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 54 

Abstract 55 

PcG regulation in Arabidopsis is required to maintain cell differentiation and to allow 56 

developmental phase transitions. This is achieved by the activity of three PRC2s and the 57 

participation of a yet poorly defined PRC1. Previous results showed that apparent PRC1 58 

components perform discrete roles during plant development, suggesting the existence 59 

of PRC1 variants; however, it is not clear in how many processes these components 60 

participate. We show that AtBMI1 proteins are required to promote all developmental 61 

phase transitions and to control cell proliferation during organ growth and development, 62 

expanding their proposed range of action. While AtBMI1 function during germination 63 

is closely linked to B3 domain transcription factors VAL1/2 possibly in combination 64 

with GT-box binding factors, other AtBMI1 regulatory networks require participation of 65 

different factor combinations. Conversely, EMF1 and LHP1 bind many H3K27me3 66 

positive genes upregulated in atbmi1a/b/c mutants; however, loss of their function 67 

affects expression of a different subset, suggesting that even if EMF1, LHP1 and 68 

AtBMI1 exist in a common PRC1 variant, their role in repression depends on the 69 

functional context. 70 

 71 

Introduction 72 

 The evolutionary conserved Polycomb Group (PcG) machinery plays a crucial 73 

role in maintaining repression of genes that are not required during a specific cell fate 74 

(Ringrose and Paro, 2004). PcG proteins form multiprotein complexes with different 75 

histone modifying activities, including PcG repressive complex 2 (PRC2), which 76 

possesses histone H3 lysine 27 (H3K27) tri-methyltransferase activity (Müller et al., 77 

2002), and PRC1, which has histone H2A lysine 119 (H2AK119) E3 ubiquitin ligase 78 

activity (Cao et al., 2005) as well as other non-enzymatic functions critical for 79 

chromatin compaction (Francis et al., 2004). The combined activity of both complexes 80 

is required for stable repression of target genes. 81 

 In Drosophila, single-copy genes encode the four core subunits of PRC2:  82 

Suppressor of Zeste 12 [Su(z)12], Extra sex combs (Esc),p55, and the catalytic subunit 83 

Enhancer of Zeste [E(z)] (Simon and Kingston, 2013). Arabidopsis thaliana 84 

(Arabidopsis) has three E(z) homologs, CURLY LEAF (CLF), MEDEA (MEA) and 85 
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SWINGER (SWN) (Goodrich et al., 1997; Grossniklaus et al., 1998; Chanvivattana et 86 

al., 2004) and three Su(z)12 homologs, EMBRYONIC FLOWER 2 (EMF2), 87 

VERNALISATION 2 (VRN2) and FERTILISATION INDEPENDENT SEED 2 (FIS2) 88 

(Luo et al., 1999; Gendall et al., 2001; Yoshida et al., 2001); while MULTIPLE 89 

SUPPRESSOR OF IRA 1 (MSI1), which is one of the five p55 homologs in 90 

Arabidopsis (Hennig et al., 2005), and the Esc homolog FERTILIZATION 91 

INDEPENDENT ENDOSPERM (FIE) (Ohad et al., 1999) are common subunits to the 92 

different possible PRC2s (Mozgova et al., 2015). 93 

 Drosophila PRC1 contains Polycomb (Pc), Polyhomeotic (Ph), Posterior sex 94 

comb (Psc), and dRing1 (Shao et al., 1999; Peterson et al., 2004), each with multiple 95 

homologs in vertebrates (Schwartz and Pirrotta, 2013). Furthermore, vertebrate PRC1 96 

complexes exist in canonical or non-canonical forms. Canonical variants harbor 97 

homologs to the four Drosophila core subunits (Schwartz and Pirrotta, 2013), while 98 

non-canonical PRC1 complexes contain RING1A or RING1B and one of the six 99 

different homologs of Drosophila Psc (PCGF) to form a H2A mono-ubiquitination 100 

(H2Aub) module, along with additional subunits that further add specific biochemical 101 

properties and genomic localization to the different variants (Schwartz and Pirrotta, 102 

2013). In Arabidopsis, several pieces of evidence suggest a similar high degree of 103 

complexity (Förderer et al., 2016). Two RING1 homologs, AtRING1A and AtRING1B, 104 

and three Psc/PCGF homologs, AtBMI1A, AtBMI1B and AtBMI1C have been 105 

characterized (Sanchez-Pulido et al., 2008; Xu and Shen, 2008; Bratzel et al., 2010; 106 

Chen et al., 2010; Bratzel et al., 2012; Yang et al., 2013; Calonje, 2014). Plants with 107 

mutations in these genes suggest a high degree of functional redundancy between 108 

AtRING1 or AtBMI1 proteins, thus, it is not clear whether each paralog can regulate a 109 

different subset of targets (Bratzel et al., 2010; Chen et al., 2010; Yang et al., 2013). 110 

The analysis is complicated by the observation that several mutant alleles are knock-111 

downs rather than null alleles and that phenotypes show a wide range of stochastic 112 

variation among segregating siblings with “weak” and “strong” phenotypes (Bratzel et 113 

al., 2010; Chen et al., 2010). 114 

 Two other plant-specific proteins have been related to PRC1, EMBRYONIC 115 

FLOWER 1 (EMF1) mediating chromatin compaction (Calonje et al., 2008; Beh et al., 116 

2012), and LIKE-HETEROCHROMATIN PROTEIN 1 (LHP1), which, as Drosphila 117 

Pc, binds H3K27me3 marks through its chromodomain (Turck et al., 2007). Although 118 
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both proteins can interact with either AtRING1 or AtBMI1 (Bratzel et al., 2010; Chen et 119 

al., 2010), recent reports showed that they also co-purify with PRC2 components 120 

(Derkacheva et al., 2013; Liang et al., 2015); thus, it is not clear in which context they 121 

carry out their functions. Additional proteins with chromatin related functions have 122 

been shown to participate in PRC1 mediated repression of specific target genes, such as 123 

the VIVIPAROUS 1 (VP1)/ ABCISIC ACID INSENSTIVE 3 (ABI3)-Like 1 and 2 124 

proteins  (VAL1/2) (Yang et al., 2013), ALFIN1-like proteins (ALs) (Molitor et al., 125 

2014) and JMJ14 (Wang et al., 2014). 126 

 In plants, PcG repression maintains the differentiated state of the cells but also 127 

orchestrates developmental phase transitions by controlling the establishment of new 128 

cell identities. This likely requires different PRC1s but little is known about their 129 

subunit composition. The repression of several seed maturation genes after germination 130 

requires the AtBMI1 and AtRING1 proteins (Bratzel et al., 2010; Chen et al., 2010; 131 

Yang et al., 2013) and a recent genome wide study showed gene networks regulated by 132 

AtBMI1s and AtRING1s during the suppression of seed development in seedlings 133 

(Wang et al., 2016). As these results were derived from the analysis of atring1a/b and 134 

atbmi1a/b mutants developing a weak phenotype (Bratzel et al., 2010; Chen et al., 135 

2010), their possible implication in other developmental processes or stages was not 136 

unveiled. Conversely, the repression of flower homeotic genes in seedlings requires 137 

EMF1 (Kim et al., 2012) and LHP1 (Gaudin et al., 2001) but their role in regulating 138 

other processes is not clear. 139 

 In this work, by analyzing the transcriptome of single, strong double and triple 140 

atbmi1 mutants we have identified a more comprehensive set of candidate genes 141 

regulated by AtBMI1 proteins. Our results indicate that in addition to switching off the 142 

seed maturation program after germination, AtBMI1s promote the transition from each 143 

developmental phase to the next throughout development and furthermore control cell 144 

proliferation during organ growth and development. By integrating transcriptomics 145 

datasets with previously published data, we show that AtBMI1 and VAL1/2 act together 146 

only in the regulation of seed maturation genes. Enrichment of cis-regulatory elements 147 

at VAL1/2-dependent and -independent genes suggests that AtBMI1-mediated gene 148 

repression requires different combinational modules always involving VAL related B3 149 

domain factors. Conversely, while EMF1 and LHP1 occupy a considerable number of 150 

genes upregulated in atbmi1a/b/c mutants, loss of their function does not impact the 151 
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expression of most but affects the expression of a different subset of genes.  Together 152 

these results suggest that the different PRC1 variants may differ in subunit composition 153 

but also in the role that single components play all depending on the cis-regulatory 154 

context. 155 

 156 

Results  157 

Genome-wide transcriptomic data analysis of atbmi1 mutants 158 

 Previous data have suggested that AtBMI1A and AtBMI1B are ubiquitously 159 

expressed and act mostly redundantly throughout development (Bratzel et al., 2010), 160 

whereas AtBMI1C, which is expressed in roots, endosperm and stamen, may have 161 

functionally diverged since it cannot fully rescue atbmi1a/b defects when overexpressed 162 

(Yang et al., 2013; Merini and Calonje, 2015); nevertheless, atbmi1a/c and atbmi1b/c 163 

do not show phenotypic alterations (Yang et al., 2013), suggesting that loss of 164 

AtBMI1C function is compensated by the other two AtBMI1s. Therefore, to gain 165 

insight into the regulatory roles of AtBMI1s, we performed genome-wide transcriptome 166 

analysis using RNA sequencing (RNA-seq) of wild type Col-0 (WT), atbmi1a, atbmi1b, 167 

atbmi1a/b and atbmi1a/b/c mutants at 10 days after germination (DAG). Since 168 

individual atbmi1a/b double mutants display a wide range of phenotypes (Bratzel et al., 169 

2010), we chose to select the strong atbmi1a/b mutant phenotype for the analysis, which 170 

differs from the atbmi1a/b/c phenotype mainly in the root [(Yang et al., 2013); 171 

Supplemental Fig. S1].  The Tuxedo protocol (Trapnell et al., 2012) was used for 172 

transcript assembly and differential expression analysis. All sequencing samples were of 173 

high quality (Supplemental Fig. S2; Supplemental Table S1). Differentially expressed 174 

genes were determined using stringent criteria consisting of a combination of fold 175 

change >4 and a p-value <0.05. The number of genes scored as present in at least one of 176 

our samples was 24,503, representing 72.96% of the entire Arabidopsis transcriptome. 177 

We found less than 3-4% of the surveyed transcriptome affected in single mutants and 178 

around 15% and 20% differentially expressed in strong atbmi1a/b double and 179 

atbmi1a/b/c triple mutants, respectively (Fig. 1A; Supplemental Fig. S3). Principal 180 

components analysis showed that the transcriptomes of WT, atbmi1a and atbmi1b 181 

mutants clustered together, whereas the transcriptomes of atbmi1a/b and atbmi1a/b/c 182 

mutants constituted two distant and distinct clusters, indicating not only differences to 183 

the WT and single mutant group but also in between (Fig. 1B). In any case, we found a 184 
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considerable number of genes misregulated in the single mutants (Fig. 1C; 185 

Supplemental Table S2) of which a majority were a subset of those affected in double 186 

and triple mutants (Supplemental Fig. S4A,B). The number of up-regulated genes for 187 

atbmi1a, atbmi1b, and atbmi1a/b was higher than down-regulated (Fig. 1C), which 188 

might confirm the role of AtBMI1 proteins in transcriptional repression. However, 189 

atbmi1a/b/c mutant showed higher number of down-regulated genes than upregulated 190 

genes. This may be a consequence of the developmental stage of these mutants, in 191 

which all organs are stuck in a seed maturation phase. Upregulation of some genes 192 

within this context may have a stronger negative impact on gene expression. 193 

 Globally, the upregulated genes in the strong atbmi1a/b and atbmi1a/b/c mutants 194 

(Supplemental Fig. S5A and Supplemental Fig. S6A) showed over-representation of 195 

Gene Ontology (GO) terms associated with response to different stimuli (e.g. water 196 

stress, temperature, hormones) and lipid metabolism (e.g. transport, biosynthesis, 197 

storage); whereas the downregulated genes were enriched for GO terms related to 198 

photosynthesis and metabolic processes (Supplemental Fig. S5B and Supplemental Fig. 199 

S6B). This is consistent with the developmental fate of the mutants, which are trapped 200 

in the seed maturation phase (Yang et al., 2013). During this phase, seeds acquire 201 

desiccation tolerance and accumulate storage reserves, prevailing in the form of lipids 202 

(Vicente-Carbajosa and Carbonero, 2005), while chloroplast structure is disrupted 203 

(Delmas et al., 2013). 204 

 As PcG function is involved in the repression of master regulatory genes (Xiao 205 

and Wagner, 2015),  misregulation in the different atbmi1 mutants may be an indirect or 206 

direct consequence of the loss of AtBMI1 function, or a mix of both. Conversely, a 207 

considerable number of AtBMI1 direct target genes may not display altered expression 208 

in absence of their upstream transcriptional activators, as has been reported for other 209 

PcG loss of function mutants (Bouyer et al., 2011; Kim et al., 2012; Derkacheva et al., 210 

2013). In any case, although the interrelationship between PRC1 and PRC2 is not clear 211 

yet, the activity of both complexes is required for stable PcG-mediated repression; 212 

therefore, selecting genes upregulated in atbmi1 mutants and H3K27me3 marked in WT 213 

seedlings should enrich for a subset of candidate genes directly controlled by AtBMI1s. 214 

Accordingly, we intersected genes upregulated in the different mutants with a set of 215 

5360 H3K27me3 target genes previously identified in two independent analyses in 216 

seedlings [Supplemental Table S3; (Bouyer et al., 2011; Kim et al., 2012)] to selected 217 
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upregulated H3K27me3 positive (up_K27) genes (Fig. 1D). The analysis showed 218 

significant overlaps between H3K27me3 marked genes and upregulated genes in the 219 

different mutants except for atbmi1b probably because it is a knock-down mutant 220 

(Bratzel et al., 2010). The same analysis using downregulated genes showed non-221 

significant overlaps in all cases excluding atbmi1a/b/c due to the high number of 222 

downregulated genes in this mutant (Supplemental Fig. S7; Supplemental Table S3).  223 

 To determine whether there were AtBMI1A and AtBMI1B specific candidate 224 

targets, we compared up_K27 genes in the single and double mutants (Fig. 2A). Their 225 

number in the double mutant was considerably higher than in the single mutants, 226 

illustrating a high degree of functional redundancy. Also, most of the up_K27 genes in 227 

single mutants were included in the double mutants set of up_K27 genes; however, a 228 

group of genes seemed to be exclusively upregulated in atbmi1a and atbmi1a/b or in 229 

atbmi1b and atbmi1a/b (104 and 27 genes, respectively). Up_K27 genes in atbmi1a and 230 

atbmi1a/b were expressed at very low levels in both single compared to the double 231 

mutants (Fig. 2B), indicating redundant regulation by AtBMI1A and B. The atbmi1b 232 

mutant shows some remnant expression of AtBMI1B possibly explaining higher 233 

expression in atbmi1a vs atbmi1b and the greater number of affected genes in the 234 

atbmi1a single mutant (Bratzel et al., 2010). Nevertheless, some genes were indeed 235 

specifically sensitive to AtBMI1B being more affected in atbmi1b than atbmi1a and not 236 

further increased in double mutants (Fig. 2B).  237 

 We next investigated the degree of redundancy between AtBMI1A/B and 238 

AtBMI1C by comparing the genes up_K27 in atbmi1a/b and atbmi1a/b/c (Fig. 3A). 239 

Clustering analysis showed that atbmi1a/b and atbmi1a/b/c shared 2/3 of the up_K27 240 

genes (Cluster I, Supplemental Table S3) but the remaining 1/3 was genotype-specific 241 

(Cluster II, atbmi1a/b/c specific and Cluster III, atbmi1a/b specific). The expression 242 

pattern of genes in Cluster I fell into two distinct sub-groups. Cluster Ia included genes 243 

that displayed a gradual increase of expression in double and triple mutants, suggesting 244 

redundant regulation by AtBMI1A/B and by AtBMI1C (Fig. 3B and Supplemental Fig. 245 

S8A). Cluster Ib contained genes whose regulation may depend exclusively on 246 

AtBMI1A/B, as the loss of AtBMI1C function did not affect significantly their overall 247 

expression levels (Fig. 3B and Supplemental Fig. S8A). Cluster II (Supplemental Table 248 

S3) included genes exclusively upregulated in atbmi1a/b/c, indicating that these are 249 

AtBMI1C specific targets or, alternatively, that AtBMI1C fully compensates the loss of 250 
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AtBMI1A/B function in regulating these genes (Fig. 3B and Supplemental Fig. S8A). 251 

To discern between these two possibilities, we measured the levels of a subset of cluster 252 

II genes in WT, atbmi1c single and atbmi1a/b/c mutants in whole seedlings and roots at 253 

10 days after germination (DAG) by quantitative RT-PCR (qRT-PCR). As they were 254 

not misexpressed in atbmi1c single mutants (Supplemental Fig. S8B), we concluded 255 

that AtBMI1C compensates for the loss of AtBMI1A/B function in the regulation of 256 

these genes. Finally, genes in Cluster III (Supplemental Table S3) were exclusively 257 

upregulated in atbmi1a/b mutants, but not in atbmi1a/b/c (Fig. 3B and Supplemental 258 

Fig. S8A). Although a priori unexpected, the result can be explained if the activation of 259 

these genes requires a developmental stage that is not reached in atbmi1a/b/c.  260 

 All together these data indicated that AtBMI1A and B regulate genes 261 

predominantly redundantly, whereas AtBMI1C affects only a subset of AtBMI1A/B 262 

possible targets.  263 

Deregulated developmental programs in atbmi1 mutants 264 

 AtBMI1 proteins were previously shown to participate in the regulation of several 265 

seed maturation (Bratzel et al., 2010; Chen et al., 2010; Yang et al., 2013) and 266 

germination related genes (Molitor et al., 2014). In addition, a recent transcriptome 267 

analysis of atbmi1a/b weak phenotype confirmed the role of AtBMI1 function in 268 

regulating seed development (Wang et al., 2016). When we compared the H3K27me3 269 

upregulated genes in the atbmi1a/b weak (fold change ≥2, according to Wang et al. 270 

2016; Supplemental Table S1) to those in atbmi1a/b strong phenotype mutants, we 271 

found significantly more genes in the stronger mutant (Fig. 4A). Among the genes 272 

upregulated in both datasets there were genes previously identified as AtBMI1 target 273 

genes, like ABI3, and DELAY OF GERMINATION 1 (DOG1); however, other well-274 

known AtBMI1 targets, such as FUSCA 3 (FUS3) or BABYBOOM (BBM) (Yang et al., 275 

2013), were included only in atbmi1a/b strong dataset. A similar picture was obtained 276 

comparing atbmi1a/b weak and atbmi1a/b/c datasets (Supplemental Fig. S9). Therefore, 277 

to obtain a more comprehensive picture of the developmental processes regulated by 278 

AtBMI1s, we examined the annotated developmental functions of up_K27 genes in 279 

atbmi1a/b/c mutants, as they displayed the strongest developmental alterations. 280 

Seed maturation and dormancy 281 
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 Changes in the triple atbmi1a/b/c mutant uncovered additional genes involved in 282 

seed maturation and abscisic acid (ABA) response, such as FUS3 and ABI4, and in seed 283 

dormancy, like SOMNUS (SOM). Also, there were genes involved in regulating 284 

carbohydrate and lipid metabolism, like WRINKLED 1 (WRI1) (Supplemental Fig. S9; 285 

Supplemental Table S3). Most of these genes are switched off after germination in WT; 286 

however, the ABIs are required for plant responses to various biotic and abiotic stresses 287 

(Cutler et al., 2010), suggesting involvement of AtBMI1s in regulating responses to 288 

environmental conditions. 289 

Endosperm specific genes 290 

 Maturation genes were not the only seed genes upregulated in atbmi1a/b/c 291 

mutants. We found upregulation of genes that are predominantly expressed in 292 

endosperm and but not in the seed coat and vegetative tissues (Wolff et al., 2011). 293 

Interestingly, among these were genes displaying a maternal [FLOWERING 294 

WAGENINGEN (FWA), HOMEODOMAIN GLABROUS 8 (HDG8), and AtBMI1C] or 295 

paternal [PICKLE RELATED 2 (PKR2), VARIANT IN METHYLATION 5 (VIM5), 296 

AT2G21930 and AT3G49770] preferred expression in the endosperm (Supplemental 297 

Fig. S9; Supplemental Table S3).  298 

Meristem maintenance and cell proliferation related genes 299 

 The atbmi1a/b/c mutant also upregulated genes involved in meristem maintenance 300 

and cell proliferation throughout plant life. Remarkably, two gene families with crucial 301 

roles in these processes were upregulated in the mutants. The first encompassed the 302 

PLETHORA (PLT) or AINTEGUMENTA-LIKE (AIL) genes. Six out of eight members 303 

of this family were up_K27 in atbmi1a/b/c mutants (PLT1/2/3/5/7 and BBM) 304 

(Supplemental Fig. S9 and Supplemental Fig. S10; Supplemental Table S3). Some of 305 

these PLT genes have overlapping roles in regulating embryo patterning, shoot and root 306 

apical meristem maintenance and organ primordia initiation (Horstman et al., 2014). 307 

The second was the WUS homeobox-containing (WOX) gene family, which comprises 308 

fourteen members (van der Graaff et al., 2009), among which WUS and 309 

WOX2/3/4/5/8/9/11/12 were upregulated in atbmi1a/b/c mutants (Supplemental Fig. S9 310 

and Supplemental Fig. S10; Supplemental Table S3). These factors promote cell 311 

division and prevent premature cell differentiation, which are crucial processes required 312 

for stem-cell maintenance and organ formation. In addition, we found upregulation of 313 

other genes with related functions, for instance CUP SHAPED COTYLEDON 3 (CUC3) 314 
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and ENHANCER OF SHOOT REGENERATION 1 (ESR1) and the GROWTH 315 

REGULATING FACTOR 5 (GRF5). 316 

Root development specific genes 317 

 Apart from the genes involved in root meristem maintenance, we found in 318 

atbmi1a/b/c upregulation of genes that play a crucial role in postembryonic root 319 

development, as CEGENDUO (CEG), MAGPIE (MGP), INDOLE-3-ACETIC ACID 320 

INDUCIBLE 30 (IAA30), the ROOT MERISTEM GROWTH FACTOR 2 (RGF2), and 321 

the Class IIB NAC transcription factor SOMBRERO (SMB), underpinning the 322 

importance of AtBMI1 function for root development (Supplemental Fig. S9; 323 

Supplemental Table S3). 324 

Other developmental genes 325 

 Among the up_K27 genes in atbmi1a/b/c mutants were genes involved in 326 

regulating other developmental processes, such as gametophyte development, leaf 327 

development and the flowering transition [e.g. KANADI 2 (KAN2), KNUCKLES (KNU), 328 

DEVELOPMENT-RELATED PcG TARGET IN THE APEX 4 (DPA4), SEPALLATA 2 329 

(SEP2), FLOWERING LOCUS C (FLC), MADS AFFECTING FLOWERING 4 (MAF4), 330 

MAF5 and FACTOR PROMOTING FLOWERING 1 (FPF1)] (Supplemental Fig. S9; 331 

Supplemental Table S3).  332 

Secondary metabolic processes 333 

 In addition, atbmi1a/b/c mutants upregulated genes involved in secondary 334 

metabolic processes like those involved in phenylpropanoid metabolism. Upregulated 335 

genes involved in this pathway were CHALCONE SYNTHASE (CHS, TRANSPARENT 336 

TESTA 4 (TT4), CHALCONE ISOMERASE (CHI, TT5), FLAVONOID 3’-337 

HYDROXYLASE (F3’H, TT7), DIHYDROFLAVONOL 4-REDUCTASE (DFR), and 338 

transcription factors (TFs) such as AtMYB90 (PRODUCTION OF ANTTHOCYANIN 339 

PIGMENT 2 (PAP2)), AtMYB111 and AtMYB11 (Supplemental Fig. S9; Supplemental 340 

Table S3). 341 

 In summary, AtBMI1 function in Arabidopsis is required to regulate more 342 

developmental processes than previously thought. 343 

Regulatory cross-talk between chromatin complexes 344 
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 RNA-seq data revealed upregulation of several PcG or PcG-related genes in 345 

atbmi1a/b/c mutants, like AtRING1A, AtRING1B, VAL1, VAL2, and VIN3. Conversely, 346 

we did not find a significant change in the expression of CLF, SWN, MEA, EMF2, 347 

VRN2, FIS2, MSI1, FIE, EMF1 and LHP1 (Supplemental Fig. S10). On the other hand, 348 

the Trithorax Group (TrxG) genes ULTRAPETALA 1 (ULT1), ULT2 and PKR2 that act 349 

antagonistically to PcG complexes were upregulated in atbmi1a/b/c mutants 350 

(Supplemental Fig. S10). Misregulation of some of these chromatin factors could 351 

contribute to the strongly altered expression pattern of atbmi1a/b/c mutants. 352 

Several master regulators of the flowering program are downregulated in 353 

atbmi1a/b/c mutants 354 

 Several MADS-box transcription factors required to specify floral meristem 355 

identity or involved in floral organ development were downregulated in atbmi1a/b/c 356 

mutants (Fig. 4B; Supplemental Table S2) [e.g. AGL42, SUPRESSOR OF CONSTANS 357 

1 (SOC1), SEP3, SEP4, AGL24, SHORT VEGETATIVE PHASE (SVP)]; but also other 358 

key regulatory flowering genes, such as, TEMPRANILLO 1 (TEM1) and several 359 

SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPLs) (e.g. SPL2,3,4,8,12). In 360 

addition, we found that some flowering factors that have basal expression levels in WT 361 

seedlings at 10 DAG expressed at lower levels in atbmi1a/b/c [e.g. AGAMOUS (AG), 362 

APETALA 3 (AP3), FLOWERING LOCUS T (FT); Fig. 4B]. The fact that the flowering 363 

program seems to be more repressed in atbmi1a/b/c mutants than in WT seedlings 364 

points to a requirement of AtBMI1 function for proper regulation of flower 365 

development. 366 

VAL1/2 and the AtBMI1s co-regulate a subset of potential AtBMI1 targets  367 

 VAL1/2 and AtBMI1 proteins are required for the initial repression of several 368 

seed maturation genes after germination, such as FUS3, LEC1 and ABI3. Furthermore, 369 

we previously showed that the VAL1/2 recruit AtBMI1 proteins to these genes; 370 

accordingly, val1/2 and atbmi1a/b/c mutants display a very similar phenotype (Yang et 371 

al., 2013). However, WUS is an AtBMI1 but not a VAL1/2 regulated gene, indicating 372 

that there are also differences between those mutants (Yang et al., 2013). To determine 373 

to which extent the VAL1/2 and AtBMI1 proteins act together in regulating gene 374 

expression, we compared genes upregulated in val1/2 [(Suzuki et al., 2007); 375 

Supplemental Table S2] and H3K27me3 marked in WT according to our dataset 376 
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(Supplemental Table S3) with up_K27 genes in atbmi1a/b/c (Fig. 5A). We found that 377 

70% of val1/2 up_K27 genes were included in the up_K27 atbmi1a/b/c dataset; these 378 

genes represented 1/3 of the genes up_K27 in atbmi1a/b/c, indicating that, despite the 379 

fact that they co-regulate a considerable number of genes, AtBMI1 proteins clearly 380 

perform functions independently of VAL1/2.  381 

 The VAL proteins (VAL1, 2 and 3) belong to a subfamily of plant-specific B3 382 

domain containing proteins (Swaminathan et al., 2008) that is predicted to bind to 383 

LEC2/ABI3/VP1 elements [also known as RY elements (CATGCA); (Suzuki et al., 384 

2007)]; in fact, a recent report showed that a point mutation in a LEC2/ABI3/VP1 385 

element located at the first intron of FLC prevents the epigenetic silencing of the gene 386 

during vernalization (Qüesta et al., 2016). FLC is upregulated in val1/2 and atbmi1 387 

mutants (Supplemental Table S2, S3). Therefore, we investigated whether this or other 388 

cis-regulatory motifs were enriched at the promoter of AtBMI1/VAL1/2 co-regulated 389 

genes. Indeed, we found enrichment of LEC2/ABI3/VP1 motifs but also of ABA 390 

responsive elements (ABRE) [ACGT or G-box (Choi et al., 2000)] (Fig. 5A). ABRE/G-391 

box elements are recognized by bZIP transcription factors such as ABI5 (Carles et al., 392 

2002). LEC2/ABI3/VP1 and ABRE elements are clustered in the 5′ upstream regions of 393 

genes regulated by ABI3/VP1 factors and ABA (Suzuki et al., 2005), and are required 394 

for the correct expression of seed maturation genes (Santos-Mendoza et al., 2008). On 395 

the other hand, the plant-specific trihelix DNA binding protein ARABIDOPSIS 6B-396 

INTERACTING PROTEIN 1-LIKE 1 (ASIL1) that is involved in the repression of seed 397 

maturation genes after germination binds GT-box elements (GTGATT and variations of 398 

this) (Gao et al., 2009). These elements are closely associated with ABRE/G-box and 399 

LEC2/ABI3/VP1 elements at the promoter of several seed maturation genes. 400 

Furthermore, GT-box elements frequently overlap with ABRE/G-box elements, leading 401 

to the proposal that ASIL1 represses embryonic genes by competing with the binding of 402 

transcriptional activators (Gao et al., 2009). Therefore, we looked for co-occurrence of 403 

both elements at the promoter of AtBMI1/VAL1/2 co-regulated genes. Co-occurrence 404 

was indeed significant (Fig. 5B); moreover, both elements significantly overlapped at 405 

the promoter of these genes (Fig. 5B). Therefore, the combination of LEC2/ABI3/VP1 406 

and GT-box co-occurring with ABRE/G-box elements represents a landmark for the 407 

subset of AtBMI1/VAL1/2 co-regulated genes. 408 
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 Surprisingly, the LEC2/ABI3/VP1 elements were as highly over-represented at 409 

promoter regions of genes exclusively up_K27 in atbmi1a/b/c, which suggests that their 410 

repression may be functionally connected to other B3 domain transcription factors. The 411 

specific combination of LEC2/ABI3/VP1 and ABRE/GT-box elements was not detected 412 

in this group. Conversely, other motifs were enriched in the VAL1/2-independent 413 

up_K27 subset, such as SQUAMOSA BINDING PROTEIN (SBP)-, ZAP1 (WRKY)-, 414 

ALFIN1- and MYB-binding sites and a frequent Z-box promoter motif that is bound by a 415 

new class of transcription factors, the Z-box BINDING FACTORS (ZBFs), whose roles 416 

in regulating plant development have just started to be unraveled (Gangappa et al., 417 

2013) (Fig. 5A). ALFIN1 elements are bound by plant-specific ALFIN1-like proteins 418 

[AL1-7; (Lee et al., 2009)], which mediate gene repression (Wei et al., 2015) and 419 

interact with AtRING1 and AtBMI1 (Molitor et al., 2014), supporting the existence of 420 

other combinatorial modules involving B3 domain factors and diverse partners for 421 

AtBMI1-mediated gene repression.  422 

Regulatory networks of AtBMI1, EMF1 and LHP1 423 

 To investigate the functional relationship between AtBMI1 proteins and EMF1, 424 

we compared direct EMF1 targets as previously determined through genome-wide 425 

ChIP-chip analysis (Kim et al., 2012) with our WT_K27 gene dataset and with genes 426 

with altered expression (up and downregulated) in atbmi1a/b/c mutants (Supplemental 427 

Fig. S11A; Supplemental Table S4). Clustering analysis showed a subgroup of 786 428 

overlapping genes, indicating that among the misexpressed genes in atbmi1a/b/c there is 429 

a significant amount of EMF1 targets. Then, we determined the number of up_K27 430 

genes in atbmi1a/b/c that were included in this subgroup (Fig. 6A). We found that half 431 

of atbmi1a/b/c up_K27 genes were EMF1 targets, suggesting interplay of EMF1 and 432 

AtBMI1 proteins in the regulation of a considerable number of genes.  433 

 There was little overlap between genes up_K27 in atbmi1a/b/c and emf1-2 [Fig. 434 

6B; Supplemental Table S4; (Kim et al., 2010)]; furthermore, the majority of EMF1 435 

target genes up_K27 in atbmi1a/b/c were not upregulated in emf1-2 mutants, which is 436 

consistent with the previous observation that expression of only a small percentage of 437 

EMF1 target genes is increased in emf1-2 mutants [(Kim et al., 2012); Fig. 6C]. LHP1 438 

has been shown to co-localize with 85-90% of H3K27me3 marked sites in Arabidopsis 439 

(Turck et al., 2007; Zhang et al., 2007; Engelhorn et al., 2012); consistent with this, 440 

92.3% of our list of H3K27me3 marked genes (4949 out of 5360) were occupied by 441 
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LHP1 according to a recently published data set of LHP1 targets (Veluchamy et al., 442 

2016); of these genes, 1406 significantly overlap with the genes misexpressed (up and 443 

downregulated) in atbmi1a/b/c mutants (Supplemental Table 4; Supplemental Fig. 444 

11B). Furthermore, we found that 93.9% of atbmi1a/b/c up_K27 genes were LHP1 445 

targets (Fig. 6C), suggesting that AtBMI1 and LHP1 co-regulate a high number of 446 

genes. However, when we compared H3K27me3 marked genes upregulated in lhp1 447 

(fold change ≥2, according to Wang et al. 2016; Supplemental Table S3) with up_K27 448 

atbmi1a/b/c genes (Fig. 6D) we found very little overlap, indicating that loss of LHP1 449 

function has also little impact on the expression of AtBMI1 regulated genes. Loss of 450 

LHP1 function, as loss of EMF1 function, mostly impacts the expression of genes 451 

involved in reproductive development. These genes were not upregulated in atbmi1a/b/c 452 

mutants and some were even repressed, suggesting that LHP1 and EMF1 play different 453 

roles in their regulation. In conclusion, regulation is not correlated to the co-distribution 454 

of EMF1 and LHP1 and likely also AtBMI1 proteins, at target genes. 455 

 456 

Discussion 457 

 PcG regulation in Arabidopsis requires the activity of three different PRC2s, 458 

which regulate different developmental stages and display partial target specificity, and 459 

PRC1, whose identity and function is not yet well defined. Although several putative 460 

subunits have been identified (Merini and Calonje, 2015), and some evidence suggested 461 

the existence of different functional PRC1 variants (Yang et al., 2013; Calonje, 2014; 462 

Wang et al., 2014; Merini and Calonje, 2015), little is known about their composition 463 

and function. In this work, we integrated genome wide transcriptome data with 464 

H3K27me3 and protein localization data in order to shed some light on the role of 465 

different PRC1 components and their possible relationship throughout plant 466 

development. 467 

Functional redundancy among the AtBMI1s  468 

 The identification of three AtBMI1 paralogs in Arabidopsis raised the question of 469 

whether they display functional divergence (Sanchez-Pulido et al., 2008). We found that 470 

AtBMI1A and B display mainly redundant functions throughout development, although 471 

a small number of genes were specifically sensitive to AtBMI1B. A splice variant is 472 

annotated at the AtBMI1B locus [the Arabidopsis information resource (TAIR)], which 473 

encodes a variant isoform without the amino-terminal RING finger domain 474 
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(Supplemental Fig. S12). It is possible that alternative roles of the variant protein 475 

explain the observed differences in gene expression between atbmi1a and atbmi1b 476 

mutants. Conversely, AtBMI1C regulates a subset of AtBMI1A/B targets. The fact that 477 

ectopic expression of AtBMI1C in double mutants [(Yang et al., 2013); Supplemental 478 

Table S2] cannot rescue atbmi1a/b defects in the aerial part of the seedling points to a 479 

requirement of tissue specific factors for AtBMI1C mediated repression. Accordingly, 480 

AtBMI1C acts redundantly to AtBMI1A/B in the regulation of a considerable number 481 

of genes involved in root development. Differences in protein sequence between 482 

AtBMI1C and AtBMI1A/B (Bratzel et al., 2010; Chen et al., 2010; Bratzel et al., 2012) 483 

may have restricted the possibilities of AtBMI1C to interact with some factors and/or 484 

favored interaction with others. Likewise, MEA cannot compensate the loss of CLF and 485 

SWN function despite its ectopic expression in clf/swn double mutants (Farrona et al., 486 

2011). In any case, AtBMI1A, AtBMI1B and in part AtBMI1C display functional 487 

redundancy, indicating how important it is to ensure AtBMI1 function throughout 488 

development. 489 

Role of AtBMI1 function in plant development 490 

 Transcriptome analysis revealed that 20% of the surveyed transcriptome was 491 

misregulated in atbmi1a/b/c mutants, a much higher percentage than the one reported 492 

for other PcG mutants, including clf/swn (Bouyer et al., 2011; Kim et al., 2012; Wang et 493 

al., 2016) thereby underlining the central role of AtBMI1s in gene regulation. To 494 

determine AtBMI1 regulatory gene network, we focused on genes that were upregulated 495 

in atbmi1 mutants and H3K27me3 marked in WT seedlings of the same age, even 496 

though these genes may represent a subset of candidate AtBMI1 targets. Our analysis 497 

supported a requirement of AtBMI1 function for the repression of the seed 498 

maturation/dormancy program after germination (Bratzel et al., 2010; Chen et al., 2010; 499 

Molitor et al., 2014; Wang et al., 2016); however, it also unveiled the crucial role of 500 

these proteins in promoting the transition from one developmental phase to the next 501 

throughout development (Fig. 7A). After embryogenesis, plants undergo the transition 502 

from seed dormancy to germination that is antagonistically regulated by two hormones, 503 

ABA and Gibberelins (GA) (Shu et al., 2016). During seed maturation, endogenous 504 

ABA accumulates in the seed, inducing and maintaining seed dormancy. In contrast, 505 

before the onset of germination endogenous ABA levels in the seed are down-regulated, 506 

while the GA content is up-regulated. Among the upregulated genes in atbmi1a/b/c 507 
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mutants were genes involved in inducing ABA and/or inhibiting GA signaling (e.g. 508 

ABI3, ABI4, DOG1, PLT5, SOM) (Fig. 6A), indicating that AtBMI1 mediated 509 

repression of these genes promotes this developmental transition. Following 510 

germination, plants pass through a phase of vegetative growth that can be further 511 

divided into a juvenile and an adult vegetative phase. The microRNA 156 (miR156) 512 

regulates a subset of SPL transcription factors that have been shown to promote the 513 

transition from juvenile to adult phase (Wu and Poethig, 2006); therefore, to allow 514 

phase transition, miR156 levels need to decrease. Although our transcriptome analysis 515 

could not detect mature miRNAs, it has been previously shown that pri-miR156 was 516 

upregulated in atbmi1a/b mutants of all phenotypic severity (Pico et al., 2015); 517 

accordingly, we found downregulation of several SPLs (e.g. SPL2/3/4/8/12) (Fig. 6A), 518 

supporting that AtBMI1 function is required to allow this transition. Eventually, plants 519 

experience the transition from vegetative to reproductive development. This transition 520 

requires the repression of several flowering repressors such as FLC, MAF4/5 (Gu et al., 521 

2013) and AGL15 (Fernandez et al., 2014), which are upregulated in double and triple 522 

atbmi1 mutants (Fig. 7A). Consequently, flowering genes like FT, SOC1 and AGL24 523 

were downregulated in atbmi1 mutants; therefore, AtBMI1 activity is also required to 524 

switch from vegetative to reproductive development. 525 

 Furthermore, our data revealed the key role of AtBMI1 activity in controlling 526 

stem cell niche specification and cell proliferation for a proper organ growth and 527 

development via the repression of several master regulators (e.g. PLT and WOX genes) 528 

(Fig. 7B), which is consistent with the wide spread acquisition of proliferating capacity 529 

of atbmi1 strong mutants and the alterations in root, leaf and flower development 530 

observed in different atbmi1 mutants (Bratzel et al., 2010; Yang et al., 2013). 531 

Interplay of AtBMI1 with other PcG related factors 532 

 The function of AtBMI1 has been linked to the function of VAL1/2 proteins for 533 

the regulation of several seed maturation genes (Yang et al., 2013). Here, we show that 534 

VAL1/2 and AtBMI1s act together in the regulation of the seed maturation/dormancy 535 

program; however, they do not seem to collaborate in the regulation of other 536 

developmental processes.  We found a specific enrichment of LEC2/ABI3/VP1 and 537 

ABRE/G-box overlapping with GT-box cis-regulatory elements at the promoters of 538 

genes co-regulated by AtBMI1 and VAL1/2 proteins. An enrichment of 539 

LEC2/ABI3/VP1 and ABRE BINDING FACTOR 1 (ABF1) elements has been previously 540 
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reported at the promoter of genes upregulated in atbmi1a/b weak phenotype (Wang et 541 

al., 2016). Genes co-regulated by ABI3/VP1-like proteins and ABA contain these 542 

motifs at their promoters (Suzuki et al., 2005). Accordingly, ABI3 and ABI5 regulate 543 

gene expression synergistically. Moreover, ABI3 interacts physically with ABI5, 544 

thereby ABI3 is also recruited to the promoters of the target genes via protein-protein 545 

interaction (Nakamura et al., 2001). A similar mechanism could be assumed for 546 

repression in which the VAL1/2 proteins bind to LEC2/ABI3/VP1 and ASIL1 to the GT-547 

box element, resulting in a direct competition with the transcriptional activators. The 548 

binding of VAL1/2 and possibly ASIL1 proteins could recruit the AtBMI1s and the 549 

other PcG proteins to establish chromatin modifications that maintain gene repression. 550 

Whether ASIL1-mediated repression involves in vivo interaction with VAL and/or PcG 551 

proteins remains to be investigated; however, in support of this, it has been shown that 552 

EMF1 interacts with ASIL1 (named EIP7) in yeast two hybrid experiments (Park et al., 553 

2011). 554 

 We also found an enrichment of LEC2/ABI3/VP1 elements, but not ABRE or GT-555 

box elements, at the promoter of genes exclusively up_K27 in atbmi1a/b/c mutants, 556 

suggesting an implication of B3 factors in the regulation of these genes as well. 557 

Interestingly, two VAL1 splice variants have been identified through RNA sequencing 558 

analysis: a full-length form and a truncated form lacking the plant homeodomain-like 559 

domain (PHD-L) similar to VAL3, which also lacks the PHD-L domain (Schneider et 560 

al., 2016). It is possible that truncated VAL1 and VAL3 target this group of genes, 561 

explaining their lack of upregulation in val1/2 mutants. Alternatively, since the B3 562 

superfamily encompasses other subfamilies, such as the AUXIN RESPONSE 563 

FACTORS (ARF), the RELATED ABI3/VP1 (RAV) and the REPRODUCTIVE 564 

MERISTEM (REM) subfamilies (Swaminathan et al., 2008), some uncharacterized 565 

members of these might bind the LEC2/ABI3/VP1 element or a variation of it. In any 566 

case, the promoters of the VAL1/2-independent genes are also enriched in other cis-567 

regulatory elements such as ALFIN1 motifs that are recognized in Arabidopsis by the 568 

ALs. Since the AL proteins interact with AtBMI1 proteins (Molitor et al., 2014), it is 569 

likely that a combination of B3 and AL factors participates in the regulation of a subset 570 

of these genes.  571 

 The relationship between AtBMI1 and EMF1 has been controversial. On one side, 572 

mutants in both display a very different phenotype and misexpress different subsets of 573 
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PRC2 targets (Kim et al., 2010; Pu et al., 2013; Yang et al., 2013), which has led to 574 

propose the existence of PRC1 variants (Calonje, 2014; Merini and Calonje, 2015); 575 

however, they also co-regulated a subset of targets (e.g. ABI3, ABI4, FLC) and in vitro 576 

they interact. Recent reports have shown that EMF1 co-purifies with PRC2 components 577 

(Liang et al., 2015), questioning its exclusive association with PRC1. However, EMF1 578 

co-localizes with only 45% of H3K27me3 marked genes showing a more narrow 579 

distribution at target genes than H3K27me3 marks (Kim et al., 2012). Another putative 580 

PRC1 component, LHP1, which broadly distributes across H3K27me3 marked sites 581 

(Turck et al., 2007; Zhang et al., 2007; Engelhorn et al., 2012), also co-purifies with 582 

PRC2 (Derkacheva et al., 2013; Liang et al., 2015) and interacts with AtBMI1 and 583 

AtRING1 proteins in vitro (Xu and Shen, 2008; Bratzel et al., 2010). However, neither 584 

EMF1 nor LHP1 seem to be PRC2 core components since they are required for 585 

H3K27me3 marking of only a subset of PRC2 targets (Kim et al., 2012; Wang et al., 586 

2016).   587 

 Interestingly, when we compared the H3K27me3 marked genes that were 588 

upregulated in atbmi1a/b/c with K27_EMF1 direct targets, we found that 50% of the 589 

upregulated genes in atbmi1 mutants were also EMF1 targets, suggesting that AtBMI1 590 

and EMF1 could be in a complex and potentially both impact the expression of these 591 

genes. Since LHP1 is at 93.9% of genes up_K27 in atbmi1a/b/c mutants, the same holds 592 

true also for this PRC1 component. However, the little overlap between the genes 593 

upregulated in atbmi1a/b/c and emf1-2 or lhp1 suggests a decisive role of AtBMI1 594 

function in maintaining their repression. There were also genes exclusively upregulated 595 

in emf1-2 or lhp1, the majority of which are involved in flower development and these 596 

genes were not upregulated in atbmi1a/b/c mutants. An interesting possibility could be 597 

that a PcG mechanism dependent on EMF1, LHP1 and PRC2 activities has evolved to 598 

specifically regulate the flower developmental program, which is consistent with the 599 

finding of these proteins co-purifying with PRC2 (Liang et al., 2015).  600 

 601 

Conclusions 602 

 In summary, our data point to different PRC1 functional networks in which genes 603 

may be regulated by AtBMI1 and/or EMF1 together with LHP1 and PRC2, and that 604 

additional proteins are required to regulate distinct subsets of genes. This is the case of 605 

VAL1/2 proteins in the seed development program, which built a network that 606 
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apparently also includes ABRE/GT-box binding factors (Fig. 7C). Furthermore, it seems 607 

highly likely that other B3 domain transcription factors and ALs are part of AtBMI1-608 

repressive circuits. In contrast, there seems little or no overlap in gene regulation by 609 

AtBMI1 on the one side and EMF1 and LHP1 on the other, although these factors may 610 

physically interact and be simultaneously present at target genes.  611 

 612 

Materials and Methods 613 

Plant material and growth conditions 614 

Arabidopsis atbmi1a (N645041 line), atbmi1b (CS855837 line) atbmi1a/b and 615 

atbmi1a/b/c (atbmi1c is a GT21221.Ds5.09.01.2006.jz07.348 line) mutants were 616 

described previously (Bratzel et al., 2010; Yang et al., 2013). Segregation of “weak” 617 

and “strong” atbmi1a/b phenotypes has been previously shown (Bratzel et al., 2010; 618 

Pico et al., 2015). Plants were grown under long-day conditions at 21 °C on MS agar 619 

plates containing 1.5% sucrose and 0.8% agar. Seedling samples were collected at 620 

zeitgeber time 2. 621 

Transcriptomic Analysis by RNA sequencing  622 

The experimental design in our study consisted of two replicates for each genotype (WT 623 

Col-0, atbmi1a, atbmi1b, atbmi1a/b and atbmi1a/b/c). RNA extraction was performed 624 

using Qiagen-RNAesy mini-kit, following the manufacturer’s instruction. RNA 625 

concentration and purity was tested using nanodrop-photometric quantification (Thermo 626 

Scientific).  Library preparation was carried out following the manufacturer’s 627 

recommendations (TruSeq RNA Sample Prep Kit v2, Illumina). Sequencing of RNA 628 

libraries was performed with the Illumina HiSeq 2000 sequencer, yielding an average of 629 

approximately 15 million 100 bp long paired-end reads for each sample. The software 630 

package FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used 631 

for quality control. All sequencing samples were of high quality, and no preprocessing 632 

of the reads was required to remove low-quality reads or read fragments (Supplemental 633 

Fig. S2). The Arabidopsis thaliana Col-0 reference genome and annotation were 634 

downloaded from the Phytozome database (TAIR10) (Goodstein et al., 2012). Mapping 635 

of reads to the reference genome, transcript assembly, and differential expression were 636 

performed with the software tools Bowtie, TopHat, and Cufflinks (Trapnell et al., 2012) 637 

using default parameters producing a high percentage of concordant pair aligmnet rate 638 
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(Supplemental Table S1). The R package from Bioconductor CummeRbund 639 

(http://www.bioconductor.org/) was used for subsequent analysis and graphical 640 

representation of the results. Differentially expressed genes were selected as those 641 

exhibiting an expression fold change greater than four when compared with the WT and 642 

a p-value < 0.05. Venn diagrams comparing the different sets of differentially expressed 643 

genes were generated with Venny 2.0.2 644 

(http://bioinfogp.cnb.csic.es/tools/venny/index.html) and the significance of their 645 

intersections with H3K27me3 marked genes was performed using Fisher’s exact test. 646 

Gene ontology term enrichment was performed over the sets of differentially expressed 647 

genes with the web-based tools AgriGO and ReViGO (Supek et al., 2011; Yu et al., 648 

2012) and the R bioconductor package ClusterProfiler (Du et al., 2010) using Singular 649 

Enrichment Analysis.   650 

The clustering analysis was performed using the hierarchical algorithm implemented in 651 

the R package cluster over normalized expression levels measured using FPKM.  652 

Quantitative Real Time-PCR (qRT-PCR)  653 

For qRT-PCR analysis, cDNAs were reverse-transcribed from total RNAs with 654 

QuantiTect reverse transcription kit (Qiagen). qRT-PCRs were performed using Sensi 655 

FAST SYBR & Fluorescein kit (Bioline) and an iQ5 Biorad system. Expression was 656 

calculated relative to ACTIN.  Primers used were as follow:  657 

WOX9-RT-Fw (5´ACTGTCGGAGGGTTTGAAGGTATC 3´); WOX9-RT-Rev 658 

(5´AGTGGTAGCGTAACAAATCTGAGTCT 3´); 659 

WOX2-RT-Fw (5´GCTTACTTCAATCGCCTCCTCCACAA 3´); WOX2-RT-Rev 660 

(5´GTCCGTTTCTCGTAGCCACCACTTG 3´); 661 

SMB-RT-Fw (5´ACGAATATCGCTTGGACGATAG 3´); SMB-RT-Rev 662 

(5´GCTCTTGTTCTTGGTGAAATCC 3´); 663 

ACT2-RT-Fw (5´CACTTGCACCAAGCAGCATGAAGA 3´); ACT2-RT-Rev (5´ 664 

AATGGAACCACCGATCCAGACACT 3´). 665 

Motif and Transcription factor binding site enrichment analysis 666 

Transcription Factor Binding Sites (TFBS) enrichment analysis was performed using 667 

HOMER (Heinz et al. 2010) and the known TFBS sequences in plants from the 668 

databases AGRIS (Davuluri et al., 2003), JASPAR (Sandelin et al., 2004) and AthaMap 669 

(Steffens et al., 2004). The findMotifs.pl script was used with default parameters to 670 

 www.plantphysiol.org on December 14, 2016 - Published by www.plantphysiol.orgDownloaded from 
Copyright © 2016 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/
http://www.plantphysiol.org


 

22 
 

perform known and de-novo motif over-representation analysis for DNA sequences of 671 

6, 7, 8 and 9 bp lengths. The target set consisted of all the gene promoters of interest. 672 

The background used for the over-representation analysis consisted of all the gene 673 

promoters annotated in the Arabidopsis TAIR10 genome. For the co-occurrence of the 674 

ABRE and GT-box motifs, we first identify the locations of the ABRE motif at the 675 

promoters and then extracted the DNA sequences 100bp upstream and downstream 676 

from the center of the ABRE motif. We performed an enrichment analysis of the GT-677 

box motif in these DNA sequences using the findMotifsGenome.pl HOMER script with 678 

default parameters. The significance of the overlapping between motifs was performed 679 

as an enrichment analysis of the DNA sequence resulting from the combination of both 680 

motifs. DNA sequences used in these analyses were downloaded using the BioMart 681 

functionality associated with Phytozome (Goodstein et al., 2012). Gene promoters were 682 

defined as the 1000 bp DNA sequence upstream of the start codon of the corresponding 683 

gene. 684 

Data availability 685 

The RNA-seq raw data generated in this study are publicly available from the GEO 686 

database identified with accession number GSE83568 687 

(http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?&acc=GSE83568).  688 

 689 

Supplemental materials  690 

Figure S1. Phenotypes of atbmi1a/b and atbmi1a/b/c mutants. 691 

Figure S2. Boxplots representing the read quality scores (Illumina 1.5 encoding) per 692 

base for the first replicate of all samples. 693 

Figure S3. Correlation among differentially expressed genes in WT and the different 694 

genotypes. 695 

Figure S4. Altered gene expression in atbmi1 mutants. 696 

Figure S5. Gene ontology (GO) enrichment analysis of up- and downregulated genes in 697 

atbmi1a/b mutants. 698 

Figure S6. Gene ontology (GO) enrichment analysis of up- and downregulated genes in 699 

atbmi1a/b/c mutants. 700 

Figure S7. Putative AtBMI1direct target genes. 701 
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Figure S8. Genes differentially expressed in atbmi1a/b and atbmi1a/b/c. 702 

Figure S9. Different gene expression patterns of atbmi1a/b weak and atbmi1a/b/c 703 

mutants. 704 

Figure S10. Expression levels of different important developmental genes in WT and 705 

atbmi1a/b/c mutants. 706 

Figure S11. AtBMI1, EMF1 and LHP1 functional relationship. 707 

Figure S12. AtBMI1B (At1g06770) splice variants. 708 

Table S1. Number of reads and concurrent pair alignment rate per sequencing sample 709 

Table S2. Up- and downregulated genes in atbmi1 mutants. 710 

Table S3. Upregulated genes in atbmi1 and val1/2 mutants that are marked with 711 

H3K27me3 marks in WT, and genes in cluster I, II and III after comparing genes 712 

up_K27 in atbmi1a/b and atbmi1a/b/c. 713 

Table S4. Upregulated genes in emf1-2 and lhp1 mutants that are marked with 714 

H3K27me3 marks in WT. 715 

 716 

Figure legends 717 

Figure 1. Transcriptome analysis of WT and selected atbmi1 mutants at 10 DAG. 718 

(A) Volcano plots representing differentially expressed genes in atbmi1 mutants 719 

compared to WT according to a 4-fold change and a p-value of 0.05. Green color 720 

indicates significantly upregulated genes and red color significantly downregulated 721 

genes. (B) Principal Component Analysis of the transcriptomes showing that WT, 722 

atbmi1a and atbmi1b cluster together, whereas atbmi1a/b and atbmi1a/b/c constitute 723 

two distinct clusters. (C) Differentially expressed genes in the different genotypes, 724 

where the number of up and down regulated genes is indicated. (D) Number of genes 725 

that were upregulated in the different mutants and H3K27me3 marked in WT seedlings 726 

of the same age (up_K27). 727 

Figure 2. Genes regulated by AtBMI1A and AtBMI1B. (A) Venn diagram showing 728 

the number of up_K27 genes that overlap among atbmi1a, atbmi1b and atbmi1a/b 729 

mutants. All overlaps are significant with p-values lower than 2.2x10-16 and odds ratios 730 

greater than 17 according to Fisher's Exact test (B) Expression of levels of genes that 731 

were apparently specifically upregulated in atbmi1a or atbmi1b mutants in the different 732 

genotypes. 733 

 www.plantphysiol.org on December 14, 2016 - Published by www.plantphysiol.orgDownloaded from 
Copyright © 2016 American Society of Plant Biologists. All rights reserved.

http://www.plantphysiol.org/
http://www.plantphysiol.org


 

24 
 

Figure 3. Functional redundancy between AtBMI1A/B and AtBMI1C. (A) 734 

Clustering analysis of genes up_K27 in atbmi1a/b and atbmi1a/b/c mutants. This is a 735 

significant overlap with a p-value lower than 2.2x10-16 and an odds ratio greater than 21 736 

according to Fisher's Exact test. (B) Expression levels in WT, atbmi1a/b and 737 

atbmi1a/b/c of genes from the different clusters. The color code represents normalized 738 

expression values measured in FPKM. 739 

Figure 4. Different gene expression patterns of atbmi1a/b weak and strong mutants. 740 

(A) Venn diagram showing overlap between the genes up_K27 in atbmi1a/b weak and 741 

strong mutants. The overlap is significant with a p-value lower than 2.2x10-16 and an 742 

odds ratio greater than 15 according to Fisher's Exact test. Some representative 743 

transcription factors (TFs) in each dataset are indicated. TFs found in the two data sets 744 

are highlighter in red. (B) Key flowering genes are downregulated in atbmi1a/b/c 745 

mutants. The color code in upper panel represents normalized expression values 746 

measured in FPKM. 747 

Figure 5. Interplay of AtBMI1 proteins with VAL1/2 proteins. (A) Venn diagram 748 

showing overlap between the genes up_K27 in atbmi1a/b/c and val1/2 mutants. 749 

Sequence LOGOs of cis-regulatory elements enriched only in up_K27 atbmi1a/b/c and 750 

in atbmi1a/b/c and val1/2 overlapping genes. (B) Co-occurrence and overlapping of 751 

ABRE/G-box and GT-box at the promoter of AtBMI1/VAL1/2 co-regulated genes. P-752 

values and percentage in targets and background are indicated. 753 

Figure 6. AtBMI1, EMF1 and LHP1 regulatory networks. (A) Comparison of genes 754 

H3K27me3 marked bound by EMF1 and misexpressed in atbmi1a/b/c and with genes 755 

up_K27 in atbmi1a/b/c. (B) Venn diagram showing up_K27 genes in atbmi1a/b/c and 756 

emf1-2. (C) Comparison of genes H3K27me3 marked bound by LHP1 and 757 

misexpressed in atbmi1a/b/c and with genes up_K27 in atbmi1a/b/c. (D) Venn diagram 758 

showing up_K27 genes in atbmi1a/b/c and lhp1. Some overlapping and non-759 

overlapping representative genes are indicated.  All these overlaps are significant (p-760 

values and Fisher's Exact test results are indicated). 761 

Figure 7. Role of AtBMI1 proteins in regulating plant development. (A) AtBMI1 762 

proteins and PRC2 promote developmental phase transitions by the repression of key 763 

regulatory genes. (B) AtBMI1 and PRC2 are required to control cell proliferation and 764 

differentiation during organ growth and development through the repression of master 765 
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regulators. (C) PRC1 variants differing in component composition and biochemical 766 

properties may collaborate with PRC2 activity in regulating phase transitions and 767 

different developmental processes throughout plant development. VAL and ASIL1/2 or 768 

AL1-7 proteins may recruit AtBMI1-containing complexes to target gene promoters by 769 

binding the appropriate combination of cis-regulatory elements. 770 
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Figure S1. Phenotypes of atbmi1a/b and atbmi1a/b/c mutants. (A) WT 
seedling  at 10 DAG. (B) atbmi1a/b mutants at 10 DAG. (C) atbmi1a/b/c mutants at 
10 DAG. Bars, 2 mm.  



Figure S2. Boxplots representing the read quality scores (Illumina 1.5 encoding) per base 
for the first replicate of all samples. The quality scores for each base in the reads remained 
within the green area indicating a high sequencing quality. The common decrease in quality at 
the end of the reads is observed. Nevertheless, the quality never enters the problematic red area. 



Table S1. Number of reads and concurrent pair alignment rate per sequencing 
sample. On average the number of reads per sample is approximately 15 million and the 
average concurrent pair alignment rate is greater than 95.%. This indicates a high read 
sequencing quality and the lack of sample contamination. 
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Figure S3. Correlation among differentially expressed genes in WT and the 
different genotypes. Scatter plots comparing gene expression levels in the different 
mutants against WT, single atbmi1a against atbmi1b, and atbmi1a/b against  
atbmi1a/b/c. 
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Figure S4. Altered gene expression in atbmi1 mutants. (A) Venn diagram showing 
the number of genes up- and (B) downregulated that overlap among the different 
genotypes.  
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Figure S5. Gene ontology (GO) enrichment analysis of up- and downregulated genes in 
atbmi1a/b mutants. Distribution of enriched GO terms into the different “biological process” 
categories as defined by TAIR. p-values are indicated. 
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Figure S6. Gene ontology (GO) enrichment analysis of up- and downregulated 
genes in atbmi1a/b/c mutants. Distribution of enriched GO terms into the different 
“biological process” categories as defined by TAIR. p-values are indicated. 
  
 



398 196 5164 526 145 5215 

1387 766 4594 765 1397 4595 

K27 in WT (5360) 

K27 in WT (5360) 

K27 in WT (5360) 

K27 in WT (5360) 

up in atbmi1a up in atbmi1b 

up in atbmi1a/b up in atbmi1a/b/c 

Figure S7. Putative AtBMI1direct target genes. (A) Venn diagrams showing the number of 
genes that were upregulated (up) in the different mutants and H3K27me3 marked (K27) in 
WT seedlings of the same age. All these overlaps are significant with p-values lower than 1.2 
x10-6 and odds ratios greater 1.5 according to Fisher’s Exact test except in the case of the 
atbmi1b mutant, which is probably because it is a knock-down mutant. (B) Venn diagrams 
showing the number of genes that were downregulated (down) in the different mutants and 
H3K27me3 marked (K27) in WT seedlings of the same age. All these overlaps are non-
significant with p-values higher than 0.4231 and odds ratios lower than 1.044 according to 
Fisher’s Exact test except in the case of the atbmi1abc mutant, which is probably because 
the developmental stage of the mutant. 
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Figure S8. Genes differentially expressed in atbmi1a/b and atbmi1a/b/c. (A) Expression 
levels of several genes from the different clusters in WT seedlings and the different mutants. (B) 
qRT-PCR analysis of WOX2, WOX9 and SMB expression levels y whole seedlings and roots of 
WT, atbmi1c and atbmi1a/b/c mutants. Quantifications are relative to ACTIN levels. Error bars of 
three independent measurements are indicated. 
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Figure S9. Different gene expression patterns of atbmi1a/b weak and atbmi1a/b/c 
mutants. Venn diagram showing overlapping between the genes up_K27 in atbmi1a/b weak 
and atbmi1a/b/c mutants. The overlap is significant with a p-value lower than 2.2x10-16 and an 
odds ratio greater than 17 according to Fisher's Exact test. Some representative transcription 
factors (TFs) in each dataset are indicated. TFs found in the two data sets are highlighter in 
red.  
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Figure S10. Expression levels of different important developmental genes in WT and 
atbmi1a/b/c mutants. Transcript levels of genes from PLT and WOX gene families and 
chromatin related factors belonging to the PcG and TrxG families. 



K27_ EMF1 Bound 
(2489) 

Misexpressed in 
atbmi1a/b/c 

(5097) 

786 1703 4311 

p-value < 2.2e-16 
odds ratio  1.51  
 

Misexpressed in 
atbmi1a/b/c 

(5097) 

K27_ LHP1 Bound 
(4949) 

1406 3545 3691 

A 

B 

Figure S11. AtBMI1, EMF1 and LHP1 functional relationship. (A) Clustering analysis 
of genes misexpressed (up and downregulated) in atbmi1a/b/c and H3K27me3 marked 
genes bound by EMF1. (B) Clustering analysis of genes misexpressed (up and 
downregulated) in atbmi1a/b/c and H3K27me3 marked genes bound by LHP1. These 
overlaps are significant (p-values and Fisher's Exact test results are indicated). 
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Figure S12. Schematic representation of AtBMI1B (At1g06770) splice variants (left) and 
predicted protein sequence comparison (right). Light boxes indicate untranslated regions, 
blue boxes exons, and black lines introns. 


	Parsed Citations
	Article File
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Parsed Citations
	/content/plantphysiol/supplemental/pp.16.01259/DC1/1/PP2016-01259R1_Supplemental_Figs_and_Table_S1.pdf
	Número de diapositiva 1
	Número de diapositiva 2
	Número de diapositiva 3
	Número de diapositiva 4
	Número de diapositiva 5
	Número de diapositiva 6
	Número de diapositiva 7
	Número de diapositiva 8
	Número de diapositiva 9
	Número de diapositiva 10
	Número de diapositiva 11
	Número de diapositiva 12
	Número de diapositiva 13


