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Abstract

Proper Orthogonal Decomposition (POD) is an attractive way to obtain

nonlinear low-dimensional models. This article reports on the automatization of

the mentioned reduction method. An automatic procedure for the reduction of

differential algebraic systems is presented, which is implemented in the modeling

and simulation environment ProMoT/Diana. The software tool has been applied

to a nonlinear heat conduction model and a continuous fluidized bed crystallizer

model. The automatically generated reduced models are significantly smaller

than the reference models, while the loss of accuracy is negligible.

Keywords: nonlinear model reduction, proper orthogonal decomposition,

empirical interpolation, computer aided modeling, differential algebraic
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1. Introduction

Many modern mathematical models of real-life processes impose difficulties

when it comes to their numerical solution. This holds especially for models

represented by nonlinear distributed parameter systems, which are frequent in

engineering. Usually, for the numerical solution of distributed parameter sys-5

tems the original system of infinite order is approximated by one with a finite
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system order by a semi-discretization, which results in a system of differential

algebraic equations. The resulting number of degrees of freedom is usually very

high and makes the use of the discretized model inconvenient for model-based

process design, process control and optimization [1]. Thus there is a need for10

reduced models. Through model reduction, a small system with reduced num-

ber of equations is derived. The numerical solution of reduced models should be

much easier and faster than the solution of the original problem. On the other

hand, the reduced model should be able to reproduce the system behavior with

sufficient accuracy in the relevant window of operation conditions and in the15

relevant range of system parameters.

Various methods for nonlinear and linear model reduction have been pro-

posed, particularly in the areas of electrical and mechanical engineering, control

design and computational fluid dynamics. Some of them are based on physi-

cal simplifications like assumption of perfect mixing, introduction of compart-20

ments, equilibrium assumptions, etc. This approach requires physical insight

of the modeler and hence is hard to automatize. Another successful approach,

which may also be considered as a physical model reduction method, is based on

nonlinear wave propagation theory [2, 3]. It produces reduced model by approx-

imation of the spatially distributed solution by profile with a given shape. As25

in the previous case, this method requires physical process understanding from

the user and can be applied only for special systems. The generalized method

of moments [4, 5] is a widely used mathematical reduction technique for pop-

ulation balance equations. In this case, the reduced model does not preserve

full information on spatial profile. Another mathematical possibility to obtain30

reduced models is to separate fast and slow subsystems. Slow manifold approx-

imation [6] requires complicated symbolic operations, which impose difficulties

on the automatization of this method. To sum up, widely used methods for

nonlinear model reduction require experienced user; automatic application and

integration in a simulation tool is a difficult and challenging task, which has35

hardly been attempted to our knowledge. On the other hand, there are linear

model reduction techniques like balanced truncation [7, 8], which are applica-
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ble to high order systems and can be automatized quite easily. However, the

resulting linear reduced models are only valid locally and not able to capture

nonlinear properties of the original system.40

In this work Proper Orthogonal Decomposition (POD) [9, 10, 11, 12] is

used for the development of an automatic procedure for model reduction. This

method has been successfully applied for numerous problems in the fields of fluid

dynamics, optimal control, and for population balance systems like crystallizers

[13], [14], and granulators [15]. To put it in other words, the model reduction45

by POD is a proven approach. Nevertheless, applying model reduction by POD

manually to complex engineering models is a challenging and tedious task. The

idea of this work is to provide a software environment that performs the model

reduction by POD automatically with minimal additional input from the user.

The work is structured as follows. Section 2 discusses the model reduction50

method. Technical details of the developed software tool for automatic model

reduction are described in Section 3. Section 4 shows the developed software

tool in action by applying it to two test models: a nonlinear heat conductor and

a continuous fluidized bed crystallizer.

2. Mathematical model reduction method55

2.1. Reference model representation

Before applying a reduction procedure to the reference model, it has to be

transformed into a spatially discretized form by applying the method of lines

[16]. Discretization results in a system of differential algebraic equations, which

may be written as

B
dx

dt
(t) = f(x(t)) = Ax(t) + c+ g(x(t)), (1)

where x(t) is the discretized state vector, B and A are the system matrices,

where B may be singular, c is a constant vector, and g(x(t)) is a function that

comprises the nonlinearities of the system.
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2.2. POD method60

In this work the Proper Orthogonal Decomposition method [9, 10, 11, 12] is

used for the development of an automatic procedure for the model reduction.

The basic idea of this method is to approximate the model solution by a linear

combination of time independent basis functions weighted by time dependent

coefficients. The basis functions are constructed from numerical simulation re-65

sults of the detailed reference model. Applying Galerkin’s method of weighted

residuals produces the reduced model equations. At this point the offline phase

of the reduction procedure ends, which can be extremely computationally in-

tensive depending on the complexity of the reference model. But these efforts

pay off in the second fast and cheap step, the online phase. In the online phase70

only a differential algebraic system of low order has to be solved.

As a starting point of the offline phase, the detailed reference model has to

be solved numerically. Snapshots for the model states x(t1), x(t2), ... and for the

right-hand sides f(t1), f(t2), ... are stored in matrices X = (x(t1), x(t2), ...) and

F = (f(t1), f(t2), ...), correspondingly.75

A reduced basis for the snapshots vectors is constructed from the singular

value decomposition (SVD) of X with

X = UΣV T , (2)

where U is a unitary matrix containing the left singular vectors or POD modes,

which are already ordered by the singular values, V T is a unitary matrix con-

taining the right singular vectors and Σ is a pseudo-diagonal matrix with the

descending singular values as entries. The singular values are a measure for the

truncation error and hence determine the order of the reduced model.80

Consequently the basis vectors for the orthogonal projection are taken as

Ψx
i = Ui, i = 1, ..., Nx, (3)

where Ui denotes the i th column of U , and Nx is the dimension of the reduced

basis and correspondingly the order of the resulting reduced model.
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The state vector x(t) is approximated by the following expression:

x(t) ≈ Ψxφx(t), (4)

where Ψx = (Ψx
1 , ...,Ψ

x
Nx), and φx(t) is the coefficient vector of the reduced

basis and the state of the reduced model.

In order to obtain equations for φx(t), the approximation for the state vec-

tor (4) is inserted into the discretized differential equation (1). To make the

projection of the residuals on the reduced basis vanish, Galerkin’s method of

weighted residuals is applied, which leads to

ΨxTBΨx︸ ︷︷ ︸
=:Bred

dφx

dt
(t) = ΨxTAΨx︸ ︷︷ ︸

=:Ared

φx(t) + ΨxT c︸ ︷︷ ︸
=:cred

+ΨxT g(Ψxφx(t)) (5)

The matrices Bred, Ared and the vector cred from (5) have to be evaluated only85

once for a fixed reduced basis, because they do not depend on the reduced state

vector φx(t).

2.3. Empirical Interpolation

The nonlinear term on the right-hand side of (5) still depends on the high

order state vector of the reference model, bringing additional complexity dur-90

ing the runtime of the reduced model. Clearly, more efficient approaches are

needed. There are several methods in literature on how to handle the nonlinear

terms in the context of POD model reduction effectively, whose basic idea is to

approximate also the nonlinearities by basis vectors constructed from snapshots

[17, 18].95

In this work the Empirical Interpolation method (EI) [17] is used. Its algo-

rithm uses specially selected interpolation indices to specify an interpolation-

based projection instead of a more costly orthogonal projection. Thus, the

nonlinearity is projected onto a subspace spanned by a basis, which approxi-

mates the solution space of the nonlinearity. The basis vectors Ψg
i , i = 1, ..., Ng

for the available snapshots g(ti) = f(ti) − (Ax(ti) + c) are constructed by the

iterative procedure in [17]. During runtime of the reduced model, the nonlinear-

ity is approximated as a linear combination of time independent basis functions
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Ψg = (Ψg
1, ...,Ψ

g
Ng ) weighted by time dependent coefficients φg(t), which follow

from the linear equation system

Ψg
k︸︷︷︸

=:Dred

φg(t) = fk(x(t))−
(
AkΨx︸ ︷︷ ︸
=:Ered

φx(t) + ck
)

(6)

The indices k from (6) are the output of the EI algorithm described in [17]

and chosen in such a way that the approximation error is minimized. This is

achieved by placing new interpolation points where the residual between the

input basis and its approximation by former interpolation points is largest.

In summary, the resulting reduced model consists of the differential equations

ΨxTBΨx︸ ︷︷ ︸
=:Bred

dφx

dt
(t) = ΨxTAΨx︸ ︷︷ ︸

=:Ared

φx(t) + ΨxT c︸ ︷︷ ︸
=:cred

+ ΨxTΨg︸ ︷︷ ︸
=:Gred

φg(t) (7)

in combination with the linear algebraic equations (6). To sum up, the offline100

phase comprises the computation of snapshots x(ti) and f(ti) by numerical

solution of the reference model, the generation of reduced basis Ψn and Ψg,

and evaluation of the numerical data like Bred, Ared, cred, Gred, Dred, Ered.

The online phase is the solution of the Nx differential equations (7) and the

Ng algebraic equations (6), which requires much less effort compared to the105

reference model.

The main task of the model reduction tool is to construct the reduced model

equations (6) and (7) in symbolic form from an arbitrarily structured reference

model.

3. Software implementation110

The automatic procedure for the model reduction is implemented in the

modeling and simulation environment ProMoT/Diana [19]. ProMoT is a mod-

eling tool written in Common Lisp with a graphical user interface written in

Java [20]. ProMoT supports the structured implementation of dynamic mod-

els described by systems of nonlinear implicit differential algebraic equations.115

ProMoT itself is a purely symbolic modeling tool and hence has no restriction
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with respect to numerical properties of the models. On the ProMoT level the

idea is to keep the model formulation separate from numerical requirements.

It translates symbolic model information into simulation code for a number of

numerical simulation programs, one of which is Diana.120

Diana [21] is a simulation tool for the solution and nonlinear analysis of dif-

ferential algebraic systems, as they typically result from first principle modeling

of chemical engineering systems and biochemical systems. The numerical core

of Diana is written in C++ in order to ensure fast and efficient numerical so-

lutions. Model equations also have to be implemented in C++ as an equation125

set object (ESO) using CAPE-OPEN standard interfaces. Usually, the model

implementation is done automatically by ProMoT. For the numerical analysis,

the modeler accesses Diana via scripts written in the scripting language Python.

The advantage is that Python is more user friendly than C++ code.

The developed software tool for model reduction is a part of the ProMoT130

project and hence is written in Common Lisp. One uses the Diana simulation

tool only as an intermediate step for the numerical solution of the reference

model. The main parts of the software tool are the snapshots generator, the

symbolic transformator, the generator of numerical data and the builder of

reduced model. The structure of the tool is sketched in Fig. 1.135

3.1. Snapshots generator

ProMoT provides a general text based modeling language MDL. In order to

start the model reduction, the user has to provide the detailed reference model

written in this language. Also, the user has to provide the name of a Python

script which contains all information about simulation conditions like definition140

of model parameter values, a time range, and an output time interval for collect-

ing snapshots. The background is that currently no systematic mathematical

procedure exists for the choice of optimal conditions for generating snapshots.

At this point, physical understanding of the user is required to choose simulation

conditions that lead to typical spatial profiles of the solution.145

The snapshots generator translates the provided reference model into the
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Figure 1: Structure of automatic tool for model reduction.

corresponding C++ code and runs Diana to yield snapshots. When the numer-

ical computation is completed, Diana produces an output file, which contains

the snapshots matrices X = (x(t1), x(t2), ...) and F = (f(t1), f(t2), ...).

3.2. Symbolic transformator150

If the reference model held the required form (1), i.e. with the right-hand

side explicitly separated into a linear and a nonlinear part, all the steps of

reduction procedure described in Section 2 could be easily implemented using

just a numerical tool like Matlab. But the reference model provided by the

user usually has an arbitrary structure, which is a set of differential algebraic

equations and can be written as

B
dx

dt
(t) = f(x(t)) (8)
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The symbolic transformation of the reference model into the appropriate form

is one of the most difficult tasks in the present work. Splitting of the right-

hand sides of model equations into linear and nonlinear parts boils down to

the calculation of the system matrix A and the constant vector c from (1).

Currently, the tool provides two approaches for accomplishment of this task.155

3.2.1. Analytical Jacobian

The first approach is based on the calculation of the analytical Jacobian

matrix and its use for the system matrix A. The constant vector c is filled with

zero values and has no particular meaning in this approach. It is only needed

to preserve the generality of model reduction procedure. The general form of

an element of the Jacobian matrix can be expressed by the following equation:

Ai,j =
∂fi(x(t))

∂sj
, (9)

where Ai,j is an element of the system matrix at i th row and at j th column.

fi(x(t)) is the right-hand side of the i th differential or algebraic equation, sj

is a symbolic name of the j th state variable. The above operation has to be

performed for expressions in symbolic form.160

ProMoT is a symbolic tool and hence allows to treat all the modeling en-

tities like model equations and variables in symbolic form. To perform such

mathematical operations like differentiation over ProMoT symbolic expressions

in a way which is similar to the traditional manual computations, the computer

algebra system Maxima [22] is used. Since it is written in Common Lisp and can165

be called directly from Lisp code, Maxima is embedded into the ProMoT core.

For convenience of use of the computer algebra system a program interface be-

tween ProMoT and Maxima has been developed. The interface allows to convert

internal data structures of ProMoT into corresponding Maxima representation

and vice versa.170

The main advantage here is that this approach turns out to be very cheap

with respect to computational time as well as allocated memory during the

offline phase, because the Jacobian matrix is treated as a sparse matrix with
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low occupancy rate. On the other hand, this approach produced rather poor

numerical results of the model reduction for the example systems considered.175

One reason might be that the choice of a suitable reference state x, around

which the linearization is carried out, is not obvious.

3.2.2. Linear regression

The idea of the second approach is to calculate the system matrix A and

the constant vector c from (1) numerically from the available matrices with

snapshots X = (x(t1), x(t2), ...) and F = (f(t1), f(t2), ...). In order to achieve

this, the following linear regression problem has to be solved

arg min
A,c

Nd∑
i=1

[
(Ax(ti) + c− f(ti))

T(Ax(ti) + c− f(ti))
]
, (10)

where Nd denotes the number of generated snapshots from numerical solution

of reference model.180

After some mathematical manipulations the system matrix A can be calcu-

lated from the following system of linear algebraic equations

A
{ Nd∑
i=1

x(ti)x(ti)
T −

Nd∑
i=1

x(ti)
[ Nd∑
i=1

x(ti)
]T}

=
Nd∑
i=1

f(ti)x(ti)
T −

Nd∑
i=1

f(ti)
[ Nd∑
i=1

x(ti)
]T (11)

When the matrix A is known, the constant vector c is obtained as

c =
( Nd∑
i=1

f(ti)−A
Nd∑
i=1

x(ti)
) 1

Nd
(12)

Since this approach is applied to already generated numerical data and makes

no assumptions on the linearization point x, it provides much better results on

model linearization while keeping the nonlinearities of the reference model as

small as possible. For numerical computations a specialized external software

tool is used, which will be described later. The main disadvantage here is high185

memory usage that is needed to solve a linear equation system of very high

order with dense matrices.
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As a final step, the model reduction tool can easily construct the nonlinearity

g(x(t)) of the reference model in symbolic form as

g(x(t)) = f(x(t))−
(
Ax(t) + c

)
. (13)

This information combined with corresponding snapshots is used to approximate

the nonlinearity of the reference model by the Empirical Interpolation method.

3.3. Generator of numerical data190

Generating the equations of the reduced model requires various numerical

linear algebra computations in the offline phase, in particular the solution of

linear equations, singular value decomposition for computing the reduced basis,

and the computation of the system matrices of the reduced model. An advanced

numerical apparatus is needed to accomplish this. For these purposes it was195

decided to use a specialized software as an external tool. GNU Octave [23] is a

high-level interpreted language primarily intended for numerical computations.

Octave is freely available, easy to use, convenient for development of model

reduction tool because of the ability to work in an interactive mode, but has

limitations with respect to very large matrices. Due to modular structure of the200

reduction tool, Octave could be replaced by other linear algebra packages in the

future.

To use this tool externally a program interface between ProMoT and Oc-

tave has been developed. ProMoT can send commands to Octave and receive

its responses via the special input and output streams. A typical interaction205

scenario starts with sending some numerical data to Octave, then applying a

mathematical function, and requesting an output result back to ProMoT. All

conversions between ProMoT data and corresponding Octave representation are

made by the developed programming interface.

3.4. Builder of reduced model210

After completion of the above parts it is possible to calculate all the numeri-

cal matrices and symbolic expressions needed for the reduced model in the form
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of (6) and (7). The builder of the reduced model creates a new modeling file

into which it writes the following system of equations
Nx∑
j=1

Bredi,j
dφx

j

dt (t) =
Nx∑
j=1

Aredi,jφ
x
j (t) + credi +

Ng∑
j=1

Gredi,jφ
g
j (t)

Ng∑
j=1

Dredk,jφ
g
j (t) = fk(x(t))−

( Nx∑
j=1

Eredk,jφ
x
j (t) + ck

) (14)

where Nx is the number of ordinary differential equations of the reduced model

and Ng denotes the number of algebraic equations for handling of the nonlinear-

ities. For the reconstruction of the states of the reference model x(t1), x(t2), ...

one has to evaluate equation (4).

4. Case studies215

4.1. Heat conductor

One of the first spatially distributed chemical engineering models to which

POD was applied is a nonlinear heat conduction system defined on a two-

dimensional plane [10]. In [10], the model reduction was done manually, sepa-

rating the system into a part with homogeneous boundary conditions and an-220

other one with inhomogeneous boundary conditions. This separation is quite

tedious. Therefore, the model is a nice test example for the developed automatic

model reduction tool. The system geometry is shown in Fig. 2. It is a square

with a quarter removed. The system boundaries (I),(II),(III),(IV) and (V) have

the boundary temperature of zero; the boundary temperature Tf of the upper225

boundary (VI) takes arbitrary values between 0◦C and 50◦C.

The governing equation of the system reads:

∂T

∂t
= ∇ · (κ(T )∇T ) (15)

with the following temperature dependence of the thermal diffusivity:

κ(T ) = k1 + k2T + k3T
2 (16)

where k1, k2 and k3 are constants with values taken from [10].
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Figure 2: Heat conduction system under consideration.

4.1.1. Spatial discretization

The method of lines is used to convert the partial differential equation (15)

into a set of ordinary differential equations that can be solved numerically. A230

finite volume scheme is applied with volume elements as shown in Fig. 3.

Figure 3: Volume element for the spatial discretization of the heat conduction model.

Equidistant grids are used in both the x and y directions. The discretization
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is straight-forward and done as follows. Firstly, Eq. (15) can be rewritten as

∂T

∂t
=

∂

∂x

(
κ(T )

∂T

∂x

)
+

∂

∂y

(
κ(T )

∂T

∂y

)
(17)

Integration of Eq. (17) over a volume element gives

y
j+1

2∫
y
j− 1

2

x
i+1

2∫
x
i− 1

2

∂T
∂t

∣∣∣∣
x,y,t

dxdy =

y
j+1

2∫
y
j− 1

2

x
i+1

2∫
x
i− 1

2

∂
∂x

(
κ(T )∂T∂x

∣∣∣∣
x,y,t

)
dxdy

+

y
j+1

2∫
y
j− 1

2

x
i+1

2∫
x
i− 1

2

∂
∂y

(
κ(T )∂T∂y

∣∣∣∣
x,y,t

)
dxdy

(18)

The integral on the left-hand side of Eq. (18) is averaged in both direc-

tions. The integrals on the right-hand side are first solved in x and y directions

correspondingly and averaged in other directions:

dTi,j
dt

∆xi∆yj = ∆yj

[
κ(T )

∂T

∂x

∣∣∣∣
x,yj ,t

]x
i+1

2

x
i− 1

2

+ ∆xi

[
κ(T )

∂T

∂y

∣∣∣∣
xi,y,t

]y
j+1

2

y
j− 1

2

(19)

dTi,j

dt = 1
∆xi

(
κi+ 1

2 ,j
∂T
∂x

∣∣∣∣
x
i+1

2
,yj

− κi− 1
2 ,j

∂T
∂x

∣∣∣∣
x
i− 1

2
,yj

)
+ 1

∆yj

(
κi,j+ 1

2

∂T
∂y

∣∣∣∣
xi,yj+1

2

− κi,j− 1
2

∂T
∂y

∣∣∣∣
xi,yj− 1

2

) (20)

Approximation of the remaining derivatives gives

dTi,j

dt = 1
∆xi

(
κi+ 1

2 ,j
Ti+1,j−Ti,j

∆xi
− κi− 1

2 ,j
Ti,j−Ti−1,j

∆xi

)
+ 1

∆yj

(
κi,j+ 1

2

Ti,j+1−Ti,j

∆yj
− κi,j− 1

2

Ti,j−Ti,j−1

∆yj

) (21)

with

κi+ 1
2 ,j

=
1

2

(
κ(Ti,j) + κ(Ti+1,j)

)
(22)

In this example, 120 grid points are chosen in both directions, resulting in an

equation system of 10800 ordinary differential equations. It is obvious from (21)

that a manual separation of the right-hand sides into a linear and a nonlinear

part would be quite cumbersome. An automatization of this step, as done by235

the developed tool, simplifies the generation of the reduced model considerably.
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4.1.2. Simulation scenario 1: single change of boundary temperature

To perform the model reduction procedure, the dynamic characteristics of

the reference model have to be obtained in form of snapshots. The boundary

temperature Tf is considered as system input. The dynamics of the system240

with respect to changes of Tf is to be analyzed. Thus, the snapshots have

been collected in the following way. The initial temperature across the plate

is equal to 0◦C. Then the plate heats up by increasing the upper boundary

temperature Tf to 50◦C until a new steady state is reached. For the numerical

solution by Diana the IDA solver [24] is used, which varies the time step ∆t245

dynamically according to user defined tolerances. A new steady state is reached

after 0.5 s and during this time the integrator takes 319 steps, at which the

system solutions are collected as snapshots.

In order to start model reduction, the user has to provide a MDL file with the

reference model written in modeling language MDL and a Python script with250

information about the simulation scenario. Also, the user has to specify the

truncation errors indicating what fraction of the least significant basis functions

is to be neglected. In the following, the truncation error for the POD modes

and for the basis functions derived by empirical interpolation are designated

as ex and eg, correspondingly. Using the linear regression method for model255

linearization and specifying the truncation errors ex = 10−5 and eg = 10−1, the

tool generated the reduced model with only 19 ordinary differential equations

and 1 algebraic equation, compared to 10800 ordinary differential equations of

the reference model. Both models agree very well, as is illustrated by Fig. 4.

It shows the relative total error ‖x(t)− x̂(t)‖/‖x(t)‖, where x̂(t) is the approx-260

imation of the reduced model. The error takes the largest value at the initial

stage when there are very steep temperature gradients at the boundary and it

reduces to a small value as the system reaches the steady state.

In comparison to the first approach, the second approach based on calcu-

lation of the analytical Jacobian produces less efficient reduced models. The265

reference state x, around which the linearization has been carried out, is cho-
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Figure 4: Simulation results of the reduced heat conductor model using linear regression.

sen as average value among all the generated snapshots. Fig. 5 shows how the

truncation error eg affects the accuracy of the reduced models.

In order to achieve the same approximation accuracy using this approach,

25 algebraic equations are needed, compared to only 1 algebraic equation by270

using linear regression method.

4.1.3. Simulation scenario 2: randomly changing boundary temperature

In this section the case is considered where the boundary temperature Tf

changes randomly. It is known that the system parameter Tf takes values

between 0◦C and 50◦C, thereby narrowing the variety of possible dynamic char-275

acteristics of the reference system. Trying to collect the most significant ones,

the following simulation scenario has been performed for the generation of snap-

shots. As typical values of the boundary temperature Tf only the multiples of

10 between 0 and 50 are considered. In turn, for each of these values Tfi the

following actions are to be made. At first, the steady-state temperature distri-280

bution when the upper boundary temperature is set to Tfi is taken as an initial

temperature distribution. Next, a series of simulations are being performed from

this steady state by setting the upper boundary temperature to other typical

values Tfj one by one except the considered one Tfi . Each such simulation takes

0.01 s of simulation time. As in the previous case by using the IDA solver [24]285

with the varying step size ∆t, Diana generated 5645 snapshots.
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(a) 19 differential equations and 6 algebraic equations (ex = 10−5 and eg = 10−3).
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(b) 19 differential equations and 16 algebraic equations (ex = 10−5 and eg = 10−5).
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(c) 19 differential equations and 25 algebraic equations (ex = 10−5 and eg = 10−7).

Figure 5: Simulation results of the reduced heat conductor model using analytical Jacobian.
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Using the linear regression method for model linearization and specifying

the truncation errors ex = 10−5 and eg = 10−6, the software tool produced the

reduced model with 66 ordinary differential equations and 76 algebraic equa-

tions, compared to 10800 ordinary differential equations of the reference model.290

The reduced model has been solved when the boundary temperature Tf changes

randomly between 0◦C and 50◦C at every 0.01 s and compared with the exact

solution. Fig. 6 shows a random variation of the boundary temperature Tf

constructed by a random number generation code. Fig. 7 shows that both so-

lutions agree very well. The error increases when a new value of the boundary295

temperature Tf appears and goes down towards a steady state.
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Figure 6: The temporal variation of boundary temperature f (random variation).
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Figure 7: Simulation results of the reduced heat conductor model (simulation scenario 2).
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4.2. Fluidized bed crystallizer

As the second case study a model of fluidized bed crystallizer sketched in

Fig. 8 will be considered. The crystallizer aims at separation of a mixture by

selectively growing crystals of one component in the mixture. Selective crystal-300

lization is achieved by providing seeding crystals of the derived species and by

keeping the supersaturation of the liquid in a range that prevents nucleation of

new crystals [25]. The crystallizer has the shape of a cylinder whose diameter

narrows towards the crystallizer’s bottom from dtop to dbottom. An input volume

flow of the fluid comes from outside and enters the bottom of the crystallizer.305

The fluid flow goes from bottom to top, which drags small particles upwards.

Larger particles sink to the bottom due to gravity. A mixture of solvent and

particles leaves the crystallizer at the top. An additional fluid flow near the crys-

tallizer’s bottom transports particles to an ultrasonic attenuator where they are

broken into smaller fragments. The fragments are sent back to the crystallizer.310

The reference model for this process is described in [25]. The main model

assumption is that the number of particles is sufficiently high that the particle

phase may be described by a particle population with a number size density

n(x, L, t) denoting the number of particles with size L per volume at a point x

in space. Further, plug flow in axial direction and vanishing gradients in radial

direction are assumed. The population balance equation of the system reads:

A(x)∂n∂t

∣∣∣∣
x,L,t

= − ∂
∂x (A(x)vp(x, L, t)n(x, L, t))

+D ∂
∂x

(
A(x)∂n∂x

∣∣∣∣
x,L,t

)
−A(x)G(x) ∂n∂L

∣∣∣∣
x,L,t

+V̇us
(
nfromus

(L)− n(x, L, t)
)
δ(x− xus)

(23)

with boundary conditions

vp(0, L, t)n(0, L, t)−D∂n
∂x

∣∣∣∣
0,L,t

= 0 (24)

∂n

∂x

∣∣∣∣
H,L,t

= 0 (25)

n(x, 0, t) = 0 (26)
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ultrasonic

x
H

0

xUS

Figure 8: Considered system consisting of a crystallizer and an ultrasonic attenuator.

and initial conditions

n(x, L, 0) = n0(x, L) (27)

The first term on the right-hand side of (23) is the advective transport of par-

ticles with velocity vp; A(x) denotes the cross-sectional area of the crystallizer.
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The particle velocity vp from [25] can be expressed as follows

vp(x, L) =
V̇

A(x)
− v∗eq(x, L), (28)

where V̇ is the volume flow of the fluid; v∗eq denotes the volumetric fluid flux

needed to keep a suspension in equilibrium. It is computed from the Richardson

Zaki model as described in [25].

The second term on the right-hand side of the population balance equation315

(23) stands for particle transport by dispersion.

The third term is due to particle growth with the growth rate

G(x) = k
c(x)− csat

csat
(29)

The dynamic behaviour of the concentration c(x) from (29) is described by

the following balance equation of the solute in the liquid phase

∂

∂t
(Aeff (x)c) = − V̇

A(x)

∂c

∂x
+Aeff (x)Df

∂2c

∂x2
+
ρp
ρf

∫ ∞
0

π

6
G(x)L̂3 ∂n

∂L
dL, (30)

where Aeff (x) denotes the effective area of the crystallizer.

The last term of (23) describes the effect of the ultrasonic attenuator on the

particle population. V̇us is the volume flow to and from the attenuator. The

equation for the number size distribution in flow from the ultrasonic attenuator

nfromus
reads:

∂nfromus (L)
∂t =

(
V̇us

Vus

(
n(xus, L, t)− nfromus

(L)
)

+ 1
τus

(
nus(L)kus − nfromus

(L)
)) (31)

nus is chosen as

nus(L) = exp

(
− 10−3

L

(L− Lus)2

2σ2
us,L

)
(32)

The scaling factor kus can be calculated as

kus =

∫∞
0
nfromus

(L)L3dL∫∞
0
nus(L)L3dL

(33)
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The expression

δ(x− xus) =
1

σus,x
√

2π
exp

(
− (x− xus)2

2σ2
us,x

)
(34)

approximates the spatial spread of the extraction of particles due to the finite

diameter of the connecting tube between crystallizer and attenuator.

The method of lines is used to convert the reference system into a spatially320

discretized form. For the numerical solution a finite volume scheme is applied.

Since the particle velocity vp may change its sign along the x coordinate, gra-

dients in this direction are approximated by central differences to provide nu-

merical stability under these circumstances. The following discretization grid

has been applied: 120 points in the direction of the external coordinate x and325

80 points in the direction of the internal coordinate L. In total, the reference

model consists of 9800 ordinary differential equations.

As a demonstrative example, the reduced model has to be produced that

approximates the following dynamic of the reference model. An initial state of

the fluidized bed crystallizer is the stationary state when all system parameters330

are set to their default values. Then the volume flow of the fluid V̇ increases

from 2.5 · 10−6 m3 s−1 to 2.8 · 10−6 m3 s−1. A new stationary state is reached

after 3000 s. The dynamic behavior of the system during this time is shown in

Fig. 9.

To perform the model reduction, snapshots are collected on an equidistant335

time grid for t = 0..3000 s with interval of 1 s. Using the linear regression

method for linearization and specifying the truncation errors ex = 10−6 and

eg = 10−2, the tool generated the reduced model with 45 ordinary differential

equations and 66 algebraic equations, compared to 9800 equations of the ref-

erence model. Fig. 10 shows good agreement of approximation with the exact340

solution. The error takes the largest value at the beginning when the biggest

particle population decreases rapidly and it goes down as the system reaches

the stationary state.

The example illustrates that the developed software tool is able to handle

nonlinear models of high complexity, for which a manual model reduction would345
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Figure 9: Profiles of total number of particles ntotal(x) at time points t = 0 s, t = 250 s,

t = 500 s, t = 3000 s.

be a considerable task.
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Figure 10: Simulation results of the reduced fluidized bed crystallizer model.

4.3. Case studies: summary

The summary information with all the specifics about the generated reduced

models is presented in Table 1. The simulations in this work were carried out on

a personal computer with an Intel(R) Core(TM) i5-4590 3.30 GHz and 32 GB350

RAM running the Ubuntu 12.04.5 LTS. The computational effort is measured

with the Python command clock from the package time as CPU time in seconds.
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Table 1: Summary information about the generated reduced models.

Number of equations Computational time (seconds)

Experiment Reference Reduced Offline phase Reference Reduced

Conductor (scenario 1)

using linear regression
10800 ODEs 19 ODEs + 1 alg 783.65 41.12 5.04

Conductor (scenario 1)

using analytical Jacobian
10800 ODEs 19 ODEs + 6 alg 212.09 41.12 7.91

Conductor (scenario 1)

using analytical Jacobian
10800 ODEs 19 ODEs + 16 alg 212.00 41.12 7.64

Conductor (scenario 1)

using analytical Jacobian
10800 ODEs 19 ODEs + 25 alg 210.79 41.12 7.54

Conductor (scenario 2)

using linear regression
10800 ODEs 66 ODEs + 76 alg 7253.60 992.81 546.67

Crystallizer

using linear regression
9800 ODEs 45 ODEs + 66 alg 3993.20 1138.84 102.72

5. Conclusions

The automatic tool for the model reduction has been developed by using

proper orthogonal decomposition combined with empirical interpolation. For355

demonstration purposes a virtual machine has been prepared with all the needed

software installed. It is freely available for download from http://promottrac.

mpi-magdeburg.mpg.de/dist/pod/promot-pod-reducer-32bit.ova.

Although the basis functions from snapshots of the reference model give

some hints on the accuracy to be expected from the reduced model, depending360

on many factors the approximation error during runtime of the reduced model

can leave the desired range. For this purpose an efficient a-posteriori error

estimator proposed in [26] has to be implemented.
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List of Symbols

Latin symbols:

symbol description unit value

A right system matrix of reference model

Ared right system matrix of reduced model

A(x) cross-sectional area of crystallizer m2

Aeff (x) effective area of crystallizer m2

B left system matrix of reference model

Bred left system matrix of reduced model

c constant vector of reference model

cred constant vector of reduced model

csat saturated solution concentration 1 0.0051

c(x) liquid phase concentration 1

D dispersion coefficient in particle phase m2 s−1 10−4

Df dispersion coefficient in liquid phase m2 s−1 10−4

d diameter of crystallizer m

dbottom diameter at the bottom of crystallizer m 1.5 · 10−2

dtop diameter at the top of crystallizer m 3 · 10−2

ex truncation error for POD modes 1

eg truncation error for basis functions de-

rived by empirical interpolation

1

f(x(t)) right-hand sides of equations

F snapshots for f(x(t))

G(x) particle growth rate m s−1

g(x(t)) nonlinearities of reference model

H height of crystallizer m 1.1

kus scaling factor for nus 1

L internal coordinate / particle diameter m

k growth rate constant 1 3.37 · 10−7

k1 coefficient in thermal diffusivity 1 1
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k2 coefficient in thermal diffusivity 1 10−2

k3 coefficient in thermal diffusivity 1 10−4

Lus mean value of ultrasonic outlet number

size density

m 5.0 · 10−5

Nd number of snapshots 1

Nx number of differential equations 1

Ng number of algebraic equations 1

n(x, L, t) number size density m−3m−1

nus output size distribution m−3m−1

nfromus number size distribution in flow from

ultrasonic attenuator

m−3m−1

s symbolic name of state variable

T temperature ◦C

Tf temperature of the upper boundary ◦C

t time s

U POD modes

V̇ fluid volume flow m3 s−1 2.5 · 10−6

V̇us volume flow through attenuator m3 s−1 1.17 · 10−5

Vus volume of ultrasonic attenuator m3 10−3

v∗eq volumetric fluid flux m s−1

vp particle velocity m s−1

x(t) discretized state vector

x space coordinate m

xUS position of the connection between

crystallizer and ultrasonic attenuator

m 0.025

x̂(t) approximation of reduced model

X snapshots for x(t)

Greek symbols:

symbol description unit value
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κ thermal diffusivity W m−1 K−1

Σ diagonal matrix with singular values

σUS,L standard deviation of ultrasonic outlet

number size density

m 10−5

σUS,x shaping parameter for exchange flow

between crystallizer and attenuator

m

φx state vector of Ψx

φg state vector of Ψg

Ψg matrix of reduced basis vectors for

g(x(t))

Ψx matrix of reduced basis vectors for x(t)

τus characteristic time of attenuation s 100
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