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Summary

Stroke is defined as a neurological deficit caused by a sudden, localized injury to
the central nervous system due to a vascular pathology. The traditional clinical
approach for understanding the origin of stroke symptoms was to attribute them
to the local infarct. However, regions interconnected with the infarct may also be
implicated in the symptom manifestation and recovery process, even if they
remain structurally intact after stroke - a theory put forward over a century ago
as diaschisis. The theory suggests that remote interconnected areas undergo
plastic changes and are indirectly impaired by the local infarct.

With the development of resting-state functional magnetic resonance imaging
(rs-fMRI), it is now possible to explore alterations in functional connections
between distant areas on the macroscale level using a single scan. This approach
has been previously applied to study plasticity following stroke, with some
promising results linking connectivity alterations with behavioral deficits. Based
on these findings, novel therapeutic approaches, such as non-invasive brain
stimulation techniques are aimed at modulating connectivity within the affected
network.

Stroke poses an experimental challenge due to the heterogeneity of both lesion
location and clinical symptoms. Previous studies were therefore focused on
connectivity changes either based on similarity of lesion location or similarity of
symptoms, restricting the analysis to one functional network and corresponding
neurological deficit. However, it is rarely the case that two stroke lesions are
identical and most importantly, stroke generally results in more than one
functional deficit. For these reasons, a multi-network assessment of plasticity is
needed.

It was therefore the main goal of the current dissertation to develop a
methodological approach that explores plasticity after stroke at the multi-
network level using rs-fMRI data. This enables the exploration of patients with
heterogeneous lesions, providing the possibility of a unified model to study
recovery processes following a multifaceted neurological damage at the
individual level.

Study I presents a novel mathematical analysis to rs-fMRI data computing the
reproducibility of functional connectivity patterns using the concordance
correlation coefficient, a quantitative measure of spatial similarity. This method
can be applied to longitudinal datasets acquired after stroke to detect areas
demonstrating large alterations in the functional connectivity structure over
time. Based on our findings in healthy controls, and previous studies linking
functional connectivity changes and behavioral impairment after stroke, we
suggest concordance as a functionally meaningful measure of plasticity as
reflected in changes of the spatial pattern of connectivity maps.

Building upon the methodological tool presented in study I, study II introduces a

model for multi-network assessment of functional connectivity after stroke and
its application to a group of stroke patients with heterogeneous lesions. We
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computed concordance at the network level to quantify changes in functional
connectivity over time. We found that on the individual level, even in cases of
multi-network damage, functional connectivity is preferentially altered over time
in affected networks, demonstrating lower concordance. Importantly, the degree
of change in functional connectivity over time was correlated with the behavioral
trajectory. This study provides empirical evidence supporting the theoretical
model of diaschisis and further generalizes results obtained in single networks,
among them the sensory, motor, attention and default-mode, to multiple large-
scale networks, regardless of the lesion location or implicated network.

Study III is a review paper aimed at exploring the recent trends in the rapidly
evolving field of rs-fMRI after stroke. We provide a summary of studies published
thus far and discuss the utility and limitations of the approach. Based on the
reviewed literature we describe the potential usefulness of rs-fMRI to stroke
diagnosis in the acute phase as well as to the study of reorganization and
plasticity in the subacute and chronic stages. We describe the model of stroke as
a network disruption, and present the shift in the different methodologies
applied to the study of plasticity following stroke given this model.

To summarize, based on our findings from the three studies discussed in this
dissertation, we suggest a conceptual and methodological framework to study
stroke as a network disruption rather than a mere localized phenomenon. This
view of stroke has experimental implications, and most importantly potential
therapeutic value in forming individualized protocols for non-invasive
stimulation techniques.
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Zusammenfassung

Ein Schlaganfall wird definiert als akutes neurologisches Defizit, das durch eine
vaskuldre Pathologie (Ischdmie oder Blutung) entsteht. Traditionell versucht
man, die Schlaganfall-Symptome als Folge einer umschriebenen fokalen
Schadigung zu verstehen. Allerdings konnen auch weitere, mit den geschadigten
Regionen verbundene Hirnareale die Symptomausprdagung und den
Heilungsprozess beeinflussen - selbst wenn sie strukturell intakt erscheinen. Die
vor mehr als einem Jahrhundert begriindete Diaschisis-Theorie besagt, dass
entfernte, aber verbundene Areale plastischen Verdnderungen unterzogen und
indirekt durch den lokalen Infarkt beeintrachtigt werden kénnen.

Mit der Entwicklung der sogenannten ,resting-state“ funktionellen
Magnetresonanztomographie  (rs-fMRT) ist es inzwischen madglich,
Verdnderungen in funktioneller Konnektivitit zwischen weit entfernten Arealen
mit einem einzigen Scan abzubilden. Friithere Studien nutzten diesen Ansatz
bereits zur Untersuchung von Plastizitit nach einem Schlaganfall und lieferten
einige vielversprechende Resultate, welche den Zusammenhang zwischen
Verdnderungen der funktionellen Konnektivitit und neurologischen Symptomen
aufzeigten. Auf Grundlage dieser Resultate versuchen derzeit neue
therapeutische Ansitze, wie etwa nicht-invasive Hirnstimulations-Techniken, die
Konnektivitit in betroffenen Netzwerken zu modulieren.

Ein zentrales Problem fiir die Untersuchung von Plastizitit nach einem
Schlaganfall ist die ausgeprdgte Heterogenitit des Lasionsortes wie auch die
damit verbundene Vielfalt klinischer Symptome. In bisherigen Studien zur
Konnektivitdt nach einem Schlaganfall konzentrierte man sich deswegen auf
Schlaganfille mit moglichst gleichartigen Lasionsorten und &hnlicher
Symptomatik. Allerdings sind zwei Schlaganfall-Lasionen praktisch nie identisch
und ein Schlaganfall geht selten mit nur einem Symptom einher. Deswegen ist
die Erfassung der Verdnderung mehrerer neurologischer Systeme (,multipler
Netzwerke“) notwendig.

Das lbergeordnete Ziel der vorliegenden Dissertation war es daher, einen
methodischen Ansatz zu entwickeln, der die Plastizitit nach einem Schlaganfall
auf der Multi-Netzwerk Ebene mittels rs-fMRT beschreiben kann. Dies
ermoglicht die Einbeziehung von Patienten mit heterogenen Lisionen und
verschiedener klinischer Symptomatik und bietet einen einheitlichen Ansatz fiir
alle Schlaganfall-Patienten, der es dennoch erlaubt, individuelle Verldufe zu
identifizieren.

In Studie I wird eine neue mathematische Analyse fiir rs-fMRT Daten prasentiert,
die den sogenannten ,Konkordanz-Korrelationskoeffizienten“ ermittelt. Dieses
Maf beschreibt die rdumliche Ahnlichkeit von zwei Konnektivitits-Kartierungen
und erlaubt es somit, Anderungen der Konnektivitit im Zeitverlauf zu erkennen.
Diese Methode soll fiir longitudinale Schlaganfall-Untersuchungen anwendbar
sein, um grofde Verdanderungen in der funktionellen Konnektivitatsstruktur tiber
die Zeit aufzudecken. Unsere Ergebnisse mit gesunden Kontrollprobanden und
friihere  Studien, die eine  Verbindung zwischen  funktionellen
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Konnektivitatsverdnderung und Verhaltensbeeintrachtigung zeigten, legen nahe,
dass Konkordanz ein aussagekriftiges, quantitatives Maf fiir Plastizitat darstellt,
wobei sich die Plastizitidt hier durch Anderungen des raumlichen Musters der
Konnektivitats-Kartierungen ausdriickt.

Basierend auf der methodischen Entwicklung in Studie I wird in Studie II ein
Model zur Multi-Netzwerk Analyse der funktionellen Konnektivitit nach
Schlaganfall prasentiert und auf eine Gruppe von Schlaganfall-Patienten mit
heterogenen Lisionen angewandt. Wir berechneten hierzu die Konkordanz auf
der Ebene von neuronalen Netzwerken, um Veranderungen in der funktionellen
Konnektivitat tiber die Zeit hinweg zu quantifizieren. Wir konnten individuell fiir
die verschiedenen Patienten zeigen - selbst wenn mehrere Netzwerke betroffen
waren - dass die Konkordanz sich bevorzugt in von Lisionen betroffenen
Netzwerken verringerte. Besonders hervorzuheben ist dabei, dass der Grad der
Veranderung der funktionellen Konnektivitdt (,Plastizitat) tiber die Zeit hinweg
mit dem Verlauf der Kklinischen Symptomatik korrelierte. Diese Studie
unterstiitzt das theoretische Model der Diaschisis und verallgemeinert die
Ergebnisse, die in einzelnen Netzwerken gewonnen wurden, zusitzlich fir
grofiraumige Netzwerke; ungeachtet des Lasionsortes oder der einbezogenen
Netzwerke.

In Studie III, einer Ubersichtsarbeit, werden zunichst die aktuellen Ergebnisse
im Feld der rs-fMRT innerhalb der Schlaganfallforschung kritisch diskutiert und
evaluiert. Aus dieser kritischen Erérterung leiten wir Perspektiven und Grenzen
der Methode ab. Speziell untersuchen wir die mogliche Anwendung von rs-fMRT
zur Akutdiagnostik des Schlaganfalls sowie zur Erforschung der Reorganisation
des Gehirns in der subakuten und chronischen Phase. Schlieflich etablieren wir
ein Modell des Schlaganfalls als ,Netzwerk-Stérung” und erértern verschiedene
Ansatze, welche dieser Sichtweise in der Untersuchung des Schlaganfalls gerecht
werden kdnnen.

Zusammenfassend schlagen wir einen neuen konzeptuellen und methodischen
Ansatz vor, Schlaganfall weniger als lokalisiertes Phdnomen sondern vielmehr
als Netzwerk-Stéorung zu verstehen. Diese Sichtweise hat nicht nur
wissenschaftliche Implikationen sondern bietet auch therapeutische
Perspektiven: Aus Kartierungen der funktionellen Konnektivitit nach
Schlaganfall kénnen individuell angepasste Protokolle fiir die nicht-invasive
Hirnstimulation abgeleitet werden, mit dem Ziel, Stérungen der Netzwerk-
Konnektivitat zu korrigieren.
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1 Introduction

The ability of the brain to modify its structural and functional properties is
termed plasticity (Kolb & Gibb, 2014; Kolb & Whishaw, 1998). This fundamental
ability of the brain is at the core of developmental processes, learning, as well as
states of disease, among them recovery from brain injuries and stroke (Chen et
al, 2002; Cramer et al,, 2011; Johansson, 2004; Johnston, 2004; Kolb & Gibb,
2014; Kolb & Whishaw, 1998; Pascual-Leone et al, 2005). The sudden
deprivation of blood supply following stroke causes immediate structural
damage and behavioral deficits such as hemiparesis, neglect or language deficits.
However, the remarkable ability of the brain to change following stroke is at the
basis of recovery processes and behavioral improvement. This process is
mediated by numerous mechanisms of plasticity (Caleo, 2015; Dimyan & Cohen,
2011; Ko & Yoon, 2013; T. H. Murphy & Corbett, 2009; Nudo, 2013; Overman &
Carmichael, 2014).

Areas connected to the stroke lesion play an important role in reorganization
after stroke. Outside the localized damage, the structurally intact areas
connected to the lesion undergo plastic changes (Carmichael, 2003, 2006;
Napieralski et al,, 1996; Redecker et al., 2000; Urban et al, 2012). This can
provide an explanation for recovery processes as well as explain the complex
clinical symptoms that arise and are not solely explained by the local damage. In
addition, it can explain why lesions in different locations lead to similar
functional deficits, as in the case of neglect (Corbetta & Shulman, 2011). Stroke
hence affects a network of interconnected regions rather than a single, localized
node (Carter, Shulman, et al., 2012; Corbetta, 2012; Ward, 2005). This view of
stroke as a network disruption has modified the way in which researchers
investigate plasticity following stroke, and has the potential to influence
rehabilitation therapy in the future (Alonso-Alonso et al, 2007; Di Pino et al,
2014; Grefkes & Fink, 2011; Grefkes et al., 2010).

Studying multiple networks has become possible with the development of
functional magnetic resonance imaging (fMRI), and in particular the study of
intrinsic fMRI fluctuations, acquired in the absence of task, known as ‘resting-

state’ fMRI (rs-fMRI). Using rs-fMRI data, connectivity changes can be
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characterized at the whole-brain level and the potential role of regions
connected to the lesion in the recovery process can be further explored. rs-fMRI
has been successfully applied to study connectivity changes in various diseases
(Buckner et al., 2009; M. Greicius, 2008; M. D. Greicius et al., 2007; Kelly et al.,
2007; Kennedy & Courchesne, 2008; K. Wang et al., 2007), even in severely
affected patients suffering disorders of consciousness (Boly et al., 2012; Ovadia-
Caro et al, 2012). The technique demands relatively little from the patients
during the scan, making rs-fMRI an ideal technique to study connectivity changes
after stroke, even in the very acute phase (Amemiya et al., 2013; Lv et al., 2013).
One of the major challenges of exploring plasticity in stroke patients is the
heterogeneity of lesions. It is rarely the case that two different patients will
present the exact same set of symptoms, or will have the exact lesion location.
The research approach until now has been to group patients according to
similarity of symptoms (for example, hemiparesis), or similarity of lesion
location. This has limited the investigation of plasticity to single networks and
single functional domains. The need for a methodology that can be applied to
stroke patients with different locations of lesions and different sets of symptoms
is evident. Such a method would provide a unified model for exploring plasticity
following stroke and has the potential for better characterizing symptoms and
providing a basis for guided therapy in the form of non-invasive brain
stimulation techniques.

In this dissertation, I will review the three studies conducted during my doctoral
research that address the topic of plasticity following stroke, and in particular
suggest a generalized methodological framework to study recovery in patients
with heterogeneous lesions. Study I presents a data-driven mathematical tool to
analyze rs-fMRI data. This algorithm quantifies the reproducibility of
connectivity patterns using the concordance correlation coefficient. The
feasibility and potential usage of this novel analysis is demonstrated on a group
of healthy controls, as well as on a longitudinal dataset of a stroke patient
(Lohmann et al, 2012). Study II focuses on the longitudinal recovery of
functional networks following ischemic stroke, and the relationship between
signal alterations and behavioral recovery. Based on the suggested concordance

measure, we developed a methodological approach that explores connectivity
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changes in multiple networks over time, taking into account heterogeneous
lesions affecting more than one network (Ovadia-Caro et al., 2013). Study IIl is a
review paper exploring the potential usefulness and limitations of the
application of rs-fMRI data to study stroke patients. Being a relatively new field,
all studies published thus far are reviewed and the main results are summarized
and discussed. The general methodological trend in the field and in the
understanding of stroke as a network disruption is described and the clinical
utility of rs-fMRI in patients with stroke is discussed in detail (Ovadia-Caro et al.,

2014).
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2 Theoretical background

2.1 General overview of stroke

Stroke is defined as a neurological deficit caused by a sudden localized injury to
the central nervous system due to a vascular pathology (Sacco et al, 2013).
According to the updated report from the American Heart Association, stroke
was the second-leading cause of death in 2010, accounting for 11.13% of total
deaths worldwide. Currently, stroke is the fifth highest cause of death in the
United States, with a killing rate of once every four minutes. Importantly, stroke
is the main cause of long-term disability, and the leading preventable cause of
disability (Mozaffarian et al., 2015).

There are two main types of stroke, ischemic stroke is caused by obstruction of a
blood vessel and is the most prevalent type of stroke (87% of all strokes), and
hemorrhagic stroke occurs due to blood vessel rupture (Mozaffarian, et al,, 2015).
The data presented in this dissertation is of patients following ischemic strokes.
Immediately following stroke, a complex cascade of pathophysiological changes
occurs in the area of infarct and in the surrounding tissue. Excitotoxicity and
peri-infarct depolarization are followed by inflammation and apoptosis. In
parallel, various endogenous attempts to protect the tissue are initiated (Dirnagl,
2012; Dirnagl & Endres, 2014; Dirnagl et al., 1999; Endres et al., 2008; Endres et
al,, 2004; Kunz et al., 2010). Recovery of function at this stage is dependent on
reperfusion, as well as on the complex interaction between adaptive and
maladaptive changes taking place as part of the pathophysiological cascade.
Following the acute phase, functional recovery is attributed to reorganization
and plastic processes in functioning areas. Since reorganization also occurs in
remote areas connected to the lesion (Carter, Shulman, et al., 2012; Corbetta,
2012; Ward, 2005), therapeutic attempts such as non-invasive brain stimulation
are aimed at modulating the connectivity of affected brain networks with the aim
of enhancing reorganization in structurally intact areas (Alonso-Alonso, et al.,
2007; Di Pino, et al., 2014; Grefkes & Fink, 2011; Grefkes, et al., 2010; Sehm et al,,
2012).
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2.2 Theories of plasticity following stroke

2.2.1 Understanding stroke: from localization to network disruption

The traditional clinical view to the outcome following stroke is attributing the
functional damage to the locally affected area. This is well supported by early
lesion studies going back to Paul Broca’s description in the 1860s of language
production impairment (i.e. aphasia) following lesion in the left frontal lobe
(Broca, 1861b; Dronkers et al., 2007). Lesion studies have provided extensive
knowledge concerning localization of function and specialization of various areas
in the brain, laying the foundations for modern neuropsychology and cognitive
neuroscience (Dronkers, et al., 2007). However, localization of functions
disregards a very important part of stroke pathology; the contribution of
network-wide changes (Carter, Shulman, et al,, 2012).

Some evidence suggests that the local damage cannot fully explain the full-blown
complex clinical symptoms after stroke, and most importantly does not explain
the recovery from clinical symptoms. Additionally, similar symptoms can arise
from different locations of lesions (Corbetta & Shulman, 2011). This discrepancy
may be partially explained by distal effects of the localized lesion on areas
connected to it (Feeney & Baron, 1986; He, Shulman, et al., 2007; Rossini et al,,
2003). These findings, along with a general view of normal brain function as an
interaction between different interconnected brain regions has initiated a shift in
the way stroke is understood and investigated (Carter, Shulman, et al.,, 2012;
Corbetta, 2012; Ovadia-Caro, et al., 2014; Ward, 2005).

Stroke is currently considered as a network disruption rather than a mere local,
single-node lesion. Network disruption (see Figure 1 for schematic illustration) is
reflected in alterations of connections within the affected network, even between
structurally intact regions, leading to the complex functional deficits.
Connections between the lesion sites and their interconnected regions are
permanently broken. In addition, connections between structurally intact
regions that are part of the affected network are temporarily impaired, and the
recovery of these connections is correlated with behavioral improvement (He,
Snyder, et al,, 2007). Reorganization can be more generally characterized at the

network-level in order to better understand and enhance recovery.
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Figure 1. Schematic illustration of network disruption after stroke.

(A) Functional networks are correlated even in the absence of task. Here, an
example of 4 functional networks based on resting-state functional MRI
functional connectivity in healthy controls. (B) Intact connectivity structure in
healthy controls is reflected in the high correlation (solid black lines) between
functionally relevant nodes of a specific network. (C) Anatomic location of an
individual lesion in a patient with a recent ischemic stroke (white areas outlined
in red). The lesion affects the auditory and the sensorimotor networks, sparing
the visual and default-mode networks. (D) After stroke, structural damage to
specific nodes (red circles) in the network leads to global disruption in
connectivity in the affected networks (red rectangle), even in structurally intact
regions. Connectivity is interrupted from the lesion area and altered among the
structurally intact nodes of the network (black dotted lines). The disruption of
connectivity after a local stroke is network-specific and largely spares the
unaffected functional networks. A multi-network assessment of changes in
functional connectivity has better potential for reflecting complex clinical
symptoms, which often involve more than one functional network. Figure
adapted from study Il (Ovadia-Caro, et al., 2014).

2.2.2 Diaschisis: Connectivity as a mediating mechanism for network
disruption and reorganization

The idea that localized lesions have distal effects on structurally intact

interconnected areas is not new. Von Monako (1914) described in the 19t

century the phenomenon of diaschisis, in which, following stroke and other types

of acute brain injuries, regions that are far from the lesion yet connected to it

demonstrate neural depression or what he called ‘functional stand-still’

(Andrews, 1991; Finger et al., 2004; von Monakow, 1914, 1969). The theory was
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initially described to explain symptoms after stroke that were not easily
attributed to the localized lesion, as well as to explain recovery from what he
referred to as ‘transient symptoms’.

It was only later on that supporting findings for metabolic diaschisis were
additionally described (Finger, et al., 2004). Nowadays, the term is usually used
to describe both neuronal and metabolic alterations in distant areas connected to
the lesion (Andrews, 1991; Finger, et al., 2004). While some aspects of the
theory of diaschisis as it was initially described are debatable (Andrews, 1991;
Dobkin et al., 1989; Finger, et al., 2004; Markowitsch & Pritzel, 1978; West, 1978;
West et al, 1976), its main relevance today is in drawing attention to the
structurally intact regions connected to the lesion as being a central aspect of the
pathology, as well as suggesting that connectivity plays a crucial role in

symptoms manifestation and recovery processes (Carrera & Tononi, 2014).

2.3 Empirical evidence for diaschisis and network disruption

2.3.1 Plasticity at the cellular level following stroke

Evidence from animal studies suggests that at the cellular level, axonal sprouting
and migration of neuroblasts from the subventricular zone are the two main
regenerative events taking place within the periinfarct region (i.e. the area
surrounding the lesion) (Carmichael, 2006; Carmichael, Saper, et al., 2016;
Carmichael et al,, 2001; Dancause et al,, 2005; Napieralski, et al., 1996). Other
than these localized changes, axonal sprouting has been reported to take place in
remote areas connected to the lesion in particular in the homotopic contralateral
region (Carmichael, 2003, 2006, 2008; Carmichael, Kathirvelu, et al, 2016;
Carmichael, et al, 2001; Dancause, et al., 2005; Napieralski, et al., 1996).
Moreover, Carmichael and colleagues have found that axonal sprouting after
ischemia is induced by intrinsic patterns of synchronous low-frequency neuronal
activity in areas connected to the infarct core (Carmichael & Chesselet, 2002).
These findings provide a cellular-based rationale for exploring connectivity

changes following stroke within affected yet intact areas using other modalities,
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such as rs-fMRI], and suggest an underlying neurophysiological mechanism for

connectivity changes following ischemia.

2.3.2 fMRI studies of plasticity following stroke

While detailed animal work as presented above can provide potential
pathophysiological mechanisms, fMRI is used to investigate plasticity in vivo at
the macroscale (Sporns et al., 2005).

Task-based fMRI paradigms, or activation studies, have been employed to
investigate activation patterns following stroke in response to a specific task
(Corbetta et al., 2005; Saur & Hartwigsen, 2012; Saur et al.,, 2006; Ward & Cohen,
2004). This has mainly been done using motor tasks, for example moving the
paretic hand (Grefkes et al.,, 2008; Tombari et al., 2004; Ward et al., 2003), but
also language (Kiran, 2012; Saur, et al., 2006; Saur et al.,, 2010) and visuospatial
tasks (Corbetta, et al.,, 2005). Abnormal levels of cortical activation have been
reported for patients after stroke in the affected hemisphere as well as in the
contralateral homologues, both in the subacute and the chronic phase (Corbetta,
et al,, 2005; Grefkes & Fink, 2011; Saur & Hartwigsen, 2012; Saur, et al., 2006).
Up-regulation or down-regulation of activation levels in both contralateral
homologues and peri-lesion areas has been suggested to be related to the time
that has passed since stroke onset, possibly reflecting different stages in the
dynamics of recovery (Grefkes & Ward, 2014; Saur, et al,, 2006) as well as to the
degree of motor impairment (Rehme et al.,, 2011).

Up-regulation of activity in the contralesional hemisphere (Corbetta, et al., 2005;
Rehme et al., 2012; Saur, et al, 2006) forms the basis for using stimulation
techniques such as transcranial magnetic stimulation (TMS) to regain ‘balanced’
activation levels in affected and unaffected hemispheres (Grefkes & Fink, 2011,
2012; Grefkes & Ward, 2014; Hummel & Cohen, 2006; Meinzer et al.,, 2016).
However, results are mixed in terms of the effectiveness of such treatment,
leading in some cases to the deterioration of symptoms (Ameli et al, 2009;
Grefkes & Ward, 2014).

Activation studies can provide information concerning localization of a specific

function, but they do not provide information concerning the process of
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integration and the interplay between the different regions involved, which is an
inseparable part of the function (K. J. Friston, 1994; Raichle, 2009). Connectivity
analysis based on rs-fMRI can inform us about temporal synchronization
between different regions that are part of the same network (Sporns, et al., 2005)
and is hence a complementary approach to task-based fMRI.

A central caveat to task-based paradigms is performance bias, an issue of high
relevance to patient populations in general and stroke patients in particular. The
fact that levels of activation are different between patients and controls may be
driven by the inability of patients to adequately perform the task at hand, leading
to artifactually ‘decreased’ activation (Carter, Shulman, et al, 2012).
Additionally, using task-based paradigms one cannot examine severely affected
patients, as they might be unable to perform the task. A task-free approach such
as rs-fMRI eliminates performance bias and provides a more controlled

experimental approach to study stroke patients, even in those severely affected.

2.3.3 rs-fMRI studies of plasticity following stroke

rs-fMRI is a task-independent neuroimaging method based on the recording of
slow (typically <0.1Hz) on-going intrinsic oscillations in the blood oxygen-level
dependent (BOLD) signal (M. D. Fox & Raichle, 2007; Raichle, 2009). This signal
can be used to compute functional connectivity, defined as the temporal
correlation of the BOLD signal from different brain regions (B. Biswal et al,
1995; Lowe et al,, 1998). Functional connectivity hence yields a spatial map
representing the statistical interdependence between regions (K. J. Friston, 1994,
2011). Functional connectivity based on rs-fMRI has been shown to be a highly
reliable and reproducible measure, even on the individual level (B. B. Biswal et
al,, 2010; J.S. Damoiseaux et al., 2006; Shehzad et al., 2009).

Even in the absence of task, functional connectivity is increased between areas
that are part of the same network and are jointly activated during specific tasks
(B. Biswal, et al., 1995). These emerging networks are also referred to as resting-
state networks (RSNs) (Smith et al., 2009).

The main advantage of rs-fMRI is the ability to explore multiple RSNs post hoc

using various connectivity analyses (Margulies et al., 2010). Additionally, the
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relative simplicity of data collection and minimal demands from the participants
makes rs-fMRI an ideal non-invasive experimental tool for investigating various
clinical populations (M. D. Fox & Greicius, 2010).

Following stroke, rs-fMRI has been successfully applied to study plasticity and
reorganization using functional connectivity. The main conclusion arising from
animal studies (van Meer et al., 2012; van Meer, van der Marel, Otte, et al., 2010;
van Meer, van der Marel, Wang, et al,, 2010), modeling work (Alstott et al., 2009;
Honey & Sporns, 2008) and human studies (Carter et al.,, 2010; Carter, Patel, et
al,, 2012; Golestani et al,, 2013; He, Snyder, et al., 2007; Nomura et al., 2010; Park
et al, 2011; Tuladhar et al, 2013; L. Wang et al, 2010) is that functional
connectivity is reduced in structurally intact areas connected to the local lesion.
This phenomenon has been shown in the motor, sensory, attention and default-
mode networks. This breakdown of connectivity in intact yet connected areas
supports the theory of diaschisis and the current views of stroke as a network
disruption.

Most importantly, changes in functional connectivity following stroke correlate
with behavioral symptoms in many of these studies. He and colleagues have
shown that in stroke patients with symptoms of neglect functional connectivity
is impaired in structurally intact areas that are part of the attention network.
They additionally found that when symptoms of neglect recovered, functional
connectivity between the observed regions increased (He, Snyder, et al,, 2007).
Such findings further strengthen the functional significance of rs-fMRI
connectivity changes after stroke and their potential therapeutic and prognostic

value.

2.3.4 From single network to multiple networks - the challenge of
heterogeneity

Animal work and human studies conducted thus far using rs-fMRI explored
changes in functional connectivity in a single functional domain, mainly in the
motor, using a relatively small number of regions for the analysis. Most studies
explored changes in inter-hemispheric connectivity. While connectivity between

homologous regions is indeed a very robust and consistent finding in rs-fMRI
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connectivity data (Stark et al., 2008), such analysis makes use of very small parts
of the connectivity matrix available in the data and enables us to explore only a
single network.

One of the reasons the field has been focused on single network analysis is the
attempt to overcome the challenge of lesion heterogeneity. In most studies,
patients are grouped based on the similarity of their lesion locations or clinical
symptoms (for example, paresis). However, it is rarely the case that two
structural lesions will be identical and stroke typically affects more than one
functional network and hence, more than one functional domain. A more
generalizable global model is needed to study plasticity in stroke patients in
order to create a more realistic picture of the involved networks. Such a global
model that is based on a whole-brain analysis would also maximize the
utilization of the raw connectivity data (Sporns, 2011; Sporns, et al,, 2005).
Importantly, a unified model that can take into account different locations of
lesions and multiple-network damage may provide a multifaceted basis for

individualized therapy in the form of stimulation techniques.
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3 Research questions and hypotheses

This thesis aims to investigate plasticity following stroke using rs-fMRI
functional connectivity at the whole-brain level. Since the majority of studies
conducted in the field thus far have addressed connectivity changes following
stroke in a single network, and in most cases using few regions-of-interest, the
need for an approach that can be applied to heterogeneous lesions affecting
more than one network is evident.

Study I presents a novel data-driven algorithm to analyze rs-fMRI data.

We introduce the quantification of consistency (reproducibility) of functional
connectivity patterns at the whole-brain voxel level using the concordance
correlation coefficient. In this study, we describe in detail our suggested
algorithm, termed connectivity concordance mapping (CCM). We apply CCM in
two different experimental settings to demonstrate its applicability and
functional significance. CCM can be applied both in an inter-subject and intra-
subject manner and can be used as a data-driven approach for guiding second
level analyses.

Specifically, in the first experiment CCM was computed for rs-fMRI data collected
using eyes closed and eyes open conditions in healthy controls with the aim of
providing a proof of concept for the algorithm’s use and demonstrating the
functional relevance of concordance. Based on previous findings we expected:

1. A decrease in concordance within visual areas when CCM is applied to
the two experimental conditions in an intra-subject manner (McAvoy
etal., 2008; Van Dijk et al,, 2010).

2. When CCM is applied in an inter-subject manner, areas of larger
anatomical variability (such as frontal regions) are expected to show
decreased concordance (Fischl et al., 2008; Mueller et al., 2013).

3. Areas of spurious signals (such as the white matter) are expected to
demonstrate decreased concordance compared to grey matter due to
non-neuronal signal in these areas expressed by higher levels of
random noise (Weissenbacher et al., 2009).

In the second experiment CCM was applied to rs-fMRI longitudinal dataset from

a single stroke patient. Here, the algorithm was used for a data-driven analysis
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in order to detect regions demonstrating a large change in the functional
connectivity pattern over time. Although this experiment had no prior
hypothesis due to the data-driven nature of the algorithm, the findings are
discussed in the context of previous literature and our theoretical model of
plasticity following stroke. The results based on CCM were used for a second-
level seed-based connectivity analysis to further explore the dynamic changes in
connectivity over time.

Study II explores the longitudinal connectivity changes induced by

lesions and their relationship to functional recovery. Based on the concordance
method developed in study I, we present an approach that can be applied to a
group of stroke patients with varying locations of lesions affecting more than one
functional network. We explored changes in functional connectivity over time in
eight representative functional networks. Additionally, we explored the
relationship between changes in connectivity over time and the trajectory and
degree of functional recovery.
Taking into account the theoretical model of diaschisis (Andrews, 1991; Finger,
et al,, 2004), computational models (Alstott, et al., 2009; Honey & Sporns, 2008)
as well as previous empirical findings obtained in single networks (Carter, et al.,
2010; Carter, Patel, et al., 2012; Golestani, et al., 2013; He, Snyder, et al., 2007;
Park, etal,, 2011; L. Wang, et al., 2010), we hypothesized that:

1. Lesions will have a more detrimental effect on functional connectivity
in intact areas connected to the lesion (i.e. affected networks) as
compared to more loosely connected areas (i.e. unaffected networks).

In addition, it has been previously shown that functional connectivity changes in
individual networks are correlated with behavioral impairments in specific tasks
(Carter, et al., 2010; Golestani, et al., 2013; He, Snyder, et al., 2007; Park, et al,,
2011; van Meer, et al,, 2012; van Meer, van der Marel, Wang, et al, 2010; L.
Wang, et al,, 2010). We hence hypothesized that:

2. The degree of changes in connectivity observed over time in multiple
affected networks will be positively correlated with the degree of

behavioral change over time.
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The application of rs-fMRI to study plasticity following stroke is a
relatively new field. Study III is a review paper aimed at investigating the usage
of rs-fMRI to study stroke in general, and plasticity following stroke in particular.
The potential clinical value, main findings and limitations are described and
discussed in detail. The view of stroke as a network disruption suggested by our
empirical findings is discussed in the context of previous studies and new trends
and directions for future research are suggested. In addition to reviewing and
summarizing the current literature, this work suggests a framework for
exploring plasticity in patients following stroke in the aim of promoting the

understanding of recovery processes.
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4 General methodological approach

4.1 The restless brain: intrinsic brain activity

The brain is constantly active. Even in the absence of explicit sensory tasks,
neurons are spontaneously firing (Arieli et al., 1995; Arieli et al., 1996; Grinvald
et al,, 2003; Kenet et al., 2003; Leopold et al,, 2003; Llinas, 1988; Miller et al,,
2014), and the brain’s consumption of energy is very high (Raichle, 2006, 2015;
Raichle & Mintun, 2006). Although early electrophysiological recordings by Hans
Berger linked intrinsic brain activity to various cognitive states such as sleep,
wakeful rest and alertness (Berger, 1929, 1969), most studies following that
period were focused on the evoked activity induced by controlled sensory
stimuli. In these experiments intrinsic brain activity was regarded as mere noise,
as the evoked response was based on averaging activity over multiple
repetitions. The brain in these experiments was treated as a reflexive organ
producing a deterministic output in response to an environmental input (Burke,
2007).

Interestingly, the local change in blood flow induced by evoked activity is
surprisingly small, often less than 5% from baseline activity (Raichle & Mintun,
2006). A clear question that follows is why the brain is in need of such high levels
of energy to maintain intrinsic activity and the precise cognitive role, if any, of
this spontaneous activity. Supportive of the proactive view of the brain, some
authors suggest that intrinsic activity plays an important role in prediction and
prior representations embedded in the brain (Bar, 2007, 2009; Engel et al., 2001;
K. Friston & Kiebel, 2009; Yuste et al., 2005). Evidence for this can be found in
animal studies suggesting intrinsic activity can account for inter-trial variability
and prior representations (Arieli, et al., 1995; Ariel, et al., 1996; Grinvald, et al.,
2003; Kenet, et al., 2003; Leopold, et al., 2003; Llinas, 1988; Miller, et al., 2014).
Similar results have been reported in human studies, where the intrinsic activity
prior to stimuli appearance had an influence on the perception of the stimuli
(Becker et al.,, 2011; M. D. Fox et al,, 2007; M. D. Fox et al., 2006; G. Hesselmann et
al,, 2008; G. Hesselmann, Kell, C.A,, Eger, E., Kleinschmidt, A., 2008). In contrary

to this possible cognitive role, high levels of intrinsic activity have been recorded

33



during non-REM sleep and under anesthesia (M. D. Greicius et al., 2008; Nir et al,,
2008; Vincent et al.,, 2007).

Although the exact role of intrinsic activity is still under debate (Raichle, 2015),
in the last decade it has been repeatedly shown that intrinsic fluctuation are of
clinical value for both diagnosing and exploring various states of disease (M. D.

Fox & Greicius, 2010; Gillebert & Mantini, 2013).

4.2 Resting-state fMRI: measuring intrinsic activity using the
BOLD signal

Intrinsic activity can be measured in humans using non-invasive techniques.
Using fMRI, intrinsic activity is measured as task-independent BOLD signal
fluctuations (M. D. Fox & Raichle, 2007). This on-going recorded BOLD signal in
the absence of explicit task is commonly referred to as resting-state fMRI (rs-
fMRI) signal. The term resting-state to describe on-going BOLD fluctuations is
widely used in the field due to the absence of experimental task and has
therefore been used throughout this dissertation as well. However, one should
note that this terminology is somewhat misleading, as these fluctuations are
robust and occur in all areas of the cortex at amplitudes similar to task-evoked
activity (Nir et al,, 2006), suggesting this is not a resting-state per se, rather a
state in which no explicit task is imposed on the subject.

rs-fMRI has specific and reliable characteristics (Shehzad, et al., 2009). In the
temporal domain intrinsic fluctuations as measured by the BOLD contrast exhibit
slow (usually between 0.01-0.1Hz) fluctuations that are not simply an artifact of
physiological activity, breathing, or vasculature (Birn et al,, 2006). In the spatial
domain, rs-fMRI is not random, but rather organized such that areas that are
jointly active during task are correlated in their intrinsic activity, even in the
absence of task demands (B. Biswal, et al,, 1995). The term to describe this
statistical interdependence, or synchrony, between distant regions is functional
connectivity (K. ]J. Friston, 1994). Functional connectivity is computed as the
temporal correlation between intrinsic BOLD signal from different regions of

interest.
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In 1995, Biswal and colleagues were the first to explore functional connectivity
in the motor network in the absence of task demands using rs-fMRI. The spatial
pattern emerging from the functional connectivity analysis in the motor network
replicated the familiar spatial pattern of activation during a finger-tapping task
(B. Biswal, et al., 1995). This seminal work has sparked a large field of research
(Birn, 2012; Raichle, 2015) and was the first to draw attention to the fact that
intrinsic BOLD signal contains meaningful information. Similar to Biswal’s
finding in the motor network, other areas that are part of specific functional
domains during tasks have been shown to correlate in their intrinsic activity in
the absence of task demands. These include visual, sensorimotor, auditory,
language and default-mode networks and are commonly referred to as resting-
state networks (RSNs) (Beckmann et al.,, 2005; Smith, et al,, 2009). RSNs have
been shown to be highly reproducible across individuals, time and scanning sites
(B. B. Biswal, et al., 2010; ].S. Damoiseaux, et al., 2006; Shehzad, et al., 2009).
Recent electrophysiological studies using electroencephalography (EEG) and
magnetoencephalography (MEG) in humans have provided support for an
underlying neural basis of connectivity measured by rs-fMRI. Simultaneous EEG-
fMRI recordings have demonstrated that intrinsic BOLD signal can be predicted
by the power in the high frequencies of electrical activity (Laufs & et al., 2003;
Laufs et al, 2006; Laufs et al, 2003; Moosmann et al., 2003). Mantini and
colleagues have further described specific electrophysiological signatures for
individual, well-known RSN networks (Mantini et al, 2007). Similarly, MEG
studies have reported correlation between large-scale cortical networks that are
spatially similar to RSNs and power mainly in the alpha and beta frequencies
(Brookes et al., 2011; de Pasquale et al., 2010; Hipp et al., 2012). Taken together,
these studies further support the importance of synchronous activity for
communication between neurons across distant spatial locations (Engel, et al.,
2001).

The functional significance of RSNs is additionally supported by the strong link
between functional connectivity and the underlying structural connectivity
measured in humans using diffusion tensor imaging (DTI). Multiple studies have
explored the link between these two measures and reported positive correlation

(J. S. Damoiseaux & Greicius, 2009; M. D. Greicius et al,, 2009; Hagmann et al,,
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2008; Honey et al., 2009; Horn et al., 2014; Skudlarski et al., 2008; M. van den
Heuvel et al, 2008; M. P. van den Heuvel et al, 2009). While a strong link
between these two measures is evident, it appears that direct/monosynaptic
structural connectivity cannot fully account for observed functional connectivity
maps. Since functional connectivity is based on measures of temporal
correlation, a high correlation can reflect indirect connections via a third region
(M. D. Greicius, et al., 2009; Hagmann, et al., 2008; Honey, et al., 2009; Vincent, et
al, 2007). In addition, functional connections are not stationary while the
anatomical structure is (Honey et al., 2007; Hutchison, Womelsdorf, Allen, et al.,
2013). Functional connections between different brain regions are hence
constrained by the underlying anatomical connections, yet cannot be fully

accounted for based on anatomy alone (Honey, et al., 2009).

4.3 Analysis of functional connectivity: methodological tools

Functional connectivity using rs-fMRI aims at describing the relationships
between inter-connected regions. To date, several methodological tools are in
use to compute functional connectivity. With the development of rs-fMRI field
and the general development in computational abilities, methods to analyze rs-
fMRI data have evolved (for a detailed review see (Margulies, et al,, 2010)). In
this section, I will briefly discuss the methods used throughout this dissertation
including their advantages and potential limitations.

The most basic analysis, and perhaps the most commonly used approach is
termed seed-based, or region-of-interest (ROI) analysis. This analysis entails
computing an average BOLD signal over a priori defined areas and then
computing the correlation (usually Pearson’s correlation coefficient) between
them to depict the strength of connections. Biswal and colleagues performed
such an analysis in the initial study from 1995 (B. Biswal, et al., 1995). The main
advantage of seed-based connectivity is that this analysis is relatively simple and
hence drawing conclusions from it is straightforward. However, this analysis
requires an a priori decision on the areas of interest and is usually then limited
to a relatively small number of regions. It should therefore be guided by either a

strong hypotheses based on existing literature or by an initial data-driven
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approach to detect areas relevant for further exploration (Margulies, et al.,
2010). We have used this approach in study I based on results from our data-
driven algorithm (see section 5.1.3, experiment B).

Contrary to the seed-based approach, independent component analysis (ICA) is a
data-driven approach. ICA is based on blind source separation or decomposition
techniques. The data is delineated into maximally independent components in
the spatial domain. Each component has a time course and a corresponding
spatial map (Beckmann, et al., 2005; Kiviniemi et al., 2003; van de Ven et al,,
2004). Since ICA is a data-driven approach, it does not require an a priori
hypothesis and is hence suited for exploratory analysis. In addition, unlike seed-
based analysis, it does not require any preprocessing of the data. However, it
does require a posteriori selection of functionally meaningful components over
noise components. This decision is usually done by visual inspection. In addition,
the number of components that results from the ICA is pre-defined by the user in
most cases, and is arbitrary since the “real” number of components in the brain is
unknown (Margulies, et al., 2010). Although seed-based analysis and ICA are
different analytic approaches, they produce similar RSNs, supporting the
meaningfulness and high consistency of these networks (Joel et al., 2011).

Based on ICA, dual regression (DR) has recently been suggested as an approach
for more accurate group-level comparison. DR runs a group average ICA and
then estimates the individualized version of each of the group-level spatial maps.
This approach can also be used with a pre-defined set of networks that were
computed on a different population than the population under observation. The
analysis is done in two regression steps; first, the group spatial maps are used as
regressors on each subject’s four-dimensional dataset. This results in a set of
time courses. Second, these time courses are used as regressors on the same
four-dimensional data set to get a set of individualized, subject-specific spatial
maps. The resulting maps can be used for further group-level comparison
(Beckmann et al., 2009; Filippini et al., 2009). We have used DR analysis as part
of our analysis in study II (see section 5.2.2).

CCM as introduced in study I is an additional, novel data-driven method to
explore the reproducibility of functional connectivity patterns at the whole-brain

voxel-level. The pairwise correlation matrix is computed at the voxel level and
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reproducibility of connectivity patterns is estimated in an inter-subject or intra-
subject manner using Kendall’'s W concordance correlation coefficient. The main
novelty of CCM is that it takes the whole connectivity matrix into account (i.e. a
matrix of approx. 50,000*50,000 connections), making use of all the data
(Lohmann, et al, 2012). Other recent approaches to characterize topological
traits of the connectivity matrix (i.e. graph theory approach) require dimension
reduction due to their large computational complexity (Bullmore & Sporns,
2009). Reduction of dimensions is usually done using an a priori defined atlas
template. While there are both anatomically-based (Tzourio-Mazoyer et al,
2002) and functionally-based (Craddock et al, 2012) atlases, the decision of
which atlas should be used for a specific study/research question is not trivial
and this decision has a direct impact on the results. On the contrary, performing
the analyses at the voxel-level makes no assumptions concerning the ‘correct’

template to be used and is hence preferable.

4.4 rs-fMRI as a clinical tool to study pathologies and plasticity

The ability to explore multiple RSNs post hoc and the relatively minimal
demands from the subjects makes rs-fMRI an ideal non-invasive experimental
approach to study various clinical populations. Indeed, alterations in rs-fMRI
functional connectivity have been described in various states of disease among
them Alzheimer’s disease (M. D. Greicius et al., 2004; Rombouts et al., 2005; K.
Wang, et al,, 2007), autism (Cherkassky et al., 2006; Kennedy & Courchesne,
2008), schizophrenia (Bluhm et al., 2007; Zhou et al., 2007), depression (Anand
et al.,, 2005; M. D. Greicius, et al., 2007), congenital blindness (Striem-Amit et al.,
2015), disorders of consciousness (Boly et al., 2012; Ovadia-Caro et al., 2012;
Vanhaudenhuyse et al., 2010), as well as stroke (Carter, Shulman, et al., 2012;
Gillebert & Mantini, 2013; Ovadia-Caro, et al.,, 2014). Importantly, changes in rs-
fMRI functional connectivity have been shown to correlate with behavioral
impairments in many of these clinical populations, including after stroke,
strengthening the clinical significance of this tool (M. D. Fox & Greicius, 2010).

The main advantages of rs-fMRI to study plasticity in stroke patients is that

unlike task-based fMRI designs, even severely affected patients can be studied.
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The task-free nature of rs-fMRI eliminates task-performance bias and patients
can be studied even in the acute phase after injury (Amemiya, et al., 2013; Lv, et
al, 2013), a point of importance when studying plasticity and recovery
processes. The ability to explore in a single scan multiple RSNs is a point highly
relevant to study plasticity in stroke patients, since in most cases after stroke,
more than one functional domain is impaired and more than a single network is
affected. A whole-brain approach can provide a more accurate model of
symptoms and can provide a basis for individualized therapy in the form of
stimulation techniques (Opitz et al.,, 2016). rs-fMRI hence provides a promising,
clinically valuable approach to study large-scale organization and plasticity

induced by stroke (Carter, Shulman, et al., 2012).
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5 Summary of related papers

5.1 Study I: Connectivity concordance mapping: a new tool for
model-free analysis of fMRI data of the human brain (Lohmann,
etal, 2012)

5.1.1 Background

rs-fMRI data can be used to derive information on the relationship between
distant, connected brain regions. This analysis of functional connectivity can be
computed using various post-processing methodologies (Margulies, et al,, 2010).
While some approaches require a priori hypothesis concerning the areas of
interests (i.e. seed-based analysis), other popular data-driven approaches
require a-posteriori decision on distinguishing functionally relevant areas from
spurious ones (i.e. ICA). Recent developments in the field analyze rs-fMRI data
using graph-based theory computations (Buckner, 2010; Bullmore & Sporns,
2009; Sporns, 2011), but this approach requires dimension reduction due to
computational complexity (Craddock, et al., 2012; Tzourio-Mazoyer et al., 2002).
An approach that could be computed on the whole-brain voxel level would take
the full connectivity matrix into account and maximize the utilization of the raw
data. Here, we introduce the CCM approach to analyze rs-fMRI data. The main
purpose of CCM is quantifying the reproducibility of whole-brain patterns of
connectivity at the single-voxel level. Voxels with reproducible connectivity
patterns may be of interest and can be the subject of further analysis. CCM can be
applied to both inter- and intra-subject datasets. In this study, the suggested
algorithm is described and applied to data from healthy controls as well as a
single stroke patient to demonstrate its applicability. Reproducibility of fMRI
activity has been previously shown to be of functional relevance (Hasson et al.,
2010); however, it has not been applied during resting conditions and has not
been computed for each voxel. The main novelty of our suggested approach is
that CCM is computed at the voxel level, taking into account the full connectivity

matrix of the whole brain.
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5.1.2 Methods

Algorithm

The first step of computing CCM is the definition of a mask covering the whole
brain. In our study, this mask contained approximately 50,000 voxels (n voxels).
All further analysis steps are performed on this mask. As described earlier, CCM
is computed between different rs-fMRI datasets. For each dataset, for each single
voxel, a vector of pairwise similarity is computed. We used Pearson’s linear
correlation coefficient as our similarity measure. This step is repeated for each
voxel in the mask, yielding n similarity vectors. We next compute for each vector
the agreement of the connectivity pattern between different measures. We use
Kendall’s W as a measure of concordance as it does not assume Gaussianity of
the data. Kendall’'s W produces a value between 0 and 1 such that 1 represents
complete agreement and 0 represents complete disagreement. This value of
concordance is assigned back to the specific voxel creating a whole-brain voxel-
wise map of concordance values determining the reproducibility of spatial
connectivity pattern for that particular voxel (see Figure 2 for description of the
algorithm flow). It is important to note that concordance is different from
correlation such that it does not subtract the mean during computation. This
means that the absolute value of pairwise correlation influences the concordance
value, while in the case of correlation a similar pattern is the determining factor.
For example, in a case where the connectivity pattern is similar but has different
underlying correlation values (for example generally lower correlation values),
spatial correlation will provide a high value while spatial concordance will be
low. This information can of course be of importance especially when comparing

patients with healthy controls.
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(A) DEFINE ROI

for each dataset k = 1, ...,m

(B) COMPUTE CORRELATION MATRIX
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Figure 2: CCM algorithm.
(A) Definition of ROI using a whole brain mask. n denotes the number of voxels
in the ROI. (B) Computing correlation matrices for each dataset (k) and for each
voxel (i). (C) Computing Kendall’'s W for each voxels’ connectivity vector over the
multiple measurements using the following steps: ranking, computing mean
value of total ranks and the sum of squared deviation prior to the computation of
Kendall’s W. The value of Kendall's W for each voxels’ connectivity pattern over

the multiple datasets is assigned back to the voxel to create the CCM map.

Experiment A: applying CCM to healthy controls data
In order to demonstrate the applicability of the CCM algorithm, it was first
applied to rs-fMRI data from healthy controls (N=7). Although rs-fMRI does not
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involve an explicit task, there are different approaches in the field as to whether
subjects’ eyes should be open or closed. Here, we applied CCM to rs-fMRI data
from both conditions. CCM was computed (1) inter-subject for each condition

and (2) intra-subject between different conditions.

Experiment B: Applying CCM to a longitudinal dataset following stroke

In order to explore the possible clinical applicability of CCM and demonstrate the
utility of the algorithm as a data-driven method, CCM was applied to longitudinal
rs-fMRI data from a single patient following stroke. Data was collected at four
time points; day 1, day 27, day 94 and day 199 following stroke. Diffusion-
weighted images (DWI) from day 1 were used for lesion localization. The infarct
was located in the left thalamus and left occipital cortex. CCM was computed for
all time points and also for pairs of consecutive time points. Based on the CCM
whole brain results, seed-based analysis was performed as a second-level data
guided analysis. The seed area was located in bilateral globus pallidus, where

concordance values were lowest (local minima).

5.1.3 Results

Experiment A:

Inter-subject CCM for the healthy control sample detected large proportions of
the grey matter as concordant. Areas of spurious signal, such as the white matter,
showed low concordance values. This was the case for both conditions (eyes
open and eyes closed). Regions that are known to be part of the default-mode
network (M. D. Fox et al,, 2005; Golland et al., 2007) were less concordant than
primary sensory areas. Prefrontal regions, especially in the lateral surface were
the least concordant in their connectivity pattern. To explore concordance
between the conditions, CCM was computed for each subject between the two
conditions and was then averaged across subjects. The resulting map was similar
to the inter-subject CCM maps with the exception of the early visual cortex (V1),

which demonstrated low concordance (see Figure 3).
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(A) INTER-SUBJECT CCM Figure 3: CCM in healthy
controls.

eyes (A) Inter-subject CCM for both
closed experimental conditions (eyes
open and eyes closed) depicts
large proportions of the grey
matter as highly concordant.
Frontal areas and the default-
mode network demonstrate lower
concordance. (B) Intra-subject
CCM computed between the two
experimental conditions and then
averaged across subjects. Note
that early visual cortex (marked
with  crosshair) demonstrates
lower concordance between the
two experimental conditions.
These results reflect divergent
connectivity patterns between the
two conditions captured using the
CCM approach. Figure adapted
from Study I (Lohmann, et al,
2012).

Experiment B:

CCM was computed for a single stroke patient who was examined repeatedly
using rs-fMRI. When applied to all time points, CCM demonstrated larger
concordance in grey matter, similar to healthy controls (experiment A). A local
minimum of CCM was located in the left globus pallidus. When computing CCM
for pairs of consecutive time points, the globus pallidus bilaterally was the area
of greatest change when subtracting CCM(t2,t3) minus CCM(t3,t4). This suggests
that the change in concordance in this area occurred at a later stage. Based on
these findings, seed-based analysis was performed for both left and right globus
pallidus for further exploration of the connectivity pattern driving this effect.
CCM was hence used as a data-driven guidance for second-level analysis. Seed-
based analysis was performed for the two latest time points. When subtracting
the maps we found that the right globus pallidus generally demonstrated
stronger connectivity to the rest of the brain than the left in the third time point,

and this effect was reversed in the fourth time point after stroke (see Figure 4).

44



(A) CCM FOLLOWING STROKE (B) SEED-BASED ANALYSIS

t1,12,t3,14 correlation maps at t3 correlation maps at t4

Figure 4: CCM applied to longitudinal datasets following stroke.

(A) Applying CCM to all four time points demonstrates large proportions of the
grey matter as concordant. The region of lowest concordance marking the
largest change in connectivity pattern over time is located in the left globus
pallidus (middle panel). When computing CCM for pairs of consecutive time
points, subtraction of these maps yields a large difference in concordance
between the last two pairs of datasets located in bilateral globus pallidus. (B)
Results based on CCM are used as a basis for second-level seed-based analysis.
Functional connectivity was computed for both right and left globus pallidus
(seed is marked with crosshair, see upper panels). Bottom row presents the
difference in connectivity patterns for the third and the fourth time points for
both seeds. During the third time point, connectivity is higher from the right
globus pallidus to most regions, while during the fourth time points this pattern
is reversed. Figure is adapted from Study I (Lohmann, et al,, 2012).

5.1.4 Discussion

In Study I, we have presented the CCM algorithm and applied it to rs-fMRI data
from healthy controls and a longitudinal dataset of a single stroke patient. In
healthy controls, in line with our hypothesis, CCM differentiated the two
experimental conditions (eyes open/eyes closed) such that CCM was lower in
primary visual area (V1) in between the two states. This result replicates
previous findings concerning divergent connectivity pattern within the visual
cortex for rs-fMRI data based on eyes open and eyes closed (McAvoy, et al., 2008;
Van Dijk, et al,, 2010), and therefore supports the functional significance of CCM
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and provides a proof of concept for future use of this novel algorithm.
Additionally, in accordance with our expectations, inter-subject CCM in the
healthy controls group detected most of grey matter areas as concordant while
white matter voxels demonstrated low concordance. Areas of larger anatomical
variability, such as frontal regions, demonstrated decreased concordance.

While we expected decreased concordance in frontal regions, it is important to
emphasize that areas of greater inter-subject anatomical variability can lead to
lower CCM values regardless of concordance of connectivity patterns. Although
this problem is not specific to CCM and exists also in conventional General Linear
Model (GLM) designs (K. J. Friston et al., 1994), which are widely used in the field
of fMRI, a solution would be to apply CCM to longitudinal datasets from
individual subjects. We pursued this approach on a clinical dataset from a single
patient following stroke. The patient was scanned four consecutive times
starting 1 day after the stroke. CCM was computed for all four scans and for pairs
of consecutive scans. The left globus pallidus demonstrated minimal
concordance values over time, pointing towards a large change in connectivity in
this area. Based on the CCM results, seed-based analysis explored the change in
connectivity structure leading to lower concordance values in the globus pallidus
bilaterally. We found that the change in connectivity was attributed to a latter
stage following the stroke (i.e. the third and forth time points) with an inter-
hemispheric imbalance, as connectivity from the left globus palldius was
stronger than the right in the third time point. This effect was reversed in the
fourth time point. The globus pallidus is known to be part of the extrapyramidal
motor system affected by the patient’s thalamic stroke. Results from the CCM
analysis suggest that the recovery process involved this node of the network,
thus supporting the theoretical model of diaschisis. While these results require
further validation in a larger cohort and the use of behavioral measures to
strengthen the functional significance of our findings, we suggest that
concordance can be used as a measure of longitudinal changes in connectivity to
explore plasticity and recovery processes after stroke. On a more general note,
CCM provides a powerful tool for the data-driven exploration of rs-fMRI data at

the voxel level in order to guide second-level analyses.
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5.2 Study II: Longitudinal effects of lesions on functional
networks after stroke (Ovadia-Caro, et al., 2013)

5.2.1 Background

Study II investigates the distal effects of focal lesions on functional networks in
longitudinal datasets following stroke. Changes in rs-fMRI functional
connectivity over time were explored at the network level, taking into account
patients with heterogeneous lesions affecting more than one functional network.
The relationship between changes in functional connectivity and the behavioral
trajectory was additionally tested.

Changes in rs-fMRI connectivity have been previously reported after stroke in
single networks such as the sensory, motor, default-mode and attention (Carter,
et al,, 2010; Carter, Patel, et al.,, 2012; Golestani, et al., 2013; He, Snyder, et al,,
2007; Park, et al,, 2011; Tuladhar, et al,, 2013; van Meer, et al,, 2012; van Meer,
van der Marel, Otte, et al., 2010; van Meer, van der Marel, Wang, et al., 2010; L.
Wang, et al, 2010). These changes have been shown to correlate with the
severity of behavioral deficits supporting the clinical significance of this
approach. Exploring changes in functional connectivity in single networks was
previously done by grouping patients based on similarity of lesion location or
similarity of functional deficits in a single domain. However, stroke rarely affects
only one functional domain or functional network. Additionally, no lesion is
exactly the same in size and in location in two different patients. A unified model
that can be applied to patients with different lesion locations and set of
symptoms that may affect more than one network is needed. Based on the
theoretical model of diaschisis (Andrews, 1991; Finger, et al, 2004; von
Monakow, 1914, 1969), computational models (Alstott, et al, 2009; Honey &
Sporns, 2008), and empirical results obtained in single networks (Carter, et al.,
2010; Carter, Patel, et al., 2012; Golestani, et al., 2013; He, Snyder, et al., 2007;
Park, et al., 2011; Tuladhar, et al., 2013; van Meer, et al., 2012; van Meer, van der
Marel, Otte, et al.,, 2010; van Meer, van der Marel, Wang, et al,, 2010; L. Wang, et
al,, 2010) we hypothesized that networks affected by the lesion (i.e. regions that

are functionally connected to the lesion) would demonstrate a preferential
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change in functional connectivity over time as compared to unaffected networks.
In addition, the degree of change in functional connectivity should correlate with

the behavioral trajectory in these patients.

5.2.2 Methods

Ischemic stroke patients (N=12, post-exclusion) received an rs-fMRI scan at day
1, day 7 and day 90 post-stroke. Following standard preprocessing, the lesions
were defined such that a lesion mask was manually drawn based on the DWI or
fluid attenuated inversion recovery (FLAIR) images of each patient. In order to
determine which networks have been affected by the individual lesions, we
computed an overlap between the lesion masks and a template set of eight
networks previously published by Beckmann and colleagues (Beckmann, et al.,
2005). This template of eight networks was computed using ICA applied to rs-
fMRI data acquired in healthy controls. These eight networks include
sensorimotor, visual, auditory and default-mode networks. Our choice of this
template was based on the high functional relevance in addition to the high
inter-subject consistency reported for these components (Beckmann, et al., 2005;
Laird et al, 2011). As a result of computing an overlap between the eight
networks template and the individual lesions, we defined for each subject which
networks were affected by the lesion.

rs-fMRI data was analyzed using dual-regression analysis (Beckmann, et al,
2009; Filippini, et al., 2009). The a priori defined eight-network probabilistic
maps served as regressors. As a result, each subject had 8 connectivity maps for
each single scan. Based on the approach presented in study I (Lohmann, et al,,
2012), we used the measure of concordance correlation coefficient to determine
the degree of change in the spatial pattern of functional connectivity over time.
Concordance was computed for each network separately over all time points,
resulting in eight concordance values for each patient. Importantly, prior to
concordance computation, we removed the lesion masks from the analysis. This
was done because we were interested in the indirect connectivity effects induced
by the lesion (i.e. diaschisis effect) and not the direct, local effects. In order to

determine whether connectivity changed more in the networks affected by the
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lesion, we computed delta-concordance for each subject such that average
concordance values in unaffected networks were subtracted from average
concordance values in affected networks ((u unaffected) - (p affected)). To test
for significant differences between concordance in affected and unaffected
networks we used a one-sample t-test (see Figure 5 for analysis steps).

In order to explore the relationship between connectivity changes (measured by
concordance) and the behavioral trajectory, we used the National Institutes of
Health Stroke Scale (NIHSS) scores from day 1 and day 90. Specifically, we
computed a delta-NIHSS score defined as the ranked absolute difference
between the NIHSS obtained at day 1, and the NIHSS obtained at day 90. Higher
values represent a larger clinical change over time. Delta-NIHSS was correlated

with delta-concordance using Spearman’s correlation coefficient.
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Figure 5: Assessment of connectivity changes in multiple networks; a schematic

illustration of analysis steps.
(A) Classification of individual lesions into affected (red frame) and unaffected
networks. The binarized eight- network template was multiplied by each
individual lesion mask to classify lesions to affected/unaffected networks. (B)
Functional connectivity analysis. Each scan was preprocessed and dual-
regression was performed. After removal of individual lesion masks, spatial
concordance correlation coefficient was computed for each map over three time
points. Delta concordance ((p unaffected)-(p affected)) was computed and a one-
sample t-test was performed.

5.2.3 Results

The impact of individual lesions on functional connectivity was computed using
spatial concordance computed individually for each network, across all time
points. Networks with high concordance values represent a small change in the
spatial structure of connectivity maps, while networks with low concordance

value represent a larger change. Based on our hypothesis, we expected that
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delta-concordance would yield positive values. We found a significant difference
(p=0.018, one-sided) indicating lower concordance in affected networks as
compared to unaffected networks. Since the lesion area was excluded from this
analysis, the effect found is reflecting a stronger indirect effect (i.e. diaschisis
effect) of the lesion on functional connectivity in affected networks versus
unaffected networks.

The clinical significance of our connectivity findings was tested based on the
correlation between the behavioral trajectory as defined by delta-NIHSS and the
change in functional connectivity over time as defined by delta-concordance.
Based on previous studies (Carter, et al., 2010; He, Snyder, et al., 2007; Park, et
al, 2011; L. Wang, et al., 2010), a positive correlation is expected such that larger
effect on functional connectivity would correlate with stronger behavioral
change. We found a significant (p=0.05, one-sided) positive correlation (r=0.5)
between delta-concordance and delta-NIHSS indicating that stronger
connectivity change corresponds to stronger effect on the behavioral trajectory

(see Figure 6 for results summary).
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Figure 6: Connectivity is preferentially impaired in affected networks.

(A) The eight-network template. Axial slices of the eight independent
components based on probabilistic independent component analysis in healthy
controls (N=10) adopted from Beckmann, et al., 2005. This template was used as
a basis for computation of overlap between lesions and networks as well as for
dual-regression analysis. (B) Spatial concordance in affected and unaffected
networks as computed over time for each patient (x-axis) and for each network
(y-axis). High values reflect a small change in the spatial pattern. Red triangles
depict affected networks. (C) Delta concordance was computed for each patient
demonstrating a significant positive distribution as tested by one-sample t-test.
(D) Relationship between delta concordance and clinical change. Positive
correlation between changes in clinical scores over time as measured by delta
NIHSS (x-axis) and changes in functional connectivity as measured by delta
concordance (y-axis). Both axes depict the ranked values (as Spearman’s
correlation was applied to statistically test the relationship). Black line depicts
the fitted regression line. Figure was adapted from Study II, (Ovadia-Caro, et al.,
2013).

5.2.4 Discussion

Study II presents a novel approach to study rs-fMRI connectivity changes
following stroke. This approach can be applied to heterogeneous lesions and can
be used to simultaneously explore multiple networks. While most previous
studies explored single networks, our approach can be used to map connectivity

changes in a multi-faceted manner, potentially better reflecting the complex
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changes exerted by a local stroke on the whole-brain, global level. Gaining a more
detailed understanding of connectivity changes following stroke has a potential
effect on refining treatment in the form of stimulation techniques, which have
been shown to normalize connectivity patterns and improve behavioral status
(Alonso-Alonso, et al., 2007; Di Pino, et al., 2014; Grefkes & Fink, 2011; Grefkes,
etal, 2010; Sehm, et al., 2012).

We found that indirect effects of a local lesion on functional connectivity are
more pronounced in affected networks, supporting the generalizability of
connectivity changes reported previously in single networks (Carter, et al., 2010;
Carter, Patel, et al., 2012; Golestani, et al., 2013; He, Snyder, et al., 2007; Park, et
al,, 2011; Tuladhar, et al,, 2013; van Meer, et al., 2012; van Meer, van der Marel,
Otte, et al., 2010; van Meer, van der Marel, Wang, et al,, 2010; L. Wang, et al,,
2010). Starting with data acquired 1 day after stroke, a significant decrease in
concordance was found for networks containing lesions compared with
unaffected networks. Our results are in line with the theoretical model of
diaschisis suggesting that stroke induces indirect changes in structurally intact
areas connected to it (Andrews, 1991; Finger, et al.,, 2004; von Monakow, 1914,
1969). Importantly, the measure of concordance was correlated with post-stroke
behavioral trajectory thus supporting the potential clinical significance of our

findings. Our results are hence supportive of both our initial hypotheses.
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5.3 Study III: The value of resting-state functional magnetic
resonance imaging in stroke (Ovadia-Caro, et al., 2014)

rs-fMRI has been successfully applied to map the functional organization of the
brain in healthy subjects (Sporns, et al.,, 2005) as well as to study various clinical
populations (M. D. Fox & Greicius, 2010). In recent years, rs-fMRI has also been
used to study stroke pathology and plasticity (Carter, Shulman, et al., 2012).
Being a relatively new approach, study Il aimed at reviewing all 17 studies
published thus far in the field, discussing their main results and concluding on
the clinical utility of this approach. All studies are summarized in supplementary

Table 1 of the paper (see full-text PDF files).

5.3.1 Background

The purpose of using imaging techniques following stroke varies depending on
the time that has passed since stroke onset. In the acute phase, imaging is aimed
at gathering information concerning the vascular patency, areas of
hypoperfusion and metabolic and structural damage in order to guide
therapeutic decisions such as reperfusion therapies. In the sub-acute and chronic
phase, reorganization and plasticity take place in order to regain impaired
functions. In this phase, reorganization of distributed networks mediated by
connectivity is taking place (Andrews, 1991). Imaging is hence aimed at
exploring the status of cerebral networks and the interaction between regions
within affected networks. rs-fMRI is an ideal imaging approach to be used for this

purpose as it allows for multiple cerebral network assessment in a single scan.

5.3.2 Using rs-fMRI in the acute phase as a measure of local perfusion

The BOLD signal contains information concerning local blood flow and oxygen
consumption in addition to information concerning neuronal activity (Villringer
& Dirnagl, 1995; Vincent, et al., 2007). While in common rs-fMRI connectivity
analyses, the aim of preprocessing is to minimize the effect of vascular signals, in
the acute phase after stroke this component of the BOLD signal could prove

beneficial to identify potentially salvable tissue on appropriate therapy. Recent
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applications of rs-fMRI in acute stroke have demonstrated that it may be used to
replace perfusion measurements that require contrast agent (Amemiya, et al.,
2013; Lv, et al, 2013). The main limitations of contrast agent usage are the
inability to repeat the measurement in case of motion artifacts, and severe side
effects such as nephrogenic systemic fibrosis. Using time-shift analysis, two
studies have recently reported high spatial similarity between areas of
hypoperfusion defined on perfusion imaging and areas of delayed BOLD signal
defined using rs-fMRI (Amemiya, et al, 2013; Lv, et al, 2013). Although these
results are preliminary due to the small number of subjects, they suggest a

promising diagnostic usage for rs-fMRI in the acute phase.

5.3.3 Using rs-fMRI in the sub-acute and chronic phase to study
reorganization

Following the acute phase, alterations in rs-fMRI connectivity can be used to
explore reorganization of functional networks. rs-fMRI signal provides
information concerning the interaction between distant regions, an analysis
known as functional connectivity (K. J. Friston, 2011). The main finding reported
after stroke in both animal (van Meer, et al,, 2012; van Meer, van der Marel, Otte,
et al,, 2010; van Meer, van der Marel, Wang, et al., 2010) and human studies
(Carter, et al., 2010; Carter, Patel, et al., 2012; Golestani, et al., 2013; He, Snyder,
et al, 2007; Nomura, et al, 2010; Park, et al, 2011; Tuladhar, et al., 2013; L.
Wang, et al,, 2010) is that functional connectivity is reduced in areas structurally
intact yet connected to the lesion area. Decreased connectivity has been reported
for single networks among them motor, attention and default-mode. The
reduction in connectivity was associated with impaired function in the
corresponding behavioral domain further supporting the clinical significance of
these findings (Carter, et al., 2010; Golestani, et al., 2013; He, Snyder, et al., 2007;
Park, et al,, 2011; van Meer, et al., 2012; van Meer, van der Marel, Wang, et al,,
2010; L. Wang, et al., 2010). Stroke is hence causing a network-level disruption
other than the localized effects in the vicinity of the infarct. This view of stroke as
a network disorder along with the recent methodological and computational

advancements in the field have caused a shift in the methodologies applied to
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study reorganization after stroke. The aim is to develop experimental
approaches that can assess multiple network damage in patients with
heterogeneous lesions while maximizing the usage of raw data (i.e. whole-brain
analyses). Our work (presented here as study I and II) suggests the usage of
concordance to quantify changes in functional connectivity patterns over time on
the whole brain level (Lohmann, et al., 2012). We found that the diaschisis-
effects reported for single networks are evident also when assessing multiple
networks, and have shown that the degree of change in functional connectivity
over time correlated with the behavioral trajectory in individual patients further
supporting the potential prognostic value of rs-fMRI after stroke (Ovadia-Caro, et
al,, 2013).

Additional developments in the field have suggested the application of methods
from the mathematical field of graph theory to rs-fMRI data. A graph is defined as
a set of nodes (corresponding to brain regions or voxels) and edges
(corresponding to connections between the nodes). In the case of rs-fMRI,
connections are usually reflected by correlation strength between signals from
different nodes. Graph theory measures can inform us on the integrative ability
of different regions within the network and can provide information on the
topological organization of single as well as multiple networks. Such measures
include centrality, path length, clustering coefficient and modularity. These
measures can quantify the effectiveness and structural nature of the network
under investigation (Bullmore & Sporns, 2009). Graph theory has been applied
to explore network structure within the motor networks in both humans (L.
Wang, et al., 2010) and animals (van Meer, et al., 2012) after stroke. Additionally,
the role of the lesion topology within the network was explored using this
approach, and lesions falling within areas connecting different networks (i.e.
connector hubs), have been demonstrated to cause a greater impairment to the
network integrity as measured by modularity (Gratton, et al,, 2012). Although
graph theory is a recent and increasingly popular application to rs-fMRI data,
today’s computing power requires a reduction in the number of areas to be
analyzed through parcellation methods (Craddock, et al., 2012; Tzourio-Mazoyer,
et al, 2002). With further developments in computational capabilities, graph

theory approach will be applied using larger number of regions, thereby creating

56



more realistic graphs. In addition, the link between graph-based measures and
recovery after stroke should be further explored to conclude on the clinical

utility of this approach.

5.3.4 Limitations and considerations

As the application of rs-fMRI to study stroke is relatively recent, several
limitations need to be addressed by future studies. In particular, while some rs-
fMRI connectivity analyses are more susceptible to motion artifacts than others,
the need for good post hoc removal of motion artifacts or real-time motion
correction is still evident (K. Murphy et al, 2013; Power et al, 2012).
Furthermore, structural damage of the white matter has been shown to impair
connectivity (J. S. Damoiseaux & Greicius, 2009; A Schaefer, Quinque, et al,,
2014) and to account for some of the behavioral deficits observed after stroke
(Johansen-Berg et al., 2010). Since white matter lesions are very common in
stroke patients, in part due to their age, this variable should be reported and
accounted for either by excluding patients with severe white matter lesions or by
means of regression.

The status of vascular pathology and local changes in perfusion and metabolism
may also affect the connectivity analysis. While local changes in perfusion are
most prominent in the first hours after stroke and most studies conducted in the
field use data acquired later on, the vascular pathology (e.g., stenosis) is in some
cases a pre-existing state and poses some difficulties in interpreting the source of
observed connectivity changes. The BOLD signal is an indirect measure of
neuronal activity measuring changes in the concentration of deoxyhemoglobin
(Logothetis, 2003; Villringer & Dirnagl, 1995). The interaction between the
neuronal part and vascular part is based on complex mechanisms of
neurovascular coupling (Villringer & Dirnagl, 1995). However, it is unclear
whether similar neurovascular coupling can be assumed between healthy
controls and stroke patients with local ischemia and in most cases pre-existing
vascular disease such as stenosis (D'Esposito et al, 2003). While there are
reports in the literature of changes in the BOLD signal resulting from mere

vascular change (Krainik et al., 2005; Mazzetto-Betti et al.,, 2010; Pineiro et al,,
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2002), the effect on rs-fMRI connectivity analysis has not been explored yet.
Individual level analysis and correlating connectivity changes to behavioral
improvement can minimize this problem and support a neuronal origin for the

observed changes.

5.3.5 Conclusions

In this review paper, we have described and discussed the potential usage of rs-
fMRI to stroke patients in the acute and chronic phase. In the acute stage, rs-fMRI
has been found to be of potential diagnostic value by describing the perfusion
deficit. In the sub-acute and chronic phase, rs-fMRI connectivity analysis is being
used to explore reorganization and plasticity. Using this approach, local stroke
has been shown to cause a network wide disruption in the involved network, and
to result in whole-brain topological changes. Connectivity changes have been
shown to correlate with various behavioral measures, further supporting the
prognostic value of rs-fMRI and the usage of connectivity as a basis for guided
therapy in the form of stimulation techniques (Alonso-Alonso, et al., 2007; Di

Pino, et al.,, 2014; Grefkes & Fink, 2011; Grefkes, et al., 2010; Sehm, et al., 2012).
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6 General discussion

6.1 summary of results

The main goal of the current dissertation was to explore plastic changes
following stroke as measured by rs-fMRI data. We propose a methodological and
conceptual framework to study stroke pathology as a network disruption rather
than a mere localized phenomenon.

Study I presented a novel, data-driven mathematical tool to analyze rs-fMRI data
named connectivity concordance mapping (CCM) (Lohmann, et al, 2012).
Specifically, we quantify the reproducibility of functional connectivity patterns at
the whole-brain voxel level using a measure of connectivity concordance. This
study describes the algorithm in detail and presents results from applying the
method to healthy controls data as well as a longitudinal dataset from a single
stroke patient.

Our results from the healthy controls sample are in line with previous findings
demonstrating divergent connectivity patterns within the visual cortex during
eyes open and eyes closed conditions (McAvoy, et al, 2008; Van Dijk, et al,
2010), supporting the functional significance of the algorithm and providing a
proof of concept for its use. When applying CCM to the longitudinal dataset of a
patient following ischemic stroke in the left thalamus, the bilateral globus
pallidus demonstrated decreased concordance over time. Given the well-
established structural links between the thalamus and globus pallidus these
results are supportive of the theoretical model of diaschisis. However,
considering the lack of behavioral measures supporting our findings, this result
should be used as a catalyst for more in-depth exploration in larger samples (as
provided in study II).

The application of CCM to rs-fMRI data is an exciting new tool with applicability
to rs-fMRI data from both healthy controls and patients’ data. We suggest
concordance as a quantitative measure of plasticity as reflected in changes of the
spatial pattern of functional connectivity maps. Concordance has been previously
used to measure reproducibility in fMRI experiments (B. B. Biswal, et al., 2010;

Hasson, et al., 2010; Lange et al., 1999; Shehzad, et al., 2009). However, none of
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these applications was performed at the whole-brain voxel level. CCM can be
further used as a data-driven approach to detect areas of interests for second-
level analyses.

Study II explored the distal effects of lesions on functional network connectivity
patterns. Starting at day 1 after stroke, longitudinal rs-fMRI data from a
heterogeneous group of patients with varying lesions were collected. While most
studies conducted thus far in the field explore single networks with a relatively
small number of regions, we have presented an analytic approach taking into
account multiple functional networks. This approach can be applied to
individual-level analysis, and hence can be used to study patients with
heterogeneous lesions affecting more than one network. We have explored the
change over time in the spatial connectivity pattern of these networks using the
measure of concordance (initially suggested in study I).

We found that networks affected by the lesion presented a preferential change in
the spatial connectivity pattern over time, supporting the theoretical model of
diaschisis. In addition, we have determined a link between the degree of change
and the degree of behavioral recovery, further supporting the functional
significance of our empirical findings and their potential prognostic value
(Ovadia-Caro, et al, 2013). Our results are in line with previous findings
obtained using single network analysis in the motor (Carter, et al., 2010; Carter,
Patel, et al., 2012; Golestani, et al,, 2013; Park, et al., 2011), attention (Gillebert et
al,, 2011; He, Snyder, et al., 2007), and default-mode networks (Lassalle-Lagadec
et al, 2012; Tuladhar, et al, 2013). Similar results have been reported for
experimental stroke in animal studies within the sensorimotor network (van
Meer, et al,, 2012; van Meer, van der Marel, Otte, et al., 2010; van Meer, van der
Marel, Wang, et al.,, 2010) and in computational models simulating the effects of
lesions on network topology (Alstott, et al.,, 2009; Cabral et al.,, 2012; de Haan et
al,, 2012; Honey & Sporns, 2008). All these studies taken together suggest that
localized lesions cause widespread effect to interconnected areas, limited by the
boundaries of the affected network.

Preferential change in functionally affected networks has been previously
reported in patients with heterogeneous lesions affecting one of two networks.

This work was conducted on patients in the chronic phase (at least 5 months
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post-ictus) using a single rs-fMRI scan with the main goal of testing the
dissociation of two cognitive control networks (Nomura, et al., 2010). Our work
was inspired by this study and extends these findings to study recovery
processes in multiple functional networks. We suggest the multi-network
assessment of lesions’ distal effects as a unified model to study all stroke

patients.

6.2 Practical and theoretical implications

Our work has both practical and theoretical implications. On the clinical aspect, a
unified model that takes multiple network damage into account has the potential
of better representing complex clinical symptoms after stroke involving more
than one functional domain. Given the correlation between changes in functional
connectivity over time and the behavioral trajectory, our individual-level
analysis may provide a framework for individualized prognosis in patients with
heterogeneous lesions. Importantly, therapeutic attempts using non-invasive
stimulation techniques are currently being performed in single functional
domains, mainly in the motor network (Grefkes & Fink, 2011, 2012; Grefkes &
Ward, 2014; Hummel & Cohen, 2006). TMS and transcranial direct current
stimulation (tDCS) have been shown to successfully modulate connectivity in
cerebral networks (Grefkes & Fink, 2011; Sehm, et al, 2012). Non-invasive
stimulation techniques are used to normalize connectivity changes induced by
the stroke to improve function (Alonso-Alonso, et al., 2007; Di Pino, et al., 2014;
Grefkes & Fink, 2011; Grefkes, et al,, 2010; Sehm, et al., 2012). However, results
are mixed in terms of behavioral improvement (Ameli, et al., 2009; Grefkes &
Ward, 2014). A multi-network assessment of changes in functional connectivity
can be used to tailor stimulation protocols at the individual level thereby
potentially improving the efficiency of this exciting therapeutic approach.

On the theoretical level, stroke provides a unique model of a localized structural
damage to a system that is functional prior to injury (Carter, Shulman, et al,
2012). Unlike other progressive neurological diseases, any alterations in the
system that follow a sudden stroke reflect reorganization within the network in

the aim of regaining homeostasis. The lesion can be viewed as a knockout of a
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single node in the network causing a widespread dysfunction. Stroke can hence
inform us on various basic aspects of intrinsic network organization that apply to
healthy brains as well.

Our results support the independence between different functional networks
since lesions had a preferential distal effect in affected networks as compared to
unaffected networks. The decreased concordance over time in affected networks
provides empirical support for one of the fundamental principles underlying
brain function, specifically as it pertains to information flow. In order to produce
effective function, the brain has to be able to process information within single
modules as well combine information coming from different modules. Successful
function is achieved through a constant, dynamic balance between what is
commonly referred to as segregation and integration of information (Deco et al.,
2015; Sporns, 2013). This process is essential for functioning of distributed
networks underlying cognitive functions (P. T. Fox & Friston, 2012; Tononi et al.,
1994).

Results from network analyses using tools from the mathematical field of graph
theory suggest network communities account for segregation, while inter-
network hubs account for integration (Deco, et al,, 2015; Sporns, 2013). Network
communities are defined by higher connectivity within specific
networks/modules and a certain degree of independence between different
networks (Bullmore & Sporns, 2009). Our results are hence supportive of an
underlying network structure promoting segregation of information.

In order to produce complex cognitive functions involving more than one
modality, information has to be integrated as well. This is achieved through
inter-network hubs; regions of disproportionate connectivity binding
information between two (or more) communities (Deco, et al., 2015; Sporns,
2013).

This dual description of the network is commonly referred to as ‘small-world’
topology (Watts & Strogatz, 1998); on the one hand nodes are highly clustered
locally, yet on the other hand, the average path length between two nodes of the
network is relatively short due to hub regions (Bullmore & Sporns, 2009).
‘Small-world’ topology was originally described for social networks (Milgram,

1967), yet multiple evidences for ‘small-world’ properties have been reported
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both at the whole-brain scale using neuroimaging data, and at cellular level using
data acquired in animal models (Bassett & Bullmore, 2006; Bullmore & Sporns,
2009; Reijneveld et al, 2007; Sporns et al., 2004; Stam & Reijneveld, 2007)
supporting an infrastructure for cost effective segregation and integration of
information in the brain (Achard & Bullmore, 2007; Bullmore & Sporns, 2012).
The idea that different functional networks are segregated can be additionally
used as basis to test different neurocognitive models established in healthy
subjects. Nomura and colleagues explored the influence of lesions distributed in
two different networks, the fronto-parietal and cingulo-opercular, on functional
connectivity in order to demonstrate the dissociation of these two cognitive
control networks (Nomura, et al,, 2010). A similar approach was employed by He
and colleagues within the attention domain (Corbetta, et al., 2005; He, Shulman,
etal, 2007).

To summarize, in addition to the clinical utility, empirical evidence for the impact
of lesions on functional networks provide further knowledge of the network
structure as well as topological properties that may shed light on basic principles

such as segregation and integration of information in the healthy brain.

6.3 Considerations and suggestions for further research

Our suggested multi-network approach to study plasticity in stroke patients is a
novel approach providing a solution for the challenge of heterogeneity in the
form of a unified model that can be used in all stroke patients. However, some
limitations of our methodology should be taken into account.

The measure of concordance correlation coefficient to quantify changes in
functional connectivity pattern ignores the directionality and source of change.
The underlying nature of connectivity changes should hence be further explored
with additional second-level analyses (such as was done in study I using seed-
based analysis), in order to detect specific areas that contribute to the decreased
concordance. The idea that some networks are more innately concordant than
others (Lohmann, et al., 2012; Shehzad, et al., 2009) should also be taken into
consideration. However, concordance was computed in our analysis for each

subject individually and was normalized by concordance values in unaffected
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networks. The heterogeneity of lesions in our sample further minimized the
potential confound of within-subject comparison.

The correlation between changes in functional connectivity following stroke and
behavioral impairments have been previously reported for single networks, and
their corresponding functional domains (Carter, et al., 2010; He, Snyder, et al.,
2007; Park, et al,, 2011; L. Wang, et al,, 2010). In study II we found a relationship
between the degree of change in functional connectivity over time and the
degree of behavioral change over time as measured by the National Institutes of
Health Stroke Scale (NIHSS). While these results strengthen the clinical
significance of our findings, NIHSS is a fairly general measure of dysfunction after
stroke that mainly assesses motor function. Future studies should explore the
relationship between specific clinical outcome involving multiple networks and
their corresponding behavioral domains and concordance. Assembling a battery
of behavioral tests that match each assessed network would further increase the
clinical utility and prognostic value of our approach.

The impact of lesions within the white matter on functional connectivity has
been previously demonstrated (J. S. Damoiseaux & Greicius, 2009; Johansen-
Berg, et al,, 2010; A Schaefer, et al., 2014). In our sample, we excluded subjects
with moderate to severe white matter lesions (measured as Wahlund score > 6)
in order to avoid this confound. However, a model that is aimed at optimal
characterization of symptoms should take the contribution of this factor into
account. Such a model would be applicable to a larger population of stroke
patients thereby increasing its clinical utility.

Understanding the distributed effects caused by a stroke can be further explored
based on the concepts of segregation and integration of information and the
influence of the lesion on the network topology. Computational modeling
suggests that in addition to the widespread effects caused by the lesion, the
topological role of the lesion itself within the network can partially account for
the degree to which the network is impaired. That is, simulated lesions located in
areas of high connectivity (i.e. hub regions) had a more detrimental effect on
alterations in functional connectivity (Alstott, et al.,, 2009; de Haan, et al., 2012;
Honey & Sporns, 2008). Recently, the role of lesion topology in alterations of

functional connectivity after stroke has been explored empirically. Gratton and
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colleagues have shown that lesions located in hub regions had a more
detrimental effect on network integrity measured by modularity. Additionally,
they have demonstrated that the association between hub damage and
modularity could not be explained by the lesion size alone. This study
demonstrates the importance of hub regions to the integrity of the network
(Gratton, et al,, 2012). Although the link between hub damage and behavior is yet
to be explored, the topology of the lesion site provides an important insight on
the widespread network damage that could prove to be clinically relevant in the
future.

To date, studying the effects of lesions has been done using stationary measures
of functional connectivity. That is, the rs-fMRI data from the complete scan is
used in order to compute correlation between pairs of regions. Such static
analysis captures in essence only a snapshot of the effects of the stroke on the
network. The delicate balance between segregation and integration of
information is a dynamic process, hence suggesting that changes in functional
connectivity, and in network topology during the scan are of functional relevance
(Hutchison, et al., 2013; Sporns, 2013). Recent studies have documented
significant fluctuations of connectivity across different time-scales ranging from
milliseconds to seconds in both task-based (Ekman et al,, 2012; Fornito et al.,
2012; Kinnison et al,, 2012) and rs-fMRI data from both animals and humans
(Chang & Glover, 2010; Handwerker et al., 2012; Hutchison, Womelsdorf, Gati, et
al, 2013; Keilholz et al, 2013) pointing at the behavioral significance of this
approach. It has been additionally suggested that changes in functional
connectivity observed in clinical populations such as Alzheimer’s can be
accounted for by nonstationary temporal connectivity changes (Jones et al.,
2012). Windowing of rs-fMRI data to explore network dynamics is a newly
emerging frontier in the study of brain connectivity (Hutchison, et al, 2013;
Sporns, 2013). Although network dynamics require longer scans which could be
challenging in patients after stroke, such analysis may shed light on the
underlying process leading to widespread reduction in functional connectivity
and can inform us on the dynamic nature of both segregation and integration in

these unique conditions.
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More specifically, following stroke, hub regions play a central role in network
structure and integrity as explored by both human studies (Gratton, et al., 2012)
and computational models (Alstott, et al., 2009; de Haan, et al., 2012; Honey &
Sporns, 2008) using stationary connectivity measures. Since hub regions
connect different networks, it is assumed that over time, hubs will vary their
degree of connectivity to one network over the other based on changing
cognitive needs. These alterations are likely to reflect the ongoing integration
process of information flow. Recently it has been shown that using rs-fMRI data
and a connectivity clustering approach, hubs can be part of multiple networks
and their degree of integration into one network over the other changes over
time. Moreover, the same study showed that the degree of variation in hub
integration to one network over the other was decreased with age and was
related to stimulus independent thoughts during the scan (Schaefer et al,, 2014).
These results point at a possible cognitive role for dynamic changes in the degree
of hubs integration. Similarly, additional studies have shown that dynamic
changes in modularity of the network play a role in learning and mood changes
over multiple time scales (Bassett et al., 2011; Betzel et al., 2016). Owing to the
role hubs play in integration of information in the healthy brain, it can be
assumed that these areas are involved in the reorganization process following
stroke. However, the link between hubs dynamic integration, functional
connectivity changes and behavioral recovery after stroke has not been explored.
Such analysis could provide an interesting future direction to the study of
reorganization and changes in integration abilities within the networks following

stroke.

6.4 Conclusions

This dissertation sought to explore post-stroke network reorganization and the
recovery of functional networks as measured by rs-fMRI. In three studies
summarized here, this goal was approached from slightly different angles.
Presenting novel methodological approaches to rs-fMRI stroke data as well as
empirical findings to support the current view of stroke as a network disruption

rather than a localized structural phenomenon, and ending with a general
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overview of the field and the possible utility, clinical significance and limitations
of this experimental approach. In accordance with previous findings obtained in
single networks and the theoretical model of diaschisis, our results support the
notion that stroke should be understood, explored and ideally treated as a
network disruption, and that areas connected to the lesion are of paramount

functional relevance to the recovery process following stroke.
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