ν χ̃ ′
�

L 1/ν t
�

.
(2.87)

In the same way, a relation for the specific heat

C = L−d(kBT )−2
�


E2
�

− 〈|E|〉2
�

, (2.88)

can be obtained. By examining the probability density function of the energy we find, that

C = L α/ν C̃
�

L 1/ν t
�

. (2.89)

In addition to the rounding of critical divergences, finite-size effects include a shift in critical
temperature. For the estimation of the size dependent critical temperature the point of steepest
descent of the magnetic moments or the point of maximum susceptibility/specific heat can be
used. In fact, the distance from the actual critical temperature scales as

Tc(L)− Tc∝ L−1/ν . (2.90)
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2.4 Multi Histogram Reweighting

With the multi histogram reweighting method, the information of one or more simulations at
given temperatures can be combined in order to compute observables on a continuous range of
temperatures (see Fig. 2.9). This is a great way to extract the maximum amount of information

χ

T

reweighted
simultated
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20

25
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6.7 6.8 6.9 7 7.1 7.2

Figure 2.9: Reweighting of the magnetic susceptibilityχ . The susceptibility diverges at the critical
point in the thermodynamic limit. Here, however, the divergence is rounded off due
to finite-size effects.

possible from given Monte-Carlo simulations. The method was popularized by Ferrenberg and
Swendsen in the late 1980s [16, 17] although the idea itself is much older.

Consider n simulations at inverse temperature βi and number of Monte-Carlo steps Ni. The
true probability density function of energy E and magnetization m in each system is given by

Pi(m, E) = D(m, E)exp(−βi E + fi), (2.91)

where the density of states D(m, E) is independent of β . The fi are the dimensionless free
energies and related to the partition function Zβi

by

fi = βi Fi = − log
�

Zβi

�

. (2.92)

If we have histograms Hi(m, E) with H ∈ N and m, E discrete, we can approximate the true
distribution by

Pi(m, E)≈
Hi(m, E)

Ni
. (2.93)

The simulations will give us estimates of D(m, E) = Pi(m, E)exp(βi E − fi) at different ranges of
E since they were performed at different β . We estimate the density of states by performing a
weighted average over the individual simulations:

D(m, E)≈
n
∑

i=1

wi(m, E)
Hi(m, E)

Ni
exp(βi E − fi), (2.94)
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where the weights wi must satisfy

n
∑

i=1

wi(m, E) = 1 (2.95)

for all E and m. The exact weights are then obtained by minimizing the error σ2(D(m, E)). For
long enough simulations and narrow enough bin widths, it is reasonable to assume, that the
values Hi(m, E) of the histograms are Poisson distributed around their real value H̄i(m, E). The
error of Hi(m, E) is therefore given by

σ2(Hi(m, E)) = giH̄i(m, E)≈ giNi D(m, E)exp(−βi E + fi), (2.96)

where gi = (1 + 2τi) and τi the autocorrelation time of run i. Accordingly, the error in D(E)
can be written as

σ2(D(m, E)) =
n
∑

i=1

w2
i (m, E)

σ2(Hi(m, E))
N2

i

exp(2(βi E − fi))

≈
n
∑

i=1

w2
i (m, E)

gi

Ni
D(m, E)exp(βi E − fi).

(2.97)

In order to minimize σ2(D(m, E)) with respect to the wi, we can use Lagrange multipliers λ and
solve

∇w,λ

 

σ2(D(m, E))−λ

 

n
∑

j=1

w j(m, E)− 1

!!

= 0. (2.98)

This yields

wi(m, E) =
λ

2
Ni

gi D(m, E)
exp(−βi E + fi), (2.99)

λ=
2

∑

j
N j

g j D(m,E) exp
�

−β j E + f j

�

. (2.100)

Combining the above equations gives us for the weights

wi(m, E) =
Ni exp(−βi E + fi)/gi

∑

j N j exp
�

−β j E + f j

�

/g j

. (2.101)

With this, the density of states can be written as:

D(m, E) =

∑n
i=1 Hi(m, E)/gi

∑n
j=1 N j exp

�

−β j E + f j

�

/g j

. (2.102)
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The free energies fi are at this point undetermined. By using Eq. (2.91) with
∑

m,E Pi(m, E) =
1 we find, that

fi =− log

�

∑

m,E

D(m, E)exp(−βi E)

�

=− log

�

∑

m,E

∑n
k=1 Hk(m, E)/gk

∑n
j=1 N j exp

�

(βi − β j)E + f j

�

/g j

�

,

(2.103)

which can be solved iteratively. One can usually start by setting fi = 0 for all i and get a better
approximation by evaluating Eq. (2.103). This is then repeated with the new values, until the
desired precision is reached. Note, that the fi are only determined up to an additive constant3,
as we can see from Eq. (2.103). Knowing the fi, the expectation value of an observable O at
reweighted β can computed by

〈O〉β =

∑

m,E O(m, E)D(m, E)exp(−βE)
∑

m,E D(m, E)exp(−βE)
. (2.104)

If the βi are within a narrow interval, the correlation time can be considered to be approximately
constant and the gi thus cancel out in Eq. (2.103).

Reweighting to arbitrary temperature could only be done, if the histograms had infinite preci-
sion (in fact, in this case only one histogram would suffice). If we move away from the simulated
temperatures, the tails of the histograms become increasingly important and the statistics there-
fore worse. As a rule of thumb, the histograms should not lie apart much further than one
standard deviation.

Numerical Considerations
Since the exponential terms can quickly become quite big, some numerical precautions must

be taken. For example, one should only compute the logarithmic quantities if possible. Consider
the sum

S =
N
∑

i=1

eai . (2.105)

For large ai, the individual terms may very quickly exceed the maximum size of a double vari-
able. With â =maxi ai, we can rewrite the sum as

S = eâ
N
∑

i=1

eai−â. (2.106)

The worst-case scenario is now merely, that some of the summands become zero. Taking the
logarithm gives us now

log(S) = â+ log

�

N
∑

i=1

eai−â

�

. (2.107)

3 Usually, one just sets f0 = 0 and determines the remaining free energies accordingly.
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It is always a good idea to sort the ai in ascending order beforehand. This way the small terms
will be summed up first avoiding rounding errors. Under this requirement we can now write

log(S) = â+ log

�

1+
N−1
∑

i=1

eai−â

�

. (2.108)

There usually exist special functions to compute log(1+ x) for small x with better performance
and precision as compared to the standard logarithm. This so called log-sum-exp method can
easily be automated with a function. In C we can for example define:

double logsumexp(double *exponents, int length)

{

int i;

double delta;

long double q = 0.;

/* sort array in ascending order */

qsort(exponents, length, sizeof(double), compare);

for(i = 0; i < length - 1; ++i)

{

delta = exponents[i] - exponents[length - 1];

q += expl(delta);

}

return exponents[length - 1] + log1pl(q);

}
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2.5 Error Analysis

Monte Carlo simulations with algorithms like the Metropolis or Swendsen-Wang algorithm can
be represented by Markov Chains and therefore produce correlated data. Averages obtained
from such simulations are random variables for which Gaussian error analysis (which assumes
independency) does not apply. Therefore, special tools are necessary in order to obtain correct
estimates for their standard deviation. One popular tool for this purpose is the so called blocking
method, as described by Flyvberg and Petersen in [18]. Consider a simulation with a length of
n steps and measurements x i, i = 1, . . . , n. By the blocking transformation, the size of the data
set is halved by combining two consecutive measurements to one block:

x ′i =
1
2
(x i + x i+1), (2.109)

n′ =
n
2

. (2.110)

It is immediately clear, that the mean value x̄ is conserved under this transformation:

x̄ ′ = x̄ . (2.111)

As estimator for the standard deviation we use the function

c(x) =
1

n(n− 1)

n
∑

i=1

(x i − x̄)2. (2.112)

By repeated application of the blocking transformation, the block size increases and eventu-
ally exceeds the correlation time τ. The estimator c then approaches the real value σ2 of the
variance, resulting in a plateau as it is shown in Fig. 2.10.
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Figure 2.10: Error analysis for the internal energy u. From the plot we can estimate, that
σ2(u)≈ 8 · 10−4.
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At this point the blocked measurements x ′i can be considered independent and even a standard
deviation of the estimate c can be estimated:

σ( x̄)≈

√

√

√

√

1
n′(n′ − 1)

n′
∑

i=1

�

x ′i − x̄
�2
�

1±
1

p

2(n′ − 1)

�

. (2.113)

If a plateau of c(x ′) is not reached for n′ = 2 the simulation is too short (even shorter than the
correlation time).
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2.6 Swendsen-Wang Algorithm

For a local update algorithm, like the Metropolis algorithm, the order parameter correlation
time will behave like τ∝ ξz, where z ≈ 2 is called the dynamic critical exponent [19]. Since in
finite systems the correlation length is limited by L, we have

τ∝ Lz (2.114)

near criticality. This means, that changes propagate diffusely. As a consequence, the CPU time
needed to create an independent configuration scales as Lz+d . Below Tc, the phases separate
and the correlation time even scales exponentially with

τ∝ exp
�

∆F
kBT

�

, (2.115)

where ∆F ∝ Ld−1 is the interfacial free energy between the separate phases [14]. Hence it is
very costly in terms of computation time, to obtain adequate statistics for large systems with
local update algorithms.

In order to overcome these limitations, we can use non-local cluster algorithms like the
Swendsen-Wang (SW) algorithm, as it is described for the q-state Potts model in [20, 21]. It
was found, that with the SW algorithm the correlation time only scales as [22]

τ∝ log(L). (2.116)

In the following we will show, that the SW algorithm is not only valid for the regular Ising
model, which is equivalent to the q = 2 Potts model, but also for the model used in the present
work.

The Hamiltonian of the simulated system has the general form

H =
∑

〈i j〉

�

V (ri j)− J(ri j)SiS j

�

, (2.117)

where V denotes an arbitrary potential depending only on ri j. This means, that the probability
density of a configuration ({S}, {r}) is given by

P({S}, {r}) =
1
Z

exp(−βH )

=
1
Z

exp

 

−β
∑

〈i j〉

�

V (ri j)− J(ri j)SiS j

�

!

=
1
Z

∏

〈i j〉

e−v (ri j)eK(ri j)SiS j ,

(2.118)

where β = 1/kBT , Z is the partition function, K(ri j) = βJ(ri j) and v (ri j) = βV (ri j). For the
second factor in the product we can differentiate the cases

exp
�

K(ri j)SiS j

�

=

�

eK(ri j) : Si = S j

e−K(ri j) : Si 6= S j
. (2.119)
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Considering this, we can rewrite the probability density using Kronecker deltas:

P({S}, {r}) =
1
Z

∏

〈i j〉

e−v (ri j)
�

δSiS j
eK(ri j) +

�

1−δSiS j

�

e−K(ri j)
�

=
1
Z

∏

〈i j〉

e−v (ri j)+K(ri j)
�

e−2K(ri j) +
�

1− e−2K(ri j)
�

δSiS j

�

.
(2.120)

With the choice

pi j = 1− e−2K(ri j) (2.121)

this becomes

P({S}, {r}) =
1
Z

∏

〈i j〉

e−v (ri j)+K(ri j)
∏

〈i j〉

�

(1− pi j) + pi jδSiS j

�

=
1

Z ′({r})

∏

〈i j〉

�

(1− pi j) + pi jδSiS j

�

.
(2.122)

In the last step, a purely r-dependent factor has been absorbed in the partition function. This
is possible, since spin and space configuration are updated independently and the configuration
{r} is constant throughout one SW step. At this point, the probability density has a very similar
form as for the standard Ising model.

A SW Monte Carlo move can be divided into two steps:

1. We start with a spin configuration. Neighboring spins Si, S j are connected by a bond with
probability pi j, if they are equal. The spin configuration is thereby transformed to a cluster
configuration. A cluster can consist of multiple spins interconnected by bonds or it can be
a single spin.

2. Each cluster is assigned a new spin value with probability 1/2. The cluster configuration
is then transformed back to a spin configuration.

In order to form the cluster configuration, neighboring spins Si, S j are connected with proba-
bility pi j, if they are equal and with probability 0, if they are different. If two spins Si, S j are
connected by a bond, we will denote that by bi j = 1, otherwise by bi j = 0. The conditional
probability for a bond bi j given a spin configuration {S} is thus given by

P(ni j|{S}) =
�

(1− pi j)δbi j0 + pi jδbi j1

�

δSiS j
+ (1−δSiS j

)δbi j0. (2.123)

Since all bonds can be treated as independent of each other, this can be extended to the whole
configuration {b}, by taking the product

P({b}|{S}) =
∏

〈i j〉

P(bi j|{S})

=
∏

〈i j〉

�

δbi j0(1− pi jδSiS j
) + pi jδbi j1δSiS j

�

.
(2.124)
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By applying Bayes’ theorem, we find for the distribution of bonds, that

P({b}) =
∑

{S}

P({b}, {S}) =
∑

{S}

P({b}|{S})P({S})

=
1

Z ′({r})

∑

{S}

∏

〈i j〉

��

δbi j0(1− pi jδSiS j
) + pi jδbi j1δSiS j

��

(1− pi j) + pi jδSiS j

��

=
1

Z ′({r})

∑

{S}

∏

〈i j〉

�

(1− pi j)δbi j0 + pi jδbi j1δSiS j

�

=
1

Z ′({r})

∑

{S}





∏

〈i j〉,bi j=1

pi jδSiS j

∏

〈i j〉,bi j=0

(1− pi j)



.

(2.125)

The sum can be evaluated by splitting it up into sums over individual clusters. The Kronecker
delta δSiS j

ensures, that within one cluster all spins are equal. Since for every cluster there are
two possible spin orientations, this leads to a factor 2nc, if there are nc clusters in the system:

P({b}) =
2nc

Z ′({r})





∏

〈i j〉,bi j=1

pi j

∏

〈i j〉,bi j=0

(1− pi j)



. (2.126)

From Eq. (2.125) we see, that

P({b}, {S}) =
1

Z ′({r})





∏

〈i j〉,bi j=1

pi jδSiS j

∏

〈i j〉,bi j=0

(1− pi j)



 (2.127)

and therefore

P({S}|{b}) =
P({S}, {b})

P({b})
= 2−nc

∏

〈i j〉,bi j=1

δSiS j
, (2.128)

where the product of Kronecker deltas again ensures consistency. This can be interpreted as the
second step, where all clusters are assigned a random spin with probability 1/2.

We can use the above findings to verify, that the described algorithm satisfies the detailed
balance condition and thus is a valid simulation method. For this purpose, we take the master
equation

Q({S′}, t + 1) =
∑

{b}

P({S′}|{b})
∑

{S}

P({b}|{S})Q({S}, t). (2.129)

By using Q({S}, t) = P({S}) as input, which is Boltzmann distributed by definition, we find that

Q({S′}, t + 1) = P({S′}). (2.130)

This shows, that the Boltzmann distribution is stationary with respect to the Markov chain and
detailed balance is indeed satisfied.
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Hoshen-Kopelman algorithm
During the simulation, we need to assign to each particle the label of the cluster to which they

belong. In practice, the recursive labeling of the clusters is rather costly in terms of computing
time. A much more efficient way of cluster labeling offers the Hoshen-Kopelman algorithm [23],
which is a special case of the union-find algorithm.

The basic idea is as follows: For every particle i, there is a particle label πi, denoting the
number of the cluster to which a particle belongs. Additionally, there is a list of cluster labels γ j.
A positive value of γ j represents the number of particles in the cluster with index j, i.e. cluster j
consists of γ j particles. A negative value −k, k > 0 of γ j indicates, that cluster j is actually part
of another cluster with index k.

We start by setting πi = i and γi = 1 for all i and then scan the lattice systematically. For each
particle, the spins of half the next neighbors are checked and a bond is formed with probability
p, if they are equal. If for the current particle no bonds are formed, the particle remains in its
current one-particle cluster. Otherwise, if there are one or more bonds formed, the particle will
be attached to the cluster with the lowest index. All other clusters will then be set to link to that
cluster transferring their particle numbers. This way, if two clusters j and k become connected
by a bond, one only has to set γ j = γ j + γk and γk = − j, instead of relabeling the whole cluster
in a second scan of the lattice.

Furthermore, the cluster sizes themselves carry some information. For example the suscepti-
bility χ can be computed by the second moment of the cluster size distribution [24].
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2.7 Implementation

In this section, the implementation of the model is discussed. The simulated model differs
from the effective Hamiltonian derived in Sec. 2.2 by the fact, that the microscopic elastic de-
grees of freedom are explicitly taken into account. In theory they can be eliminated under the
assumption, that a linear theory of elasticity is adequate.

First of all it should be noted, that the simple cubic lattice is no good choice for the simulation,
because it is not shear-stable. The lattice could be sheared to zero volume without any cost of
energy. For shear stability to be given, the coordination number Z must exceed twice the spacial
dimension d. This is a special case of Maxwell’s rule [25]. One lattice satisfying this rule is the
face-centered cubic (fcc) lattice, where Z = 12 (see Fig. 2.11). Also the fcc lattice has cubic

a
a

a

Figure 2.11: Illustration of the face-centered cubic lattice.

symmetry and hence is a good candidate for the implementation of the present model. We chose
the lattice constant to be a =

p
2 so that the next neighbor distance is unity. We can then express

the physical length of the box L̃ as

L̃ =
L
p

2
, (2.131)

where the counting length L is a simulation parameter and must be an even integer. The number
of particles N in a box of size L is then given by

N =
L3

2
. (2.132)

This is, because there are four particles per unit cell and (L/2)3 cells in total.
In contrast to the effective Hamiltonian described in section 2.2, a more elementary Hamilto-

nian is used for the actual simulation. Here the elastic degrees of freedom are explicitly included
with a harmonic potential

Uel({r}) =
K
2

∑

〈i j〉

(ri j − l0)
2, (2.133)
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where K is the spring constant, ri j =
�

�ri − r j

�

� and l0 is the elastic equilibrium distance. The
magnetic energy is similar to that of the rigid Ising model:

Umag({S}) = −
∑

〈i j〉

J(ri j)SiS j. (2.134)

Here a distance dependent coupling constant J(ri j) has been introduced. It is reasonable to
assume, that the magnetic interaction decreases, as the spins move apart. One natural choice to
model this behavior is an exponential decay

J(ri j) = J0 exp
�

−κ(ri j − l0)
�

, (2.135)

with decay constant κ and a coupling strength J0 > 0 for ferromagnetic behavior. We choose
our unit system such that l0 = J0 = kB = 1. With this, the simulated Hamiltonian is given by

H ({r}, {S}) =
K
2

∑

〈i j〉

(ri j − 1)2 −
∑

〈i j〉

exp
�

−κ(ri j − 1)
�

SiS j. (2.136)

The quantities of interest are the magnetization per particle

m=
1
N

N
∑

i=1

Si (2.137)

and the internal energy per particle

u=
1
N
H ({r}, {S}). (2.138)

At the beginning of this work, an initial program was supplied by B. Dünweg. The program
relies on the Metropolis algorithm in order to update the magnetic as well as the elastic degrees
of freedom in one composite step.

In each step, the lattice is scanned particle by particle. The spin of each particle is flipped with
probability 1/2. Furthermore, each of the particles coordinates ri are shifted by a random value
−δ ≤∆r j ≤ δ, j = 1, . . . , d. The parameter δ is called maximum trial move and is a parameter
of the simulation. In order to decide, whether the manipulation is accepted, the energy differ-
ence ∆Ei = Ei(t +1)− Ei(t), i = 1, . . . , N is computed for each particle. If ∆Ei ≤ 0, the move is
accepted. Otherwise, the move will only be accepted with probability exp(−∆Ei/(kBT )). This
can easily be realized by generating a random number 0 ≤ ρ ≤ 1 and only accepting the move
if ρ < exp(−∆Ei/(kBT )).

For a more detailed description of the Metropolis algorithm see e.g. [26]. One limitation of
the Metropolis algorithm is the slow spin dynamic, especially near and below the critical point.
This problem was avoided in this work by using the Swendsen-Wang cluster algorithm, which
is described in detail in Sec. 2.6. For this purpose, magnetic and elastic degrees of freedom are
updated independently.
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Estimation of the optimal trial move
The value of the maximum trial move must be chosen reasonably in order to obtain a good

acceptance rate, which is neither too high nor too low4. For this purpose we will roughly
estimate the mean amplitude of the elastic fluctuations.

Consider a single particle in an elastic potential generated by Z nearest neighbors fixed in a
lattice with cubic symmetry. For this purpose, we take the magnetic interaction to be constant.
For a centered particle let ni, i = 1, . . .Z , |ni|= l for all i, be the vectors pointing to the nearest
neighbors. In case of cubic lattice symmetry, for each i there is exactly one j 6= i s.t.

ni + n j = 0. (2.139)

The elastic potential is given by

Uel(r) =
K
2

Z
∑

i=1

(r− ni)
2

=
K
2

�

Z r2 +Z l2 − 2r

� Z
∑

i=1

ni

��

=
ZK
2
(r2 + l2).

(2.140)

The probability density of finding the particle at particular r can thus be written as

P(r)∝exp(−βUel(r))

∝exp
�

−ZβKr2/2
�

.
(2.141)

The mean amplitude of the elastic fluctuations is then found by integrating

Æ

〈r2〉=

�∫

d3r r2 exp
�

−ZβKr2/2
�

∫

d3rexp(−ZβKr2/2)

�1/2

=

 
∫∞
−∞ dr r4 exp

�

−ZβKr2/2
�

∫∞
−∞ dr r2 exp(−ZβKr2/2)

!1/2

=

√

√ 3
ZβK

,

(2.142)

which gives us a rough estimate for the optimal trial move to use in the simulation5.

4 A reasonable acceptance rate is around 0.5. This means that on average every second move is accepted.
5 The same result can be obtained by adding a constant to the right hand side of Eq. (2.140) such that Uel(0) = 0,

and solving Uel(r) = 3kBT/2 for r.
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3 Evaluation

In this chapter, the results of the simulations are presented. The model as described in Sec. 2.7
has been simulated with periodic boundary conditions (i.e. constant volume) at several different
linear system sizes L and temperatures T .

In Section 3.1, the simulation setup is described. The equilibration process is discussed and
some basic dynamics are illustrated by using the example of correlation functions.

In Section 3.2, the parameters κ = 1 and K = 3 were used. We will from here on refer to this
as parameter set one. The observables of interest have been reweighted with the multi histogram
method described in Sec. 2.4. Then, the finite-size scaling methods as outlined in Sec. 2.3 were
applied in order to determine the critical exponents of the system.

In Section 3.3, the magneto-elastic coupling was emphasized by setting κ = 3 and K = 1
(henceforth referred to as parameter set two). The basic structural properties of the ground
state are discussed. Also some basic observations of the magnetic properties for T > 0 are
made.

Finally, the work is summarized and an outlook on possible future work is given.
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3.1 Basic Characteristics of the System

At the very beginning of the simulation, the fcc-lattice is set up. Coordinates and a set of next
neighbors are assigned to every particle. This set of neighbors remains the same throughout the
simulation. Since each particle only interacts with its next neighbors, this means that for high
temperatures, the interaction partners of a particle must not necessarily be the particles which
are physically closest.

In the next step, the lattice is scaled such that the total energy of the system at T = 0 is
minimal. In this case we can set all spins Si = 1 and need to minimize the bond energy

ubond(r) =
K
2
(r − 1)2 − exp(−κ(r − 1)). (3.1)

This, however, is only practical for K > κexp(κ), since otherwise the magnetic interactions
exceed the elastic ones and ubond is minimal for r = 0 (See Fig. 3.1). While a configuration

u b
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d
(r
)

r

K > κexp(κ)
K = κexp(κ)
K < κexp(κ)
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Figure 3.1: Bond potential Eq. (3.1) for different parameters κ and K .

where ri j = 0 for all i, j, can certainly be the ground state for a system with free boundary
conditions, this cannot be true for periodic boundary conditions. In this case, a state where all
particles are centered in one point would imply strongly overstretched elastic bonds (For more
details concerning the ground state see Sec. 3.3.). For this reason, the lattice will be set up such
that r = 1 for all bonds in the case K ≤ κexp(κ), minimizing only the elastic energy, not the
magnetic.

The two most important quantities being evaluated during the simulation are the internal
energy per particle

u=
H
N
=

1
N

∑

〈i j〉

�

K
2
(r

i j
− 1)2 − SiS j exp

�

−κ(ri j − 1)
�

�

(3.2)

and the magnetization

m= 〈S〉=
1
N

∑

i

Si. (3.3)
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At finite temperature, the initial configuration has to adapt to the fluctuations of the spins and
it takes a number of Monte Carlo steps until the system reaches equilibrium, as can be seen in
Fig. 3.2. There is a steep rise in internal energy (transient) in the first few steps corresponding

u

t

Swendsen-Wang
Metropolis
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0

2
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0 50 100 150 200

Figure 3.2: Time series of the internal energy u for L = 10, T = 6.7, κ = 1 and K = 3. The sys-
tem needs about 50 steps to reach equilibrium. With the Swendsen-Wang algorithm
equilibration is slightly faster than with the Metropolis algorithm.

to the heating of the system. Because of the faster spin dynamics, the Swendsen-Wang algorithm
is able to equilibrate the system quite a bit faster. While for small system sizes and moderate
temperatures the equilibration time might be rather short, this effect amplifies rapidly with
increasing size and decreasing temperature. Equilibration time can reach several thousand
steps for big systems. The corresponding points must of course be omitted, when evaluating the
time series.

The effect also becomes apparent when considering the correlation function (see Fig. 3.3).
For this purpose, we will use a biased estimator for the correlation function [18]

ct(x) =
1

N − t

N−1
∑

i=1

(x i − x̄)(x i+t − x̄), (3.4)

which will be sufficient to see the qualitative behavior. From Fig. 3.3b it is apparent, that
the Swendsen-Wang algorithm has a considerably smaller correlation time than the Metropolis
algorithm. The reason for this is the faster spin dynamics of the Swendsen-Wang algorithm,
which can be seen from Fig. 3.3a. While for the Metropolis algorithm the correlation function
of the spin drops down continuously, the correlation function of the Swendsen-Wang algorithm
instantly drops below the limit of precision. This in turn allows for the internal energy to relax
faster (Fig. 3.3b).

In order to improve the performance of the simulation even further, one should focus on the
elastic dynamics next. This could be improved by considering algorithms like the Fourier Monte
Carlo algorithm [27, 28] or Multigrid Monte Carlo methods [29, 30].
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(a) Correlation function of the magnetization.
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(b) Correlation function of the internal energy.

Figure 3.3: Correlation functions for L = 100, T = 7.14, κ= 1 and K = 3. Comparison between
Swendsen-Wang and Metropolis algorithm.
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3.2 Determination of the Critical Exponents

For the determination of the critical exponents, finite-size scaling methods as outlined in Sec. 2.3
have been used in the spirit of Ferrenberg and Landau in [31]. The simulated systems with their
respective parameters are listed in Tab. 3.1. Since periodic boundary conditions (2.42) were
applied, we would expect a second order phase transition with Fisher renormalized exponents
from the theory in Sec. 2.2.

The first step was to determine the critical exponent of the correlation length ν. For this, the
scaling behavior with the linear system size L of the maximum slopes

∂ log(〈|m|n〉)
∂ B

�

�

�

�

max
∝ L1/ν, (3.5)

has been utilized. Here we define B = 1/kBT , in order to avoid confusion with the critical
exponent β . The Binder cumulant U [32] is defined by the ratio of moments

U = 1−
〈m4〉

3〈m2〉2
. (3.6)

Its maximum derivative exhibits the same scaling behavior as the maximum logarithmic deriva-
tive of the magnetic moments:

∂ U
∂ B

�

�

�

�

max
∝ L1/ν. (3.7)

The above derivatives can be computed with the formula

∂ 〈O〉
∂ B

= 〈O〉 〈E〉 − 〈OE〉 , (3.8)

which is easily obtained by taking the derivative of the Boltzmann mean value

〈O〉=

∫

dΓ O(Γ )exp(−BE(Γ ))
∫

dΓ exp(−BE(Γ ))
. (3.9)

For the derivative of the cumulant this gives us then

∂ U
∂ B
=

1
3




m4
�

〈m2〉2

�

〈E〉+ 2




m4E
�

〈m4〉
−




m2E
�

〈m2〉

�

. (3.10)

The locations of the maximal slopes were determined by reweighting the above derivatives at
different temperatures. For this purpose a temperature interval∆T = Tmax−T0 was divided into
n subintervals. The derivatives were then reweighted at temperatures Ti = T0 + i∆T/(n− 1),
i = 0, . . . , n− 1. This produced some point T j, at which the derivative is maximal. The same
procedure was then repeated iteratively with T ′0 = T j−1 and T ′max = T j+1 until the location of
the peak was found with satisfactory precision. For this to work, one has to make sure, that
sufficient data is available within the reweighting interval. Otherwise there might be more
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L κ K T tmax/105 δ

12 1 3 6.80 11 0.433
1 3 6.85 11 0.435
1 3 6.90 11 0.437
1 3 6.95 11 0.439
1 3 7.00 11 0.440
1 3 7.04 11 0.441
1 3 7.10 11 0.443
1 3 7.14 11 0.444
1 3 7.20 11 0.447

18 1 3 6.80 11 0.433
1 3 6.85 11 0.435
1 3 6.90 11 0.437
1 3 6.95 11 0.439
1 3 7.00 11 0.440
1 3 7.04 11 0.441
1 3 7.10 11 0.443
1 3 7.14 11 0.444
1 3 7.20 11 0.447

L κ K T tmax/105 δ

26 1 3 6.80 11 0.433
1 3 6.85 11 0.435
1 3 6.90 11 0.437
1 3 6.95 11 0.439
1 3 7.00 11 0.440
1 3 7.04 11 0.441
1 3 7.10 11 0.443
1 3 7.14 11 0.444
1 3 7.20 11 0.447

38 1 3 6.80 11 0.433
1 3 6.85 11 0.435
1 3 6.90 11 0.437
1 3 6.95 11 0.439
1 3 7.00 11 0.440
1 3 7.04 11 0.441
1 3 7.10 11 0.443
1 3 7.14 11 0.444
1 3 7.20 11 0.447

58 1 3 6.95 11 0.439
1 3 7.00 11 0.440
1 3 7.05 11 0.441
1 3 7.10 11 0.443

86 1 3 6.95 11 0.439
1 3 7.00 11 0.440
1 3 7.05 11 0.441
1 3 7.14 11 0.444

Table 3.1: Simulation parameters: L is the counting length, κ is the constant of magnetic in-
teraction, K is the spring constant, T is the temperature, n is the number of Monte
Carlo steps and δ is the maximum trial move. All simulations have been performed
with periodic boundary conditions and the ratio of elastic (Metropolis) to magnetic
(Swendsen-Wang) updates is 1:1. Before simulation, the lattice is scaled so that Eq. 3.1
is minimal. This results in a next neighbor distance in the undisturbed lattice of about
0.3809.
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Figure 3.4: Double logarithmic plot of the maximum logarithmic slope of different magnetic mo-
ments mn as well as the maximum slope of the Binder cumulant U vs. the linear
system size L.

than one peak due to statistical errors. Alternatively, one could reweight the data in a suitable
temperature interval and determine the peaks by fitting a parabola.

A double-logarithmic plot of Eq. (3.5) and (3.7) vs. L should produce straight lines with slope
1/ν . This was done in Fig. 3.4, yielding an exponent of

ν= 0.62210(58).

Note, that the error values in this section are merely the asymptotic standard errors from the
fitting procedure, and not the real statistical errors. The real errors are expected to be slightly
bigger.

The value above of ν was then used to determine the critical temperature Tc. As we know
from Sec. 2.3, in finite systems

Tc(L)− Tc∝ L−1/ν (3.11)

holds. This means, that Tc(L) converges to the real critical temperature as L → ∞. The
temperatures, at which the slopes of log (|mn|) and U are steepest were taken as estimators for
Tc(L). Also the temperatures, at which the specific heat C as defined in Eq. (2.88) and the
susceptibility χ are maximal were used. From here on the symbol χ will always denote the
finite lattice susceptibility as defined in Eq. (2.83).

A plot of Eq. (2.90) vs. L1/ν results in straight lines, that can be extrapolated to L → ∞.
This is shown in Fig. 3.5. The value obtained from C was not taken into account, since the
peak of C is at much lower temperature as the actually simulated temperatures for almost all
sizes. The reweighting is therefore expected to produce significant systematic errors. The linear
extrapolation to L−1/ν yielded a critical temperature of

Tc = 7.00850(41).
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Figure 3.5: Plot of size dependent critical temperature Tc obtained from different variables.
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In Sec. 2.3, the scaling behavior of |m|, χ and C was derived:

|m| ∝L−β/ν, (3.12)

χ∝Lγ/ν, (3.13)

C ∝Lα/ν. (3.14)

These above relations were used to determine the exponents α, β and γ. The observables were
reweighted at the critical temperature determined earlier. The respective exponents were then
taken from the slopes of a double logarithmic plot (see Fig. 3.6), yielding

β =0.2876(90),
γ=1.2499(26),
α=0.1824(55).

Since the value of α was obtained from the scaling of C , it is most likely afflicted with a
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Figure 3.6: Scaling behavior of |m|, χ and C with L at criticality in a double logarithmic plot. The
exponents β , γ and α were determined by the slopes.

significant error for the same reasons mentioned above.
In Table 3.2 the values of the critical exponents of the present are compared to the exponents

of the standard Ising models and their Fisher renormalized value. It is clear, that despite the
theoretical considerations in Sec. 2.2 there is no evidence for Fisher renormalization with the
given parameters. In fact, the exponents found, are closer to the exponents of the regular Ising
model, as they are to their Fisher renormalized counterparts. If we insert the exponents in the
hyperscaling relation Eq. (2.80), we find that

α+ dν= 2.0487(58), (3.15)

which deviates from the expected value of 2 by 3%.
It remains to identify the reasons, for which the theory described in Sec. 2.2 fails in the

current case. One possibility is, that the simulation parameters κ and K were chosen in a way,
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exponent Ising F-renormalized present work

ν 0.6289(8) 0.7066(37) 0.62210(58)
α 0.1100(45) −0.1236(51) 0.1824(55)
β 0.3258(44) 0.3661(52) 0.2876(90)
γ 1.2390(71) 1.392(11) 1.2499(26)

Table 3.2: Critical exponents of the standard Ising model, their Fisher-renormalized value and
the values found in the present work. The Ising values of β ,ν and γ here determined
by finite-size scaling analysis in [31]. The specific heat exponent αwas computed with
renormalization group theory methods in [33].
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Figure 3.7: Plot of the histograms P(J) for different parameter sets (κ, K) at temperature T =
7.00.

that results in negligible coupling between the elastic and magnetic degrees of freedom. For a
reasonable coupling strength, one would expect the standard deviation of the probability density
P(J) to be of the order kBT for T ≈ Tc. A plot of P(J) for different parameters can be seen in
Fig. 3.7. Since kB = 1 in our unit system, we would need the width of P(J) to be approximately
seven. For our initial parameter set (κ= 1, K = 3), the width is about two, which might not be
enough.

In order to strengthen the coupling, we can soften the springs by decreasing K and amplify
the decay of magnetic interaction by increasing κ. For κ = 3 and K = 1, the distribution
is already much broader1 and might be a more promising choice for seeing the influences of
elastic coupling. In the next section we will continue by examining the ground state for the
second set of parameters.

1 Although T = 7.00 must not necessarily be near Tc for this set of parameters.
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3.3 Properties of the Ground State

In the following, the structural properties of the ground state will be discussed. By ground state
we mean the state of lowest energy. This means, that we can assume that T = 0 and Si = 1 for
all i.

Here we consider the special case, where K < κexp(κ), namely κ= 3 and K = 1. This means,
that the bond potential

ubond(r) =
K
2
(r − 1)2 − exp(−κ(r − 1)) (3.16)

has its minimum at r = 0 (see Fig. 3.1). As a consequence, all particles want to contract into
one point. This however, is prevented by the periodic boundary conditions. If all particles were
located in one single point, there would be some strongly overstretched elastic bonds, reaching
all the way over to a periodic image of the box.

The energy of such a state can be computed by counting the fraction of bonds, that are ex-
tending to a periodic image (periodic bonds), and the number of bonds lying entirely within the
box (volume bonds). For the fcc lattice there are

nbonds =
Z
2

N = 3L3 (3.17)

bonds in total (Z = 12 denoting the number of next neighbors in the fcc lattice). A number
of 6L(L − 1) bonds are connected to a neighbor in an adjacent box, that shares a face with the
simulation box. This means, that the periodic box is displaced by L̃ in exactly one of the three
spacial directions relative to the simulation box ( L̃ = L/

p
2 denoting the physical box length

as defined in Sec. 2.7). Furthermore, there are 3L periodic bonds, where the corresponding
periodic box is displaced by L̃ in two spacial directions, meaning, that the origins of both boxes
are
p

2 L̃ apart from each other. In the case of the fcc lattice, there are no bonds, for which
the periodic box is displaced along all three of the spacial dimensions. This leaves us with a
remainder of 3L3 − 6L2 + 3L volume bonds. Now we can compute the energy of the collapsed
state with

Ecollapsed =
�

3L3 − 6L2 + 3L
�

ubond(0)

+ 6L(L − 1)ubond

�

L̃
�

+ 3Lubond

�p
2 L̃
�

.

(3.18)

Since the next neighbor distance is exactly unity in the undisturbed lattice, the energy of the
perfect lattice state is given by

Epl = −6N . (3.19)

The energies of both those configurations are compared in Fig. 3.8. From the graph we see,
that for L < 37 the collapsed state is energetically favored, as opposed to the perfect lattice. For
L > 37 however, the perfect lattice offers lower energy. This means, that the collapsed state will
certainly not be the ground state for L > 37. For smaller L however, the collapsed state could

49



E/
10

4

L

Epl

Ecollapsed

0

-4

-2

2

4

6

8

0 5 10 15 20 25 30 35 40 45

Figure 3.8: Energy of the collapsed state Ecollapsed
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L̃
�

in comparison with the energy of the per-
fect lattice Epl(L̃) vs. L for the three-dimensional system. All spins are equal to 1.

be the ground state. Simulation showed, that this is only the case for very small sizes (L ® 4)
and for intermediate sizes there are mixed configurations (see Sec. 3.3.2).

As it turns out, it is very hard to find the true ground state of the system in practice. The
system gets easily trapped in a local minimum of the energy landscape. In order to escape from
such a local minimum, the system would have to perform a collective change in configuration,
which is very unlikely and would therefore require a lot of Metropolis steps.

In order to get some first insights into the general behavior of the system at T = 0, the
one-dimensional case was considered first, before covering the three-dimensional case.

3.3.1 Ground State in One Dimension

In the one-dimensional case, we can make similar considerations in order to compute the energy.
The system consists of L particles and is set up such, that the next neighbor distance is unity.
This means, that L coincides with the physical length of the system.

We again differentiate between the perfect lattice and the collapsed state, where in the latter
case, there is only one periodic bond and the remaining bonds are volume bonds. This yields
for the collapsed state

Ecollapsed = (L − 1)ubond(0) + ubond(L), (3.20)

and for the perfect lattice

Epl = Lubond(1) = −L. (3.21)

Both energies are compared for different system sizes L in Fig. 3.9. It is evident, that for L > 36,
the completely collapsed state cannot be the true ground state. In fact we will find, that the
collapsed state is only the true ground state for very small L.
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Figure 3.9: Energy of the collapsed state Ecollapsed(L) in comparison with the energy of the per-
fect lattice Epl(L) vs. L for the one-dimensional system. All spins are equal to 1.

The simulated annealing [34, 35, 36, 37] method was used, to find an approximation of the
ground state. The method is inspired by the gentle cooling of alloys in order to remove any in-
ternal stresses. In order to do so in simulation, the following cooling schedule was implemented
(see Fig. 3.10):

T (t) = T0

�

exp
�

−2
t

tmax

��

1−
t

tmax

��

1+ sin
�

2πn
t

tmax

���

. (3.22)

The first term produces an exponential decay of the temperature T over time t, while the
second term ensures, that the temperature is indeed zero at the end of the simulation, where
t = tmax. The last term produces a periodical (n-times) reheating. This cooling schedule was
chosen heuristically by trying several different schedules and choosing the most successful. As
temperature is reduced, the maximum trial value δ has to be reduced accordingly. This was done
automatically during simulation: Every time the acceptance rate fell below 0.3 δ was decreased
by 10% and every time the acceptance rate exceeded 0.7 δ was increased by 10%. This is
appropriate, since we are not interested in dynamic, but only structural properties. If needed,
the whole procedure can be repeated, using the last configuration as new initial configuration
and possibly with lower T0, until a satisfactory outcome is reached.

The configurations resulting from this procedure, are systems of multiple clusters, where
within a cluster the particle distance r is nearly zero (at least r < 10−6). The configuration
and bond-length histogram for L = 22 are plotted in Fig. 3.11. In order to illustrate the pe-
riodic boundary conditions, the configuration was mapped to a circle. From the bond-length
histogram in Fig. 3.11b we see, that the four individual clusters almost have identical distance
from each other (around 5.5). For symmetry reasons, we would expect the clusters to be actu-
ally equidistant and therefore expect 18 bonds with r = 0 and four bonds with r = 22/5 = 5.5.
In fact, if the particles are constrained to four equidistant clusters, the ground state energy per
particle can be further reduced from −14.1787 to −14.1836.
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Figure 3.10: Cooling schedule with T0 = 1, tmax = 100 and n= 3.
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Figure 3.11: Ground state for L = 22. The results were obtained by simulated annealing with
T0 = 40, n= 4 and tmax = 107.
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The simulated annealing method as it was implemented here, was not sufficient to reach the
absolute energy minimum, but gave a good first insight. Furthermore, the method can easily
become stuck in configurations with a higher number of clusters, yielding even higher energies.

The number of clusters formed is dependent on the system size L; the larger the system, the
more clusters there are. We will now evaluate the energy of such a n-cluster system. Assuming,
that within one cluster the particle distance is exactly zero and that per cluster there is exactly
one bond reaching over to the next cluster, we can write the energy as:

E(L, n) = nubond(L/n) + (L − n)ubond(0). (3.23)

The energy levels are degenerate in the sense that the distribution of particles among the clusters
does not matter, as long as the connecting bonds have length L/n. Introducing the cluster
distance ζ= L/n, we can write the energy density as

E(ζ)
L
=

1
ζ

ubond(ζ) +
�

1−
1
ζ

�

ubond(0)

=
1
ζ

�

K
2
(ζ− 1)2 − exp(−κ(ζ− 1))

�

+
�

1−
1
ζ

��

K
2
− exp(κ)

�

.
(3.24)

By numerical minimization we find, that this function has a global minimum at

ζopt ≈ 6.33807, (3.25)

which corresponds to an energy density of about −14.2475. Since ζ is not really continuous,
but a ratio of whole numbers, the system can only approximate this ideal value. However, we
can minimize Eq. 3.24 for given L with respect to n, in order to find the optimum number of
clusters. Some of the results are listed in Tab. 3.3. As can be seen from Fig. 3.12, the optimum
value of ζ can be approximated better and better as system size is increased.
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Figure 3.12: Closest possible approximation of ζopt vs. system-size L.
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L n L/n E E/L

1 1 1.000 −1.0000 −1.000 0000
9 2 4.500 −124.8488 −13.872 09039

16 3 5.333 −226.4453 −14.152 83251
22 4 5.500 −312.0397 −14.183 62137
29 5 5.800 −412.4529 −14.222 51341
35 6 5.833 −497.8972 −14.225 63544
42 7 6.000 −597.9938 −14.237 94749
48 8 6.000 −683.4215 −14.237 94749
54 9 6.000 −768.8492 −14.237 94749
61 10 6.100 −868.8124 −14.242 82599
67 11 6.091 −954.2446 −14.242 45695
73 12 6.083 −1039.676 −14.242 13820
80 13 6.154 −1139.577 −14.244 71413
86 14 6.143 −1225.016 −14.244 36982
92 15 6.133 −1310.453 −14.244 05449

100 16 6.250 −1424.685 −14.246 85104
105 17 6.176 −1495.763 −14.245 35758
111 18 6.167 −1581.205 −14.245 08952
118 19 6.211 −1681.047 −14.246 16191
124 20 6.200 −1766.496 −14.245 93422
130 21 6.190 −1851.943 −14.245 71212
137 22 6.227 −1951.769 −14.246 48590
143 23 6.217 −2037.221 −14.246 30039
149 24 6.208 −2122.671 −14.246 11601
156 25 6.240 −2222.485 −14.246 70090
161 25 6.440 −2293.713 −14.246 66474
168 27 6.222 −2393.394 −14.246 39312
175 28 6.250 −2493.199 −14.246 85104
181 29 6.241 −2578.657 −14.246 72259
187 30 6.233 −2664.113 −14.246 59163
194 31 6.258 −2763.910 −14.246 96013
200 32 6.250 −2849.370 −14.246 85104
206 33 6.242 −2934.828 −14.246 73881
213 34 6.265 −3034.620 −14.247 04196
219 35 6.257 −3120.082 −14.246 94820
225 36 6.250 −3205.541 −14.246 85104
232 37 6.270 −3305.328 −14.247 10497
238 38 6.263 −3390.792 −14.247 02353
244 39 6.256 −3476.253 −14.246 93862
251 40 6.275 −3576.036 −14.247 15457
257 41 6.268 −3661.500 −14.247 08316

Table 3.3: Expected number of clusters n for different system sizes L.
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3.3.2 Ground State in Three Dimensions

In the three-dimensional case we conjecture, that the system behaves similar to the system in
one dimension. Namely we assume, that there is the formation of multiple r = 0 clusters with
a defined distance between each other. One obvious way to implement that, is to impose a
superlattice on the system. This reduces the configuration space and therefore simplifies the
detection of the ground state. In one Metropolis step, each particle is displaced to a random site
of the superlattice, which is then either accepted or not, depending on the energy difference.
As a consequence, particles can only occupy sites on said superlattice, while empty sites are
allowed too.

A simple cubic (sc) as well as a face centered cubic (fcc) superstructure have been considered
as superlattice. Since the simulated box has a linear length of L, the lattice constant of the
superlattice as must be chosen such, that L/as is an integer2. This defines the counting length
of the superlattice

Ls = L/as. (3.26)

In the next step, the simulated annealing method from Sec. 3.3.1 was applied for various
Ls, in order to find the specific superlattice, that allows for the lowest energy. The simulated
systems and their energies are listed in Tab. 3.4. A plot of the resulting ground state energies
for different system sizes is given in Fig. 3.13. Each simulation was run multiple times with
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Figure 3.13: Energy of the collapsed state and the perfect lattice in comparison with the energy
of the approximate ground with imposition of a superlattice. Significantly lower
energies are reached by deviating from the before mentioned special cases. The
convergence is nearly identical for both the sc and fcc superlattice.

simulated annealing for at least 105 steps, using the configuration of lowest energy from the
2 If all possible lattice constants are considered, the set of sc configurations is actually equal to the set of

fcc configurations. We can transfer a sc lattice with lattice constant as to a fcc lattice with lattice constant
2as, by leaving suitable holes in the sc lattice and vice versa. It is nevertheless reasonable to examine both
superstructures, since one of them might fit the true ground state configuration better.
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L Ls E/L

4 1 −60.6620
2 −60.6620
3 −60.6620

20 −60.6620

10 1 −72.8524
2 −72.9046
3 −73.0594
4 −73.0384
5 −73.0234
6 −73.0549
7 −73.0557
8 −73.0430

20 1 −54.1241
2 −72.8524
3 −72.1833
4 −67.8252
5 −68.2839

30 1 −28.0153
2 −65.3000
3 −72.7223
4 −72.6994
5 −70.1355

40 1 0.0139
2 −50.5594
3 −68.3025
4 −69.7187
5 −73.1270
6 −68.6745

10 −48.3296

(a) sc superlattice

L Ls E/L

4 2 −60.6620
4 −60.6620
6 −60.6620
8 −60.6620

10 2 −72.9046
4 −72.8450
6 −70.9516
8 −62.2672

20 2 −57.5328
4 −71.5171
6 −67.4925
8 −61.7311

30 2 −37.9208
4 −67.8399
6 −70.6801
8 −67.1129

40 2 −15.0381
4 −60.9168
6 −69.8216
8 −70.6495

10 −68.9320
12 −63.7280

(b) fcc superlattice

Table 3.4: Ground state energies for different system sizes L. For each size, several superlattices
with counting length Ls have been examined, in order to find the structure of lowest
energy. For L = 4, the collapsed state, where all particles are located in one point was
found for both superlattices.
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previous run as new initial condition. This was done, until there was no more significant re-
duction in internal energy. The overall lowest energy was then used as the approximate ground
state energy. We find, that the energy of the true ground state is significantly lower than the
energy of the collapsed state as well as the energy of the perfect lattice state. Also the energy
per particle is nearly constant at

E
N
≈ −72.2(10). (3.27)

In this mean value, the cases L = 4, where there is only a single cluster, were not taken into
account.

This confirms, that the energy is indeed an extensive variable as required by thermodynamics.
Since our main concern is the critical behavior of the system and true phase transitions are
inherent only to infinite systems, the behavior for L → ∞ is most important. Keeping this
in mind, L = 40 seems to be a good compromise between large system size and reasonable
computing time.

At L = 40, the lowest energy was reached with clusters arranged in a cubic superlattice
with counting length Ls = 5. Closer examination revealed, that the particles arrange in three
mutually perpendicular planes. In the point common to all three planes, particle concentration
is highest. This is shown in Fig. 3.14 (clusters with less than five particles in them were left out
for clarity).
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Figure 3.14: Ground state of the three-dimensional system, where a cubic superlattice with
counting length Ls = 5 has been imposed. The particles arrange in three mutu-
ally perpendicular planes. Colors indicate the number of particles on an individual
site of the superlattice. The concentration is highest in the points of intersection.
Sites of the superlattice with less than five particles on them have been left out for
easier recognition.

A similar configuration was found by Tavazza, Landau and Adler [38]. The subject of their
paper is a Si-Ge alloy with a compressible Ising model and Stillinger-Weber interaction.

This configuration was then used as initial configuration for a simulation at T = 0 without
the constraint of the superlattice. The resulting configuration is shown in Fig. 3.15. While the
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(a) Configuration in d = 3.
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(b) Projection of the configuration onto the x -y
plane.

Figure 3.15: Configuration for L = 40 and T = 0.

overall triple plane structure is preserved, the individual clusters are slightly bloated and there
are some particles in the gaps as well. The distribution of bond lengths has two sharp peaks at
r ≈ 0 (at least r ® 10−4) and r ≈ 5.6 (Fig. 3.16), similar to the one-dimensional ground state.
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Figure 3.16: Distance histogram P(r) for L = 40 and T = 0.
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3.4 Magnetic Properties for T > 0

While for T = 0 all spins are equal, and therefore m = 1 constant, it remains to examine the
effect of the clustering on the magnetic properties of the system at T > 0. For this purpose,
several different temperatures have been simulated (Tab. 3.5). Simulation time can be kept rel-

L T κ K tmax/105 δ

40 2 3 1 2 auto
40 8 3 1 2 auto
40 9 3 1 1 auto

Table 3.5: Simulation parameters.

atively short, since reasonable initial configurations are available and thermodynamic averages
are not of interest. From each run, only the configuration of lowest energy is extracted.

T = 2
For T = 2, the triple-plane configuration is still clearly identifiable from Fig. 3.17. Most of the

particles are located in three perpendicular planes, while the particles are densest in the points
of intersection. The bond length is distributed in two sharp peaks with more weight at r = 0
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(a) Configuration in d = 3.
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(b) Projection of the configuration into the x -y
plane.

Figure 3.17: Configuration for L = 40 and T = 2. Colors indicate the orientation of the particle
spin

(Fig. 3.18). This means, that the majority of particles is still located in r ≈ 0 clusters. Within
those clusters, all spins are equal, while separate clusters can have different magnetization.
Whereas the correlation within the clusters is very strong, the correlation among individual
clusters is very weak. This is due to the high value of κ. The magnetic part of the interaction

u(i j)
mag(r) = −SiS j exp

�

−κ(ri j − 1)
�

(3.28)

is independent of κ at r = 1. For large κ the interaction becomes rapidly stronger for r < 1 and
decays fast for r > 1. As a consequence, we have magnetic order on a microscopic scale, where
r < 1, and magnetic order on a macroscopic scale, where r > 1.
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Figure 3.18: Distance histogram P(r) for L = 40 and T = 2.

Because the clusters can only change magnetization as a whole, the magnetization becomes
discretized to some degree. This becomes apparent when looking at Fig. 3.19. In the time series
as well as in the histogram there are ‘forbidden’ values of the magnetization which are never
assumed. The explanation for this is straightforward: If a system consists of n clusters, each
having either mi = −1 or mi = 1, i = 1 . . . n, then there are only n+ 1 different values of the
magnetization3.
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(a) Time series of the magnetization m(t).
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(b) Histogram of the magnetization P(m).

Figure 3.19: Magnetic properties of the system for L = 40 and T = 2.

T = 8
When looking at the configuration for T = 8, the triple-plane structure is still visible in

Fig. 3.20. The right peak of the bond-length distribution in Fig. 3.24 is broadened as op-
posed to the left peak, which is still very narrow. This means, that there still are compact
3 The same actually holds for unclustered systems, because of the finite number of spins. This becomes especially

important for small systems and has to be considered when computing the histogram.
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Figure 3.20: Configuration for L = 48 and T = 8.

clusters in the system. A discretization of magnetization is not visible anymore with the current
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Figure 3.21: Distance histogram P(r) for L = 40 and T = 8.

resolution. However, there are two distinct peaks in the histogram Fig. 3.22b, indicating, that
the macroscopic system is still in the magnetically ordered phase at this temperature.
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Figure 3.22: Magnetic properties of the system for L = 40 and T = 8.

T = 9
From T = 8 to T = 9, the characteristics of system undergo some severe changes. Firstly,
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(b) Projection of the configuration into the x -y
plane.

Figure 3.23: Configuration for L = 40 and T = 9.

the bond length distribution Fig. 3.24 has now only one peak at r > 0 and no peak at r = 0
meaning that there are no more r = 0 clusters forming. Also the triple-plane structure is not
visible anymore in Fig. 3.23. This can be seen as a fundamental transition in configuration.
Secondly, the histogram of the magnetization Fig. 3.25 has now only one peak at m = 0; the
system is now in the magnetically disordered phase. Hence, between T = 8 and T = 9, there
are not one but two fundamental transitions. It remains to identify, whether those transitions
share a critical temperature or whether they occur separately.
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Figure 3.25: Magnetic properties of the system for L = 40 and T = 9.
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3.5 Summary

In Chapter 2, a field theory for the Ising model with coupling to elastic degrees of freedom
was derived. During the derivation, a linear theory of elasticity was assumed. This allows
for the microscopic elastic fluctuations to be integrated out. Further analysis of the effective
Hamiltonian showed, that the system should at constant volume exhibit Fisher renormalized
exponents.

The evaluation in Section 3.2 revealed, that the exponents can by no means considered to be
Fisher renormalized, but instead are closer to those of the regular Ising model. One possible
explanation for this behavior is the choice of parameters. A glance at the distribution of the
coupling parameter P(J) showed, that the width of the distribution is small compared to kBT .
This is an indication, that the coupling might be too weak for the given parameters. The width
of P(J) can be increased significantly by decreasing the constant of elastic interaction K and
increasing the constant of magnetic decay κ.

In Section 3.3 this new set of parameters was examined at T = 0. Since the convergence to
the ground state is rather poor, even with simulated annealing methods, the one-dimensional
case was examined first. It was found, that the particles arrange in multiple equidistant clusters,
where within one cluster the particle distance is close to zero, if not zero. This is because on
the one hand the particles want to minimize interparticle distance, and on the other hand avoid
overly stretched bonds due to the periodic boundary conditions. It was found, that there is an
optimal cluster distance, that is independent of system size.

This observation was then transferred to the three-dimensional case. In a first step, the par-
ticles were confined to a superlattice, and therefore forced to assume a clustered configura-
tion. This way the configuration space was reduced and the convergence to the ground state
improved. It was found, that the particle arrange in three mutually perpendicular planes. Simi-
larly to the one-dimensional case, interparticle distance was minimized, while not allowing for
excessively stretched bonds.

This configuration was then used as a starting point for a simulation without the restriction of
the superlattice. Indeed the clustered triple-plane configuration remained intact, even without
the constraint.

As the system is heated up, the magnetization is allowed to fluctuate again and some interest-
ing behavior arises. Within a cluster the magnetic interaction is so strong, that the magnetization
of a single cluster is essentially unity. The correlation between individual clusters on the other
hand is weak enough, that it allows for different magnetization among individual clusters. There
is a superposition of order on the microscopic scale and disorder on the macroscopic scale.

As the system is heated up further, the clustering dissolves. This means, that additional to the
magnetic transition, there is a second, structural transition. Within the limits of this work, it
could not yet be verified, whether or not this transition occurs at the same temperature as the
first one.
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3.6 Conclusion and Outlook

In Chapter 2 it was derived, that the phase transition at constant volume should be of second
order with Fisher renormalized exponents. This however is based on the assumption of lin-
ear elasticity, which allows for the elimination of the microscopic elastic fluctuations from the
effective Hamiltonian.

In the evaluation, those Fisher renormalized exponents could not be confirmed. The found
exponents are in fact closer to the regular Ising exponents. Since all elastic fluctuations where
included in the simulation, this might be an indication that the assumption of linear elasticity is
invalid.

In order to collect further evidence, one could consider checking the predictions for the con-
stant pressure case as well. However, since the transition in this case is expected to be of weak
first order [39], this might prove to be rather challenging.

Another possible explanation is, that the effects of elastic coupling are just too weak for the
first set of parameters. Because of this, a second set of parameters was proposed in order to
soften the lattice and to accelerate the decay of magnetic interaction. When examining the
ground state it was found, that the particles tend to form compact clusters, where within a
cluster the bond length of neighboring particles is close to zero if not zero.

In addition to the magnetic phase transition, there is a transition from a clustered to an
unclustered state as temperature is raised. It is not yet clear, whether both transitions occur at
the same temperature, nor is it clear, whether the structural transition can be considered first or
second order.

Also, it still has to be examined, if the magnetic transition still is of second order and if the
values of the critical exponents change in comparison with the first parameter set.

In real solids there usually are strong repulsive interactions for very short distances, that
would prevent an overly compact clustering. Such a repulsion could be added to the model by
including a term∝ r−b, b > d in the potential.

Clearly, the physics of the given model is more complex than it was assumed at the beginning
of the project.
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