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Abstract

Stochastic information, to be understood as “information gained by the application of stochastic
methods”, is proposed as a tool in the assessment of changes in climate.

This thesis aims at demonstrating that stochastic information can improve the consideration
and reduction of uncertainty in the assessment of changes in climate. The thesis consists of
three parts. In part one, an indicator is developed that allows the determination of the proximity
to a critical threshold. In part two, the tolerable windows approach (TWA) is extended to a
probabilistic TWA. In part three, an integrated assessment of changes in flooding probability due
to climate change is conducted within the TWA.

The thermohaline circulation (THC) is a circulation system in the North Atlantic, where the
circulation may break down in a saddle-node bifurcation under the influence of climate change.
Due to uncertainty in ocean models, it is currently very difficult to determine the distance of the
THC to the bifurcation point. We propose a new indicator to determine the system’s proximity
to the bifurcation point by considering the THC as a stochastic system and using the information
contained in the fluctuations of the circulation around the mean state. As the system is moved
closer to the bifurcation point, the power spectrum of the overturning becomes “redder”, i. e.
more energy is contained in the low frequencies. Since the spectral changes are a generic prop-
erty of the saddle-node bifurcation, the method is not limited to the THC, but it could also be
applicable to other systems, e. g. transitions in ecosystems.

In part two, a probabilistic extension to the tolerable windows approach (TWA) is developed.
In the TWA, the aim is to determine the complete set of emission strategies that are compatible
with so-called guardrails. Guardrails are limits to impacts of climate change or to climate change
itself. Therefore, the TWA determines the “maneuvering space” humanity has, if certain impacts
of climate change are to be avoided. Due to uncertainty it is not possible to definitely exclude the
impacts of climate change considered, but there will always be a certain probability of violating
a guardrail. Therefore the TWA is extended to a probabilistic TWA that is able to consider
“probabilistic uncertainty”, i. e. uncertainty that can be expressed as a probability distribution or
uncertainty that arises through natural variability.

As a first application, temperature guardrails are imposed, and the dependence of emis-
sion reduction strategies on probability distributions for climate sensitivities is investigated. The
analysis suggests that it will be difficult to observe a temperature guardrail of 2◦C with high
probabilities of actually meeting the target.

In part three, an integrated assessment of changes in flooding probability due to climate
change is conducted. A simple hydrological model is presented, as well as a downscaling scheme
that allows the reconstruction of the spatio-temporal natural variability of temperature and pre-
cipitation. These are used to determine a probabilistic climate impact response function (CIRF),
a function that allows the assessment of changes in probability of certain flood events under
conditions of a changed climate.

The assessment of changes in flooding probability is conducted in 83 major river basins. Not
all floods can be considered: Events that either happen very fast, or affect only a very small area
can not be considered, but large-scale flooding due to strong longer-lasting precipitation events
can be considered. Finally, the probabilistic CIRFs obtained are used to determine emission
corridors, where the guardrail is a limit to the fraction of world population that is affected by
a predefined shift in probability of the 50-year flood event. This latter analysis has two main
results. The uncertainty about regional changes in climate is still very high, and even small
amounts of further climate change may lead to large changes in flooding probability in some
river systems.
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Kurzzusammenfassung

Stochastische Information, zu verstehen als “Information, die durch die Anwendung stochasti-
scher Methoden gewonnen wird”, wird als Hilfsmittel in der Bewertung von Klimaänderungen
vorgeschlagen.

Das Ziel dieser Doktorarbeit is es, zu zeigen, dass stochastische Information die Berücksich-
tigung und Reduktion von Unsicherheit in der Bewertung des Klimawandels verbessern kann.
Die Arbeit besteht aus drei Teilen. Im ersten Teil wird ein Indikator entwickelt, der die Bestim-
mung des Abstandes zu einem kritischen Grenzwert ermöglicht. Im zweiten Teil wird der “tole-
rable windows approach” (TWA) zu einem probabilistischen TWA erweitert. Im dritten Teil wird
eine integrierte Abschätung der Veränderung von Überflutungswahrscheinlichkeiten im Rahmen
des TWA durchgeführt.

Die thermohaline Zirkulation (THC) ist ein Zirkulationssystem im Nordatlantik, in dem die
Zirkulation unter Einfluss des Klimawandels in einer Sattel-Knoten Bifurkation abreißen kann.
Durch Unsicherheit in Ozeanmodellen ist es gegenwärtig kaum möglich, den Abstand des Sys-
tems zum Bifurkationspunkt zu bestimmen. Wir schlagen einen neuen Indikator vor, der es er-
möglicht, die Nähe des Systems zum Bifurkationspunkt zu bestimmen. Dabei wird die THC
als stochastisches System angenommen, und die Informationen, die in den Fluktuationen der
Zirkulation um den mittleren Zustand enthalten sind, ausgenutzt. Wenn das System auf den Bi-
furkationspunkt zubewegt wird, wird das Leistungsspektrum “roter”, d. h. die tiefen Frequenzen
enthalten mehr Energie. Da diese spektralen Veränderungen eine allgemeine Eigenschaft der
Sattel-Knoten Bifurkation sind, ist die Methode nicht auf die THC beschränkt, sondern weitere
Anwendungen könnten möglich sein, beispielsweise zur Erkennung von Übergängen in Ökosys-
temen.

Im zweiten Teil wird eine probabilistische Erweiterung des “tolerable windows approach”
(TWA) entwickelt. Das Ziel des TWA ist die Bestimmung der Menge der Emissionsreduktionss-
trategien, die mit sogenannten Leitplanken kompatibel sind. Diese Leitplanken sind Begrenzun-
gen der Auswirkungen des Klimawandels, oder des Klimawandels selber. Der TWA bestimmt
daher den Spielraum, den die Menschheit hat, wenn bestimmte Auswirkungen des Klimawan-
dels vermieden werden sollen. Durch den Einfluss von Unsicherheit ist es aber nicht möglich, die
betrachteten Auswirkungen des Klimawandels mit Sicherheit auszuschließen, sondern es exis-
tiert eine gewisse Wahrscheinlichkeit, dass die Leitplanke verletzt wird. Der TWA wird daher zu
einem probabilistischen TWA weiterentwickelt, der es ermöglicht, “probabilistische Unsicher-
heit”, also Unsicherheit, die durch eine Wahrscheinlichkeitsverteilung ausgedrückt werden kann,
oder die durch den Einfluß von natürlicher Variabilität entsteht, zu berücksichtigen.

Als erste Anwendung werden Temperaturleitplanken betrachtet, und die Abhängigkeit der
Emissionsreduktionsstrategien von Wahrscheinlichkeitsverteilungen über die Klimasensitivität
wird bestimmt. Die Analyse ergibt, dass die Einhaltung einer Temperaturleitplanke von 2◦C sehr
schwierig wird, wenn man hohe Wahrscheinlichkeiten des Einhaltens der Leitplanke fordert.

Im dritten Teil wird eine integrierte Abschätzung der Änderungen von Überflutungswahr-
scheinlichkeiten unter Einfluss des Klimawandels durchgeführt. Ein einfaches hydrologisches
Modell wird vorgestellt, sowie ein Skalierungsansatz, der es ermöglicht, die raum-zeitliche na-
türliche Variabilität von Temperatur und Niederschlag zu rekonstruieren. Diese werden zur Be-
stimmung einer probabilistischen Klimawirkungsfunktion genutzt, einer Funktion, die es erlaubt,
die Veränderungen der Wahrscheinlichkeit bestimmter Überflutungsereignisse unter Einfluss von
Klimaänderungen abzuschätzen.

Diese Untersuchung der Veränderung von Überflutungswahrscheinlichkeiten wird in 83 großen
Flusseinzugsgebieten durchgeführt. Nicht alle Klassen von Überflutungen können dabei berück-
sichtigt werden: Ereignisse, die entweder sehr schnell vonstatten gehen, oder die nur ein klei-
nes Gebiet betreffen, können nicht berücksichtigt werden, aber großflächige Überflutungen, die
durch starke, langanhaltende Regenfälle hervorgerufen werden, können berücksichtigt werden.
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Zuguterletzt werden die bestimmten Klimawirkungsfunktion dazu genutzt, Emissionskorridore
zu bestimmen, bei denen die Leitplanken Begrenzungen des Bevölkerungsanteils, der von einer
bestimmten Veränderung der Wahrscheinlichkeit eines 50-Jahres-Flutereignisses betroffen ist,
sind. Letztere Untersuchung hat zwei Hauptergebnisse. Die Unsicherheit von regionalen Klima-
änderungen ist immer noch sehr hoch, und außerdem können in einigen Flusssystemen schon
kleine Klimaänderungen zu großen Änderungen der Überflutungswahrscheinlichkeit führen.
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Chapter 1

Stochastic Information

The reader may initially be surprised by the term “stochastic information” in the title,

since the term does not appear in a physics textbook. In this thesis, we use “stochastic

information” as a short form of “information gained by the application of stochastic

methods”, and we propose that stochastic information can be a valuable tool for the

consideration of uncertainty in the assessment of changes in climate.

Archetypically, the assessment of changes in climate can be approached from two

distinct points of view. On the one hand, there is the scientific analysis of the climate

system, and on the other hand there is scientific assessment for purposes of policy ad-

vice. Now, what are distinctions between these cases? Within pure science, the problem

investigated typically arises out of other scientific investigations, and results of an analy-

sis serve scientific purposes only. In scientific assessment for purposes of policy advice,

the question investigated typically arises outside of science, and results of the analy-

sis are supposed to inform the policy-making process, which may in turn generate new

scientific questions.

In pure science, one traditionally strives for the “objective truth”. Starting from

first principles and / or measurement data, uncertainties are successively reduced, until

certainty has been achieved. Within this framework, consistency with empirical evidence

is the ultimate quality criterion.

If a scientific assessment is conducted for purposes of policy advice, on the other

hand, the search for the objective truth may turn out to be a luxury one cannot afford. In

cases where facts are uncertain, values in dispute, stakes high, and decisions urgent, the

“post-normal” approach to science ( Funtowicz and Ravetz, 1993, Ravetz, 1999) may be

more appropriate. Two examples, where this was the case, are the BSE (bovine spongi-

form encephalopathy) epidemic in the 1990s, and the admission of genetically modified

crops (Marchi and Ravetz, 1999). In the case of the BSE epidemic, the way the disease

is transmitted was very uncertain at first, as was the extent of the epidemic and ways of
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2 Stochastic Information

countering it, but political decisions had to be made in spite of this. Similarly, it is still

uncertain, whether genetically modified crops may turn out to be harmful, but political

pressure to allow the cultivation is high. In these cases the scientific community was –

and still is – not able to give an objective analysis of the matter at hand. Instead, science

could present the available evidence and thereby inform the policy-making process, and

thus the uncertainty is still very high, when decisions are made.

In the post-normal approach to science, the guiding principle of science, the search

for truth, has to be extended, since it is highly unlikely that the truth can be determined

in time. Instead, it has to follow a principle of quality assurance, where uncertainties are

acknowledged and value judgments underlying an assessment are made explicit.

This change in the guiding principles of science does not mean that the traditional

scientific principles become irrelevant, or that science becomes a political undertaking,

but it is rather a recognition that the search for the objective truth alone may no longer be

the appropriate response to societal problems, where facts are uncertain, stakes high, and

decisions urgent. In addition, this change does not necessarily change the way science

is conducted, but it rather changes how problems are formulated, the way that results

are presented, and the criteria of what constitutes “good” science. An additional aspect

to this question is that pure science is typically only concerned with problems that are

considered soluble, whereas science in a post-normal setting may have to investigate

problems considered insoluble (Ravetz, 1997).

Funtowicz and Ravetz (1993) have coined the term “post-normal science” for sci-

entific policy advice in cases where facts are uncertain, values in dispute, stakes high,

and decisions urgent. Is this a suitable characterization for the case of climate change?

Here, the stakes are high, obviously. The mitigation of climate change may become a

very expensive undertaking, but major changes in the climate system might well have

a major effect on humanity. Similarly, decisions are urgent, if humanity wants to limit

climate change. According to the latest report by the intergovernmental panel on climate

change (IPCC), the global mean temperature has already changed by 0.6± 0.2◦C rela-

tive to preindustrial (Houghton et al., 2001), and temperatures will continue to rise until

some time after emissions of substances that change the radiative balance of our planet

have been reduced. These points therefore apply to the climate change issue. In addition,

facts about climate change are uncertain, as we will elaborate in the next paragraphs.

In the assessment of climate change, uncertainty is a factor that has to be acknowl-

edged in every link in the chain of cause and effect, ranging from uncertainty about

the socio-economic system causing the emissions of greenhouse gases (GHG) and other

substances modifying the radiative balance, over uncertainty about the current state of

the climate system and climate system response to the emissions of greenhouse gases,
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to uncertainty about the impacts of climate change. One very illustrative example is that

the latest assessment report by the IPCC states a range from 1.4 to 5.8◦C for the warming

that is to be expected between 1990 and 2100 (Houghton et al., 2001). The width of this

range, as well as the fact that the authors did not give a probability distribution or most

likely value, clearly shows the large uncertainty.

The chain of cause and effect of future climate change starts with the anthropoge-

neous emissions of greenhouse gases. These future emissions depend on a number of

factors, none of which can be predicted with any accuracy. Among other factors, there

is the future growth in population, as well as the future economic development, and the

technologies that will be used. All of these factors are the result of decisions by humans,

which are unpredictable. This causes a huge uncertainty about the future emissions in

GHGs. Since this uncertainty cannot be resolved, scenarios are commonly used to rep-

resent the future emissions in assessments of climate change.

The next link in the chain of cause and effect is the climate system itself. The climate

system is a complex nonlinear system, composed of a large number of components. Any

state of the climate system is the result of a large web of interactions between large

numbers of processes on widely differing scales, both spatial and temporal. These scales

range from the microscopic to continental for the spatial scales, and from sub-second to

millennial for the temporal scales (e. g. Peixoto and Oort (1991)).

These observations have a number of consequences for the assessment of changes

in climate. The nonlinear nature of the climate system leads to a sensitive dependence

on initial conditions and to the possibility of multiple equilibria in the climate system,

while the complexity of the climate system requires the representation of all relevant

processes at all scales, since cross-scale interactions might have a strong influence on

other processes at other scales.

Comprehensive climate models, the general circulation models (GCM), are the most

comprehensive tool available for assessing the climate system. These models aim to

solve the equations of the climate system on all relevant scales. Unfortunately, this is

not possible because current computer technology limits the ability to resolve processes,

and uncertainty about some processes prevents their consideration. As a result, there

inevitably are some processes that cannot be resolved explicitly, and these must therefore

be represented by some parameterized closure scheme (Palmer, 2000). Examples for this

are mixing processes in the oceans, and cloud formation in the atmosphere.

Therefore there is uncertainty about the parameterizations of sub-gridscale processes.

This may be uncertainty about parameter values, but it may also be uncertainty about the

processes themselves. In addition, there also is uncertainty about the current state of

the climate system. While some properties can be measured by satellites nowadays, this
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is not possible for all relevant properties, e. g. water mass properties below the ocean

surface, and the density of measurement networks is in many cases insufficient for a

reliable estimation of the current state of the climate system. Finally, many processes in

the climate system display some natural variability, which also adds to the uncertainty.

All of the uncertainties mentioned above then propagate into the assessment of im-

pacts of climate change. Here, the climate change realized due to some forcing is un-

certain, but in addition to that the impact of some defined climate change scenario may

also be uncertain, once again due to uncertainty in parameters and processes, as well as

insufficient knowledge.

It can therefore be concluded that climate change research is an area of science,

where uncertainty is still very high, especially with regard to future changes in climate,

and political stakes are also very high, since slowing or even reversing climate change

may severely affect the way we conduct our lives. Therefore, much of the climate re-

search conducted takes place within the paradigm of post-normal science, and the IPCC1

process can be seen as a manifestation of this (Saloranta, 2001).

An example of what post-normal science may be like when applied to climate change

research is the “Delft process” ( van Daalen et al., 1998). The Delft process was a se-

ries of five workshops that took place between 1995 and 1997. In these workshops the

IMAGE 2 model (Rotmans et al., 1989, Alcamo et al., 1998) was applied in support of

international climate negotiations, and a dialogue between the scientists involved in the

development of IMAGE 2 and policymakers took place. This series of workshops had

two effects. On the one hand, it helped the workshop participants from the policy side

in the preparation of policy documents. On the other hand, it also helped the scientists

understand the needs of policymakers and thereby improved the scientific policy advice.

These workshops also illustrate the perils of approaching research for policy advice

from a purely scientific point of view. At the first workshop, the IMAGE team pre-

sented some analyses they thought were relevant to policymakers. These consisted of an

analysis of the consequences of no action, and of an evaluation of the impacts of vari-

ous scenarios stabilizing the CO2 concentration in 2100. These analyses, however, did

not fulfill the needs of the policy makers involved, since these needed guidance for the

upcoming negotiations, which were focused on short-term actions. They therefore re-

quested information on short-term actions, burden sharing, impacts and costs. As a con-

1The intergovernmental panel on climate change (IPCC) was established by the World Meteorologi-
cal Organization (WMO) and the United Nations Environmental Programme (UNEP) in 1988 to assess
available information on climate change and its environmental and socio-economic impacts. It regularly
publishes reports summarizing the accumulated peer-reviewed scientific literature on climate change. After
compilation, these reports are reviewed by scientists, as well as governments and non-governmental orga-
nizations. The IPCC has published three reports so far, with the third assessment report appearing in 2001
(Houghton et al., 2001, McCarthy et al., 2001, Metz et al., 2001).
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sequence, the IMAGE team subsequently developed the “safe landing analysis” ( Swart

et al., 1998), which allowed the determination of the short-term policy options that were

compatible with the long-term goal of avoiding dangerous anthropogenic interference

with the climate system (van Daalen et al., 1998).

Stochastic information is a tool that may improve the assessment of changes in cli-

mate. Considering the climate system as a stochastic system lends itself naturally to

noisy (stochastic) timeseries and the necessarily truncated analysis of the system, since

it will rarely be possible to consider all scales that affect system behavior if one starts

from first principles. This way, all the information that is contained in the timeseries

can be utilized, while an analysis within a deterministic framework may disregard in-

formation hidden in fluctuations about the mean state. Therefore the consideration of

information gained by the application of stochastic methods may aid the scientific anal-

ysis of the climate system.

For policy advice, on the other hand, the focus is not on the development of a perfect

understanding of the climate system, but rather on developing robust strategies for the

future management of the climate system. Since the focus is not on the current state

of the climate system, but on projections of the future development, uncertainty that

is inherent in climate change assessment needs to be taken into account explicitly, and

it is also necessary to communicate the uncertainty. Stochastic methods can allow the

consideration of some of the uncertainty, and they can also aid in the communication

of the uncertainty, since uncertainty that is quantified and considered explicitly can be

communicated more effectively.

Stochastic information therefore may aid the scientific analysis of the climate sys-

tem, regardless of whether one works within the “normal” or the “post-normal” paradigm

of science. In the end, the difference between the two paradigms becomes very small

when it comes to the actual scientific analysis, since one wants to reduce the uncertainty

as far as possible in both cases.

This thesis will present two cases, where information gained by the use of stochastic

methods aids in the assessment of climate change. The first example is an example taken

from oceanography. The North Atlantic thermohaline circulation (THC), also called

meridional overturning circulation (MOC), is a circulation system in the North Atlantic,

that is driven by temperature and salinity gradients. The current state of this system is

difficult to determine, and chapter2 will present a novel way of determining the system’s

state by considering it as a stochastic system. This provides additional information on

the state of the system that cannot be gained by deterministic methods.

Chapters 3 and 4 will then present an extension of the tolerable windows approach

(TWA), so far a deterministic approach to the integrated assessment of climate change, to
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a probabilistic approach. The deterministic TWA already evades some of the uncertain

factors since it determines the set of emission trajectories compatible with predefined

criteria instead of relying on single emission trajectories, and the extension to a proba-

bilistic TWA allows the explicit consideration of probabilistic uncertainty in the TWA,

as well as the consideration of impacts of climate change, where climate change leads

to a change in probability of a certain event happening. The basic framework of the

probabilistic TWA will be developed in chapter 3, while chapter 4 will present an as-

sessment of changes in flooding probabilities under climate change, a first application of

the probabilistic TWA to a probabilistic impact of climate change.

The thesis will finish with a summary and an outlook in chapter5.



Chapter 2

Stochastic indicator for the

proximity to a critical threshold

2.1 Introduction

It is becoming increasingly evident that there are critical thresholds in the Earth system,

where the climate may change dramatically (Smith et al., 2001, Scheffer et al., 2001).

The exact positions of these thresholds in the phase space of the Earth system are, how-

ever, still unclear and it might be doubted, whether they can be determined with enough

precision to give concrete information on the threat of crossing the threshold. There-

fore additional independent methods for assessing the closeness of the system to these

thresholds are needed. These methods could contribute to an “early warning system”

for assessing the danger of crossing a threshold and possibly provide the information

necessary for controlling the system.

One subsystem that displays such a threshold is the North Atlantic thermohaline cir-

culation (THC) (Clark et al., 2002). Considering the system of the THC under a global

warming scenario, the circulation may collapse if certain threshold values in northern

Atlantic temperature and salinity are exceeded. This system has been thoroughly in-

vestigated using a whole range of models, ranging from conceptual models (Stommel,

1961, Cessi, 1994, Rahmstorf, 1996, Scott et al., 1999, Titz et al., 2002) over models

of intermediate complexity (Stocker and Schmittner, 1997, Rahmstorf and Ganopolski,

1999a, Kleinen, 2000) to highly complex general circulation models (GCM) (Manabe

and Stouffer, 1988, Rahmstorf, 1995, Schiller et al., 1997, Wood et al., 1999). While

most of these investigations agree with respect to the fact that there is a threshold, where

the circulation breaks down, the exact value of this threshold in the climate system has

not yet been determined. Currently it seems questionable, whether the exact position

7



8 Stochastic indicator for the proximity to a critical threshold

of the threshold will be determined within the near future, as the disagreement on over-

turning strength and sensitivity to freshwater fluxes is still quite large between different

GCMs. In addition it has not been possible to accurately measure the present overturning

strength of the THC in the real climate system so far.

Due to the large uncertainty it is also questionable, whether one would actually gain

information on the position of the threshold in the “real” climate system, if one could

accurately determine the threshold in a GCM. As Schmittner and Weaver (2001) have

shown, it is possible to generate widely differing responses of the THC to freshwater

forcing by varying the diffusivities in ocean models. As a result, the model gives dif-

ferent distances to the threshold for the same mean overturning. Since these uncertain

parameterizations cannot be well constrained by measurements, uncertainty about the

distance to the threshold remains large.

Simple box models have shown a remarkable ability to capture important aspects of

the behavior of the THC manifested in GCM experiments. So far most investigations

have concentrated either on the deterministic behavior of the THC or on the stochastic

properties. Deterministic models have mainly been used to investigate the bifurcations

and attractors of the models (Stommel, 1961, Rahmstorf, 1996, Scott et al., 1999, Titz

et al., 2002), whereas the work with stochastic models has concentrated on the spectrum

and on the stationary distribution (Stommel and Young, 1993, Cessi, 1994, Bryan and

Hansen, 1995). Combining the two points of view, Timmermann, Lohmann and Mona-

han have investigated how the stationary distribution changes as a function of the bifur-

cation parameter (Timmermann and Lohmann, 2000, Monahan et al., 2002, Monahan,

2002). What has not been investigated so far is the dependence of the power spectrum

on the bifurcation parameter.

The concept of stochastic climate models goes back to a paper by Hasselmann

(1976). He observed that there are many fast processes (e.g. weather) within the climate

system. These processes may affect the long term development of the system, so that

they cannot be omitted from an assessment. On the other hand, these processes can not

be incorporated into comprehensive models due to resolution, computation and concep-

tual restraints. Therefore Hasselmann proposed that the influence of the fast processes

on climate could be modeled as a stochastic forcing to the system.

With respect to bifurcations, the influence of fluctuations becomes even more impor-

tant, as fluctuations may increase in the vicinity of bifurcation points, eventually leading

to critical fluctuations ( Haken, 1980, Sornette, 2000). This might induce a switch in the

system even before reaching the bifurcation itself (Monahan, 2002).

The freshwater flux is the bifurcation parameter within the THC-system. It is com-

posed of a multitude of components, including precipitation and wind-driven transports
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among others. These processes are subject to short term processes and fluctuations.

Therefore critical fluctuations might occur.

The aim of this chapter is to investigate, whether the system’s response to fluctu-

ations can be used as an indicator for the proximity of the system to the bifurcation

point, and to determine whether this might yield additional information compared to

purely deterministic methods. Potential applications of this method could span a large

range, ranging from the THC itself over other climatic processes to ecosystem dynamics

(Scheffer and Carpenter, 2003).

The structure of the chapter is as follows: In section 2.2 the model used in this inves-

tigation will be described, and the variability of North Atlantic freshwater fluxes will be

estimated. In section 2.3 the dependence of the power spectral density on the bifurcation

parameter will be investigated, while section 2.4 will concentrate on the dependence

of the probability density on the bifurcation parameter. In section 2.5 the stability of

the present day THC and its dependence on bifurcation parameter and noise strength

will be analyzed, while we will extend our findings to more comprehensive models in

section 2.6. The chapter will finish with summary and conclusions in section2.7.

Parts of this chapter have already been published in Ocean Dynamics as Kleinen

et al. (2003).

2.2 Model description and behavior

2.2.1 The Stommel model

The Stommel model (Stommel, 1961) is a well-known nonlinear conceptual model of

the thermohaline circulation. It is a hemispheric two-box model consisting of intercon-

nected boxes of temperature Ti and salinity Si representing the North Atlantic at low and

high latitudes. The model calculates the circulation strength in a channel connecting the

two boxes, as well as the changes in salinity and temperature resulting from advective

transport between the boxes. The circulation is proportional to the density difference

between the boxes.

In the model version used here, the temperatures Ti and salinities Si of the boxes are

not considered explicitly, but only their differences, ∆T and ∆S respectively, appear in

the model equations. With regard to the model formulation we follow Monahan (2002),

without using the additional noise term affecting the advective transport he used.

The model equations are

d
dt

∆T = −|q|
V

∆T +Γ(∆T0 −∆T ) (2.1)
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d
dt

∆S = −|q|
V

∆S +
S0

h
∆F. (2.2)

The change in temperature difference ∆T is determined by the advective temperature

flux −( |q|/V )∆T with box volume V (both boxes are of equal volume), and by the

Newtonian temperature restoring Γ(∆T0 −∆T ) with the relaxation timescale Γ−1 and

the reference temperature difference ∆T0. The change in salinity difference ∆S is again

determined by the advective transport of salinity and by the difference in the freshwater

fluxes ∆F . The freshwater flux is converted to a haline flux by multiplication with the

reference salinity S0. The depth of both boxes is equal and denoted by h. The overturning

q is proportional to the pressure difference between the boxes. It is obtained from the

density difference with the thermal and haline expansion coefficients α and β, while c

is a hydraulic constant relating overturning strength to density difference. The volume-

mean-flow q is determined by

q = c(α∆T −β∆S) . (2.3)

In order to introduce fluctuations of the moisture flux, the following substitution

has to be applied: (S0/h) ∆F → (S0/h) ∆F +ΣẆ , with W a Wiener process (Gardiner,

1994). ΣẆ is white noise with standard deviation Σ.

In order to facilitate the analytical treatment, the system is transformed to a nondi-

mensional formulation. By introducing the quantities

t̃ =
cα∆T0

V
t (2.4)

x =
1

∆T0
∆T (2.5)

y =
β

α∆T0
∆S (2.6)

and by substituting them into the model equations, the formulation

ẋ = −|x− y|x+ γ(1− x) (2.7)

ẏ = −|x− y|y+µ+σẆ (2.8)



Stochastic indicator for the proximity to a critical threshold 11

is derived (Monahan, 2002). Here, all time derivatives are with respect to rescaled time.

Here, the transport q is transformed to q = x− y. The parameters in Eq. 2.7-2.8 are

γ =
V

cα∆T0
Γ

µ =
βV S0

ch(α∆T0)
2 ∆F

σ =

(

β2V

c(α∆T0)
3

)
1
2

Σ.

In principle, values for these parameters would have to be obtained by fitting the box

model to GCM output or measurement data. Instead we obtained the values for all

parameters but h and Γ from Monahan (2002), and Timmermann and Lohmann (2000).

h is the maximum depth of North Atlantic Deep Water (Warren, 1981), whereas Γ has

been used by Rahmstorf and Ganopolski (1999b) for a 4-box model of the thermohaline

circulation. Performing their calculations for the 2-box model, we arrive at a similar

result. The values for the model parameters are listed in Table 2.1, but the argument

Parameter Value

α 0.15K−1

β 0.8psu−1

c 17 ·106 m3s−1 = 5.36 ·1014 m3a−1

V 2 ·1015 m3

∆T0 15K
h 4000m
Γ 25−1 a−1

Table 2.1: Possible values for model parameters.

presented in this chapter does not depend on the exact values of these parameters. Using

these parameter values, a model year corresponds to 1.66 real years.

2.2.2 Properties of the deterministic system

Before tackling the stochastic problem, we want to familiarize us with the properties of

the deterministic system. The steady state solution to the system is obtained by setting

ẋ = ẏ = σ = 0. The solution to this problem is the solution of a 3rd order polynomial.

As we don’t want to bore the reader, we don’t show it here.

In the case of positive overturning and positive µ, corresponding to an excess of

precipitation over evaporation, the system is driven by thermal gradients and braked by
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haline gradients (see Eq. 2.3). For positive overturning there is one stable solution, a sta-

ble node (Stommel, 1961), for all µ < 0.03. For µ > µc = 0.03 the stable solution breaks

down in a saddle-node bifurcation, and the circulation changes to the haline-driven equi-

librium solution with negative overturning. A change in the relaxation timescale γ−1

shifts the bifurcation point: An increase in γ results in an increase in µc.

For negative overturning the system is driven by haline gradients. There is one stable

solution, a stable focus (Stommel, 1961), for all µ > 0. It breaks down at µ = 0, where

the overturning changes sign. For µ < 0 only one stable solution exists – both thermal

and haline driving force the system in the same direction. Therefore only one solution

with strong positive overturning is possible.
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Figure 2.1: Hysteresis loop of overturning strength with varying freshwater flux µ at
noise amplitude 0. The bifurcation point at the critical freshwater flux µ c is marked by a
diamond.

Under the influence of slowly varying parameters µ, the stability properties sketched

above lead to a well-pronounced hysteresis behavior (Fig. 2.1). After the circulation

broke down in the saddle-node bifurcation, a reduction of the freshwater flux µ does not

result in an instantaneous return to the positive overturning solution, but the system stays
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on the haline branch until the freshwater flux µ changes sign and the thermal and haline

driving forces act in the same direction. The result is a jump from zero overturning to

strong positive overturning as one passes through µ = 0. A similar hysteresis experiment,

where the freshwater flux µ was slowly increased and decreased linearly by ∆µ = ±0.04

starting from µ = 0 with a velocity dµ/dt̃ = 4 · 10−5 is depicted in Fig. 2.1. Here the

overturning (x− y) is shown depending on the freshwater flux µ. The bifurcation at

µc = 0.03 is clearly visible, as is the hysteresis behavior of the circulation. Henceforth

the focus will be on the solution with positive overturning, as this is the situation in

today’s ocean.

2.2.3 Model Reduction

In order to allow an analytical treatment, the system is reduced to one dimension.

If we assume that the system contains widely differing response times, the behavior

of the system on short timescales may be of minor importance for the long term evolution

of the slow variables. In this case variables can be separated, “slaving” the fast variables

to the slow variables. By this “adiabatic elimination” ( Gardiner, 1994) the dimension-

ality of the system is reduced to one. In principle, this approach is not justified, if the

goal is as realistic a description of reality as possible. Realistic temperature gradients are

smaller that ∆T0. On the other hand, the qualitative properties of the system, namely the

saddle-node bifurcation and the hysteresis behavior, are retained in the reduced system.

In the case investigated here, the following system of Langevin stochastic differential

equations (SDE) is considered:

dx = (−|x− y|x+ γ(1− x)) dt (2.9)

dy = (−|x− y|y+µ) dt +σdW. (2.10)

Under the assumption that the temperature relaxation timescale τ = 1/γ is very short,

corresponding to γ very large, temperature relaxation happens instantly constraining x to

x = 1 if one considers the long timescales only. Therefore the system (2.9, 2.10) can be

reduced to a one-dimensional SDE in y only:

dy = (−|1− y|y+µ)dt +σdW. (2.11)

In the case of positive overturning (y < 1) this corresponds to

dy =
(

y2 − y+µ
)

dt +σdW, (2.12)
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which has the deterministic steady state solutions

y1,2 =
1
2
±
√

1
4
−µ (2.13)

with y1 an unstable and y2 = y0 = 1/2−
√

1/4−µ a stable fixed point.

Please note that the system described by Eq. 2.11 is very similar to the one inves-

tigated by Cessi (1994). The only difference is that Cessi parameterized the volume

transport by the square of the density difference and not by the absolute value used here.

This SDE retains the relevant features of the full system of SDEs. The system un-

dergoes a saddle-node bifurcation at the critical freshwater flux µ c = 0.25 and again

observes a hysteresis behavior as in Fig. 2.1. Due to the large values of γ assumed in

the adiabatic approximation, the bifurcation point is now at a much higher value of the

freshwater flux µ than in the full system ( 2.7, 2.8), i.e. the bifurcation is at µc = 0.25

instead of µc = 0.03 in the full system.

In the following model simulations, the model equations are integrated using an ex-

plicit Euler scheme (Kloeden and Platen, 1999) with a timestep of 0.1 (nondimensional)

“years”. Initial sensitivity experiments have shown that the convergence properties do

not improve using smaller timesteps.

2.2.4 Freshwater Flux Variability

The freshwater flux µ is composed of a multitude of factors. It contains all processes

that influence the salinity balance both in the equatorial Atlantic and in the deepwater

formation areas in the high northern latitudes, with the exception of freshwater transport

by the THC. For the Labrador sea, which is one of two deepwater formation areas for

the North Atlantic THC (Warren, 1981), Houghton and Visbeck estimate that the major

contributors to the freshwater balance of that area are advective transport, sea ice melt-

ing, continental runoff, precipitation and evaporation (Houghton and Visbeck, 2002). In

addition to these, there is also wind-driven transport, which could have an influence. The

freshwater flux µ is composed of all of these factors, minus the advective transport by

the THC. This transport is described explicitly by the Stommel model.

In order to assess the magnitude of σ, the variance of the quantities composing µ

has to be estimated. Estimates for these factors are difficult to obtain and notoriously

unreliable, and the variance of these quantities is rarely even considered. Nonetheless a

few estimates exist.

Walsh and Portis estimate from reanalysis data that the standard deviation of annual

averages of precipitation P and evaporation E over the North Atlantic is typically about

10-20% of the mean (Walsh and Portis, 1999), while Houghton and Visbeck report that
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interannual variations in the Labrador current are about 30% of the mean (Houghton and

Visbeck, 2002). In addition there is an estimate of the variability of the winter sea ice

concentration in the Labrador sea by Deser et al. (2002).

Apparently sea ice anomalies are preceded by freshwater anomalies (Houghton and

Visbeck, 2002) and are therefore correlated with these. It also seems plausible that

the interannual variations of P and E are not entirely uncorrelated. If precipitation is

anomalously large one year, evaporation must also be anomalously large, though not

necessarily in the same location. With regard to the advective transport we simply don’t

know, how representative the Labrador current is for the advective freshwater transport

within the entire North Atlantic basin.

The variance of such a sum of random processes is the sum of the variances, if

the processes are independent and uncorrelated. If the processes are correlated, on the

other hand, the variance is much harder to quantify, since the processes are no longer

independent and their correlation has to be taken into account.

Therefore it is only possible to give an estimate for the minimum of σ by using

the variability of precipitation P as an indicator for the total variability, as the sea ice

concentration and advective transport influences and their correlations are very difficult

to quantify.

In the model it is assumed that precipitation is a white noise process. In reality,

precipitation is not an uncorrelated white noise process, but rather a correlated red noise

process with an autocorrelation e-folding time or decorrelation timescale of a couple of

days (e. g. Joseph et al., 2000). In the model (Eq. 2.11) a white noise process has been

substituted for the red noise process of precipitation. This is possible if the timescales of

the processes differ widely, which is the case here, since the model integration timestep

is 0.1 years.

The noise amplitude σ of an equivalent white noise process driving the ocean model

can be assessed by comparing the variances of two simple linear models: One that is

driven by white noise and one that is driven by red noise. A model y driven by white

noise σẆ has variance

var(y) =
σ2

2δ
(2.14)

with δ the inverse decorrelation timescale of the model. A model y′ driven by a red noise

process z, on the other hand, has the variance var(y′) = λ2/(2αδ(α+δ)), if z has the

variance var(z) = λ2/2α. Here, α is the inverse decorrelation timescale of the red noise

process z driving the model, δ is the same as for the model driven by white noise, and
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λ is the amplitude of the white noise process generating the red noise. From comparing

these quantities it becomes obvious that σ2 = λ2/(α(α+δ)) and therefore

σ =

√

2
(α+δ)

var(z).

Walsh and Portis report the standard deviation of annual averages of precipitation.

The variance of such annual averages is of course much lower than the variance of the

original process. If we assume the original process to be a piecewise constant timeseries,

we can estimate that the variance of a process z̄, where N values have been averaged, is

1/N times the variance of the original process z. Numerical experiments show that this

relationship holds well for the actual red-noise process, if a segment length of twice the

decorrelation timescale τ is assumed. This gives the relation var(z) = N var(z̄) for the

variances, with N given by N = (T/2τ) = αT/2 and T the averaging time.

Walsh and Portis estimate that the standard deviation of precipitation and evaporation

is about 10-20% of the mean, corresponding to a variance var(z̄) = (βµ)2 with µ the

mean freshwater flux and 0.1 ≤ β ≤ 0.2. If we assume that rain has a decorrelation

timescale τ of about a week, τ = 1/α ≈ 1/50yr and therefore α ≈ 50yr−1. The inverse

decorrelation timescale δ of the ocean model can be assessed from the linearized model

presented in section 2.3. From Eq. 2.16 it is obvious that δ = 2
√

∆µ . As 0 ≤ ∆µ ≤ 0.25,

we get 0 ≤ δ ≤ 1. From these considerations it follows that

σ =

√

2
(α+δ)

α
2

T (βµ)2 ≈
√

T βµ. (2.15)

The maximum mean freshwater flux µ in the reduced Stommel model is µ = µ c =

0.25, giving a range from σ = 2.5×10−2 to σ = 5×10−2 for σ. In the following model

simulations a value of σ = 2.5× 10−2 will therefore be used, unless another value is

specified explicitly.

2.3 Spectral changes at the bifurcation

In the deterministic case, it is possible to asses the distance to the bifurcation point on the

basis of a measured steady state overturning q. This would require, however, a perfect

knowledge of q itself as well as of all the model parameters.

The stochastic model formulation on the other hand reveals additional information

because fluctuations are included, the properties of which might be used for indicating

the distance to the bifurcation.



Stochastic indicator for the proximity to a critical threshold 17

The spectrum of the system described by Eq. 2.12 can be calculated analytically by

using small noise expansion (Gardiner, 1994), essentially a linearization of the system

around the steady state solution y0 = 〈y(t)〉. The prerequisite for applying this approxi-

mation is that the noise amplitude is sufficiently small, i.e. the influence of the noise on

the system behavior is small compared to the deterministic influences.

The dynamics of the perturbation ỹ = y− y0 is given by the linearization of Eq. 2.12

around y0:
˙̃y = (2y0 −1) ỹ+σẆ . (2.16)

Equation 2.16 describes an Ornstein-Uhlenbeck Process. The spectrum of this process

is (Gardiner, 1994)

S (ω) =
σ2

(2y0 −1)2 +ω2
. (2.17)

Using the deterministic steady state solution (2.13) and the distance ∆µ = µc−µ from the

critical freshwater flux µ c, the dependence of the power spectral density on the distance

to the bifurcation point ∆µ is obtained:

S (ω,∆µ) =
σ2

4∆µ+ω2 . (2.18)

Plotting the power spectral density calculated from the timeseries of overturning

data, a shift in spectral properties due to the lurking bifurcation can be seen. It is clearly

visible from Fig. 2.2 that the spectrum changes as the system is moved towards the

bifurcation point. Far away from the bifurcation, one obtains a red spectrum with a cutoff

frequency (the frequency, where the spectrum changes from a horizontal to a decreasing

shape) of approx. 10−1 (please note that frequency is given in nondimensional units,

as time is nondimensional), while the magnitude of the spectrum in the limit ω → 0

is approx. 8×10−4. Close to the bifurcation, the cutoff frequency decreases to approx.

2×10−2 at ∆µ = 0.02, while the magnitude of the spectrum in the limit ω → 0 increases

by about an order of magnitude to approx. 8×10−3.

Obviously the decorrelation time of the overturning increases as one gets closer to

the bifurcation, which results in a change in cutoff frequency. This also implies that the

probability density function widens and that the amplitude of fluctuations increases.

In Fig. 2.2 both measured and theoretically estimated spectra of the overturning are

shown for different distances to the bifurcation point ∆µ. Comparing these it is obvious

that both measured and calculated spectrum agree very closely.



18 Stochastic indicator for the proximity to a critical threshold

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Frequency f

P
ow

er
 s

pe
ct

ra
l d

en
si

ty
 e

st
im

at
e

∆µ=0.2
∆µ=0.1
∆µ=0.02
analytical

Figure 2.2: Power spectral density estimate of overturning in adiabatically reduced
model at distances to bifurcation point ∆µ = 0.2, ∆µ = 0.1, ∆µ = 0.02 and corresponding
theoretical spectrum. The analytical spectrum for ∆µ = 0.1 has been left out for clarity.
The frequency denoted on the abscissa refers to nondimensional time.

By transforming the system to an Ornstein-Uhlenbeck process we are now capable

of discussing the mechanism leading to increased decorrelation times, i. e. smaller cutoff

frequencies.

Physically a larger mean freshwater flux µ, corresponding to a smaller distance to

the bifurcation point ∆µ, leads to an increase of the steady-state salinity gradient y0 (see

Eq. 2.13 for comparison). The increase in y0 in turn reduces the overturning q = 1− y.

Thus the salt-advection feedback (Rahmstorf et al., 1996) that stabilizes the circulation

is decreased in strength and small deviations from the steady state change the advection

term in Eq. 2.11 very little, which leads to a very slow relaxation to the steady state, thus

allowing larger deviations from y0 and increasing the decorrelation time. The power

spectral density changes towards a “redder” spectrum. The magnitude of the spectrum

in the limit ω → 0 is inversely proportional to ∆µ, while the cutoff frequency is propor-

tional to the square root.
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While the change in spectral properties as a system is moved closer to a bifurcation

certainly lends itself nicely to visualization, this may, depending on the investigation

conducted, not be the most reliable method for estimating the distance to the bifurcation

point. The increase in decorrelation time used to determine ∆µ could also be obtained

by other techniques of timeseries analysis, e. g. by determining the autocorrelation.

2.4 Probability density at the bifurcation

In order to gain further insight into the processes that take place as the system approaches

the bifurcation, it seems valuable to also look into the changes of the probability density

function (pdf) of the process. While the Langevin equation describes the temporal evolu-

tion of the system itself as a diffusion process, the Fokker-Planck equation describes the

temporal evolution of the pdf. The Fokker-Planck equation is equivalent to the Langevin

SDE, but it examines a different aspect of the system properties.

The Fokker-Planck equation

∂
∂t

p(y, t) = L̂FP p(y, t) (2.19)

is a partial differential equation describing the temporal evolution of the probability den-

sity function p. L̂FP is the Fokker-Planck operator

L̂FP = − ∂
∂y

(−∇ f (y))+
σ2

2
∂2

∂y2 (2.20)

with

f (y) = −
(

y3

3
− y2

2
+µy

)

(2.21)

being the potential for the adiabatically reduced system (2.12) in the vicinity of the

potential minimum. If the system is close to the steady-state solution y0, a steady state

probability density function can be calculated from the Fokker-Planck equation using

the potential solution (Gardiner, 1994). This solution is

pstat (y) = N exp

(

− 2
σ2 f (y)

)

(2.22)

with a normalization constant N and the potential (2.21). An analogue to this system is

the motion of an overdamped particle in a potential well driven by a Brownian forcing.

It can be assumed that this Ansatz can be used as long as the mean first exit time

from the quasi-stationary state is much longer than the timescales under consideration.

Strictly speaking, this method of solution is not applicable because the system is not
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in a stationary state, but only in a quasi-stationary state. As outlined in section 2.5,

this assumption is valid as long as the system is not so close to the bifurcation that a

breakdown of the circulation is inevitable.
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Figure 2.3: Potential and probability density function at distance to bifurcation point
∆µ = 0.2 and potential at the bifurcation point ∆µ = 0. The potentials have been
transformed by an additive constant, so that they agree in y0. Noise amplitude σ was
σ = 2.5 ·10−2. Potential minimum f (ymin) and potential maximum f (ymax) are marked
with circles. The pdf is obviously constrained to an area, where potential and lineariza-
tion still agree.

The adiabatically reduced system (2.12) corresponds to the cubic potential (2.21).

Far away from the bifurcation point, there is a well-defined potential-well. This is shown

quite clearly in Fig. 2.3, where the potential is plotted for ∆µ = 0.2 and ∆µ = 0. At

∆µ = 0.2 the pdf is tightly constrained within the potential-well. As the system moves

closer to the bifurcation, the potential difference ∆ f = f (ymax)− f (ymin) decreases, until

it vanishes at the deterministic bifurcation point µc. The pdf broadens and the probability

current across the local maximum f (ymax) increases.
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The approach to a deterministic saddle-node bifurcation corresponds to a decrease of

the potential difference between local minimum (corresponding to the stable fixed point

in the deterministic system) and local maximum (corresponding to the unstable fixed

point) of the stochastic potential, until the potential difference is zero at the deterministic

bifurcation point. This flattening of the potential again reflects the vanishing restoring

force.

The linearized system (2.16) corresponds to a parabolic potential. As the system

approaches the bifurcation, the parabola widens. Therefore the change in the spectrum

can be explained by the widening of the parabolic potential, whereas the bifurcation

itself is the vanishing of the potential well.

2.5 Stability of the THC

As the stochastic system approaches the bifurcation, its stability decreases gradually.

Even if the deterministic bifurcation point has not been reached, there still is a finite

probability that the stochastic system will leave the potential well and cross over to the

haline-driven reverse equilibrium circulation (Monahan, 2002).

If the goal of detecting a lurking bifurcation is to provide means for control, the

bifurcation has to be detected at large enough a distance to the bifurcation point. Very

close to the bifurcation, however, the system will not be stable for very long. If this

method is to make sense, the circulation has to be stable long enough to provide enough

time for a meaningful measurement and for moving the system away from the bifurcation

again, if it is too close to it. Therefore it is necessary to assess the dependence of the

lifetime of the quasistationary state of the THC on the bifurcation parameter. In addition

the stationary solution developed in the last section does not make any sense, if the

quasistationary system is not stable on the timescales under consideration.

Within the framework of Fokker-Planck equation and probability density, the life-

time of the quasistationary state of the system can be described by the mean first exit

time from the potential well, which is the time, when the system leaves the potential

well for the first time in the ensemble mean. Physically, this is the average time the sys-

tem stays in the stable equilibrium solution despite the forcing by the stochastic process.

In this section the dependence of the mean first exit time on the bifurcation parameter is

investigated.

Some arbitrary area in configuration space is considered that contains the current

maximum of the pdf. The mean first exit time from the potential well can be calculated

from the probability density p and the probability current J. The probability current can
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also be understood as the probability divided by the mean first exit time τ. Therefore the

mean first exit time can be calculated from

τ =
P
J

=
2

σ2

Z y2

y1

exp

(

− 2
σ2 f (y)

)

dy
Z A

ymin

exp

(

2
σ2 f (y)

)

dy (2.23)

with f (y) given by Eq. 2.21 (Risken, 1996). The probability P that the system is within

the potential well is determined by the first integral in Eq. 2.23, whereas the inverse

of the probability current from the potential minimum at ymin to a point A outside the

potential well is estimated in the second integral. The integration boundaries y1,2 are the

boundaries of the area in configuration space considered, while A is located outside the

potential well, somewhat larger than ymax. The exact location of A is arbitrary, since it

is assumed that the transition from ymax to A is much faster than the mean first exit time.

The integrals in Eq. 2.23 can be evaluated numerically.

If the potential difference ∆ f = f (ymax)− f (ymin) is much larger that the diffusion

coefficient D = σ2/2, it is also possible to obtain an analytical expression for the mean

first exit time by using Kramers’ formula (Risken, 1996). Thus an insight into the depen-

dence of the system’s stability on the distance from the bifurcation point can be gained.

In the case under consideration here, Kramers’ escape time is

τ(σ,∆µ) = 2π(4∆µ)−
1
2 exp

(

1
3σ2 (4∆µ)

3
2

)

. (2.24)

The mean first exit time τ grows stronger than exponentially with distance ∆µ, while it

decreases with rising noise variance σ2. As one can see from Fig. 2.4, this approximation

is not valid very close to the bifurcation point. In that case, the mean first exit time has

to be calculated numerically.

In order to compare these results with model simulations, an ensemble experiment

of 1000 model simulations for every parameter combination considered is conducted.

The model equation (2.12) is integrated forward in time, and the time when the system

leaves the potential well is considered the first exit time. The mean first exit time τ is

given by the ensemble mean. These simulations are performed at noise amplitudes of

σ = 2.5×10−2, σ = 5×10−2 and σ = 7.5×10−2 with mean freshwater fluxes µ ranging

from µ = 0.23 to µ = 0.25, corresponding to ∆µ = 0.02 and ∆µ = 0.

The results obtained by numerical integration of Eq. 2.23 and by model simulation

were nearly identical. Thus we have plotted the mean first exit times obtained by nu-

merical integration and by the analytical approximation in Fig. 2.4. From this figure it

is obvious that the analytical approximation is not applicable below ∆µ = 1.1× 102 at

σ = 7.5×10−2, while it can be used closer to the bifurcation point, if the noise strength

is lower. At larger distances from the bifurcation point all methods give similar answers.
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Figure 2.4: Nondimensional mean first exit times in the vicinity of the bifurcation point,
calculated analytically and numerically for three noise amplitudes σ.

When it comes to a discussion of the stability of the THC, three timescales are of ma-

jor interest. First a mean first exit time of about 104 years is relevant, as that is the age of

the Holocene, and the THC has been relatively stable for that long, which can be inferred

from North Atlantic sediment data (Bond et al., 1997). If we assume that conditions have

been relatively stable during the Holocene until the begin of industrialization, this value

of the mean first exit time is the minimum distance possible for preindustrial conditions.

The second relevant timescale is the time needed to obtain a meaningful measurement,

while the third timescale is the time needed to change the mean freshwater input µ, if it

is determined that we are too close to a breakdown of the THC. We estimate both the

second and the third timescale to be in the range of 102 −103 years.

As an illustration of the information that can be gained by using the Ansatz developed

in this section, the distances to the bifurcation point that correspond to these timescales

will be estimated. The analysis is of course not directly applicable to the real THC, but

only to the simplified model. For convenience, we now assume that a nondimensional
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Figure 2.5: Nondimensional mean first exit time from the potential well for varying
noise strength σ and distance to bifurcation point ∆µ. Calculated from the analytical
approximation, where it is valid. The mean first exit time is given in nondimensional
time units. Large decorrelation times also allow for the notion of quasistationary states.
For sensible parameter combinations the mean first exit times are always much larger
than decorrelation times.

timestep is equal to one year. The error introduced by this simplification is small, as the

actual length of a timestep is equal to 1.66yr.

From Fig. 2.5, where the mean first exit time obtained analytically is shown depend-

ing on the distance to the bifurcation point ∆µ and on the noise amplitude σ, it can be

seen that a mean first exit time of 104 years is reached at ∆µ = 0.07, corresponding to

µ = 0.18, if the noise standard deviation is comparatively high at σ = 7.5×10−2. With

σ = 5× 10−2 , this time is reached at ∆µ ≈ 0.033, corresponding to µ = 0.217, while

∆µ ≈ 0.013 at σ = 2.5×10−2.

A mean first exit time of 103 years is reached at ∆µ = 0.052 for σ = 7.5× 10−2.

Therefore the mean freshwater flux µ must be smaller than µ = 0.198, if we want to

be able to still measure and control the system. This minimum permissible distance to
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the bifurcation point decreases with smaller noise standard deviations to ∆µ = 0.023 at

σ = 5×10−2 and ∆µ = 0.008 for σ = 2.5×10−2.

2.6 Beyond the simplified Stommel model
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Figure 2.6: Power spectral density of overturning at different mean freshwater fluxes in
less simplified box models. Upper panel: Full Stommel model, legend gives distance to
bifurcation point ∆µ, frequency is nondimensional. Lower panel: Four box model of the
interhemispheric THC, salinity only, legend gives mean freshwater flux F 1.

The change in the spectrum as the system is moved closer to the saddle-node bifur-

cation is caused by a decrease in the strength of the advective feedback stabilizing the

THC. The advective feedback mechanism is clearly not a property that is restricted to the

simple box model the experiments were performed with. Therefore it can be assumed
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that the changes in the spectrum that are observed in a very simple box model also occur

in more comprehensive models, if the strength of the advective feedback is reduced.

We have performed experiments similar to the ones we described in section 2.3 with

two less simplified box models. First the full Stommel model including the temperature

dynamics was used, as in equations 2.7 and 2.8. The upper panel of Fig. 2.6 shows

the power spectral density at different distances to the bifurcation point ∆µ. Clearly the

power spectrum changes in a manner similar to the simplified Stommel model as the

system gets closer to the bifurcation point.

In addition these, experiments were performed with a salinity-only version of an

interhemispheric four-box model of the THC (Titz et al., 2002), which is very simi-

lar to the other well-known interhemispheric three- and four-box models (Rooth, 1982,

Rahmstorf, 1996, Rahmstorf and Ganopolski, 1999b, Scott et al., 1999, Titz et al., 2002).

These models describe an interhemispheric thermohaline circulation, where the strength

of the overturning is dependent on the density gradient between the northern and the

southern box of the model. The equatorial box, which is much warmer than the po-

lar boxes, has no influence on the steady state circulation, it only affects the dynamics

of changes in circulation strength. In this type of model a modified bifurcation behav-

ior occurs: If there also is a freshwater transport above a certain threshold between the

equatorial and the northern box of the model, a Hopf bifurcation can occur (Titz et al.,

2002). The model is modified by adding a stochastic freshwater flux between the south-

ern and the equatorial box of the model, and experiments at different mean freshwater

fluxes are performed, while the freshwater flux between the equatorial and the northern

box is kept below the critical value for the Hopf bifurcation. The power spectral density

of the overturning is shown in the lower part of Fig. 2.6. Again there are distinct changes

in the power spectrum as the system approaches the bifurcation point.

Due to the lack of a suitable GCM it has not yet been possible to test whether the

effect described here also occurs in full-scale GCMs, but GCM experiments have shown

that the overturning decreases with an increase of the freshwater flux into the Atlantic

basin (Rahmstorf, 1996). Decreased overturning implies decreased advection and there-

fore a decrease in the strength of the advective feedback.

Von Storch et al. have investigated the spectral characteristics of the deep-ocean

mass-transport (von Storch et al., 2000). They found no evidence against the assumption

that the THC has a red spectrum. In fact they found a power spectral density S(ω)

proportional to ω−2 in a frequency range from ω = 1/20yr−1 to ω = 1/500yr−1. Longer

timescales, where a red spectrum would level off, could not be resolved due to the short

timeseries they had available.
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Knutti and Stocker have published results from experiments with a model of inter-

mediate complexity (Knutti and Stocker, 2002), where they report that the variability of

the overturning increases strongly in the vicinity of the critical threshold where the THC

collapses. Tziperman has reported a similar increase in variance close to the instability

threshold in experiments with a comprehensive 3D ocean-atmosphere model (Tziper-

man, 2000). This increase in variability is also predicted by our model, as implied by

Eq. 2.14.

Finally, we show in a separate publication (Held and Kleinen, 2004) that a slightly

modified version of our method can also be applied to an earth system model of in-

termediate complexity. The model CLIMBER-2 (Petoukhov et al., 2000, Ganopolski

et al., 2001) consists of a zonally averaged ocean model, which is coupled to a coarse-

resolution atmospheric model, and a simple biosphere model.

A bifurcation is characterized by the fact, that the equilibrium solutions of the system

under consideration change at the bifurcation. In general there is a control parameter µ,

and at a critical value µc of the control parameter, an equilibrium solution vanishes or is

created. When discussing bifurcations in the climate system, it is implicitly assumed that

the quasi-stationary dynamics of the climate system can be simplified as an equilibrium

of a nonlinear dynamical system which is perturbed by noise. In the small noise limit,

which we consider in this chapter, the response to the noise forcing can be approximated

by linear modes.

A fundamental property of bifurcations is the fact that one mode, the “critical mode”,

becomes unstable at the bifurcation, which leads to a vanishing of the smallest decay rate

(Wiggins, 1990). Since the variance in the linear approximation of the small noise limit

increases as ∆µ = µc − µ → 0, this critical mode can be approximated by the leading

empirical orthogonal function (EOF) (von Storch and Zwiers, 1999).

Hence we attempted to determine the critical mode in the ocean model of CLIMBER-

2. We perturbed the current-day climate the model simulates by adding a freshwater flux

to the North-Atlantic region. We thus created a quasi-stationary state, where the ocean

was very close to the bifurcation point. By performing a principal component analysis of

the salinity field, we determined the leading EOF, which approximates the critical mode.

We then created different quasi-stationary states by adding different freshwater fluxes

to the North-Atlantic and projected the salinity field onto the EOF approximating the crit-

ical mode. The timeseries of the corresponding principal component can then be used to

determine the proximity to the bifurcation, since it also displays increasing decorrelation

times as the system approaches the bifurcation.
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While all of these characteristics are no conclusive evidence that the behavior we are

describing also occurs in the real ocean, they are consistent with the predictions by our

model. We therefore feel confident that our results can also be applied to the real ocean.

2.7 Summary and Conclusions

In this chapter we have demonstrated how the spectral properties and the probability

density change as the THC moves closer to the bifurcation point in a stochastic mod-

ification of the Stommel-model. As the system approaches the bifurcation point, the

spectrum becomes “redder”. The magnitude of the power spectral density in the limit of

zero frequency increases inversely proportional to the distance to the bifurcation point

∆µ, while the cutoff frequency decreases proportionally to the square root.

The mechanism described above is a generic property of the advective feedback

mechanism and the saddle-node bifurcation and is therefore independent of the exact

values of model parameters. The spectral characteristics of the overturning in GCMs

and the observed increase in variance of the overturning close to the instability thresh-

old support the hypothesis that the mechanism described above is also valid for more

comprehensive models, even though this would have to be confirmed by experiments.

The method presented above could have a wide range of applicability to all systems

that contain a saddle-node bifurcation or a feedback mechanism similar to the advective

feedback of the THC.

Rahmstorf estimated the distance from the bifurcation point by fitting a determinis-

tic four-box-model to a GCM hysteresis run of the THC (Rahmstorf, 1996). A similar

approach could also be used to estimate the distance to the bifurcation point in the real

climate system, but it needs the total overturning strength as an input, which is very diffi-

cult to measure accurately. Any error in measuring the total overturning would lead to an

error in the estimate of the distance to the bifurcation point, which makes an additional

independent approach desirable.

Rather than average values of total overturning, our method requires the cutoff fre-

quency of red overturning power spectra as an input, or, equivalently, the decorrelation

time in overturning time series. Therefore, the proposed method allows an independent

estimate of the actual overturning, for a two-fold reason.

First, the cutoff frequency only requires decorrelation properties of overturning time

series as an input, not the total overturning, nor its total variability. Therefore, a time

series of a representative fraction of overturning would be sufficient. In addition, fluctua-

tions of salinity and temperature differences show the same change in the power spectral
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density as one gets close to the bifurcation. Therefore the distance from the bifurcation

point could also be estimated by measuring the fluctuations in either of these quantities.

Second, the proposed method adds information with respect to another source of

uncertainty: results obtained with a simple model have to be transferred back to the

real world system. This transfer is problematical with both methods, the one proposed

here, and the “traditional” based on time-averaged, total overturning estimates. The

model parameters, which contain considerable uncertainty, facilitate this transfer. From

a simple argument of units it becomes evident that our proposed method is sensitive to

an alternative set of parameter uncertainties compared to the traditional method. Our

method rests on cutoff frequencies, and hence decorrelation times of the overturning,

and thereby introduces the unit of “time” into the analysis, whereas the “traditional”

scheme relies on the total measured overturning, which is not in itself time-dependent.

Therefore, the focus of sensitivity in parameter space is different for both methods, and

the method proposed here is therefore a source of supplementary information on the state

of the system.

What can be obtained from consecutive measurements without a transformation back

to the “real world” is a prediction of a trend in the bifurcation parameter. This may be

worth something already, even if the absolute distance to the bifurcation point contains

a certain margin of error.

A problem appears, if the actual threshold in the climate system is not determined by

the advective processes described by the Stommel model, but by a shutdown of convec-

tion before the saddle-node bifurcation is reached. If this is true, the distance from the

saddle-node bifurcation can still be estimated, but this will not be relevant for the climate

system. An estimate of the distance from the point, where convection shuts down, may

also be possible, but this has not been investigated so far.

It remains questionable, whether this indicator can be used as a warning indicator

for THC shutdown dangers due to global warming, since timeseries length requirements

are still quite high compared to the timescales during which climate change will occur

within the near future. Nevertheless, it may still be able to improve our understanding

of the THC by using paleo information on the Holocene THC in order to determine the

state of the THC during preindustrial conditions, as outlined in Held and Kleinen (2004).

In addition, this indicator could be used for further applications. Since the changes in

spectral properties are a generic feature of the saddle-node bifurcation, the indicator

could also be valuable for the assessment of different systems, e. g. the Indian Monsoon,

where a saddle-node bifurcation may play a role (Zickfeld, 2003), or for the detection of

transitions in ecosystems (Scheffer and Carpenter, 2003). In addition, it can be shown

that similar changes in the spectrum occur at pitchfork and transcritical bifurcations.
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This chapter illustrates that the variability of climatic variables contains important

information that is not accessible, if only averaged values are considered. Stochastic

information is therefore able to reduce uncertainty about the state of the system.



Chapter 3

Probabilistic extension of the

Tolerable Windows Approach

3.1 Introduction

The tolerable windows approach (TWA) (Petschel-Held et al., 1999, Bruckner et al.,

1999, 2003b, Toth, 2003, Toth et al., 2003a,b), also called the guardrail approach, is an

approach to the integrated assessment of climate change (IA).

The assessment of climate change initially started out as a work done along disci-

plinary lines. Atmospheric scientists and oceanographers worked on atmospheric and

ocean models. Hydrologists and ecologists attempted to assess the impacts of climate

change on water supply, ecosystems and food production. Economists and engineers

tried to evaluate the feasibility and costs of emission reduction strategies. Since all

of these were disconnected activities, they involved diverse and often contradictory as-

sumptions. This led to difficulties in comparing results and reduced policy relevance.

In the late 1980s, first attempts were made to integrate these elements into a consistent

framework. Out of these first attempts grew what now is called integrated assessment

(Bruckner et al., 1999).

In the integrated assessment of climate change an attempt is made to evaluate the

whole chain of cause and effect of climate change, ranging from the anthropogeneous

emissions of greenhouse gases, over the changes in climate these emissions cause, to

the impacts the induced climate change will have. Prototypically, this is done in a com-

prehensive and coordinated analysis. Since this mainly involves the future changes in

climate, a strong emphasis is placed on models as tools for IA.

31
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Formally the integrated assessment of climate change is a control problem with the

basic formulation

ẋ = f(x, t;u). (3.1)

In this equation x ∈ R
n is the state vector of the system, and u ∈ U is a vector of control

variables that can be freely chosen in U. In the climate change problem, u could be the

reductions in CO2 emissions, or the emissions themselves. With the help of this basic

equation, three basic approaches to the integrated assessment of climate change can be

distinguished (adapted from Weyant et al., 1996):

• Policy evaluation modeling: in policy evaluation modeling the physical, ecologic

economic and social consequences of predefined climate protection strategies are

evaluated. Formally, a single control function u(·) is specified as an input, and the

solutions x(·) are sought.

A representative of this approach is the IMAGE family of models (Rotmans et al.,

1989, Alcamo et al., 1998).

• Policy optimization modeling: in policy optimization modeling it is attempted to

determine control vectors in such a way that a predefined goal function is maxi-

mized. This function may be determined by costs and benefits of climate protec-

tion strategies in a single metric, i. e. US $, but other definitions are possible as

well. After defining a goal function J(t) =
R t

0 c(x, t ′)dt ′, solutions ũ(·) are sought,

such that

ũ(·) = arg max
u

(t)
Z t

0
c(x, t ′)dt ′ with ẋ = f(x, t;u). (3.2)

Policy optimization modeling usually takes place either as cost-benefit analysis

or, in cases where additional constraints are acknowledged, as cost-effectiveness

analysis. Typical representatives of this approach are the models DICE (Nordhaus,

1994), RICE (Nordhaus and Yang, 1996) and SIAM (Hasselmann et al., 1997).

• Policy guidance modeling: policy guidance modeling aims to determine the com-

plete set of climate protection strategies u(·) that are compatible with normative

constraints, formally defined as h(x, t;u) ≤ 0. These constraints may be set in

order to limit the impacts of climate change, but they may also limit the costs of

emission reduction or any other element that is represented in the coupled assess-

ment model. This problem can formally be represented as a differential inclusion

(Aubin and Cellina, 1984, Deimling, 1992)

ẋ ∈ F(x, t) with F := {f(x, t;u)|u ∈ U} (3.3)
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under the condition

h(x, t;u) ≤ 0. (3.4)

A possible solution to this problem is the funnel, the set of all states that can be

reached by trajectories that are compatible with the constraints. A projection of

the funnel on the plane defined by the time axis and an emission axis is called an

emission corridor.

Representatives of this approach are the safe landing analysis (Swart et al., 1998),

which partly fulfills the abovementioned characteristics, and the tolerable win-

dows approach.

The tolerable windows approach (TWA) (Petschel-Held et al., 1999, Bruckner et al.,

1999, Toth, 2003, Bruckner et al., 2003b) is a representative of the policy guidance

modeling approach. The TWA was originally proposed by the German Advisory Council

on Global Change (WBGU, 1995) during the preparations for the 1st Conference of

the Parties (COP) to the United Nations Framework Convention on Climate Change

(UNFCCC) in Berlin. Its main objective is to support climate change decision-making

by separating scientific analysis from the normative setting of climate protection targets

(Petschel-Held et al., 1999, Bruckner et al., 2003b).

A major motivation for the TWA stems from Article 2 of the UNFCCC. This ar-

ticle calls for the stabilization of greenhouse gas concentrations at levels that prevents

dangerous anthropogenic interference with the climate system (United Nations, 1995).

The TWA is an approach that enables an operationalization of Article 2, since it aims to

determine the maneuvering space humanity has, if it wants to avoid “dangerous anthro-

pogenic interference”. In the TWA the integrated assessment process starts by assessing

which impacts of climate change or mitigation measures are undesirable. These impacts

are then excluded by setting normative constraints, “guardrails” in the language of the

TWA. This step is seen as a normative decision to be taken by the policy-maker seeking

policy advice, guided by the scientific assessment, but not a scientific decision in itself.

In a subsequent step, the TWA then determines sets of emission reduction strategies that

are compatible with the predefined guardrails.

The impacts of climate change are very important in the TWA, and impacts can

therefore be represented as climate impact response functions (CIRF) (Bruckner et al.,

1999, Füssel et al., 2003). CIRFs are derived from climate impact assessments and

indicate how the system under consideration reacts to climate change. Therefore impacts

of climate change need not be expressed in monetary terms, as in policy optimization

modeling, but they can rather be expressed in a metric that is suitable to the impact

under consideration.
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Since uncertainty is present in every link of the chain of cause and effect in IA,

uncertainty needs to be represented adequately in the TWA. First steps of considering

uncertainty in the TWA have been made. Toth et al. (2003b) have presented emission

corridors that arise, if parameters in the model or guardrail settings are varied. Similarly,

Zickfeld and Bruckner (2003) have determined emission corridors for various probabil-

ities of a collapse of the thermohaline circulation, as well as for different climate sensi-

tivities, while Kriegler and Bruckner (2004) have investigated the sensitivity of emission

corridors to changes in various parameters.

While these studies have performed the first steps in considering uncertainty in the

TWA, this chapter aims at modifying the conceptual framework in order to fully con-

sider probabilistic uncertainty within an extended TWA. The extension of the determin-

istic TWA to a probabilistic TWA has two advantages. First, the natural variability of

climate and impacts can be considered explicitly. Second, in cases of parameter un-

certainty, where probability distributions for uncertain parameters are known, the in-

formation known about these uncertainties can be utilized fully. This allows a further

improvement in policy advice applications, since the uncertainty can be considered ex-

plicitly, which facilitates its communication.

In section 3.2 a stochastic extension to the ICLIPS climate model will be presented,

and the consequences of uncertainty for the TWA will be explored. In section 3.3 the

conceptual framework of a probabilistic TWA will be developed, while a first application

will be shown in section 3.4. The chapter will end with a summary and some conclusions

in section 3.5.

3.2 The TWA under probabilistic uncertainty

3.2.1 Two concepts

Two concepts are important for an understanding of the TWA, and they are therefore

introduced here. One of the most important concepts in the TWA is the guardrail. Orig-

inally, the TWA even got it’s name from it, since it was called “Leitplankenansatz”,

German for guardrail approach, when it was first conceived.

A guardrail is a limit to climate change, an impact of climate change, or to climate

protection measures. Guardrails are conceived to be normative limits that are not to be

exceeded by climate change or the mitigation of climate change. In the policy advice

application the TWA is intended for, the positioning of guardrails is understood to be

a normative decision by the policymaker seeking policy advice, guided by scientific

advice, but not a scientific decision in itself (e. g.Bruckner et al., 1999).
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The exact definition of a guardrail, however, needs to take the important character-

istics of the impact under consideration into account. Since an important aim of Article

2 in the UNFCCC is the prevention of dangerous climate change, the “cause of danger-

ousness” needs to be taken into account.

In general, impacts of climate change can be classified according to the climatic char-

acteristics that are important. Those characteristics that cause an impact to be dangerous

therefore need to be taken into account, as will be shown in some examples.

The original set of guardrails investigated by the WBGU (1995) was based on two

principles, the “Preservation of Creation” and the prevention of excessive cost. The pre-

vention of excessive cost was considered by limiting emission reductions to a maximal

reduction rate, but a guardrail insuring the preservation of creation was set by an expert

judgment. A possible interpretation of the first principle is that ecological damages are

to be limited. Since there was (and still is) no generally accepted and all-encompassing

model that would be able to relate a given climate change to the ecological impacts it

would induce, the global mean temperature was used as a rough indicator of climate

change consequences. Since the biosphere has evolved during the Quaternary, is was

stipulated that the global mean temperature should not leave the range of global mean

temperature during the Quaternary plus a certain margin. The WBGU then decided on a

guardrail of 2◦C above preindustrial temperature.

It is obvious that it would be too narrow an interpretation of a guardrail derived

from such considerations to stipulate that the 2◦C limit is not ever to be exceeded. A

short excursion, where the 2◦C guardrail is slightly violated in one year due to natural

variability, would not matter at all, since the overall goal, the preservation of creation,

could still be reached. The guardrail would in this case rather be set in terms of the mean

climate change than in terms of annual values. An inclusion of the natural variability in

global mean temperature would therefore be excessive in this case, whereas uncertainty

in climate sensitivity definitely is relevant to the problem and should be included in the

assessment.

A guardrail that is set to prevent a collapse of the North Atlantic THC is an entirely

different matter. For this case, section 2.5 in chapter 2 has shown that the probability

of leaving the basin of attraction of the stable solution, roughly the inverse of the mean

first exit time, increases as the system is moved closer to the bifurcation point, i. e. the

probability of a collapse of the THC increases with climate change. In addition, even

a single very large freshwater flux event might cause the collapse. Natural variability

should therefore be taken into account in an assessment, as well as uncertainty in cli-

mate sensitivity, but the exact definition of the guardrail might then entail a limit to the

maximum annual freshwater flux, but not necessarily a probabilistic guardrail.
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A similar case are guardrails that are set to limit decreases in agricultural yield.

Mearns et al. (1997) have shown that changes in agricultural yield due to climate change

depend on changes in variability as well as changes in mean. Here the number of very

cold days in winter may have an effect, as well as the length of dry spells in any season,

and numerous other influences may be relevant as well. A guardrail definition for this

type of impact should therefore also take natural variability into account.

Finally, another impact that could be considered are changes in the probability of

single events happening, like the changes in the probability of flood events investigated

in chapter 4. The most important factor for changes in flooding probability are changes

in the extreme precipitation events. Both a change in the magnitude of the largest ex-

tremes and a change in the frequency of a large event of a defined magnitude will lead

to an increase of the probability of a flood event happening. Therefore the variability is

important here as well, but is not necessarily the variance that is important, but rather

the size of the largest fluctuations.

The examples given therefore allow the following classification of the role climatic

characteristics play in impacts of climate change:

1. there are some impacts where changes in mean are much more important than the

variance, or higher order moments, as the example of the WBGU-guardrail shows.

2. in other impacts of climate change, changes in variance may be equally important

3. there are some impacts of climate change, where higher order moments, like the

skewness or the tail of a probability distribution play the dominant role.

Definitions of guardrails need to take these characteristics into account.

The second important concept is an emission corridor or, more generally, the differ-

ent possible solutions to the TWA. In the following, it is assumed that the behavior of the

system under consideration can be described by the time evolution of a vector of state

variables x(t) ∈ R
n. This vector might, for example, contain global mean temperature,

greenhouse gas concentration, gross domestic product and agricultural yield. The time

evolution of this vector x(t) depends on a vector u(t) ∈ R
m of control variables. In the

climate change problem that is considered here, these are the greenhouse gas emissions,

but in principle the approach is of a generic nature, so that any other control variable

could be used as well. The evolution of the system can then be modeled as a set of

differential equations

ẋ = f(x, t;u), (3.5)
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with a state vector x ∈ R
n, a control vector u ∈ U ⊆ R

m, and an initial state x0. The

guardrails or constraints can in the deterministic case usually be formulated as a vector

of inequalities

h(x, t;u) ≤ 0. (3.6)

The goal of the TWA is the determination of the set of all emission strategies u(·)
that are compatible with the predefined constraints. Mathematically, this problem is

equivalent to the differential inclusion (Aubin and Cellina, 1984, Aubin and Frankowska,

1990)

ẋ ∈ F(x, t) with F := {f(x, t;u)|u ∈ U} (3.7)

under the condition

h(x, t;u) ≤ 0 ∀ t ∈ [0, te] (3.8)

subject to x(t = 0) = x0, F ∈ R
n ×R

m.

Different concepts exist for definitions of what can be considered a solution to equa-

tions 3.7 and 3.8. Following Bruckner et al. (2003b), the following solution concepts

can be identified.

A single state trajectory x(·) starting from x0 and fulfilling simultaneously Eq.3.5

and 3.6 is called an admissible trajectory driven by a corresponding admissible control

path u(·). The comprehensive solution to the problem would then be provided by the

bundle of all admissible trajectories S(x0), which corresponds to a bundle of admissible

control paths. This bundle of admissible control paths is the set of all emission reduc-

tion strategies sought. The actual determination of this bundle is currently not possible,

however (Bruckner et al., 2003b).

While the focus for the bundles of admissible trajectories / control paths is on the

different trajectories, the set of admissible points in either state or control space can also

be determined and is given by

Γ(x0) ≡ {(t,x(t)) | t ∈ [0, te] ,x(·) ∈ S(x0)}
⊆ [0, te]×R

n.

Γ(x0) is called the funnel. It is the set of points one obtains when plotting all admissible

trajectories. This approach simplifies the problem, since it is no longer necessary to

determine all the admissible trajectories, but only the admissible states, and it is possible

to determine the boundary of the funnel without knowing S(x0). It has to be stressed,

though, that the funnel contains less information than the bundle. The funnel contains

the admissible states, but the information how these states are connected is lost.
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Finally, one can select one component of either the state or the control vector and

project the funnel onto a plane defined by the time axis and the axis of the respective vari-

able. These projections are called necessary corridors. Unfortunately, these corridors

do not contain the full information contained in the bundles of admissible trajectories

and control paths, but they rather are necessary conditions for trajectories and control

paths to be admissible. This implies that every trajectory or control path that leaves the

corridor violates at least one of the guardrails and is therefore not admissible, while not

every trajectory lying completely within the corridor is necessarily admissible. The fact

that an emission path lies completely within the corridor does not insure that none of

the constraints is violated. This has to be verified on a case by case basis. While it

is possible to derive sufficient subsets of the emission corridor (Kriegler and Bruckner,

2004), these subsets are not complete, and it is currently not possible to derive complete

sufficient subsets.

Since the emissions of CO2 are the most important control variable in the climate

change problem considered here, the typical results of TWA-based analyses are emission

corridors, i. e. projections of the funnel of admissible emissions on the plane defined by

a time and an emission axis.

3.2.2 Uncertainty in the integrated assessment of climate change

There have been numerous attempts at classifying the uncertainties inherent in the cou-

pled system of humanity and climate. Some of these attempts are based on more general

theories and concepts. In control theory, for example, one distinguishes aleatory and

epistemic uncertainty (Paté-Cornell, 1996). This classification can be found in the inte-

grated assessment of climate change, e. g. in publications by Rotmans and van Asselt

(2001), who distinguish between internal variability of the system on the one hand, and

unknowns on the other hand. On the basis of these coarse categories, one can distinguish

different causes of uncertainty, e. g. random chance inherent in natural processes, or the

diversity of human values and behavior.

In another typology, Toth et al. (2003b) distinguish between uncertainties in pro-

cesses, uncertainty about the predictions of future development, and uncertainty about

values and political decisions. This classification of uncertainties is based on the distinc-

tion between the different relations to the decision-making process for climate protection

strategies.

In the integrated assessment of climate change, uncertainty has so far mostly been

considered for parameter uncertainty, i. e. uncertainty about climatic processes that can

be represented as uncertain parameters in models. Tol (1999), for example, has investi-

gated probability distributions for uncertain parameters in a policy optimization model,
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which has also been done by Nordhaus (1994) and Plambeck et al. (1997). Dowlatabadi

(2000) and van Asselt and Rotmans (1996) have also investigated parameter uncertain-

ties, with the latter not assuming probability distributions for parameters, but instead

investigating the consequences of different cultural perspectives by different actors on

the choice of parameters. Finally, Lempert et al. (2000) have investigated the influence

of climate variability in a policy evaluation model.

With respect to policy guidance modeling, the consideration of uncertainty has been

limited so far. What has been done in the past is a sensitivity analysis exploring the

sensitivity of emission corridors with respect to uncertain parameter settings, as in Toth

et al. (2003b), Zickfeld and Bruckner (2003), Zickfeld (2003), and Kriegler and Bruck-

ner (2004). In all of these cases, it was just possible to test certain parameter settings and

to derive the different emission corridors arising out of variations of single parameters,

but a more comprehensive treatment of uncertainty remains desirable.

For the purposes of this thesis, three types of uncertainty in the integrated assessment

of climate change can be distinguished: uncertainty that is caused by natural variabil-

ity, uncertainty caused by insufficient knowledge, and uncertainty caused by the unpre-

dictability of human society.

The latter uncertainty is in part anticipated by the TWA, since the TWA doesn’t try

to predict the future development of human society. By determining the set of emis-

sion reduction strategies that is compatible with the predefined guardrails it maps the

“maneuvering space” humanity has, if certain impacts are to be avoided. Therefore the

uncertainty about the future development of human society is considered by not making

predictions about it.

The other two causes of uncertainty can be considered in a TWA that is extended to a

probabilistic framework. Here, stochastic information may improve on the deterministic

TWA.

Uncertainty caused by insufficient knowledge is impossible to consider comprehen-

sively, since insufficient knowledge implies that we just don’t know everything that is

important. What can be considered in a practical application is uncertainty that can be

expressed as uncertainty in model parameters. If all that is known about an uncertain pa-

rameter is a possible range of values, then stochastic information will not help much in

considering it, but if a probability distribution of model parameter values is known, then

stochastic information can help in considering the uncertainty in a probabilistic TWA.

Uncertainty caused by variability can be considered in the probabilistic TWA as well,

as will be shown later in this chapter.

The probabilistic TWA considers probabilistic uncertainty in the integrated assess-

ment of climate change. Probabilistic uncertainty is the term we are using for uncertainty
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that either arises through the consideration of natural variability, which leads to a prob-

ability distribution for the outcomes of an ensemble of experiments, or uncertainty that

can be represented by the consideration of probability distributions for uncertain param-

eters. While the underlying causes of these two sources of uncertainty may be different,

the consideration of them leads to similar experiments and results. Both types of un-

certainty can be considered in Monte-Carlo experiments (Press et al., 1997) – in the

first case sampling from different realizations of the stochastic process, and in the sec-

ond case sampling from the probability distribution of uncertain parameters –, and both

types of uncertainty lead to similar results for experiments. Experiments do not return a

single solution, but a probability distribution of experiment outcomes.

The application of the probabilistic TWA will be demonstrated by considering un-

certainty in the climate sensitivity, and by considering uncertainty arising through the

natural variability of global mean temperature.

One of the key uncertain factors in the assessment of changes in climate is the equi-

librium climate sensitivity T2xCO2 . The equilibrium climate sensitivity, also simply called

climate sensitivity, is the change in global mean temperature that results when the cli-

mate system, or a climate model, attains a new equilibrium after a forcing change result-

ing from a doubling of the atmospheric CO2 concentration (Cubasch et al., 2001). There

are various estimates for T2xCO2 .

The estimate of climate sensitivity published by the IPCC is the range T2xCO2 ∈
[1.5◦C,4.5◦C] (Cubasch et al., 2001), without any further specification of probability

distribution or most probable value. However, a few estimates of a probability distribu-

tion for T2xCO2 exist, which were derived by various means, e. g. the estimates by Morgan

and Keith (1995), Webster and Sokolov (2000), Andronova and Schlesinger (2001), Gre-

gory et al. (2002), and Forest et al. (2002). Of these distributions, the ones by Andronova

and Schlesinger (2001) and Forest et al. (2002) are considered here.

Andronova and Schlesinger (2001) used a simple climate/ocean model, the observed

near-surface temperature record, and a bootstrap technique to objectively estimate a

probability density function (pdf) for T2xCO2 . Their climate model was able to consider

five different mechanisms for radiative forcing. These were the radiative forcing by all

greenhouse gases other than tropospheric ozone, the forcing by tropospheric ozone, the

direct and indirect forcing by sulfate aerosols, the forcing by volcanoes, and the changes

in forcing due to changes in solar irradiance. They considered 16 different combina-

tions of these forcing mechanisms. For each combination of forcing mechanisms, they

determined the changes in global mean near-surface temperature resulting from the forc-

ing mechanisms and compared them to observations. In addition, they considered the

uncertainty arising from natural variability by using a bootstrap-resampling approach.
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Thus they derived probability distributions for the climate sensitivity T2xCO2 . The

probability distributions for the 16 different combinations of forcing mechanisms roughly

fall into three classes. The class T1 does not consider the radiative forcing by aerosols,

whereas the other two classes do. The T2 and T3 class estimates differ in their consid-

eration of solar forcing. While the T2 class of estimates considers the solar irradiance

forcing, the T3 class does not. Since the T1 class of estimates does not consider the

aerosol forcing and it’s maximum in probability density is at the very low end of the

IPCC range, it will not be considered here, but the T2 and T3 class estimates will be

considered.
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Figure 3.1: Estimates for climate sensitivity T2xCO2 by Andronova and Schlesinger
(2001) (A/S T2 and T3), and Forest et al. (2002) (F uniform and expert).

Finally, Forest et al. (2002) derived joint probability distributions for three uncer-

tain properties of the climate system. They used an optimal fingerprinting approach for

comparing simulations of a climate model of intermediate complexity with three diag-

nostics of recent climate observations derived from the upper-air temperature record,
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the surface temperature record, and the record of ocean temperatures. In climate model

simulations, they systematically varied the climate sensitivity, the rate of heat uptake by

the deep ocean, and the strength of the anthropogenic aerosol forcing in order to assess,

which simulations match the observed climate record. By using a Bayesian updating

scheme, they utilized each diagnostic to update the probability distribution for T2xCO2 ,

starting from either an expert prior distribution or a uniform prior distribution. Both of

the posterior distributions published will be considered.

The probability distributions considered are shown in Fig. 3.1. The estimated prob-

ability distributions by Andronova and Schlesinger are shown in black for the T2 class

of estimates and in blue for the T3 class, while the estimates by Forest et al. are shown

in red for the uniform prior and in green for the expert prior. While both distributions

by Forest et al. have the maximum probability density at 2.15K, the maximum in prob-

ability density is located at 3.0K for the Andronova and Schlesinger T2 distribution and

at 4.75K for the T3 distribution. For the Forest et al. estimates probability density is

higher than Andronova and Schlesinger’s at low values of T2xCO2 , while it doesn’t reach

as large values at high T2xCO2 . The pdf generated from a uniform prior assigns higher

probabilities to high values of T2xCO2 than the one generated from an expert prior.

The Andronova and Schlesinger T3 distribution gives comparatively high probabil-

ities to high values of T2xCO2 , with values as large as 15K still getting non-zero proba-

bilities. Such high climate sensitivities appear to be quite improbable, but they cannot

be ruled out with certainty so far, as was recently shown by Stainforth et al. (2005).

Stainforth et al. (2005) performed a large ensemble experiment with a GCM, where

they varied a number of uncertain parameters. The climate sensitivities produced by

this ensemble were in a range from 1.9 to 11.5K, highlighting that such high climate

sensitivities can also be reproduced by GCMs and cannot be ruled out with certainty.

In the future, it may be possible to narrow the range of possible climate sensitivi-

ties by constraining climate sensitivity with proxy data from climate states other than

the current, e. g. the last glacial maximum, but this work is currently ongoing, and only

preliminary results are available. For example, von Deimling et al. (2004) report that

they can exclude climate sensitivities > 4.7◦C, since these are inconsistent with current

understanding of the climate at the last glacial maximum. As is apparent from a com-

parison with Fig. 3.1, these estimates will considerably reduce the uncertainty in climate

sensitivity.

3.2.3 The ICLIPS climate model

When exploring the consequences of probabilistic uncertainty for the TWA, two sources

of uncertainty will be considered. On the one hand, probability distributions for climate
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sensitivity will be considered, and on the other hand the natural variability in global

mean temperature will be investigated. For this purpose the ICLIPS climate model will

be employed, which has to be adapted to the question investigated.

The ICLIPS climate model, originally published in Petschel-Held et al. (1999) and

described in more detail by Kriegler and Bruckner (2004), is a reduced-form climate

model with very low requirements with regard to computational resources. These low

requirements allow extensive ensemble experiments in order to explore the consequences

of probabilistic uncertainty for the TWA. The model describes the climate response to

anthropogenic forcing, with CO2 emissions considered as the only greenhouse gas.

The model consists of a very simple carbon cycle coupled to a temperature equation.

The carbon cycle approximates a pulse-response model that has been calibrated against

carbon cycle and GCM experiments (Maier-Reimer and Hasselmann, 1987, Hasselmann

et al., 1997).

The ICLIPS climate model is made up of the three differential equations

Ḟ = E (3.9)

Ċ = βE +BF − γC (3.10)

Ṫ = µ ln

(

C
Cpi

)

−α(T −Tpi) (3.11)

for the cumulative emissions F , the CO2 concentration C and the global mean temper-

ature T . Inputs and parameters to the climate model are the CO2 emissions E in GtC,

the CO2 emission to concentration conversion factor β, the atmospheric retention fac-

tor B/(βγ), and the carbon cycle response parameter γ in equation 3.10. In equation

3.11, there are the parameters µ and α, and the preindustrial CO2 concentration Cpi and

temperature Tpi. The parameters µ and α can be identified as

µ =
Q2xCO2

coc × ln2
, α =

Q2xCO2

coc ×T2xCO2

(3.12)

with Q2xCO2 the radiative forcing at a doubling of CO2, and coc the effective oceanic heat

capacity (Kriegler and Bruckner, 2004). The parameter values used are summarized in

Table 3.1, as well as initial (1990) and preindustrial conditions.

In order to be able to consider the sources of uncertainty under investigation, the

deterministic model presented above has to be modified to a stochastic formulation in

order to simulate the natural variability in global mean temperature.

If one considers the global mean temperature TGM , as it is simulated by large 3D

GCMs, it becomes apparent that this quantity displays a certain variability. Collins et al.

(2001) report that the global mean temperature in the GCM HadCM 3 has a standard
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Parameter value Initial condition value

β 0.47 ppm
GtC E0 7.9 GtC

a
B 1.51×10−3 ppm

GtC a F0 426GtC
γ 0.0215a−1 C0 360ppm

coc 43.6 Wa
m2K Cpi 280ppm

T2xCO2 3K Tpi 14.6◦C
Q2xCO2 3.7 W

m2

Table 3.1: Model parameter values, initial conditions and preindustrial values used in
the ICLIPS model. Values are set following Kriegler and Bruckner (2004) with the
exception of coc, which was changed to reflect IPCC TAR. All values except T 2xCO2 are
held constant in the ensemble experiments.

deviation of 0.12K, whereas TGM in HadCM 2 had a standard deviation of 0.13K. A

stochastic extension to the ICLIPS climate model has therefore been implemented. This

extension reproduces the natural variability in global mean temperature TGM shown by

HadCM 3.

In order to correctly simulate the natural variability in TGM , Eq. 3.11 has to be mod-

ified to a stochastic formulation

Ṫ = µ ln

(

C
Cpi

)

−α(T −Tpi)+σξ. (3.13)

In this equation, the stochastic extension is the term σξ. It consists of a white noise

process ξ with standard deviation σ. By using this extension to the original model, the

variance of TGM can be reproduced.

The second uncertain element that will be investigated is the uncertainty in climate

sensitivity. Considering Eq. 3.12 it is obvious that a probability distribution for T2xCO2

results in a probability distribution for α.

3.2.4 Consequences of uncertainty for the TWA

The consideration of probabilistic uncertainty in the TWA has profound consequences

for the conceptual framework, as we will explore in the following paragraphs.

As a reference for comparison, an emission trajectory was determined using the

deterministic model setup. The emission trajectory was chosen in such a way, that a

temperature guardrail ∆T ≤ 2.5K was observed, i. e. the temperature change ∆T in the

deterministic model was limited to ∆T = 2.5K.

The emission trajectory is shown in Fig. 3.2, on the left, along with the corresponding

temperature trajectory. The emissions, shown in green, rise quickly at first, reaching a
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Figure 3.2: Consequences of natural variability for the TWA. Left: One climate trajec-
tory observing guardrail ∆T ≤ 2.5K in deterministic TWA. Shown are change in global
mean temperature ∆T (blue) and CO2 emissions E (green). Right: Three realizations of
the same CO2 emissions trajectory from a stochastic climate model. While the guardrail
is observed in the deterministic system, this depends on the realization of the stochastic
process in the stochastic system. Therefore there is some probability of exceeding the
guardrail in the stochastic case.

maximum at time t = 38, and are then reduced in an exponential decay. The temperature

change ∆T , shown in blue, also rises initially, until maximum warming is reached at time

t = 99. Afterwards, temperature falls slowly, but temperature does not reach a stationary

state at the end of the time horizon. As a temperature guardrail limiting ∆T to ∆T = 2.5K

was set, the maximum temperature change at t = 99 is ∆T = 2.5K.

If the stochastic climate model that reproduces the natural variability of the global

mean temperature, as in equations 3.9 to 3.13, is now driven by the same emission trajec-

tory, the temperature guardrail will not necessarily be observed. The climate trajectories

stemming from three realizations of the stochastic process ξ are shown on the right of

Fig. 3.2. It is obvious that not all realizations of the stochastic process observe the

guardrail. While the realization shown in black observes the guardrail, the realization

shown in green grossly violates the guardrail, and the realization shown in blue slightly

violates it. This clearly demonstrates that it is dependent on the realization whether the

guardrail is observed in the presence of variability. Therefore a certain probability exists,

that the guardrail is violated. This probability is given by the cumulative distribution, and

it turns out to be P = 0.5 due to the symmetric nature of the Gaussian distribution of the

white noise.

As argued in section 3.2.1, a small violation of the guardrail, as in the case of the

temperature guardrail shown in Fig. 3.2, may not be relevant to the larger problem at

hand. In the case of the global mean temperature, a slight deviation will probably not
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Figure 3.3: Histogram of temperature change ∆T at time t = 99 with T2xCO2 sampled
from the Andronova and Schlesinger T2 probability distribution.

be all that important, and the guardrail could also be defined in terms of e. g. ten year

averages. On the other hand, there are impacts of climate change, where the variability

of climatic variables plays a major role. Mearns et al. (1997) have shown that changes

in the variability of temperature and precipitation may strongly affect agricultural yield.

Similarly, changes in extreme precipitation events may cause changes in flooding prob-

abilities (Becker and Grünewald, 2003, Booij, 2002, Shabalova et al., 2003). In these

cases, the variability plays a major role and therefore needs to be taken into account

for guardrail definitions. The need for the consideration of natural variability therefore

depends on the problem under consideration.

The second source of uncertainty considered is uncertainty in climate sensitivity. A

probability distribution for the climate sensitivity T2xCO2 now leads to a probability dis-

tribution for the parameter α in Eq. 3.11. In order to explore the effect of this uncertainty

on the TWA, a Monte-Carlo scheme is employed to sample from the T2 probability dis-

tribution estimate by Andronova and Schlesinger (2001).
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Figure 3.4: Cumulative probability of temperature change ∆T (t) exceeding TGuardrail

over the time horizon of the integration, shown as color. Climate sensitivity is sampled
from the T2 probability distribution by Andronova and Schlesinger, natural variability is
not considered.

The climate model is driven by the emission scenario shown in Fig. 3.2 and the prob-

ability distribution is determined for temperature change ∆T at time t = 99, which is the

time of maximum warming in the deterministic scenario shown in Fig. 3.2. As shown in

Fig. 3.3, the temperature change ∆T varies widely around the deterministic temperature

change of ∆T = 2.5K, which is also the temperature guardrail assumed in the determin-

istic scenario, and most of the probability distribution is located at higher temperatures.

The temperature change at the time of maximum warming, which varies with with the

respective climate sensitivity, ranges from 0.72 K, relative to the preindustrial climate,

to a warm 7.27 K reached at t = 200 for the largest climate sensitivity in the ensemble.

The consequences of this uncertainty in climate sensitivity for the TWA are pro-

found. Fig. 3.4 shows the cumulative distribution of temperature change ∆T over the

time horizon of the integration. The contour plot shows P(∆T (t) > TGuardrail), the prob-
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ability of exceeding the temperature change TGuardrail , shown on the abscissa, at time t.

According to this figure, the deterministic guardrail of 2.5K has a maximum probability

P ≈ 0.56 of being exceeded at t ≈ 100.

Finally, it is also possible to consider both sources of uncertainty by using Monte-

Carlo techniques. In this case, one samples from the probability distribution for climate

sensitivity and from the realizations of the stochastic process representing natural vari-

ability. Since P(∆T (t) > TGuardrail), the cumulative distribution function, is virtually

identical to the on shown in Fig. 3.4, it is not shown here. In this case the maximum

probability of exceeding the deterministic guardrail is about P ≈ 0.56 at time t = 97.

3.3 The probabilistic TWA

3.3.1 Probabilistic guardrails

As shown in the last section, the deterministic TWA is not able to fully cope with the

uncertainty that is inherent in the climate change problem. The consideration of uncer-

tainty leads to a certain probability that a guardrail will be violated, even though it may

be observed in the deterministic case.

In order to solve this problem, the TWA therefore has to be extended to a probabilis-

tic TWA. This has three consequences:

1. the conceptual framework of the TWA has to be extended in such a way, that

probabilities can be considered, especially with regard to guardrails

2. the model framework and solution algorithms have to be adapted to a probabilistic

formulation

3. climate impact response functions (CIRFs) have to be derived that incorporate

probabilities.

Part of the second point has already been addressed in section 3.2.3, and we will come

back to solution algorithms in section 3.3.3. The third point will be addressed in sec-

tion 3.3.2, as well as in chapter 4 of this thesis. This leaves the first point to be addressed

here.

Section 3.2.4 has shown that deterministic guardrails under probabilistic uncertainty

lead to a non-zero probability that the guardrail will be violated. Therefore the concept

of a guardrail used in the TWA has to be extended in such a way that probabilities can be

considered. This allows the consideration of probabilistic uncertainty, i. e. uncertainty

that can be expressed as a probability distribution, and of natural variability. Uncertainty
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that cannot be expressed as a probability distribution would need a different type of

extension, e. g. Kriegler (2005).
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Figure 3.5: Conceptual visualization of a guardrail. Left: deterministic guardrail. Mid-
dle: deterministic guardrail in the presence of uncertainty. Right: probabilistic guardrail.

In the deterministic TWA, a guardrail is envisioned as a binary decision. A decision-

maker decides, which impact level is tolerable and which is intolerable. Therefore the

outcome of this is binary: either an impact level is tolerable, or not. The guardrail in the

deterministic TWA is then placed at the impact level where the transition between toler-

ability and intolerability takes place. Such a situation is sketched in the left hand panel

of Fig. 3.5. In this case the TWA aims to insure I ≤ IGuardrail , with I the impact under

consideration and IGuardrail the impact guardrail, which is set, where the intolerability of

I changes from 0 to 1.

Expressed in terms of probabilities, the deterministic TWA therefore assumes the

probability of observing the guardrail as

P(I ≤ IGuardrail) ∈ {0,1} : (3.14)

The probability of staying below the guardrail is either zero or one.

The situation where the deterministic TWA reaches its limit is shown in the middle

of Fig. 3.5. If there is uncertainty, whether a certain impact level is tolerable or not,

the placement of the guardrail becomes a grave problem. One could either place the

guardrail at the highest impact where one is still certain that the impact is tolerable, or

one might place the guardrail at the lowest impact where one is certain that the impact

is intolerable, or one might place the guardrail somewhere in between. This uncertainty

in placing the guardrail may arise out of cognitive uncertainty (the decisionmaker sim-

ply doesn’t know, what is (in)tolerable), but it also arises if probabilistic uncertainty is

considered explicitly. If one looks further at the chain of cause and effect in climate
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change, this situation could also arise, if the relation between climate change and impact

of climate change, the CIRF, becomes uncertain.

Another situation, where this problem could become relevant, is a multi-actor situ-

ation. The TWA was conceived with a single-actor perspective in mind, where a single

decisionmaker is asking for policy advice. This single actor may be able make a single

normative decision, which impacts are intolerable, but if more decisionmakers come into

play, they might make different normative settings.

One solution to this conceptual problem is shown on the right of Fig. 3.5. This

is a sketch of a probabilistic guardrail. Contrary to a deterministic guardrail, it is not

just a single impact level dividing tolerable from intolerable, but it is a tuple of impact

level and probability limit. In this situation, the decisionmaker does not just specify

IGuardrail , but also a probability guardrail PGuardrail . PGuardrail could either be a limit to

the probability of reaching a certain impact level, or it could be a limit to the probability

of a certain impact level being intolerable. In addition, PGuardrail could also be derived

by determining the different IGuardrail , where a number of decisionmakers would put the

guardrail, and using this information to obtain a probability distribution. This approach

could therefore also extend the single-actor perspective currently employed by the TWA.

These new probabilistic guardrails can now be properly expressed conceptually. In

the case of probabilistic uncertainty, Eq. 3.14 becomes

P(I ≤ IGuardrail) ∈ [0,1] , (3.15)

the probability of observing the guardrail is no longer either zero or one, but it is any

value in between. The new probabilistic guardrail can then be formulated as

P(I ≤ IGuardrail) ≥ PGuardrail . (3.16)

The guardrail now consists of the impact limit IGuardrail and the probability limit PGuardrail .

Please note that the notation is somewhat arbitrary. Here, we decided to determine

P(I ≤ IGuardrail), and therefore P must be larger than PGuardrail , which will probably be

some comparatively large value, e. g. PGuardrail = 0.9. It could also be done vice versa

and would be equally valid, as long as it is done consistently.

3.3.2 Probabilistic CIRFs

In the TWA, guardrails are set to limit impacts of climate change. Climate impact re-

sponse functions (CIRFs) (Bruckner et al., 1999, Füssel et al., 2003, Füssel, 2003) have

been developed to facilitate the setting of guardrails. CIRFs indicate the relationship

between climate change and the impacts of climate change. They can formally be rep-
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resented as I = I (C,S) with the impact I, the relevant climatic variables C, and the

significant socio-economic variables S. What is hidden by the seemingly simple rela-

tion sketched above, is that a CIRF is a representation of highly aggregated information

that has usually been obtained by detailed impact assessment studies. In principle, any

impact of climate change that can be evaluated by assessment studies can be used to

generate a CIRF. Therefore CIRFs can not only be determined for impacts of climate

change in the natural environment, but also for socio-economic impacts.

CIRFs can be used in a number of ways. First of all, they can be used as a tool to

give information about the likely impacts of a certain climate state or a climate change

scenario. Second, they can be used to gain an overview of the overall response to climate

change of the impact considered. This allows the identification of threshold values,

where qualitative changes in impact response occur, e. g. nonlinear responses to forcing.

Third, they allow the setting of guardrails in climate impact space in order to allow the

determination of the set of climate protection strategies that do not violate the guardrail

within the TWA. The latter would not be possible without CIRFs, since the determination

of the set-valued solutions to the TWA already incurs a huge numerical cost, which

would become prohibitive, if impact models had to be coupled on-line into the integrated

assessment model.

So far, CIRFs have been determined for climate change impacts on natural vege-

tation, agricultural production and freshwater availability (Füssel et al., 2003, Füssel,

2003). These CIRFs were defined within a deterministic framework. In the probabilistic

TWA, CIRFs may need to be defined in terms of probabilities.
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Figure 3.6: Conceptual visualization of a CIRF. Left: deterministic CIRF, right: proba-
bilistic CIRF. The probabilistic CIRF is the probability that the impact I stays below an
impact guardrail IGuardrail .
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In the deterministic case, a cartoon of which is shown on the left of Fig. 3.6, CIRFs

can be visualized as some function relating I to C (and S).

In the presence of uncertainty, this becomes more complicated. In cases where the

uncertainty arises through uncertain parameters, for which a probability distribution can

be determined, or where the uncertainty arises through natural variability, a probabilistic

CIRF, similar to the one depicted on the right of Fig. 3.6, can be derived. This kind

of CIRF can be understood as the probability P(IGuardrail) = P(I (C,S) ≤ IGuardrail) that

the impact I (C,S) is smaller than some impact guardrail IGuardrail . Therefore the figure

has to be interpreted as follows: one looks at a certain impact level IGuardrail , shown

as “Impact guardrail” in the plot, and a certain amount of climate change C. The color

shown in the plot then gives P(I (C,S) ≤ IGuardrail) at the climate change C one is looking

at. In addition, a probabilistic CIRF can also be used to indicate how probabilities of

extreme events change. This will be demonstrated in chapter 4.

This probabilistic CIRF can then be used in the probabilistic TWA to set probabilistic

guardrails.

3.3.3 Calculation of emission corridors

The last sections have shown how the deterministic TWA can be extended conceptu-

ally to enable the consideration of probabilistic uncertainty. In the probabilistic TWA,

the guardrail is no longer a simple limit IGuardrail to an impact I, but the guardrail

becomes a combination of impact- and probability limit, which can be expressed as

P(I ≤ IGuardrail) ≥ PGuardrail . In addition, the CIRFs describing the impacts may have to

be modified in such a manner, that P(IGuardrail) = P(I (C,S) ≤ IGuardrail) can be deter-

mined.

Such modifications to the conceptual foundations of the approach also call for a

modification of the way solution are determined. We begin this by reviewing the deter-

ministic approach to determining solutions.

As described in section 3.2.1, a typical result of a TWA-based analysis is an emission

corridor. For the case of the deterministic TWA an algorithm for the approximation of

emission corridors has been developed (Leimbach and Bruckner, 2001, Bruckner et al.,

2003b). In this case it is sufficient to calculate the upper and the lower boundary of the

emission corridor. As a further approximation, this can be done for a finite number of

points t ∈ {t1, t2, ..., tn} with tn ≤ te.

Once again it is assumed that the evolution of the system can be modeled as a set of

differential equations

ẋ = f(x, t;u), (3.17)



Probabilistic extension of the Tolerable Windows Approach 53

with a state vector x ∈ R
n, a control vector u ∈ U ⊆ R

m, and an initial state x0, whereas

the guardrails can be formulated as a vector of inequalities

h(x, t;u) ≤ 0. (3.18)

For the determination of an emission corridor the control variables are the emis-

sions, and the upper (lower) boundary of the emission corridor can be determined by

successively maximizing (minimizing) the emissions E (ti) at time ti subject to the dy-

namical constraints (Eq. 3.17) and the additional constraints provided by the guardrails

(Eq. 3.18). The maximal (minimal) emissions E (ti) are then determined numerically by

a constrained optimization algorithm, such as the algorithms implemented in GAMS or

MATLAB.

For the case of the probabilistic TWA, this algorithm can be used as well, with minor

modifications. Within the framework described in equations3.17 to 3.18, two elements

can be identified that may be subject to probabilistic uncertainty:

1. The system of differential equations describing the coupled socio-economic-climate

system (Eq. 3.17) is transformed to a system of stochastic differential equations

dξ = f(ξ, t;u)dt +g(ξ, t;u)dW(t) (3.19)

with a state vector ξ(t), a drift term f(·), a diffusion term g(·) and a Wiener

process W(t).

2. The deterministic constraints (Eq. 3.18) become stochastic constraints

h(x,η, t;u) ≤ 0 ∀ t ∈ [0, te] , (3.20)

that are dependent on a stochastic term η(t).

In this case, the trajectories ξ(·) that solve the system of differential equations (Eq. 3.19)

and still fulfill the constraints (Eq.3.20), are the solutions to the stochastic differential

inclusion (Aubin et al., 2000)

dξ ∈ F(ξ,dt ⊕dW) , F ∈ R
n ×R

m (3.21)

with

F(ξ,dt ⊕dW) := {f(ξ, t;u)dt +g(ξ, t;u)dW | u(t) ∈ U(x)}
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under the constraint condition

P(h(x,η, t;u) ≤ 0) ≥ PGuardrail . (3.22)

This probabilistic constraint condition limits the probability P of observing the guardrail

to the limiting probability guardrail PGuardrail .

As in the deterministic case it will in general not be possible to determine an exact

solution, i. e. the bundle of control paths, to this problem, but the algorithm for approx-

imating the emission corridor can be adapted to the probabilistic problem. As in the

deterministic case a numerical implementation of the model describing the evolution of

the coupled system is a prerequisite to the determination of emission corridors. Depend-

ing on the nature of the problem, this may either be a deterministic formulation as in

Eq. 3.17 or a stochastic implementation as in Eq. 3.19.

For considering the probabilistic constraints, the probability P(h(x,η, t;u) ≤ 0) has

to be determined by some method, e. g. by using Monte-Carlo techniques. If one consid-

ers a probabilistic formulation for the dynamical system, such as in the examples shown

in section 3.2.4, P(h(x,η, t;u) ≤ 0) can be determined by calculating the time evolution

of an ensemble of realizations of either the climate sensitivity or the stochastic process

ξ (or both). If, on the other hand, the guardrails in Eq. 3.18 become probabilistic, while

the dynamical system itself remains deterministic, then an ensemble of realizations of

the process considered in the guardrail can be used to determine P(h(x,η, t;u) ≤ 0).

For the determination of the emission corridors that will be shown in section 3.4,

both a deterministic and a stochastic version of the ICLIPS model, as in Eq. 3.9-3.13,

have been implemented. In order to consider a probability distribution for the climate

sensitivity, the deterministic version is used and an ensemble of model configurations is

generated by sampling from the probability distribution for T2xCO2 . P(h(x,η, t;u) ≤ 0)

can then be determined from the frequency of experiment outcomes. For the consid-

eration of natural variability, on the other hand, the stochastic version is used, and an

ensemble of realizations of the stochastic process is generated. P(h(x,η, t;u) ≤ 0) can

again be determined from the frequency of experiment outcomes.

The consideration of both sources of uncertainty then becomes a straightforward

task: the stochastic version of the model is used, and an ensemble of of model config-

urations is generated by sampling from the pdf for T2xCO2 . This ensemble then samples

from the realizations of the stochastic process, and P(h(x,η, t;u) ≤ 0) is once again

determined from the experiment outcomes. In this case, as in all cases where multiple

sources of uncertainty are considered, care must be taken in choosing an appropriate

sampling strategy to insure that the uncertainty is properly taken into account.
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The algorithm described above has been implemented in MATLAB using the con-

strained optimization routine provided. As in the deterministic case, the emissions E (ti)

are maximized (minimized) at times ti ∈ {t1, t2, ..., tn} for the determination of the up-

per (lower) boundary of the emission corridor. In section 3.4 the probability of ob-

serving a temperature guardrail TGuard is considered as a climate constraint, therefore

P(∆T ≤ TGuard) is determined by sampling from the probability distribution for climate

sensitivity and by sampling from the realizations of the stochastic process as described

above.

In the case of the very simple system considered here, a more elegant solution to

the determination of P(h(x,η, t;u) ≤ 0) could probably be found. Our aim here was

to develop the conceptual framework of a probabilistic TWA, though, and therefore a

method that can be applied to a wide range of problems was used. In addition, the

consideration of different realizations also allows the propagation of uncertainty through

the chain of cause and effect in climate change, which is in most cases not possible using

analytical solutions.

3.4 Emission corridors in the probabilistic TWA

The uncertainties considered, uncertainty in climate sensitivity and natural variability

in global mean temperature, lead to a probability distribution for the warming realized

under a defined greenhouse gas forcing scenario. In this section, emission corridors

will therefore be determined, limiting the temperature change to a temperature guardrail

TGuard that has to be observed with a probability P(∆T ≤ TGuard)≥ PGuard larger than or

equal to the probability guardrail PGuard .

Following Kriegler and Bruckner (2004), additional guardrails are set for these cor-

ridors. The change in emissions is parameterized as Ė = gE, and the maximal emission

reduction is limited to 4% p.a., as large emission reductions may be very costly or even

impossible to obtain. Second, the rate of change in emission reduction is limited, as

a certain inertia in the socio-economic system has to be assumed. We are assuming a

transition timescale of ttrans = 20 yrs from the initial rate of change in emissions g0 to

the maximal emission reduction gmax = −0.04. It is also assumed that the growth rate

in emissions does not rise again after emission reductions have started, for plausibility

reasons. The latter two constraints can be summarized as 0 ≤ ġ ≤ −(g0 + gmax)/ttrans.

The initial rate of change in emissions g0 is determined by the optimization algorithm,

but bounded to be between 1% p.a. and 3% p.a., the range of the late 20th century rise in

emissions.
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Figure 3.7: Emission corridors for temperature guardrail TGuard = 3K and probabilities
P(∆T ≤ TGuard) ≥ PGuard = 0.97, 0.9, 0.7 and 0.5. Climate sensitivity is sampled from
the A/S T2 distribution.

The probability guardrail considered has a large influence on the overall size of

emission corridors. Fig. 3.7 shows the consequences of differing limits to the proba-

bility of exceeding the temperature guardrail. The emission corridor is shown as shaded

area. Please note that the corridors shown here are additive, in the sense that the larger

corridors consist of the total area between the upper boundary of the corridor and the

lower boundary of the shaded area in the plot. Here, the temperature guardrail is set

to TGuard = 3K, and corridors are derived for probabilities of observing the temperature

guardrail of P(∆T ≤ TGuard) ≥ PGuard = 0.97, 0.9, 0.7 and 0.5. Climate sensitivity is

sampled the Andronova and Schlesinger T2 distribution. It is obvious that the emis-

sion corridor shrinks for higher probability guardrails. While a probability guardrail

PGuard = 0.5 allows a maximum in emissions of nearly 20GtC, PGuard = 0.97 allows less

than 9GtC.
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Figure 3.8: Emission corridors for TGuard = 3K, PGuard = 0.9, all probability distributions
considered.

Another important question is the influence of the probability distribution for climate

sensitivity on the emission corridors. For guardrails TGuard = 3K, PGuard = 0.9, this

is shown in Fig. 3.8. In this case emission corridors were obtained for all the pdfs

considered. As could be expected after considering the pdfs shown in Fig. 3.1, the

Forest et al. pdf from an expert prior yields the largest emission corridor, with maximal

emissions of about 17.5GtC allowed, while the A/S T2 and the Forest et al. uniform

pdfs yield viable emission corridors, with a maximum of about 12.5GtC and 9.4GtC

allowed, respectively. The most interesting case is the A/S T3 estimate, shown as a

dotted line in Fig. 3.8. This dotted line shows the hypothetical upper boundary of the

emission corridor, but since the upper boundary is located below the lower boundary,

the emission corridor is an empty set. If the A/S T3 estimate had to be assumed for the

probability distribution of climate sensitivity, it would therefore be impossible to keep

climate change below 3K with a high probability of not exceeding this value. Compared
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Figure 3.9: Comparison of emission corridors. Temperature guardrail is TGuard = 2.5K,
probability guardrail is PGuard = 0.7. Shown are deterministic corridor with T2xCO2 = 3K,
probabilistic corridor with no consideration of natural variability, and probabilistic corri-
dor with consideration of natural variability and uncertainty in T2xCO2 (A/S T2 estimate).

to the other estimates, the high probability of high values for climate sensitivity leads to

a low probability of observing the TGuard = 3K guardrail.

The main difference between the Forest et al. estimates from a uniform and an expert

prior, as shown in Fig. 3.1, is that the distribution generated from a uniform prior has

a heavy tail, i. e. comparatively high probabilities for high values of climate sensitivity,

even though the maximal probability density is located at the same value of T2xCO2 . The

consequence of this difference is a dramatically smaller emission corridor available in

the case of the heavy tailed distribution.

For comparison, Fig. 3.9 shows emission corridors for the deterministic case, as well

as for the probabilistic case (based on the A/S T2 estimate) with and without consider-

ation of natural variability in. The corridor for the deterministic case was derived for a

climate sensitivity T2xCO2 = 3K, and the guardrail settings were a temperature guardrail
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Figure 3.10: Emission corridors for a climate protection target TGuard = 2K for all prob-
ability distributions considered. Probability guardrails PGuard are shown in legend.

TGuard = 2.5K with a probability guardrail PGuard = 0.7. The deterministic case yields a

much larger corridor, but the size of this corridor is very sensitive to the choice of cli-

mate sensitivity. The difference between the probabilistic corridors, on the other hand,

is very small, with the corridor that considers natural variability slightly smaller than the

one that does not. Therefore the consideration of the uncertainty in climate sensitivity

appears to be more important than the consideration of natural variability in this case, but

this is very much dependent on the problem under consideration. As soon as guardrail

settings other than limits to the global mean temperature change are considered, the

natural variability may turn out to be the main factor.

Finally, the matter of emission corridors limiting temperature change to 2◦C remains

an interesting question. A climate protection target of limiting temperature change to

2◦C above the preindustrial climate was proposed by the German advisory council on

climate change in 1995 (WBGU, 1995), and this target was later adopted by the Euro-

pean Union. Fig. 3.10 shows emission corridors for a guardrail setting TGuard = 2K for
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all the probability distributions considered. For each probability distribution, the emis-

sion corridors for all probability guardrails up to the lowest setting, where the corridor

was an empty set, were determined. The figure therefore allows a comparison of the con-

sequences of the probability distributions for the 2◦C climate protection target. If A/S

T2 is the “real” probability distribution, the target can be met with a probability P = 0.7,

while it cannot be met for the A/S T3 distribution. Similarly, the Forest et al. distribution

from a uniform prior yields just a PGuard = 0.5 corridor, whereas the distribution from

an expert prior yields viable corridors up to PGuard = 0.9. Concentrating on the A/S T2

and the Forest et al. expert distributions, it becomes apparent that emission corridors

that give high probabilities of staying within the temperature guardrail are quite small.

Therefore emission reductions will have to happen soon, unless we are willing accept a

non-negligible probability of violating the climate protection target. On the other hand,

a probability guardrail PGuard = 0.9 implies that there still is a probability P = 0.1 that

the guardrail will be violated. Therefore even emission reduction strategies conforming

to the most ambitious corridor determined do not insure that targets will be met with

certainty.

3.5 Summary and conclusions

This chapter has demonstrated how the “traditional” deterministic tolerable windows

approach can be extended to a probabilistic TWA. This extension improves the deter-

ministic TWA because it allows the consideration of probabilistic uncertainty, i. e. un-

certainty that can be expressed as a probability distribution or that arises through natural

variability.

This extension of the TWA involves changes to the modeling framework and solution

algorithms, but most important of all is a different understanding of guardrails. While

guardrails in the deterministic TWA are single values dividing tolerable impacts from

intolerable, a probabilistic TWA forces us to also consider a probability limit. Therefore

the guardrail now involves two numbers, not one: An impact guardrail and a probabil-

ity guardrail. The impact guardrail is – as before – an impact level that is considered a

boundary that divides tolerable impacts of climate change from intolerable impacts, but

in addition we need to specify a probability guardrail that specifies the minimum proba-

bility of staying below the impact guardrail that the policymaker is willing to accept.

This conceptual change is more important than it may appear, because at the current

state of climate change science there is very little certainty. Therefore it just isn’t possible

to exclude impacts of climate change with certainty, but the maximum one can hope for is

a certain probability for having excluded the impact of climate change one is concerned
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about. Scientific policy advice will therefore gain from the explicit consideration of

uncertainty.

We were able to demonstrate the probabilistic TWA by determining emission cor-

ridors that limit the change in global mean temperature to 2, 2.5 and 3K, with various

probabilities of observing the guardrail. For this the uncertainty in climate sensitivity

was included by considering various estimates of probability distributions for climate

sensitivity, and natural variability was also included as an additional source of uncer-

tainty.

In general, emission corridors shrink, if uncertainty is considered and higher proba-

bilities of observing the guardrail are enforced. The higher the probability of observing

the guardrail, the smaller the corridor. This may be obvious to the reader who has already

given some thought to this problem, but the finding is important enough to be repeated

here.

While the guardrails used here may not be the most interesting – or the most relevant

– ones, this chapter serves as an illustration of the conceptual framework. Applications

of the probabilistic TWA to more pressing issues will surely follow, since the ground-

work has now been laid.

One observation with respect to the emission corridors shown needs to be made,

though. The European Union has repeatedly stated a goal of limiting global warming to

2◦C above preindustrial. Fig. 3.10 shows emission corridors for a temperature guardrail

TGuard = 2K and all the probability distributions considered. Depending on the proba-

bility distribution of climate sensitivity, this goal can be met with varying probabilities

of staying within the tolerable window, but high probabilities can only be assured if the

probability distribution is one of the more benign ones. In addition, strong efforts to

curb global warming have to made soon, since the emission corridors, the “maneuvering

space” of humanity, are comparatively small.



Chapter 4

Integrated assessment of changes in

flooding probability

4.1 Introduction

The integrated assessment of climate change needs to take into account both the costs

and the benefits of climate protection measures. Whereas the first mainly relates to issues

of energy production, the latter is associated with avoided damages from climate change.

Whereas many integrated assessment models consider the costs of mean climate change,

the effects of extreme events are often neglected. This is despite the fact that there is an

increasing trend of economic losses due to “atmospheric” natural disasters ( Berz, 1999).

The Mississippi flood of 1993, for example, has caused economic losses of about $US

12 bn., whereas the losses of the 2002 summer floods in Europe are estimated to be about

EUR 30 bn. (Munich Re, 2004). Both numbers are of the same order of magnitude as

the estimated damage costs in the water sector for both regions for an increase in global

mean temperature of about 1-2.5◦C (Tol, 2002). This indicates that extreme floods,

which appear in the “midfield” in the statistics of economic losses due to natural hazards

(Berz, 1999), should be an essential component of integrated assessment.

For the recent global warming of the 20th century, no significant trends could be

observed with regard to increases in annual maximum flows ( Kundzewicz et al., 2003).

For great events, i. e. 100-year floods, however, an increasing risk was detected in 29

basins larger than 20000km2 by Milly et al. (2002). In spite of major uncertainties, there

are some studies, including Working Group II of the IPCC TAR, which claim an in-

crease of major flooding probability for future warming ( Kundzewicz and Schellnhuber,

2004, Milly et al., 2002). Other studies show similar results with a rather heterogeneous

geographical distribution of changes in flooding probabilities ( Arora and Boer, 2001,

62
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Arnell, 1999a). Yet, in some highly vulnerable regions a significant increase of flooding

probabilities has been found under global warming, e. g. for Bangladesh (Mirza, 2002),

central Asia and eastern China (Arnell, 1999a). All of these studies are restricted to cli-

mate change induced shifts in flooding probabilities and do not take into account other

major factors relevant for changes in flooding intensities and frequencies. These factors

include land-use changes, modification of streamflows by various water-management

schemes like dams or dykes, or, when it comes to the actual damages, the relocation of

infrastructure or settlements. On the one hand, this makes assessments easier, but on the

other hand it might give biased results.

For a flood component of an integrated assessment model (IAM), it is generally

not sufficient to model the shifts in flooding probabilities only. In addition, one needs

to map those probabilities to actual damages, where the specific measure of damage

depends on the overall framework of the IAM. In case of a cost-benefit approach, for

example, the flood model needs to give a monetary output. Within other frameworks,

e. g. the tolerable windows approach (TWA), damages need to be calculated in a decision

relevant measure, which doesn’t need to be directly related to monetary costs.

Another difficulty in the development of an integrated assessment module of flood

changes is due to computational requirements of those models, in particular if the overall

model includes the decision making with respect to climate mitigation endogenously in

the model. These computational costs ask for so-called reduced-form models, which

mimic the outcomes of more detailed models, yet are much faster to compute.

Within the first part of this chapter (sections4.2-4.5), such a reduced-form model is

developed, based on simplified descriptions of regional patterns of climate change and

on a highly reduced scheme for runoff computation. As “output” variable, the model

computes the number of people affected by a pre-defined shift of flooding probability,

e. g. a once in 50 years event shifts to a once in 25 years event. These shifts are computed

for large river basins with an area of more than 2.5× 104 km2, and the “other major

factors” affecting flooding probabilities are also neglected.

In the final section, a first application of the model within the tolerable windows

approach is presented. The model is used to generate a probabilistic climate impact

response function (CIRF), which allows to set probabilistic guardrails. Thus emission

corridors are computed, where the number of people affected by changes in flooding

probability is limited.

Parts of this chapter have been submitted for publication in Climatic Change (Kleinen

and Petschel-Held, 2004).
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4.2 Model description

4.2.1 Aims and scope

We are aiming to develop a reduced-form model that is able to incorporate the probabili-

ties of large-scale flooding in an integrated assessment modeling framework. This model

will be used to determine CIRFs that can be used to estimate the effects of climate change

on flooding probabilities and their consequences. While floods may have a multitude of

causes, ranging from blocking of river passages by ice or debris via land-use changes

and river regulation to large precipitation events, most of these causes are not directly

related to climate change. Due to climate change, the hydrological characteristics of the

atmosphere may change. Higher temperatures cause an increase in evaporation, and the

moisture capacity of the atmosphere increases as well (Trenberth et al., 2003). This may

lead to increases in precipitation. As the non-climatic causes for flooding mentioned

above can not easily be incorporated in the type of model we are aiming at, the analy-

sis will focus on the climate change related causes. In addition, we have to restrict the

type of floods we are attempting to model. Local, sudden floods (’flash floods’) occur in

small catchments and are mainly caused by localized intense precipitation events. While

changes in the characteristics of these events are to be expected in a changed climate, we

regard an integrated assessment of changes in probability of flash floods as too ambitious

on a global scale for the time being. Extensive, long-lasting floods (’plain floods’), on

the other hand, occur in larger catchments (Bronstert et al., 2002). These floods may be

caused by extreme short-term precipitation events, especially in mountainous areas, but

they may also be caused by large-scale rainfall lasting several days or weeks. The latter

is the type of flood we are attempting to model.

The assessment conducted is global in scope. Therefore, a compromise has to be

made with regard to the temporal and spatial scales that can be resolved. While high

spatial resolutions allow assessments on the scale of small river basins, or even sub-

basins, they also lead to high requirements with respect to computing time, input data

and validation data. Similarly, high temporal resolution could allow the simulation of

flash-floods, and similarly fast events, and might generally improve the fidelity of model

results, but again the requirements with respect to data and computational resources are

very demanding.

For the assessment of changes in flooding probability on the scale of large river

basins, a spatial resolution of 0.5◦ seems to be a reasonable compromise, as well as a

temporal resolution of one month. Vörösmarty et al. (2000) estimate that river basins

with drainage areas ≥ 2.5× 104 km2 can be modeled reasonably at a spatial resolution

of 0.5◦, and climate data are readily available at this resolution, e. g. the “CRU” data by
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New et al. (2000), the data by Willmott and Matsuura (2001) or data by Leemans and

Cramer (1991). These data have a temporal resolution of one month, which allows the

resolution of the annual cycle, while fast events like flash-floods can not be investigated

at this timescale. As gauge records from a large number of streamflow gauges with a

global coverage also use the monthly time scale, the model uses a timestep of one month

for calculation.

In addition to the choice of resolution, a few other simplifications are made. The

model will neglect the temporal dynamics of river routing, as this does not seem relevant

at a temporal resolution of one month. At this temporal scale, water traveling at 0.5m/s

moves approximately 1300km during one timestep (Vörösmarty et al., 2000). The mean

travel times therefore exceed one timestep for the very largest rivers only. The consid-

eration of river routing would therefore only influence results for these river systems.

In addition, river routing will not change significantly due to climate change, neglecting

possible changes in the timing of flows. The soil storage of moisture and evaporation

from water bodies are also neglected. While these factors may degrade model results,

especially with regard to the simulation of the annual cycle of runoff, the sensitivity

analysis in section 4.4.3 suggests that the simulation of floods would not be improved by

the reductions in runoff implied by these factors.

4.2.2 Downscaling of climate change

The climate components of many IA models, e. g. the models DICE (Nordhaus, 1994),

MERGE (Manne et al., 1995), MiniCAM (Edmonds et al., 1996) and SIAM (Hassel-

mann et al., 1997), are intended for the evaluation of large numbers of climate change

scenarios. In some cases, they are also coupled to economic models, which obtain

solutions by optimizing some predefined goal-function. Therefore the climate models

employed in such a framework must be run a large number of times. This limits the

computational resources such a model may consume. Therefore a typical climate model

for integrated assessment applications only calculates the change in global mean tem-

perature ∆TGM , while the spatial distribution of temperature change and changes in other

climatic variables have to be inferred from this.

The impact of climate change we want to assess here not only requires a more ex-

plicit spatial resolution, but it also needs to take into account climate variability, and not

just the changes in mean climate. The modeling approach is therefore divided into a

“mean” and a “variability” part.

Geographically explicit changes in mean climate can be calculated by using the

pattern-scaling approach (Mitchell et al., 1999, Mitchell, 2003, Füssel, 2003). In this

approach geographically explicit patterns of climate change obtained from GCM ex-
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periments are scaled by ∆TGM calculated by the simple climate model included in the

integrated assessment model. Despite the apparent simplicity of the approach, results

obtained in this way are surprisingly accurate (Mitchell, 2003).

In this investigation climate change patterns are used that were obtained by an EOF

analysis of output from a number of GCM experiments (Bruckner et al., 2003a, Füssel,

2003). In order to reflect the pertaining uncertainty about the spatial aspects of climate

change, patterns of temperature and precipitation change from three different GCMs

are used, i. e. the GCMs HadCM 2 (Johns et al., 1997), ECHAM 3 (Voss et al., 1998)

and ECHAM 4 (Roeckner et al., 1996). These patterns of monthly climate change are

scaled by the change in global mean temperature ∆TGM and applied to the climatology.

Accordingly, the geographically explicit changes in mean temperature and precipitation

are generated as follows:

Tchanged (r,m, t) = TC (r,m)+ k∆TGM (t)×TP (r,m) (4.1)

Pchanged (r,m, t) = PC (r,m)× (1+ k∆TGM (t)×PP (r,m)) (4.2)

with ∆TGM (t) the change in global mean temperature in year t, k the scaling factor

relating the scaling of the patterns to ∆TGM (t), TC (r,m) the temperature climatology in

location r and month m, PC (r,m) the precipitation climatology, TP (r,m) the temperature

change pattern and PP (r,m) the pattern of precipitation change. While ∆TGM (t) is the

annual change in global mean temperature, TC, TP, PC and PP are monthly fields on a

spatial grid. The calculations in Eq. 4.1 and 4.2 therefore have to be performed for each

month and each grid-cell.

The climate change patterns generated by different GCMs are used because there still

is fundamental uncertainty about the global distribution of changes in temperature and

precipitation. Due to the different model formulations, different GCMs predict different

geographical distributions of climate change. This uncertainty is fundamental and cannot

be resolved at the current state of climate science. If either the geographical distribution

of climate change predicted by different GCMs converged, reducing the uncertainty,

or if probability distributions for the geographical distribution of climate change were

available, this uncertainty could be resolved explicitly and a common climate change

pattern could be used. As this is currently not possible, different patterns have to be

used and evaluated independently in order to take the uncertainty inherent in climate

change projections into account. This uncertainty is also the reason for not using patterns

generated by more recent models. While the representation of changed climate states

may have improved in each of the GCMs concerned, the uncertainty through different
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regional climate change projections by different GCMs remains. Use of more recent

GCM patterns would therefore not reduce the uncertainty inherent in the projections.

While pattern scaling gives the geographically explicit changes in the mean climate,

a representation of the variability of precipitation and evaporation is also necessary for

the evaluation of changes in probabilities of flooding. An estimate of variability can

be obtained in a number of ways. Besides the vast uncertainties to be expected in each

method, most of the approaches, e. g. high resolution GCMs (Hennessy et al., 1997, Voss

et al., 2002), statistical downscaling (e. g. Xu (1999), Wilby and Wigley (1997), Wilby

et al. (1998)) or stochastic weather generators (e. g. Cameron et al. (2000), Hutchinson

(1995), Wilks and Wilby (1999)) are computationally expensive.

Therefore we chose a resampling approach, similar to the one used by Alcamo et al.

(2001) for the GLASS model. This approach is based on data of observed climatic vari-

ables on a 0.5◦ grid with monthly resolution. Both a climatology and the deviations from

the climatology are determined from the data, and the deviations from the climatology

are used as “templates” of spatio-temporal variability patterns.

As source of climate data, the CRU-PIK dataset by Österle et al. (2003) is used (see

section 4.3.2). From this dataset, the monthly climatology for the years 1961-1990 is de-

termined, as well as the deviations from the climatology with T ′ (m, t) = T (m, t)−TC (m)

and P′ (m, t) = P(m, t)/PC (m) the temperature and precipitation deviation patterns for

year t and month m.

In more detail, the “complete” climate is calculated as follows. A climate model is

used to calculate the change in global mean temperature ∆TGM (t) in year t. Currently

the deterministic ICLIPS climate model is used for this purpose, as described in chapter

3, Eq. 3.9-3.11, but in principle any other climate model giving ∆TGM (t) could be used

as well. ∆TGM (t) is then used to scale the patterns for temperature and precipitation,

which are applied to the climatology in order to obtain the spatial distribution of the

mean climate for ∆TGM (t). This mean climate is then perturbed by a variability pattern

from the sequence of 20th century deviations from the climatology in order to represent

natural variability.

The global temperature and precipitation fields in a particular month m within year t

are thus computed via

T (r,m, t) = TC (r,m)+ k∆TGM (t)×TP (r,m)+T ′ (r,m, t ′
)

(4.3)

P(r,m, t) = (PC (r,m)× (1+ k∆TGM (t)×PP (r,m)))×P′ (r,m, t ′
)

(4.4)

with TC (r,m) the climatological temperature in month m in location r, PC (r,m) the

climatological precipitation, TP (r,m) and PP (r,m) temperature and precipitation cli-
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mate change patterns obtained from GCM runs, ∆TGM (t) the change in global mean

temperature in year t and k the scaling factor relating the scaling of the patterns to

∆TGM (t). T ′ (r,m, t ′) and P′ (r,m, t ′) are the deviations from the climatology described

above, where the time t ′ refers to the sequence of deviations from climatology during

the 20th century.

The advantage of this approach is that the measured variability of the climatic vari-

ables under consideration is well represented, including all spatial and temporal correla-

tions.

The main drawback is that variability is assumed to stay the same in a changed cli-

mate – exactly the same for temperature due to the additivity of the deviation pattern and

somewhat increased in the case of precipitation due to the multiplicity of the precipita-

tion deviation patterns. While this drawback makes the application of the method to a

future changed climate somewhat questionable, we are assuming that this approach can

still give major insights into the effects of global warming on flooding probabilities.

4.2.3 Runoff calculation

Runoff is calculated using a simplification of Thornthwaite’s formula (Thornthwaite,

1948) as the difference between precipitation and evaporation

R(r,m, t) = P(r,m, t)−E (r,m, t)−∆S (r,m, t) , (4.5)

with runoff R, precipitation P, evaporation E and the change in soil storage ∆S, all in

location r, month m of year t. ∆S = 0 is assumed, since the storage of moisture in the

soil is neglected. This is based on the reasonable assumption that soil will be saturated

during the large precipitation events that lead to large-scale flooding.

At temperatures below 0◦C, it is assumed that precipitation falls as snow, which is

removed from the precipitation field and stored until temperatures rise above freezing

again. At temperatures above freezing, the accumulated snow melts and is added to the

precipitation field again. Using W for the accumulated snow and T for the temperature,

this is expressed as

W (r,m, t) = W (r,m, t)+P(r,m, t)∧P(r,m, t) = 0 ∀ T (r,m, t) < 0◦C

P(r,m, t) = P(r,m, t)+W (r,m, t)∧W (r,m, t) = 0 ∀ T (r,m, t) ≥ 0◦C.

Due to data constraints, the calculation of evaporation has to be done by a scheme

that does not depend on very detailed climatological data. Therefore the Hamon scheme

(Hamon, 1963) for potential evaporation Ep is used, as it is only dependent on temper-
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ature data. In intercomparisons of different evaporation schemes (Federer et al., 1996,

Vörösmarty et al., 1998) the Hamon scheme was found to have comparatively little bias

(i. e. a systematic over- or underestimation of Ep) and to be well suited to a large range

of surface types. On the other hand, the Hamon scheme is a purely empirical formula-

tion that has been derived for present climatic conditions, which makes it questionable

whether it is still applicable in a drastically changed climate (Vörösmarty et al., 1998).

Nonetheless, the Hamon scheme will be used in the model, since most other evapora-

tion schemes evaluated by Federer et al. had a larger bias and requirements with regard

to input data that can not be fulfilled by present climate models suitable for integrated

assessment.

In the Hamon scheme, potential evaporation Ep (in mm) is calculated as

Ep (T,Λ) =
715.5×Λ× e(T )

T +273.2
(4.6)

with T the mean air temperature in ◦C, Λ the day length as fraction of day and e(T ) the

saturated vapor pressure (in kPa) at temperature T . As the model uses monthly timesteps

and available input data have monthly resolution, the monthly evaporation is calculated.

This choice of temporal resolution suits the assessment by Federer et al. (1996) that the

scheme is not very sensitive to the use of data with low time resolution.

In principle, evapotranspiration changes in a climate with elevated levels of CO2.

However, estimates of this effect vary and strongly depend on vegetation type (Lock-

wood, 1999). This effect is therefore disregarded here.

Finally, the actual evaporation Ea is calculated from the potential evaporation Ep

using

Ea =

{

Ep ∀Ep ≤ P

P ∀Ep > P.
(4.7)

Once again, this formulation assumes that soil and plants have no storage capacity for

moisture.

The procedure described above gives the amount of runoff per grid cell. Subse-

quently this is multiplied by grid cell area and summed up over all grid cells belonging

to a river basin in order to obtain the total monthly runoff for each river basin considered.

4.3 Data and Methods

4.3.1 River basin description

The evaluation of changes in the probability of large-scale flooding events only makes

sense on the scale of river basins. The river basin description in our model is based on the
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STN-30p dataset, a dataset of major river basins (Fekete et al., 1999, Vörösmarty et al.,

2000). It is derived from a GIS-based analysis of global topographic fields, has a reso-

lution of 0.5◦ and lists the grid cells belonging to the drainage areas of 6152 individual

river basins.

As Vörösmarty et al. (2000) estimate that the accuracy of the data is better for river

basins with drainage areas ≥ 2.5× 104 km2, river basins below that size are excluded

from the analysis. The scenario for future population growth described in section 4.3.3

guided the choice of river basins for the assessment of future climates: Of those river

basins large enough, the river basins with the largest populations were chosen. The

exception were a few basins, like the Nile and Chang Jiang, where the assessment would

not be meaningful due to large dams that limit the danger of flooding. The assessment

takes place in 83 river basins, where about 50% of world population in 2100 live. These

basins are listed in appendix A.

4.3.2 Input and validation data

As source for climate data, the dataset by Österle et al. (2003) is used. This dataset is de-

rived from the CRU timeseries dataset (New et al., 2000), a dataset of observed climatic

variables (precipitation, daily mean temperature, diurnal temperature range, vapor pres-

sure and cloud cover) interpolated to a 0.5◦ grid and covering the time range from 1901

to 1998 with monthly resolution. Österle et al. removed temporal inhomogeneities from

the temperature and precipitation fields and extended the dataset to 2003. Henceforth,

this dataset will be referred to as CRU-PIK.

For model validation, two datasets of streamflow gauge records were obtained. The

first dataset lists monthly discharge data for world rivers excluding the former Soviet

Union (Bodo, 2001a), based in large parts on the UNESCO (1974) dataset. The other

dataset contains information on monthly discharge data for rivers in the former So-

viet Union (Bodo, 2001b). These two datasets give monthly discharge data from 6883

streamflow gauge sites. Of these gauges, 1226 had drainage areas ≥ 2.5×10 4 km2, and

of those gauges, 640 had records longer than 25 years, with only complete years consid-

ered.

The 640 gauge sites are located in 148 river basins. If there is more than one gauge

site in a river basin, the site gauging the largest drainage area was chosen, unless there

was another site with insignificantly smaller drainage area, but longer record length.

About a third of the gauges (52) are at latitudes between 40◦N and 60◦N, all other 20◦

latitude bands north of 40◦S still contain between 10 and 28 gauge sites, and 26 stations

are located in the southern hemisphere. The latitudinal coverage of validation records

therefore appears to be adequate.
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4.3.3 Population scenario

The projected changes in flooding probability simulated by the model will in section 4.5.2

be aggregated to global numbers by considering the population affected by this change

in flooding probability. Since this will affect the future population living in the river

basins considered, a scenario giving geographically explicit projections of the changes

in population is required.

Such a geographically explicit projection is not readily available, but has to be con-

structed. What is available are regionalized scenarios, giving the projected changes in

population for a number of world regions, as well as geographically explicit datasets of

current world population.

Lutz et al. (2004) have published scenarios for the future population in 13 world

regions. Their projection is a probabilistic projection, in which they tried to quantify

the uncertainty inherent in such projections. Therefore Lutz et al. (2004) published

quantiles of the probability distribution of the future regional population, as well as a

median value.

In order to derive a geographically explicit projection of future population, the me-

dian projection for the 13 world regions is used. The normalized change in population is

determined for each of the 13 regions by dividing the projections for 2005-2100 by the

population in 2000, as given by the projection. Thus the change in population, relative

to 2000, is determined for each world region.

A geographically explicit dataset of current world population is available from CIESIN

(2000). Using this data, the current population in each grid point is determined. In a sub-

sequent step the geographically explicit population projection is determined. For each

grid point belonging to one of the 13 regions, the population in 2000 is extrapolated

to the future value by multiplying it with the regional population change factor deter-

mined from the Lutz et al. (2004) projection. It is therefore assumed that the population

distribution within a region does not change.

This geographically explicit projection of the future population can now be used to

determine the population living in a river basin by summing up the projected population

for the grid points belonging to a basin.

4.3.4 Validation of annual and monthly runoff

The validation of simulated annual and monthly runoff may seem straightforward at

first glance. One would assume that it is sufficient to take precipitation and temperature

measurement data, determine the model output for the river basin area upstream of a

gauge site, and compare the result with gauge records.
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Such a model validation would certainly be possible, if perfect measurements of

streamflow, precipitation and temperature were available. If this were the case, any

discrepancies between model output and streamflow measurements would have to be

regarded as model error. In reality, there may be quite large errors in the measured values,

especially in the precipitation measurements (Adam and Lettenmaier, 2003, Fekete and

Vörösmarty, 2004). In addition, those areas where higher quality measurements can

be expected, are just those areas where it is very likely that streamflow characteristics

have been changed by human intervention, since the highest measurement quality, the

longest timeseries, and the highest density of measurement networks can be expected in

the industrialized countries, where extensive fluvial management has taken place.

Fekete et al. (2002) investigated this problem in some detail. They compared runoff

estimates from the “WBM” water balance model ( Vörösmarty et al., 1996, 1998), driven

by precipitation data from the Willmott and Matsuura (2001) climate data set, with

streamflow measurements from selected streamflow gauging stations. They report large

differences between simulated and measured streamflow, including some cases where

measured streamflow actually exceeded the total measured precipitation.

Therefore the quality of the model is tested by comparing its results with the output

of other models given similar input data. For this the bias of the mean annual streamflow

was determined, defined as

bias =
S̄− Ō

Ō
×100%, (4.8)

with S̄ the mean modeled annual streamflow and Ō the corresponding observed annual

streamflow. Though this bias is neglecting interannual variability of streamflows and

thus is of limited use for our purpose here, it allows a far reaching comparison to other

hydrological models.

In order to get better measures for model simulation quality, Willmott’s index of

agreement (Willmott, 1982) for the annual total runoff in the validation basins is also

determined. The index of agreement d is defined as

d = 1−
[

∑N
i=1 (Si −Oi)

2

∑N
i=1

(∣

∣Si − Ō
∣

∣+
∣

∣Oi − Ō
∣

∣

)2

]

(4.9)

with Si the modeled value at time ti, Oi the observed value at time ti and Ō the mean

observed value. It describes model quality with respect to variations, with d = 0 indicat-

ing complete disagreement, while d = 1 indicates complete agreement. It was proposed

by Willmott because the correlation coefficient often used for such investigations is not

consistently related to the quality of prediction (Willmott, 1982).
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4.3.5 Validation of runoff extremes

The intended purpose of our model is not the accurate reproduction of the mean stream-

flows, but rather the assessment of probabilities of major flooding due to extreme pre-

cipitation. Therefore, model validation will focus on the validation of model simulated

runoff extremes, even though annual and monthly runoff will also be evaluated.

The magnitude of the so-called “T -year flood” at a site, which is the amount of

streamflow that has a probability 1/T of being exceeded in any one year, is commonly

estimated by using either the annual maximum series (AMS) approach (Li et al., 1999)

or the peak over threshold (POT) approach (Madsen et al., 1997). In both methods a

suitable probability distribution is fitted to the timeseries in order to estimate the return

period T of certain flood levels. In the POT approach, any flood peak larger than a

threshold can be used for fitting the distribution, while the annual maximum is used

for the AMS approach. In principle, we regard the POT approach as superior, but this

approach requires well-defined flood peaks. As our model works on a monthly timescale,

it produces just a single flood-peak per year in most river basins. Therefore the advantage

of the POT approach, the ability to use more data than just the single annual maximum,

does not come into play, and we thus make use of the AMS approach.

According to a recent review of probability distributions for the AMS approach (Li

et al., 1999), various distribution functions are possible. Yet it is difficult to conclude

which one is the most appropriate, as the choice of distribution function in mainly de-

pendent on type of data and other factors. Of the distributions that were evaluated fa-

vorably by Li et al., the probability distribution that gives the best fit to the streamflow

records we have available is the gamma distribution.

In order to obtain a measure of model performance, streamflow data and model re-

sults are normalized, and a gamma distribution is fitted to the annual maxima of stream-

flow (validation data) or runoff (model results). All available data are used for fitting the

distribution, the timeframe considered therefore is variable for the validation data, while

it is 100 years (1901-2000) for the model results.

From the gamma distribution, the magnitude of the 50-year maximum streamflow /

runoff event is determined. The deviation

∆50yr =
(S50yr −O50yr)

O50yr
×100% (4.10)

of the 50-year maximum event, expressed as a percentage of O50yr, shows how well the

model reproduces the streamflow extremes. In this equation S 50yr is the magnitude of

the model-generated 50-year maximum runoff event, and O50yr is the magnitude of the

50-year maximum streamflow event, as estimated from the gauge records.
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As the change in probability of the 20th century 50-year maximum streamflow event

will later be calculated, this measure gives the most direct indication of simulation qual-

ity for the intended purpose of the model.

4.3.6 Sensitivity analysis

In order to assess the model sensitivity to certain parameterizations, a sensitivity analysis

is performed. Within the runoff balance (Eq. 4.5), five uncertain factors appear:

1. Some portion of precipitation may be converted to runoff instantly, without being

available for evaporation.

2. Some portion of precipitation may be stored as soil water or converted to ground-

water, removing it from the water balance equation.

3. Evaporation may be over- or underestimated by the simple parameterization used

(Eq. 4.6).

4. Precipitation may be over- or underestimated in the dataset.

5. The neglect of changes in soil moisture.

Experiment Equation Formula Reason

A Eq. 4.5 RA = 0.1×P+(0.9×P−E) direct conversion of P to R
B Eq. 4.5 PB = 0.9×P groundwater recharge
C Eq. 4.5 PC = 1.1×P underestimation of P
D Eq. 4.6 Ep,D = 0.9×Ep overestimation of Ep

E Eq. 4.6 Ep,E = 1.1×Ep underestimation of Ep

Table 4.1: Sensitivity experiments performed. Listed are experiment identifier, equation
modified, formula for the modification and the reason for performing the experiment.

In order to test the first four of these possibilities, a series of five sensitivity experi-

ments was performed by changing the components of the runoff balance (Eq. 4.5). These

experiments are listed in Table 4.1.

The fifth uncertain factor in Eq.4.5 is the neglect of changes in soil moisture. While

this factor may have a large influence on model error, especially with respect to the

monthly flows, it is not possible to test this without introducing soil dynamics into the

model. This uncertain factor therefore had to be neglected in the quantitative analysis.
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4.4 Model validation

4.4.1 Verification of annual and monthly runoff

In order to validate the model performance, the mean annual runoff is determined and

compared to estimates from other models of similar scale.

Models of similar scale are the macro-scale hydrological models WBM (Vörösmarty

et al., 1996), WGHM (Döll et al., 2003), VIC (Nijssen et al., 2001, Liang et al., 1994),

and Macro-PDM (Arnell, 1999b, Meigh et al., 1999) on the one hand. On the other

hand, one could also consider the land surface model of atmospheric GCMs (Russell

and Miller, 1990, Oki et al., 1999), and the Dynamic General Vegetation Model LPJ

(Gerten et al., 2004). Unfortunately, the publication of actual numbers for the error in

single river basins, as opposed to plots summarizing the error, is not very common. We

therefore restrict the detailed comparison of model error to the numbers published by

Russell and Miller (1990) and Nijssen et al. (2001).

The simulation quality of these models varies widely, but is much improved, if the

model parameters are tuned on a basin scale. For example, Döll et al. (2003) report a

great increase in simulation quality after model tuning, similar to Nijssen et al. (2001).

Since no tuning on the river basin scale takes place in our model, as there are no valida-

tion records available for some important river basins, the comparison is limited to the

published errors before model tuning.

The simulation quality of the macro-scale models, where no such tuning on a basin

scale takes place, generally is worse than desirable. Nijssen et al. (2001), for example,

report biases ranging from -74.6% to 424.3%, with a median value of -18.1% for the

untuned model, with increasing simulation quality after tuning. Similarly, Russell and

Miller (1990) report biases ranging from -62.98% to 1018% with a median value of

33.93%.

Arnell (1999b) and Meigh et al. (1999) do not publish numbers for specific river

basins, but judging from their plots, the biases range from about -50% to +20% for

Arnell (1999b), where some tuning takes place for the whole continent of Europe, and

from at least -50% to more than +50% for Meigh et al. (1999), but in both cases the

median bias seems to be quite small.

In Table 4.2 the simulation error in the annual runoff is shown for those river basins,

where either Russell and Miller (1990) or Nijssen et al. (2001) publish values for their

models, and a direct comparison is therefore possible. While Nijssen et al. (2001) pub-

lish values for bias, Russell and Miller (1990) only publish values for mean annual

runoff, both simulated and observed, and the bias has to be inferred from these. Overall,

the bias of our model shows a similar spread of values as both Nijssen et al. and Russell
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River ∆50yr[%] d bias[%] biasN [%] biasR[%]

Amazon 11.48 0.34 -30.79 -39.80 -62.98
Amur 11.11 0.86 -8.33 -45.90 -2.77

Chang Jiang 20.45 0.43 -32.98 -14.30 44.89
Colorado n. a. 0.10 2120.39 315.00
Columbia 4.00 0.65 -19.90 -74.30 20.72
Danube 27.14 0.80 6.21 12.30 44.66
Dvina 0.64 0.75 -4.78 31.30 10.38
Fraser 25.18 0.75 -11.19 33.93

Indigirka 24.00 0.39 -56.75 -54.70
Indus 3.49 0.60 40.06 26.05

Kolyma 1.12 0.50 -42.71 -32.00 376.06
Lena 9.77 0.36 -38.66 -68.20 5.84

Mackenzie 33.07 0.48 -20.28 -69.00 83.66
Magdalena 21.58 0.57 -24.58 32.49

Mekong 5.67 0.63 -12.12 -19.10 51.49
Mississippi 2.58 0.65 31.95 18.00 -10.86

Murray -18.05 0.08 1490.34 431.82
Niger 25.19 0.12 336.75 82.81
Nile 16.55 0.05 508.47 606.02
Ob 18.90 0.73 7.11 46.50 30.91

Olenek 20.99 0.52 -40.97 -36.70
Parana 10.22 0.28 93.26 6.20

Pechora 12.42 0.48 -29.26 16.30
Senegal 34.21 0.20 144.59 424.30

Shatt el Arab 4.92 0.80 3.53 71.74
St. Lawrence 27.87 0.25 47.24 3.36

Volga -13.33 0.53 26.90 83.60
Yana 32.08 0.42 -52.28 -74.60

Yenisei 12.69 0.28 -34.19 -44.40 -10.54
Yukon -5.63 0.34 -48.87 104.80 152.31

Zambezi -4.74 0.16 318.49 13.45

Table 4.2: Error in those river basins, where either Nijssen et al. (2001) or Russell and
Miller (1990) publish values. Shown are ∆50yr, index of agreement d and bias for our
model, biasN for Nijssen et al. and biasR for Russell and Miller. ∆50yr is shown as
not available for the Colorado basin, since it failed the Kolmogorov-Smirnov test in
section 4.4.2.
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and Miller, with the exception of the very extreme values our model produces in the

Colorado and Murray basins.

Taking all validation basins into account, the bias for our model ranges from -68.8%

to 2120.4%, with a median value of 9.5%, while the index of agreement d ranges from

0.05 to 0.93 with a median of 0.54.

In general the model overestimates runoff, 87 gauge sites (53%) show a positive bias.

98 of the 148 gauge records show an absolute bias below 50%, and 67 below 25%. 15

gauge records have a bias above 250%. A histogram of the distribution of bias is shown

in Fig. 4.2, along with the results from the sensitivity analysis.

The Colorado and Murray basins, where model bias is particularly large, as well as

the Nile and some other validation basins, are located in very dry areas, and therefore

a number of processes that are not considered in our model become important. First of

all there may be seepage from the river channel, and in addition the evaporation from

open water may play a major role here, especially if the river runs through lakes or

wetlands. For the Nile, Niger, Senegal and Orange similar problems are reported by

Döll et al. (2003), while Oki et al. (1999) report such problems for the Colorado and

Niger. In addition to these processes, basins like the Colorado are heavily managed by

humans, and as these processes are not included in the model, they cannot be represented

adequately either.

Model simulation quality with respect to the annual total runoff and the annual cycle

of runoff therefore is comparable to other models of similar scope and scale, where no

tuning on a river basin scale takes place, and a better performance would be desirable.

We mainly attribute these performance problems to three causes. First of all, the Hamon

scheme for the parameterization of potential evaporation (Eq. 4.6) basically rests on the

assumption of uniform soil and vegetation characteristics. This leads to the potential

evaporation scheme being more suitable to some river basins than to others. In addition,

the neglect of soil storage of moisture and river routing may lead to additional errors,

especially with regard to the timing of the annual cycle. Similarly, the simple parame-

terization of snow and snowmelt introduces additional errors into the model results.

4.4.2 Validation of runoff extremes

As reported in the methods section (section 4.3.5), the return period of extreme runoff

events is commonly evaluated by fitting a suitable probability distribution to the annual

maxima of runoff. In the case of the streamflow records available, a gamma distribution

turns out to be most suitable. By performing a Kolmogorov-Smirnov test, we deter-

mine whether the gauge records are compatible with this hypothesis. At 5% significance

level, only 2 out of the 148 gauge records are rejected. These are the Colorado and Rio
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Grande basins, where extensive human influence on streamflow characteristics has to be

assumed. These streamflow records are excluded from the subsequent analysis, leaving

us with 146 gauge records for the validation of model extremes.
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Figure 4.1: Probability distributions for extremes and histograms for measured extremes
at selected gauge sites. Continuous line: fit to normalized gauge record annual maxima,
dashed line: fit to normalized model annual maxima. Also shown: ∆50yr.

As the mean flows the model simulates are biased (see section 4.4.1), the extremes

can only be compared after a suitable normalization of the data. Streamflow data and

model results are therefore normalized to a to a mean annual maximum streamflow /

runoff of one, using

S̃i =
Si

S̄
and Õi =

Oi

Ō

with Si the model simulated annual maximum streamflow in year i, S̄ the mean Si and S̃i

the normalized value. Similarly, Oi is the observed annual maximum streamflow in year

i, Ō the mean Oi and Õi the normalized value for year i.

After normalization the probability distributions fitted to these data are in compara-

tively good agreement with another. In order to give the reader an impression of model
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simulation quality, plots of the estimated probability distributions at nine gauge sites are

shown. Fig. 4.1 shows the probability distributions for the selected verification basins, as

well as histograms of the number of annual maximum runoff events for the normalized

event sizes, as estimated from streamflow measurements. While the probability distribu-

tions are similar in every case, some differences are apparent. In all cases the probability

distributions for the model generated extremes are wider than the ones for the measured

extremes. In addition the peak of the probability distribution is higher in the case of the

measured extremes. Therefore the model overestimates the probability of events that

are larger or smaller than the mean event, while it underestimates the probability of the

mean event sizes.

In order to quantify these errors, the error ∆50yr (Eq. 4.10) in the estimated 50-year

extreme streamflow / runoff event is determined. Table 4.2 lists these values for selected

river basins. The deviation of the 50-year extreme event ranges from an underestimation

by -18.05% in the Murray to an overestimation by 34.21% in the Senegal. Taking all

validation records considered into account, the deviation of the 50-year event between

model and data is ranges from -36.11% to 47.02%, with a median value of 3.53%. In

87 out of the 146 records considered, the 50-year event is overestimated. The absolute

value of ∆50yr stays below 10% in 66 (45%) of the 146 gauge records, and it stays

below 25% in 130 cases (89%). The error is never larger than 50%. A histogram of

the distribution of ∆50yr is shown in Fig. 4.2, lower panel, along with results from the

sensitivity experiments.

All in all, the agreement of the model simulated extreme events with the extreme

events estimated from streamflow records is surprisingly good considering the much

larger bias in the mean flows. The error is below 10% in more than 45% of the gauge

records evaluated, and no gauge displayed an error larger than 50%.

This good agreement of the probability distributions and of the 50-year max. runoff

event, after an appropriate normalization, leads us to the conclusion that the current

model appears to be suitable to the evaluation of future probabilities of high runoff

events, as long as the intercomparison of current and future probabilities takes place

within the model results. Even though the annual and monthly flows the model simu-

lates may be biased, the agreement of probability distributions fitted to streamflow data

and model results suggests that the probability of high runoff events relative to the (bi-

ased) mean flows is estimated more or less correctly.

4.4.3 Sensitivity analysis

The simple model formulation allows a thorough analysis, which of the factors in the

runoff balance (Eq. 4.5) has the largest influence on model performance. The sensitivity
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experiments undertaken are listed in Table 4.1. The model results of the sensitivity

analysis runs are subjected to the same analysis as above, namely a validation of the

model extremes and of the mean flows.
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Figure 4.2: Upper panel: bias relative to mean streamflow for sensitivity experiments.
148 gauge records considered, but between 7 and 22 (depending on experiment) not
shown due to bias > 250%. Lower panel: deviation ∆50yr of model simulated 50-year
extremes from gauge record derived extremes, relative to gauge record derived extremes,
for original configuration and sensitivity experiments. 146 gauge records considered.
Legend also shows mean absolute ∆50yr as m∆.

Fig. 4.2, upper half, shows a histogram of the bias relative to the mean streamflows at

the gauge sites for all 148 gauge records considered. The mean absolute bias is highest

(145%) in experiment A, while it is lowest (80%) in experiment B. Model performance

is improved in sensitivity experiments B and E, while it is worse than the original in

sensitivity experiments A, C and D. As the model generally overestimates runoff, this

was expected since precipitation is reduced in B and evaporation is enhanced in E.
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Similarly, Fig. 4.2, lower half, shows a histogram of the deviations ∆50yr of model

simulated 50-year extremes from gauge record derived 50-year extremes, relative to the

gauge record derived extremes, for the sensitivity experiments. The mean absolute ∆50yr

is shown as m∆ in the legend. Overall, the spread of the different cases in the sensitivity

experiments is smaller for the extremes than for the means. The sensitivity experiments

B and E performed worse than the original setup, while experiments A, C and D per-

formed slightly better. The lowest mean absolute ∆50yr (11.8%) is found in experiment

D, while it is largest (13.6%) in experiment B.

Taking these results together, it seems recommendable to keep the original model

setup. While sensitivity experiment D has the lowest mean absolute ∆50yr, the result

for the original setup is only slightly worse than that of experiment D. When looking at

the mean flows, sensitivity experiments B and E perform best, while they perform worst

when comparing the extremes. Choosing setup D would slightly improve performance

with respect to the extremes, but it involves an arbitrary scaling of precipitation. While

precipitation is generally underestimated by measurements, this underestimation is nei-

ther temporally nor geographically homogeneous, and reliable correction factors are not

available for all regions (Arnell, 1999b).

Therefore there is no clear-cut “best” model configuration, and it seems best not to

introduce arbitrary scaling factors. Hence we will keep the original, most simple model

configuration in the following assessment of changed climates.

4.5 Changed probabilities for extreme runoff events under

climate change

4.5.1 A single scenario experiment

As an example of the potential changes in probability of extreme runoff events, a syn-

thetic temperature change scenario and the corresponding timeseries of annual maximum

runoff are shown in Fig. 4.3. The top panel shows the change in global mean tempera-

ture, relative to the late 20th century, in the climate change scenario. As the CRU-PIK

measurement data is used during the 20th century, climate change is not shown dur-

ing this timeframe. During the 21st century, global mean temperature rises rapidly and

peaks in 2080 at a global mean temperature change ∆T = 4K. Afterwards temperature

decreases again, but global mean temperature in 2200 is still about 2K higher than during

the 20th century. As described in section 4.2.2, climate variability is assumed to be the

same sequence of variability patterns as measured during the 20th century. The lower

panels show annual maximum runoff in the Mississippi (middle panel) and Amazon
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Figure 4.3: Consequences of climate change in two river basins. Top panel: climate
change scenario, 20th century not shown because driven by CRU-PIK data. Lower pan-
els: annual maximum runoff, model-generated, for the Mississippi (middle) and Amazon
(bottom) basins. Also shown: 50-year maximum runoff event (dashed line) and 25-year
max. runoff event (dash-dotted line).

(bottom) basins. Contrary to the runoff assessed in Sec. 4.4.1, the runoff shown in these

plots is not the annual total summed up over sub-basins belonging to some streamflow

gauge, but the runoff shown is the annual maximum monthly area-weighted sum of all

the grid cells belonging to a drainage basin. The runoff timeseries is therefore compara-

ble to the annual maximum streamflow timeseries given by a gauge located at the river

mouth. The plots also show the level of the 50-year maximum runoff event during the

20th century (dashed line) and the level of the 25-year event (dash-dotted line). These

are derived by fitting a gamma distribution to the model-generated annual maxima of

runoff. Climate change patterns for this plot were derived from ECHAM 3.

It is clearly visible in Fig. 4.3 that the annual maxima of runoff in the Mississippi

basin decrease in magnitude. Both the 25-year and the 50-year max. runoff events dur-

ing the 20th century are never exceeded during the next centuries. The probability of



Integrated assessment of changes in flooding probability 83

flooding therefore decreases in the Mississippi basin. In the Amazon basin, on the other

hand, the picture is quite different. Here, the 25-year event is exceeded 65 times, while

the 50-year event is exceeded 55 times during the 21st and 22nd centuries. If the system

were in a stationary state, the 25-year event would become a 3.1-year event, while the

50-year event would become a 3.6-year event. The probability of major runoff events

therefore clearly increases.

The model allows the determination of the change in flooding probability depending

on the magnitude of global mean warming. We assess the changes in flooding probability

for 83 of the largest river basins, where 50% of the projected world population in 2100

live. These basins are listed in appendix A.

To determine the change in flooding probability, 100 years of monthly runoff data are

simulated for increased global mean temperatures, ranging from ∆T = 0.1K to ∆T = 5K

in steps of 0.1K. As described above, a gamma distribution is fitted to the timeseries of

annual maximum runoff, and thus the change in probability of a runoff event of equal

magnitude to what was the 50-year maximum runoff event during the 20th century can

be assessed. The event Q50yr is determined, which is the magnitude of the 50-year flood

during the 20th century, as simulated by the model. Subsequently, the probabilities

P(Q50yr) are determined for changed climate conditions.

Results of this assessment for nine large river basins are shown in Fig. 4.4 using cli-

mate change patterns generated by three different GCMs. While the probability P(Q50yr)

clearly increases in some river basins, there are other river basins where the magnitude

of Q50yr is never reached at all. Using the patterns generated by ECHAM 3, shown as

dashed lines, the probability increases markedly with rising temperatures in the Amazon,

Parana, Chang Jiang and Mekong basins. Other river basins, namely the Mississippi,

Amur, Mackenzie and Danube river basins, experience a marked decrease in P(Q50yr),

while flooding probability in the Yenisei basin first increases and then decreases again.

The climate change patterns produced by ECHAM 4, shown as dash-dotted lines, give a

similar overall picture, with the exception of the Amur, Yenisei and Mackenzie basins.

The most interesting of these cases are the Yenisei and the Mackenzie. While ECHAM 3

simulates an increase in P(Q50yr) at temperature changes up to about 2K for the Yenisei

basin, followed by a decrease, ECHAM 4 simulates a faster initial increase followed by

a short decrease, which is again followed by an increase in probability. A similar behav-

ior is apparent in the Mackenzie basin. Here, both models project an initial decrease in

P(Q50yr), but ECHAM 4 simulates an increase in probability at climate changes larger

than 2.5K, while ECHAM 3 projects no further change in flooding probability. A more

detailed analysis of model results reveals that this difference is due to changes in the an-

nual cycle of model-generated runoff when driven by patterns generated by ECHAM 4.
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Figure 4.4: Changed probabilities for the 20th century 50-year max. runoff event Q50yr

(P = 0.02) for selected river basins, depending on change in global mean tempera-
ture ∆T . Determined using climate change patterns from ECHAM 3 (dashed line),
ECHAM 4 (dash-dotted line) and HadCM 2 (dotted line).

While the patterns generated by ECHAM 3 induce that the annual maximum of runoff

as generated by the model occurs in May, ECHAM 4 simulates a shift of the annual

maximum of runoff to April, due to earlier snowmelt, and as evaporation is smaller in

April due to both the shorter day length and lower temperatures, this generates increases

in flooding probability. In the Amur basin the different projection by the two models is

simply due to different precipitation projections, with ECHAM 4 simulating increases,

while ECHAM 3 produces decreases in precipitation.

Looking at the climate change generated by HadCM 2, the largest difference to the

ECHAM models occurs in the Mississippi basin, where HadCM 2 projects an increase in

flooding probability, while the ECHAM models simulate a decrease. This is once again

due to different precipitation patterns derived from the different models.
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4.5.2 Climate Impact Response Function

For an application in the TWA, a climate impact response function (CIRF) can be de-

termined by the model. Climate impact response functions (Füssel et al., 2003, Füssel,

2003) have been developed as reduced form models in order to enable the representation

of the impacts of climate change in integrated assessment models. A CIRF is a repre-

sentation of the relation between climate change on the one hand, and the impact(s) of

climate change under consideration on the other hand.

In the case of a CIRF intended to limit changes in flooding probability, probabilities

need to be taken into account in a probabilistic CIRF. In order to construct the CIRF,

the magnitude Q50yr of the 20th century 50-year flood event is used as a reference, and

the new probability P(Q50yr) of the Q50yr event under changed climate conditions is

determined.

The 50-year event is used for two reasons. First of all, we believe that it would be

misleading to estimate the size of events that have an even smaller probability from a

timeseries that is just 100 years long. Second, the amount of runoff that is reached or

exceeded only once in 50 years is already so large that it seems plausible that this level

will already cause major damage to infrastructure and endanger human lives. The 50-

year event during the 20th century Q50yr therefore seems to be a suitable benchmark to

compare future climate states with.

Since the goal is the construction of a CIRF that indicates changes in flooding prob-

ability on a global scale, the results on the scale of single river basins have to be ag-

gregated to this scale. Aggregating these changes in probability to a global level – after

all this analysis was performed in 83 of the largest river basins – is nontrivial, as the

aggregation of the change in probability over all river basins may very well mask the

severity of the problem, as decreasing probabilities in some river basins may mask the

strong increases in other river basins. Therefore the the population affected by increases

in P(Q50yr) is determined.

Using the projection of future population growth described in section 4.3.3, the fu-

ture population living in the river basins analyzed can be determined. This may not quite

represent the number of people that are actually affected by the change in flooding prob-

ability, as not all the people living in a river basin will experience the floods, but it seems

safe to assume that the majority of the population living in a river basin lives close to the

river and will therefore be affected by the change in flooding probability. Furthermore,

the overall damage by a flood does affect an entire region, e. g. by demand for financing

of the reconstruction of destroyed infrastructure.

The model therefore generates a four dimensional CIRF, with climate change, the

change in P(Q50yr), and the population affected by this change as the main dimensions,
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ECHAM 3: Population potentially affected by change in probability: 50 yr. event becomes...
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ECHAM 4: Population potentially affected by change in probability: 50 yr. event becomes...
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HadCM 2: Population potentially affected by change in probability: 50 yr. event becomes...
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Figure 4.5: Fraction of world population in 2100 affected by changed probability of
50-year maximum runoff event, dependent on change in global mean temperature ∆T .
Climate change patterns were taken from ECHAM 3 (upper panel), ECHAM 4 (middle)
and HadCM 2 (bottom). The legend for all plots is shown in the bottom panel.
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but since the population affected is time-dependent due to the change in population,

time is an additional dimension to the CIRF. Therefore projections of the CIRF have to

be presented.

Results for this analysis, derived using the climate change patterns from the three

GCMs, are shown in Fig. 4.5 for the population in 2100. Using the climate change

patterns obtained from ECHAM 3, shown in Fig. 4.5, upper panel, one can see that the

population affected by a change in probability of the former 50-year event to a 25-year

event (marked by plus signs) rises steeply for a global warming ∆T ≥ 0.3K. The rise in

fraction of world population affected then slows at a global warming ∆T = 0.5K, where

about 13% of world population are affected. The fraction of world population affected

finally reaches about 28% at ∆T = 5K. The non-smooth nature of these curves is due to

to the fact that once a basin crosses the threshold, it’s population is added to the total at

once. The large initial increase in the plots for ECHAM 3 and ECHAM 4 is mainly due

to the Ganges basin with it’s projected population of 762 million in 2100.

This series of figures also highlights the uncertainty in these estimates. If one con-

siders the fraction of population obtained using the climate change patterns derived from

ECHAM 4, shown in Fig. 4.5, middle, the overall shape of the curves is similar to the

the ones obtained using ECHAM 3, while the threshold temperatures may be somewhat

shifted. Using HadCM 2, shown in Fig. 4.5, bottom, the overall picture is quite differ-

ent. The fractions of world population affected are significantly lower, and the increases

are less steep than in the cases using the ECHAM models. This difference between the

projections by the different models is largely due to the different estimates of future

monsoon rainfall. While the ECHAM models project increases in monsoon precipita-

tion, HadCM 2 projects a decrease, and due to the large population in the Ganges basin,

this has a large effect on the projected population affected.

A different projection of the CIRF is shown in the upper panel of Fig. 4.6. Here,

the time dependence of the population affected by a change of the 50-year event to a

25-year event is shown, based on climate change patterns from ECHAM 3. Overall, the

time dependence is not very large, but the maximum fraction of population is affected,

if the population of 2075 is considered, whereas the consideration of the population of

2000 yields the lowest estimate of population affected.

Taking up the results from the sensitivity analysis in section 4.4.3, the sensitivity

of the CIRF to the most influential configurations in the sensitivity experiments is also

determined. Apart from the CIRF generated with standard model parameters, CIRFs are

also generated for the model configurations “B” and “D”, which showed the highest (B)

and lowest (D) mean absolute ∆50yr in section 4.4.3. Results of this analysis, again con-

ducted using climate change patterns generated by ECHAM 3, are shown in the lower
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Echam 3: Sensitivity experiment

Orig, 25 yr. event
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Figure 4.6: Fraction of world population affected by changed probability of 50-year
maximum runoff event, dependent on change in global mean temperature ∆T . Climate
change patterns were taken from ECHAM 3. Upper panel: Time dependence of popu-
lation affected by change of 50-year maximum runoff event to 25-year maximum runoff
event. Lower panel: Sensitivity of population in 2100 affected to parameter variations
as in sensitivity experiments B and D.

panel of Fig. 4.6. Here, the population in 2100 affected by a change of the 50-year to a

25-year and a 10-year event is shown for the original configuration, as well as configu-

rations B and D. Obviously the configurations in the sensitivity experiments have only

a small influence on the CIRF. While some differences between the different configura-

tions can be determined, these differences are very small and only occur in isolated river

systems. Therefore the CIRF is robust with respect to the uncertain parameterizations

investigated in section 4.4.3
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In the final section, the CIRF shown in Fig. 4.5 is used within the TWA to calcu-

late emission corridors, where the fraction of world population affected by changes in

flooding probability is limited.

4.6 Emission corridors limiting the change in flooding proba-

bility

The CIRF developed in the previous section can be used to determine emission corridors

that show the emissions that are still possible, if the number of people affected by a

change in P(Q50yr) is to be limited.

In order to obtain the emission corridors, the ICLIPS climate model is used. It

was already presented in chapter 3, Eq. 3.9-3.11. The model parameters are kept as

described in chapter 3, with the exception of two changes. First of all, the reference

period of the climatology used is 1961-1990. Therefore, this timeframe also defines

the initial conditions the model uses to calculate future climate states. Second, as the

model contains just a primitive carbon cycle and no other greenhouse gases, a CO2-

equivalent formulation is used. In this formulation, the radiative forcing by all forcing

agents is converted to the CO2 concentration that would generate the same radiative

forcing. Climate sensitivity is set to 3K.

As a guardrail various settings are possible. This analysis focuses on the change

in probability of the 50-year maximum runoff event, as calculated by the model when

forced with 20th century observed climate, yet other events can easily be used. The

guardrails are defined as limits to the percentage of world population that are affected by

a change in P(Q50yr) to a specified new probability.

In addition to these guardrail settings, the same constraints on the change in emis-

sions are imposed as in chapter 3. The change in emissions is parameterized as Ė = gE,

and the maximal emission reduction is limited to 4% p.a.. The rate of change in emis-

sion reduction is also bounded as 0 ≤ ġ ≤ −(g0 + gmax)/ttrans, with ttrans = 20 yrs and

gmax = −0.04. The initial growth in emissions g0 is determined by the optimization, but

limited to be between 1% p.a. and 3% p.a..

The corridor boundaries are then calculated by performing a constrained optimiza-

tion, where the maximum (minimum) in emissions allowed by the constraints is deter-

mined for successive points in time in order to determine the upper (lower) boundary of

the emission corridor (Leimbach and Bruckner, 2001, Bruckner et al., 2003b).

Fig. 4.7 shows emission corridors of the CO2-equivalent emissions that are possible,

if not more than 20% of the world population in 2100 are to be affected by a change

in probability of the 50-year max. runoff event, based on the climate change patterns
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Figure 4.7: Emission corridor limiting the change in flooding probability. CO 2 equiv-
alent emissions allowable, if less than 20% of world population are to be affected by a
change in probability of the 50-year max. runoff event to the new probability shown in
the legend. Based on the climate model ECHAM 3.

generated by ECHAM 3. The plot shows the emission corridors for a change of the

50-year event to the new probabilities shown in the legend. The actual emission corridor

is the total shaded area between the upper boundary of the respective shaded area and

the lower boundary of all the shaded areas. Please note that the upper boundaries of the

40-year, shown as a dotted line with stars, and the 30-year emission corridors, shown

as a dotted line with circles, are actually located below the lower boundary. The emis-

sion corridors therefore are empty sets: only emission reduction strategies that involve

emission reductions larger than 4% p.a. would produce a valid solution, and as emission

reductions are limited to 4% p.a. for socio-economic reasons, these guardrails cannot be

observed.

As detailed in section 3.3.3, the corridors derived this way are necessary corridors.

All emission strategies that lie outside the corridor, or leave the corridor at some point in
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Figure 4.8: Maximum of the emission corridors for the climate change patterns gener-
ated by all three GCMs. Shown are the maximal CO2 equivalent emissions allowed,
if the population affected by the change in flooding probability is to be limited. In the
lower left-hand corner of the three plots, no viable emission corridors exist.

time, definitely violate the guardrail. For emission strategies that lie completely within

the corridor, one has to check, whether they violate the guardrails or not. Especially

emission strategies that stay close to the upper boundary of the emission corridor for

most of the time are not acceptable. For further information on the interpretation of

emission corridors see Kriegler and Bruckner (2004).

Fig. 4.8 presents a different perspective to the emission corridors. In Fig. 4.8 isolines

are presented that mark the maximum of the emission corridors for varying changes in

probability and population affected. This figure also highlights the considerable uncer-

tainty that is still inherent in this analysis, due to the different climate change patterns

generated by the different GCMs. Shown are isoline diagrams for the GCM patterns

considered, with ECHAM 3 shown on the upper left, ECHAM 4 on the upper right, and

HadCM 2 on the lower left. On the lower left-hand side of the figures, no emission cor-
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ridor exists that could limit the population affected by the changed flooding probability

to these numbers. This is due to the fact that the maximum in emissions of the allowable

minimum emissions trajectory is 9.4 GtC, due to the transition time scale and the max-

imum emission reductions imposed, which still implies a temperature change of about

1.3◦C relative to the 1961-1990 average global mean temperature. Emissions above a

maximum of 60 GtC were not evaluated, since these imply temperature changes larger

than 5◦C – a temperature change, where the simple climate model used is not applicable

any more.

If the ECHAM models should prove to be correct, it will be impossible to prevent

20% of the world population from being affected by the 50-year maximum runoff event

becoming a 25-year event, and more than 10% will be affected by even larger changes

in probability. This is mainly due to the large increases in precipitation that the ECHAM

models project for the Ganges basin. If, on the other hand, HadCM 2 should prove to

be correct, the population affected will be less dramatic, but it will still be impossible

to prevent 10% of world population from being affected by a change of the 50-year to a

40-year event.

4.7 Discussion and Conclusions

The modeling results presented in the previous sections suggest, that changes in the

probability of large scale flooding due to changes in precipitation in the course of future

climate change might have a severe impact on a significant portion of world’s population.

Not only does the simulation with a single climate change scenario suggest an increase

in probabilities for large scale floods, but even more significant are the results obtained

within the application of the tolerable windows approach (TWA).

Within this application of the TWA, the portion of the world population experiencing

an increase of the probability of what is today a 50-year event has been implemented as

a constraint for future climate change. Within this first step, a probabilistic climate

impact impact response function (CIRF) is implemented, which is based on the model

presented before. This CIRF gives the portion of world population which experiences

a specified shift in flooding probabilities as a function of the global mean temperature.

In a second step, the corridors of admissible emissions were calculated, which comply

with this constraint and which do not exceed a reduction rate of more than 4%p.a. Both,

the climate impact response function and the resulting corridors suggest that:

• There is a significant risk that even a small increase in global mean temperature by

less than 0.5◦C brings about a significant increase in flooding probabilities, which

can affect up to 20% of the world population. Here, results differ with different
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spatial patterns of climate change obtained from three GCMs. More specific, the

risk does depends on the fate of the Indian Monsoon, as the two ECHAM GCMs

implemented both show its strengthening. Therefore, the pertaining uncertainties

on the monsoon are not only of relevance for agriculture, but also for floods.

• Within the “wet” worlds of the ECHAM models, there is no reasonable emission

scenario to insure that only small fractions of world population are affected by

increases in the probabilities of major floods. If, for example, we want to avoid

that more than 20% of the world population are affected, we have to reckon with

shifts in probabilities where what has been a 50-year event in the 20th century

becomes at least a 25-year event over the next 100 years.

• The danger of such “TINAs” (there is no alternative) imply, that adaptation to

increasing flooding probabilities are inevitable. Given the possibility that these

shifts might happen with rather small increases in global mean temperature, adap-

tation measures need to be taken soon, which calls for an increasing effort to study

and understand the processes of adaptation.

With respect to the probabilistic tolerable windows approach, this chapter has demon-

strated how a probabilistic climate impact response function can be determined and

employed in the TWA. Using stochastic techniques, the change in probability of flood

events was determined, depending on the change in climate. Therefore, stochastic infor-

mation was shown to be a valuable tool in a policy advice application.

One aspect that is missing in this assessment are the other kinds of floods that could

not be included here. Flash floods and floods caused by very intense, short-duration

precipitation events cannot be modeled on scales as coarse as the ones used here. Since

the probability of such events may also change in a changed climate, the population

affected by such changes might be even larger than shown here, but not smaller.

Of course the results are subject to a large range of uncertainties. Some of them

have been taken into account, e. g. by using climate change patterns from different

GCMs, or by assessing the model uncertainty through a sensitivity analysis. Never-

theless, some other uncertainties pertain. Here, particularly the question how climate

variability might change in the course of global warming or the limited reproducibility

of historical streamflows by models in general have to be mentioned. In addition, the

uncertainty in climate sensitivity, which was in chapter 3 shown to be a very important

factor, was not considered in the determination of emission corridors.

The main uncertainty with respect to changes in flooding probability could unfor-

tunately not be addressed in a satisfying manner. While the climate change patterns

from different GCMs gave different possibilities of the spatio-temporal characteristics
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of changes in climate, it was not possible to determine a single change in probability

for a certain river basin, as opposed to the three different estimates given by the three

patterns. Therefore the uncertainty could be addressed, but not resolved.

The main potential improvement would therefore be a better estimate of the spatio-

temporal changes in climate. While we used the pattern-scaling approach with patterns

derived from single GCMs here, the different simulations by different GCMs contain a

large uncertainty. If combined patterns from multiple GCMs and a probability distribu-

tion over these were available, it would be possible to derive a single probabilistic CIRF,

not a CIRF for each of the GCMs the climate change patterns were derived from. This

would therefore improve the representation of the uncertainty contained in the assess-

ment, which would facilitate its consideration.

The second development this approach could profit from are improved estimates of

the future variability of climatic variables. Our current approach rests on the assumption

that future variability patterns will be similar to todays, but it appears likely that this will

not be the case.

Nevertheless, we consider the model as good enough to conclude that an increase

in flooding probabilities should be a major reason for concern about climate change.

Increased modeling efforts need to be undertaken to localize the critical regions for in-

creased flooding, in order to get improved information for adaptation priorities.



Chapter 5

Summary and Outlook

5.1 Summary

In this thesis we have shown that stochastic information can yield valuable insights into

the climate system. Stochastic information can be used for the reduction of uncertainty

in assessments of the current state of the climate system, as well as for the comprehensive

consideration of uncertainty in assessments of future climate change. The uncertainty

that is ever-present in assessments of climate change makes the information gained by

the use of stochastic methods even more valuable, since the information gained this way

can not in all cases be gained by deterministic means.

Three general classes of uncertainty with respect to the assessment of changes in

climate were assumed. These classes are:

1. uncertainty that is caused by natural variability

2. uncertainty caused by insufficient knowledge, and

3. uncertainty that arises as a result of the freedom of human choice.

We have demonstrated that stochastic information can be a valuable tool for considering,

communicating, and even reducing two of these uncertainties.

Uncertainty caused by the unpredictability of human decisions is the one class of

uncertainty, where stochastic information as presented in this thesis does not aid the

consideration and reduction of uncertainty. Since the TWA doesn’t predict human deci-

sions, it avoids this uncertainty, but this class of uncertainty is not considered explicitly

in this thesis. It could be addressed using scenarios, but not using the techniques em-

ployed in this thesis. What stochastic information may do with respect to this uncertainty

is that it may influence human decisions, if the communication of uncertainty inherent

95
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in the assessment of climate change is improved by the use of stochastic information,

resulting in a better informed policy-making process.

Uncertainty caused by insufficient knowledge is a different matter in this respect.

Here, stochastic information may greatly improve the assessment of changes in climate,

and two aspects to this matter were developed in this thesis. In chapter 2, an indicator

was developed that may reduce the uncertainty about the distance of the climate sys-

tem to a nonlinear threshold. It was shown that properties of fluctuations can be used

to obtain information not accessible by deterministic means. Here, stochastic informa-

tion is able to reduce uncertainty by giving an independent estimate of the distance to

the bifurcation point. In chapter 3, on the other hand, it was shown how stochastic in-

formation can be utilized to consider uncertainty in the integrated assessment of climate

change. The probabilistic TWA developed there is able to incorporate uncertainty caused

by insufficient knowledge, if the uncertainty can be expressed as uncertainty in model

parameters, for which a probability distribution is known. This also aids the communi-

cation of the uncertainty inherent in climate change assessments, since uncertainty that

is considered explicitly can be communicated more easily.

Finally, there is uncertainty caused by natural variability. Here, stochastic infor-

mation may also aid the assessment of changes in climate. With the use of stochastic

techniques, natural variability can be incorporated in assessments of climate change.

With respect to natural variability, chapter 2 has shown that the consideration of natu-

ral variability may actually reduce other uncertainties, since it can be utilized to obtain

additional information. The consideration of natural variability in a policy guidance

model for the integrated assessment of climate change was demonstrated in chapter 3.

Within the framework of the TWA, natural variability leads to a certain probability that

guardrails set in order to limit the consequences of climate change are violated, if the

guardrails are set appropriately, i. e. if the guardrail is not just defined by the mean cli-

mate. The probabilistic TWA developed in chapter 3 can consider this probability, and

it allows to set guardrails that limit the probability of an event happening. This cause

of uncertainty was also considered in chapter 4, where a probabilistic climate impact

response function was developed that allows the limitation of changes in flooding prob-

ability within the TWA. Here, stochastic techniques were used to determine the natural

variability of temperature and precipitation under changes climate conditions, allowing

an assessment of changes in flooding probability due to climate change.

This thesis therefore has shown that stochastic information potentially is a very valu-

able tool in the assessment of changes in climate.

With respect to the uncertainty inherent in the assessment of changes in future cli-

mate, the results of the analyses in chapters 3 and 4 show that a very large uncertainty,
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if not the most important uncertainty, is the uncertainty about the reaction of the climate

system itself to changes in radiative forcing. The large uncertainty in climate sensitivity

considered in chapter 3 leads to very little maneuvering space for humanity, if a change

in global mean temperature larger than 2◦C is to be avoided with high probability, and

if the uncertainty is fully taken into account, i. e. the probability of large climate sensi-

tivities is non-zero. The uncertainty caused by natural variability, on the other hand, has

a much smaller effect on emission corridors. Similarly, the probabilistic climate impact

response function for changes in flooding probability developed in chapter 4 shows lit-

tle sensitivity to the variation of parameters in the hydrological model, but a very large

sensitivity to the climate change patterns derived from different GCMs. Here, the spatial

pattern of climate change was therefore the most important uncertain factor in the assess-

ment, and this large uncertainty prevented the derivation of a single change in flooding

probability for a given change in mean climate, as opposed to the three distinct changes

in probability derived using the patterns derived from three different GCMs. The uncer-

tainty in regional climate change implied also touches upon the thermohaline circulation

investigated in chapter 2, since the stability of the THC depends on the freshwater bal-

ance in the North Atlantic region.

5.2 Outlook

This thesis partly has the character of a conceptual “playground”, where new concepts

are explored and implemented for the first time. Applications of the concepts will have

to follow in order to make the development of these new concepts worthwhile for climate

policy-making.

The indicator for the proximity to a saddle-node bifurcation in the THC developed

in chapter 2 will have to be investigated further. A first step in this direction has already

been made, since we have shown in a separate publication (Held and Kleinen, 2004)

that the approach can also be used in models of intermediate complexity. The next step

therefore is the application to a full three dimensional GCM in order to show that the

indicator can also be successfully employed there. In addition, there are other systems it

could be applied to. Here, transitions in ecosystems come to mind, as well as the Indian

monsoon, which may contain a saddle-node bifurcation (Zickfeld, 2003).

The probabilistic TWA developed in chapter 3 is an improvement over the deter-

ministic TWA, since some of the uncertainty in climate change assessment can now be

considered explicitly. This is important in the policy advice application the TWA is in-

tended for, since the consideration and communication of uncertainty is an urgent task
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that could so far not be tackled in a satisfying manner within the deterministic TWA.

Since the groundwork has now been laid, future applications will be sure to follow.

A similar outlook can be seen for the probabilistic climate impact response func-

tions developed in chapter 4. The conceptual framework developed in this thesis will

allow the application of the concept to other impacts of climate change, where climate

change leads to e. g. changes in probabilities of extreme events, or impacts where the

uncertainty is so large that a probabilistic framework has to be employed. The full po-

tential of a probabilistic climate impact response function has, however, not yet been

demonstrated. A probabilistic CIRF could also include a measure of the uncertainty,

whether a certain impact level will be reached, as outlined in section 3.3.2. This aspect

was not demonstrated here, since the focus was on impacts of climate change, where

probabilities of extreme events change, but future applications could include it.



Appendix A

List of river basins considered

No. Name Pop. 2100 [106] Area [105km2] No. Name Pop. 2100 [106] Area [105km2]
1 Ganges 762 16.33 43 Sao Francisco 23 6.17
2 Indus 284 11.46 44 Ob 22 25.77
3 Niger 180 22.46 45 Chao Phraya 21 1.42
4 Zaire 157 37.09 46 Galana 21 1.18
5 Huang He 128 8.96 47 Elbe 20 1.49
6 Parana 128 26.69 48 Brahmani 19 0.58
7 Huai 125 2.45 49 Cross 19 0.52
8 Krishna 108 2.52 50 Rabarmati 19 0.28
9 Mississippi 104 32.12 51 Dnepr 19 5.10
10 Godavari 100 3.12 52 Panuco 18 0.92
11 Hai Ho 93 2.46 53 Po 18 1.02
12 Shatt el Arab 87 9.70 54 Mahi 17 0.29
13 Zhujiang 80 4.10 55 Sacramento 17 1.93
14 Zambezi 79 19.94 56 Tana (Ken) 16 0.99
15 St. Lawrence 71 12.70 57 Kizil Irmak 15 1.10
16 Damodar 61 0.60 58 Penner 15 0.54
17 Amur 61 29.11 59 Wisla 15 1.81
18 Mekong 60 7.76 60 Seine 13 0.74
19 Danube 54 7.90 61 Dongjiang 13 0.34
20 Amazon 50 58.70 62 Senegal 13 8.50
21 Balsas 48 1.23 63 Paraiba do Sul 13 0.63
22 Brahmani 46 1.42 64 Don 12 4.24
23 Syr-Darya 44 10.73 65 Menjiang 12 0.66
24 Volta 44 3.99 66 Meuse 11 0.43
25 Amu-Darya 43 6.14 67 Jacui 11 0.81
26 Limpopo 43 4.21 68 Kura 11 2.20
27 Magdalena 42 2.52 69 Hudson 11 0.43
28 Rhine 41 1.66 70 Rufiji 11 1.87
29 Irrawaddy 40 4.07 71 Trinity 11 0.48
30 Volga 35 14.67 72 Urugay 10 3.56
31 Cauweri 35 0.79 73 Farah 10 3.86
32 Liao 34 2.75 74 Bandama 10 1.04
33 Jubba 34 8.18 75 Columbia 10 7.26
34 Narmada 32 1.14 76 Cuanza 10 1.64
35 Grande de Santiago 31 1.92 77 Cheliff 9 0.58
36 Tapti 28 0.67 78 Sebou 9 0.39
37 Chari 27 15.76 79 Motagua 9 0.27
38 Jordan 27 2.70 80 Asi 9 0.28
39 Orange 24 9.46 81 Comoe 9 0.83
40 Orinoco 24 10.42 82 Odra 9 1.20
41 Fuchun Jiang 23 0.67 83 Sassandra 9 0.77
42 Hong 23 1.71
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