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1 Introduction

In this paper we study the corrections to Einstein’s equations that originate from ‘anoma-
lous’ (local and non-local) effective actions whose variation gives rise to conformal anoma-
lies, and investigate whether such corrections can lead to observable corrections of the
Einstein field equations. In previous work [1] it was argued that the resulting corrections
can, in fact, be rather large if the cumulated effects of non-localities can overwhelm the
smallness of the Planck scale ¢p; that normally suppresses higher order effects in (quantum)
gravity. Here we will present more detailed calculations in support of this assertion, con-
sidering both an explicit closed form non-local action I'ynom|[g] [2, 3] (the ‘Riegert action’),
as well as a local version Sanom|g, 7] with a dilaton field 7; the latter is relevant for theories
with spontaneously broken conformal symmetry [4, 5].

To begin, let us briefly recall some basic properties of the conformal anomaly, see
refs. [6-14] for the original papers and further details. Generally speaking, conformal
anomalies have two sources, namely the fact that the UV regulator for any conformal
matter system coupled to gravity necessarily breaks conformal invariance, and secondly
the fact that even for classically conformal theories the functional measure depends on the
metric in a non-local manner. In four dimensions the anomaly takes the form
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where
1
C? = CpoCMP° = Ryypo R*P — 2R, R* + gR2
E4 = Rupo R"?P7 — 4R, R" + R? (1.2)

and the coefficients ¢ and a depend on the type of matter that is (conformally) coupled
to gravity. E4 is the Gauss-Bonnet density, a total derivative that gives a topological
invariant when integrated over a 4-dimensional manifold. A further possible contribution
proportional to R to (1.1) can be dropped as it is obtainable by variation of a local
functional. In the remainder of this paper we will be mainly concerned with the Gauss-
Bonnet invariant E4, the type A anomaly.

Although the anomaly (1.1) is a local expression, it is well known that it cannot be
obtained by variation of a local action functional in terms of the metric alone; however, in
the case of spontaneously broken conformal symmetry there is also a local version if there
is an extra field, the associated Goldstone boson, alias the dilaton 7. In the former case
we are thus concerned with the anomalous part T'anom[g] of the non-local effective action
that gives rise to (1.1) via variation of the conformal factor,

o= 2 . 0T anom 9]
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In general, I'ynom[g] will be a rather complicated functional, involving an infinite series of

(1.3)

products of curvature tensors interspersed with Green’s functions that themselves depend
on the metric. Various candidate actions have been proposed and discussed in the literature.
These are either of non-local type [2, 3, 10, 15-17], or, for spontaneously broken conformal
symmetry, of local type with a dilaton [4, 5, 18] (see also [19, 20] for an introduction to
covariant perturbation theory and heat kernel techniques); however, even for local actions
the non-localities re-appear after elimination of the dilaton by its equations of motion. For
E4 there is a closed form action (‘Riegert action’) analogous to the Polyakov action involving
the inverse of the 4th order Paneitz differential operator [2, 3, 21, 22] which however does
not produce conformally covariant correlators in the flat space limit [11, 23, 24] (in fact,
no closed form action with this property seems to be known). It is important to note
that there are further Weyl invariant corrections to the action but that the Riegert action
correctly reproduces the anomaly. In general, I'yyom will also excite new (longitudinal)
gravitational degrees of freedom, hence yield a variant of ‘modified gravity’.

The anomalous action I'ynom complements the usual effective action, which is also non-
local, but it is important to keep in mind the following points. First of all the separation of
the effective action into an anomalous and a non-anomalous part is, of course, ambiguous
as we are free to add and subtract any Weyl invariant functional. Furthermore, if the
anomalous action I'ypom 1S to be determined only by ‘solving’ the functional differential
equation (1.3) it is clear that this equation is underdetermined, as it is only one condition
on a functional that depends on ten metric components. Secondly, we should distinguish
between the quantum effective action, which is the generating functional of the one-particle
irreducible Green’s functions, and the Wilsonian effective action that is obtained by inte-
grating out only those modes whose mass scale lies well above the energy scales one is



considering. The latter can be considered as providing O(h) corrections to the classical
field equations which are generally very small (such as for instance the modifications to
Maxwell’s equations induced by the Euler-Heisenberg Lagrangian) because the UV degrees
of freedom are supposed to decouple from the IR degrees of freedom in this limit. The only
exception to this rule concerns anomalies, which can be viewed as IR manifestations of
trans-Planckian physics (which is otherwise ‘invisible’ in low energy processes). One well
known example is the origin of axion-gluon and axion-photon couplings which are generally
thought to arise from integration over super-heavy quarks (after spontaneous breaking of
chiral symmetry) but which survive without suppression to the lowest energy scales.

The possible physical consequences of conformal anomalies have been analyzed in great
detail by E. Mottola who has repeatedly emphasized the need to include the non-local
contribution from I'ypom on the right-hand side of Einstein’s equations (see (2.1) below) in
an effective field theory approach [18, 25-28] (see also, refs. [29-32] and recent work on the
effect of non-local renormalisation terms on cosmology [33, 34]). Most recently, ref. [28]
studies the effect of the Riegert action in a local version of I'ynom with a ‘conformalon’
field (to be distinguished from the dilaton, the Goldstone boson of spontaneously broken
conformal symmetry). In the weak field limit there arise modifications of gravitational
waves by scalar modes arising from the mixing of the conformal metric degree of freedom
with the conformalon; being based on an analysis of the corrected Einstein equations in
a weak field approximation [28] reaches the conclusion that the effects resulting from the
conformal anomaly remain tiny (and thus compatible with present observations). However,
as we will show, in the presence of persistent sources it turns out that there can also be
very large effects caused by integrating the non-localities back in time. More specifically
we find that the terms quadratic in the Riemann tensor that were negligible in the analysis
of ref. [28] give the main contribution (as opposed to the CJR contribution which played the
dominant role there), in conjunction with the huge factor resulting from integrating ‘over
a long time’. Because the corrections need not remain small, as we will show in explicit
examples, they can potentially invalidate any given solution of Einstein’s equations. It is
crucial here that our whole analysis takes place in a regime throughout which gravity can
be treated as fully classical, and which remains well within the presumed range of validity
of effective field theory.

Adopting a very different perspective, one might instead add the non-local action
Ianom to the quantum action, thereby cancelling the anomaly, so as to end up with an
exactly conformal theory at the quantum level — this would be the analog of the Polyakov
program leading to Liouville theory [35]. However, unlike for D = 2 where the action for
the conformal degree of freedom is quadratic, one might anticipate problems with ghosts
and unitarity in D = 4 as the action for the conformalon is of 4th order in derivatives.!

Readers might wonder why no such effects are seen (or even discussed) for the anomalies
known from particle physics. Since gauge anomalies cancel in the standard model, there is

'We are aware of the conflicting views on the potential role of ghosts in these types of actions, compare
for example, refs. [36] and [12, 13]. This is a technical subject of study in itself (see for example ref. [37]
and references therein), which we need not address directly in this paper — as we also, in any case, study
the effect of including actions with higher-order derivative operators.



evidently no need to discuss for them possible non-local effects of the type considered here.
However, this is less obvious for global anomalies, where, for example, one might ask about
possible modifications to the Maxwell equations resulting from the axial anomaly. The
main difference is that in electrodynamics these effects remain small, as in electrodynamics
there is no analog of the enormous increase in curvature as one moves back in time (in fact,
the electromagnetic fields in the universe are vanishingly small throughout its history).
Therefore, while providing important corrections such as in the well-known decay of 7°,
the anomaly-induced terms do not overwhelm the action.

2 Anomaly induced modifications: why they can be large

To investigate the effect of conformal anomalies on the gravitational field equations we
observe that, with a non-local action I'yyom depending only on g, these take the form

_ 1 2 o0 9]
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where the dots stand for matter contributions as well as contributions from non-anomalous
higher order curvature corrections (we will use the labels £p; and np; for the Planck length

and Planck time interchangably). This equation entails the consistency condition

v“< 2 5Fan°m[g]>:0 (2.2)
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which is automatically satisfied also for non-local I'ypom [g] if it is diffeomeorphism invariant.

The vanishing divergence of the contribution from the non-anomalous part of the effective
action is guaranteed by the standard Ward-Takahashi identities. Our main interest is thus
in the variation of I'ypom w.r.t. metric deformations which are neither trace nor diffeomor-
phisms; we will generically refer to such deformations as ‘gravitational waves’ — in the
broadest possible sense that these must satisfy the conditions at infinity first identified by
Trautman [38]. We emphasize that among the omitted terms (indicated by ellipses) on the
right-hand side of (2.1) all terms other than matter sources (in particular local higher order
curvature corrections) are completely negligible at the present epoch. The crucial question
is then whether the extra corrections induced by I'anom remain small under all conceivable
circumstances.

Given that these corrections must be taken into account there are two possibilities.
The first is that the corrections can indeed be shown to be very small for any type of ap-
plication (cosmological solutions, primordial fluctuations, black holes, gravitational waves,
etc.). In this case one can reasonably resort to a weak field approximation. The consistency
of any given solution of Einstein’s equations can be ascertained by treating I',,om as a per-
turbation, substituting the relevant solution into the right-hand side of (2.1) and checking
whether the corrections indeed remain small; this is what we will do below. Otherwise we
are faced with the problem of solving a hopelessly complicated partial integrodifferential
equation where the metric that is to be solved for not only appears via higher powers of



the Riemann tensor but also in the Green’s functions. A further complication is that in
this case we would not even know how to properly set up an initial problem.?
As a ‘testbed’ for our analysis we will employ conformally flat metrics

ds® = a®(n)(—dn® + dx?) (2.3)

which play a central role in cosmological applications of Einstein’s equations. Although
this choice of line element greatly simplifies the analysis, we do not expect that the in-
corporation of spatial inhomogeneities will alter our conclusions in any significant way.
One main advantage of the simple form of (2.3) is that the Green’s functions needed for
our computations are known explicitly for any profile of the scale factor a(n), hence exact
computations are possible. In a conformally flat background, we can also ignore the the
Weyl-squared anomaly — so we will only consider the type A anomaly in our analysis. For
the quadratic conformal d’Alembertian we have

\/jg<— O+ éR(@) G(z) = 0W(x) (2.4)

where 00 = [, is always understood to be the operator associated to the metric g, (z).
The retarded Green’s function for the metric (2.3) is [39]

1 - —x-yl)
drlx —y| a(n)a(n’)
Secondly, we have the 4th order Paneitz operator [22]

G(n,x;n',y) = (2.5)

Ap =+/—g (DD +2V, KRW - ;g’“’R> VZ,D (2.6)

which is also conformal (cf. section 2; please note that our definition of this operator
includes a factor of \/—g ). The associated Green’s function is defined by

Ap Gp(z) = 0W(z). (2.7)
Its explicit retarded version for (2.3) is even simpler than (2.5), viz.
1
Ge(n,xi1'sy) = g—0(n—n' =[x —yl) (2.8)

where 6 is the step function (41 for positive values of the argument, and zero otherwise).
In particular, this Green’s function is completely independent of the scale factor a(n).

To gain some quantitative insight and in order to study how the anomalous effective
action affects cosmological solutions we will further specialise to the physically relevant
case of the radiation era, where

a(n) = —< ! )1/2 (2.9)

Tlrad trad

2As a technical aside, we note that for the corrections we will always employ the retarded Green’s
functions, as this is the only choice which is compatible with causality, hence physically reasonable, see also
remarks at the beginning of section 3.1 below. The consistency of this prescription is also evident from the
fact that no causality problems arise with the local actions.



and the conformal time 7 is related to cosmological time t by 7 = 2+/tt;aq Where § = 1aq =
2t1aq corresponds to the end of the radiation era (t;,q ~ 380000 years). The enhancement
effect will then result from integrating back in time to n = L, which we will ‘measure’ in
units of the conformal Planck time np; = 2/tpitraq

L = n.np; . (2.10)

Because 1ya4/1p1 ~ 1028 we will see that we can take n, rather large (e.g. my ~ 107 for the
exit from inflation) and still pick up a very large contribution for the ratio 7,,q/L. The
enhancement is thus due to both the increase in curvature (the square of the Riemann tensor
behaves like ~ 7~8) towards n = L and the huge factor n..q/L; a further enhancement
results from the inverse factor a(n’)~! in (2.5) (where 7/ is to be integrated over). We
repeat that we do not even need to get close to the Planck regime to see this effect!

Let us also stress that the enhancement effects exhibited below cannot be simply
dismissed by invoking unknown quantum gravity effects in a regime where the effective
field theory approximation breaks down. First of all, our analysis stays sufficiently away
from the Planck regime. Secondly, let us nevertheless assume that the large effect ‘now’
were cancelled by an unknown contribution coming from the integration over the Planck
regime. Then, as we go back in time this contribution to the integral stays the same whereas
the contribution from the integrals contributing to (2.1) decreases to zero as n — L, so that
at time n = L we would be left with the quantum gravity induced term, and we would again
have a large effect (presumably invalidating much of standard cosmology). Therefore, we
are assuming that whatever the theory governing the Planck regime is it must lead to the
observable almost homogeneous, isotropic cosmology whence we start our analysis.

3 Riegert action

In two dimensions the conformal anomaly, which is the Euler term in two dimensions, the
Ricci scalar, can be obtained by varying the Polyakov action [35]

/dzm/dzy\/—g(x)\/—g(y)R(w)GD(x,y)R(y)7 (3.1)

where G is the Green function for the conformally invariant [J operator in two dimensions.
The variation of the Ricci scalar by Weyl rescalings parametrised by o, in two dimensions,
is given by Uo, hence it is clear that varying the Polyakov action above by Weyl rescalings
reproduces the anomaly. Furthermore, the associated correlation functions of the action
have the correct conformal behaviour in the flat space limit [11, 24].

The structure of the Polyakov action can be generalised to higher dimensions. In par-
ticular, in four dimensions the Riegert action [2, 3] manifests the structure of the Polyakov
action:

/ d'x / d'y G(2)Gr (2, 1)G () (3.2)

where G is given by a modification of the Euler density,

G = \/Tg<E4 _ §DR> , (3.3)



and Gp is the Green function of the conformally invariant, fourth order Paneitz operator,
equation (2.7) [2, 3, 21, 22]. The density G is defined so that its variation under Weyl
rescalings is of the desired form,

0,G =4 AP 0. (34)

Therefore, given that Gp is the Green function of a conformally invariant operator the
variation of the Riegert action with respect to the conformal factor gives the integral over
the density G — the type A anomaly plus [JR, which can be removed by introducing a
local action, viz.

/ d*z/—gR>. (3.5)

The Riegert action, therefore, is precisely what is required for obtaining the anomaly.
Let us also note that the Riegert action can be presented in a local form,

/d4x(—2q§ Apd+¢G), (3.6)

by means of the ‘conformalon’ ¢ (which transforms as d¢ = o); this is the form of the
action studied in ref. [28].

The Riegert action is a closed form action that produces the anomaly, hence it is
possible to precisely determine whether the effects observed in [1] are also present here.
We will also be able to determine what the leading terms are, which is relevant for the
spontaneously broken case.

3.1 Variation of Riegert action

Already before varying the action with respect to the metric, we observe that the ac-
tion (3.2) is such that the arguments of the Green function are symmetrised. Therefore,
regardless of the causal properties of the Green function that we start with, the equations
of motion will have both retarded and advanced contributions from the Green function,
which renders the theory acausal — what happens at a given moment in time depends on
what will happen to the future of it. This is a generic feature of non-local actions. The
resolution is that the action that we have is the generating functional for |in) to |out) scat-
tering matrix elements, but these, not being physical observables, need not satisfy causality
properties [41]. The expectation values of operator, on the other hand, must satisfy causal-
ity, but for this we require the in-in or Schwinger-Keldysh formalism whereby the contour
is extended to include evolution back in time from ¢t = oo to the original state. Since
time-ordering is done on the extended contour, the action is supplemented by new terms
in order to differentiate between fields on the forward and backward part of the contour —
the propagator is now also a matrix because the time-ordering, depending on which part
of the contour the fields are, is different.> The upshot of this procedure is that once we

3For example, in the time-ordered product of two fields with one of the fields on the forward part of the
contour and the other on the backward part of the contour, the latter field always comes after the former,
independently of what time either is evaluated at.



have varied the action we replace all the Green functions by the ones with retarded bound-
ary conditions [42]. In this way causality is restored, and we will follow this procedure in
finding the equations of motion from the Riegert action.

The variation of the Riegert action, (3.2), up to the subtlety discussed in the previous
paragraph, is

/ d'a / d'y [2 5G(x) Gp () Gy) / 042 G(x) Gp(2,2) (009)(2) Gp(2, 1) Gw) |, (37)

where Gp is the retarded Green function for the Paneitz operator defined by equation (2.7)
and ¢ denotes variation with respect to the metric.

We use the results summarised in appendix A and evaluate the variations in equa-
tion (3.7). The variation of G, (3.3), is given by

oG 2
— = —-0[(gap0 — VaVp)dg**] — VAV [c&qaﬁ <4R opy + 4R G0p — SRy
/—g 3 [( B 8) } (7 nr9af padv

14 1
+ ?Raﬂgw/ —2Rgap9uv + 2Rgaugﬁy)} + gvu [(V”Rgag — 255V5R)5ga5] ,
(3.8)

which is a total derivative, as it should be (this is a useful check on our computation). For
the variation of the Paneitz operator, (2.6), we get

f/A_i; = —évavgvu [69°PVH] + 0OV, [09°°V 5] + VaVs[09*°0] + O[6g*/V V]

4 o o 2
— 3 VaVu[dg™ Y V5] + Vo [@aﬁ (2Ruﬁv“ + Vg0 — 3Rv5>]

1 o
+ 5V (0% (AR5 V" — V. VoV + 6,0V — 2RasV,)] (3.9)
where only the traceless part of the metric deviation appears in the variation of Ap:

Sgo‘ﬁ = 5ga’3 — igaﬁgw;ég”’é. (3.10)
The expressions are consistent with the variation of G and Ap with respect to the conformal
factor. Namely, letting dgos = 20¢qg3, it is simple to verify that we recover equation (3.4).
Moreover, since only the traceless variation of the metric appears in equation (3.9), the
variation of the Paneitz operator with respect to the conformal factor vanishes — consistent
with the fact that it is a conformally invariant operator.

3.2 Modifications to Einstein’s equation

The modifications to the Einstein equation can now be found by substituting equations (3.8)
and (3.9) into equation (3.7) to evaluate the contribution to the right-hand side of equa-
tion (2.1). The first term in equation (3.7), gives the following modification at point x



(with free indices «, [3):

2
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while the second variation in equation (3.7), gives

- [ 4t/ =@ | 57, aVsGCr(a. ) TG, )
9V OCp (. 4)V 5 Gr (. 2) + égaﬂvumgp(gg, ) VA Gp(z, 2)
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+ 300 VG (2,9) VY G, 2) + 5 RV oG 9) VG (.2

2 1
+ gRaﬂquP($,y)quP(ﬂf, z) — ggalgRV“Gp(q:,y)Vqu(az,z) . (3.12)

In the two equations above, the differential operators are all with respect to the coordinate
x. Since the Riegert action is covariant, the modifications to the Finstein equation must
be divergenceless. Using the Schouten identity

AR, asRTMN . = B4V — 4RR05VP 4 8R s, RPVF + 8RRV, (3.13)

it can be shown that the divergence of the first contribution, (3.11), is

- / 0y G(2)G(y)VaGp(z. y) . (3.14)

Moreover, the divergence of the second contribution, (3.12), is

% / d'y / 02 G(1)G (=) (VaCp(z, 2) Ap (2)Gp (. ) +VaCrp(z,y) Ap ()Cp(z,2)) |
(3.15)
which by definition of the Green function, (2.7), is equal and opposite to the divergence
of the first contribution. Therefore, the modification of the Einstein equation produced
by the Riegert action is indeed divergenceless. This reassures us of the consistency of our
equations of motion.
The expressions (3.11) and (3.12) appear on the right-hand side of the Einstein equa-
tion, (2.1). For a spatially flat universe, the FRW metric takes the conformally flat
form (2.3) where n is the conformal time, and where for concreteness we specialise to



the physically relevant case of the radiation era (2.9). The FRW metric is clearly sup-
plemented by inhomogeneities and anisotropies but we choose to work in a simple setting
where we can study precisely how the new corrections to the Einstein equation affect the
background (taking into account inhomogeneities would anyhow not alter our general con-
clusions). We will not try to solve the highly complicated system of integrodifferential
equations to determine what the new FRW-like solution is — if there is any solution —
but we will simply ask how large the backreaction of the new terms on the background
geometry is. Moreover, we look only at the 77 components of the Einstein equation (with
lowered indices) — the other components receive contributions of the same order.

Using the equations in appendix D, the contribution to the equation of motion at point
x = (n,x) coming from the variation of Green function is

(24)?
3

dy [ d*z
/774/774 2V, V, V,Gp(z,y)VyGp(z, 2) — 2V, V,V, Gp(2,y)V;Gp(z, 2)
y z

3
+5V,0Gp (2, y)V,Gp(z, 2) +V;0Gp (2, y) ViGp (2, 2) — §DGP($, y)OGp(z, 2)

— 6V, V,Gp(z,y)0Gp(z, 2) — 3V, V,Gp(z,y)V,V,Gp(z, 2)
+ QVZ'VWGP({L‘, y)ViV,]Gp(x, Z) + VZ'VJ‘GP(J/‘, y)ViVij(x, Z)

18 2
— ?VnGp(m,y)VnGp(% z) + ?ViGp(:n,y)ViGp(m, 2)|, (3.16)

where the derivative operators are with respect to the coordinate . The factors of 1/ 773 and
1/n? come from G(y) and G(z), evaluated in the radiation era. It is the integration of these
factors to the beginning of the radiation era that produces the large effects. Furthermore
the contribution from the variation of G(y) and G(z) is

112 14 12
- 48/6149774 [B(D + V,Vy)OGp(z,y) — ?DGP(% y) — ﬁvnanP@%y) - (3.17)
Y

The integrals can now be evaluated. For example,

1 MNrad 1 1
/d4yn4VnGp(w,y) :/L dny-47r/dyy2n4 : 875(77—77;;— lyl)
) Yy
_ nr2ad - Tlrad 1 1

T 6L3 2L 2L Onyaq

(3.18)

It is clear from the above integration that the 1/L? effect is coming from integrating the
factor 1/ 77;1 back to L. Evaluating the other integrals, we have the following 1/L dependence

,10,



(always integrating from L t0 7;aq)

1 Mhad 3 1
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It is clear that the leading contribution comes from the variation of the Green’s function,
expression (3.16). Substituting the above values for the integrals into expression (3.16) we
find a modification to the stress-energy tensor component 13, of the order
- %‘i | (3.20)
Quite remarkably, all other dependence on 1/L cancels; this feature may be related to the
fact that in lowest non-trivial order, one of the (=1 in Gp cancels [10] — for independent
arguments based on the scaling of the energy density of radiation see refs. [26, 43, 44].
In particular, the leading and subleading terms (L~ and L= as well as L™" for n < 3)
cancel. These cancellations cannot be expected to hold for more general inhomogeneous
backgrounds, for which, however, the large effects will persist nevertheless. While a general
analysis of inhomogeneous backgrounds is beyond the scope of this paper, we emphasise
that it is in principle straightforward to compute such corrections using the techniques
developed here, and in particular, egs. (3.16) and (3.17). What is important is that, from
equation (2.10) we can in all cases take n, rather large and still get a sizable effect.
Equation (3.18) illustrates that the 1/L3 effect comes from the 1/} in the integral
which is then integrated back to the beginning of the radiation era, L. This factor comes
from the G(y) in the integral, more precisely the Riemann-squared term (see appendix D)
and the convolution integral
Gp * Ryype R (3.21)

(because Cp0 = 0 we have R, R" = —%praRWPU)~ It is also clear from equa-
tions (3.19) that the number of derivatives acting on the above convolution, generically,
does not change the leading order behaviour — the exception is the [(0? derivative or, by
spherical symmetry, single spatial derivatives. Note also that in ref. [28] it was precisely the
other term o« OJR in G which played the dominant role, but is negligible for our analysis.

— 11 —



The leading behaviour of the convolution (3.21) is also independent of whether the
Green’s function of the Paneitz operator or the second-order conformally invariant operator
is used, as in ref. [1], see also following section. We, therefore, find that the effect observed
in ref. [1] appears to be rather generic and will be present whenever the Einstein equations
are modified by terms that include convolutions of the form (3.21), where Gp can also be
replaced by the Green’s function G, (2.5), defined by equation (2.4).

4 Local action with dilaton

When conformal symmetry is spontaneously broken, there is a Goldstone boson, the dilaton
7, which, under Weyl transformations (see appendix B), transforms as

T—=T+o0. (4.1)

The dilaton can be used to write a local action which gives the conformal anomaly upon
variation. In particular it was shown in ref. [4] that this action agrees with the local
form of the Riegert action only up to cubic order, but not beyond. As in the case of
unbroken conformal symmetry, the action is not fixed uniquely by the requirement that it
reproduces the anomaly. The correct action is constrained by Ward identities, which are
satisfied because the symmetry is only broken spontaneously, and analyticity properties,
namely the existence of poles that correspond to the dilaton in tree diagrams [4]. The
anomalous action in the unbroken phase will have a different analytic structure. We will
now show that upon elimination of the dilaton by its equation of motion there will be
enhancement effects similar to the ones exhibited in the foregoing section.
In the spontaneously broken phase, the anomalous local action is [4]

2 4 2
ﬁ Fa'uTaMTDT — F

—c/d4m\/—gTCWp"CWpa, (4.2)

W= —a/d4$v -9 [}TE4 + —GM"0,T0,T + (0"70,7)*

where G* = RM — %Rg‘“’ is the Einstein tensor, and f sets the scale of conformal symmetry
breaking, with (p) = f. The Weyl transformation property of the dilaton is such that
the 7 variation of the first terms in first and second line gives the anomaly, while the
rest of the terms on the first line correct for the variation of the Euler term under Weyl
transformations. These terms are not required for the Weyl-squared density as it is Weyl
invariant. In ref. [4], it was shown that this action has the correct properties expected of
the anomalous action when conformal symmetry is spontaneously broken.

The action (4.2) is evidently local, hence one might expect that the effects, derived in
section 3, that are a consequence of the non-local Riegert action will not persist. However,
the Riegert action can itself be written as a local action by introducing an auxiliary scalar
field, the ‘conformalon’ (that action is different from (4.2)). Therefore, the fact that the
action is local does not necessarily mean that the Einstein equation will not receive large
corrections. In particular, the ‘conformalon’ can encode the effects of the non-local terms.
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In this section, we analyse the behaviour of the dilaton 7 in action (4.2) and show that it
encodes effects similar to the ones seen in the non-local Riegert action.

Following ref. [4], we supplement the anomalous action (4.2) by a quadratic action for
the dilaton,

So=- [ dev=g (@*ww + 2 R(p - f)2> , (4.3)

where the fields ¢ and 7 are related by

p=fl—e)y = p—fae(p-f). (4.4)

Since (¢ — f) is a scalar of conformal weight —1, this is simply the action for a conformally
coupled scalar, that is, the action Sy is Weyl invariant.

The dilaton can be integrated out perturbatively to give an infinite series for the
anomalous effective action [4]. Let

S =5y + W, ® =+ Z €"on , (4.5)
n>1
where
wole) = 1 [ a5 6 wre) = LG RI@) (1.6)

is found by extremising the Sy action, and G(z,y) is the Green’s function defined in (2.4)

for the conformal d’Alembertian; the symbol * is shorthand for the convolution integral.

We have also introduced e as a bookkeeping parameter for the perturbative expansion —

this parameter is not necessarily small, and is set to unity after the calculation.
Integrating out the dilaton, the action is given by

S=> s, (4.7)

n>0
where
0) — 1 —
SO =5l,,. sYV=w[, (4.8)
1 1 oW 1 oW
S(2)2—<*G*> , 4.9
2\V—g dp V=990 /|, (4.9)
11 82w 1wy
5(3) - 5 (G* ) , 4.10
2\/—g dp? V=960 ) | (4.10)
and so on. The solution for the dilaton can be expanded as
1 W 5 < 1 8w 1 6W)
=pg—eGx ——| —eGx G * — + ... 4.11
¥ %0 /7_g (SQO 20 /_g 6S02 /_g 6@ 20 ( )

To estimate the deviation of ¢ from the free field solution ¢g in (4.6), we observe that

ow 1 oW

P ey (4.12)
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and

2 1 1 2
2w < oW 6W> (413)

= -t
op*  (L=¢/f)?\[f 67 72
and so on. Because 7 ~ 0 corresponds to ¢ ~ 0, we can ignore the prefactor in this
approximation; furthermore

2
\/iig(?j_/——;E4+O(7')7 Lo W:O(T)- (4.14)

Returning to the expansion (4.11) we see that for consistency all higher order terms would

have to remain small in comparison with the lowest order solution (4.6). While this is
certainly true for the weak field expansion, we will now show that this need not be the case
in a general cosmological setting.

To determine the induced corrections, we first observe that the modifications to Ein-

stein’s equations are simply given by the dilaton energy momentum tensor

1 1 1
T;(Lf) =—VupVyp + 59#1/(890)2 + Eguu R(p — f) ;w(‘P f)

1 1 1 ow
- égw,D((tp - N?) + EV#VV((‘P -7+ /=g 6g"

which is indeed traceless by the lowest order equations of motion if one ignores the last term

(4.15)

on the right-hand side. To analyze the effect of the non-localities on any given solution
of the classical Einstein equations, we simply substitute the solution for the dilaton field
in this given background. For consistency and in accordance with our assumptions the
dilatonic correction then should remain very small (in which case a linearized treatment of
the full set of equations is justified). We will now show that in general this is not the case.

As for the Riegert action, we consider a cosmological solution of the classical Einstein
equations with conformally flat metric (2.3), corresponding to the radiation era ending at
1 = Mraq and starting at 7 = L, with the linear dependence described by (2.9). Then R = 0,
so with (4.6), ¢ receives contributions only from primordial perturbations, which can be
crudely estimated as

f

Tlrad

0o ~107°f = Oppg ~ 107"

(4.16)

The corresponding contribution to the energy momentum tensor at zeroth order is thus
very small, of order 10710 f%;jl, and by itself would not lead to any observable effect.
However, the O(e) term in (4.11) receives a dramatically bigger contribution since in the
radiation era Ey oc i /7~ 8. Thus,

7,’rad 3 4 5(77—77/—|X—Y|) 1
/ d / 4w|x yi amaty) 0P

nrad/ d 1
M Jiyl<n-t 47T!y! (n—lyl)?
2
2. 11 17 11
S B B 417
fn[ 3L3+4L4+12773 (4.17)
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where in the second line we have shifted the integration variable so as to make explicit the
independence of ¢ on the spatial coordinates (this is only due to our simplifying choice of
a homogeneous and isotropic background; if one takes into account spatial inhomogeneities
would not alter our main conclusions). Differentiating and setting n = 7,,q we see that

11 1
o1 =535+ 0( fnf’ad> (4.18)

thus recovering the result from the previous section, except that n.,q is replaced by the

inverse dilaton coupling f~! (which, incidentally, shows that this analysis becomes invalid
in the limit f — 0 when conformal symmetry is restored and the action (4.2) is no longer
the correct one). It is thus clear that there is again a substantial enhancement even if L is
much larger than the Planck time npi, as in the foregoing section. It is now straightforward
to determine the correction to the Einstein equations, for which we need only the first
derivative 0,1, by substituting the above result into (4.15). Inspection of the higher order
terms in (4.11) shows that these will produce similarly large contributions. In conclusion,
the series expansion (4.11) will diverge due to large contributions from the non-localities.

5 Conclusions

In this paper we have assembled evidence that the inclusion of an anomalous action in the
effective field theory can lead to significant effects arising from the non-local nature of the
action. In the local versions, the effect is encoded in the behaviour of the conformalon or
dilaton field. This effect is fairly generic and arises from an integration over the convolution
of the Green function of some conformally invariant differential operator and the Riemann
tensor over a range where the curvature can be large, but still remaining outside the Planck
regime.

We exhibit this feature for the non-local Riegert action, which is the analogue of the
Polyakov action in four dimensions — the action is given in closed form and hence we can
explicitly demonstrate this effect. Furthermore, given that conformal symmetry is badly
broken in nature, the anomalous action for spontaneously broken conformal symmetry,
which is known in the literature, is also of interest. We study the aforementioned action
and show that the effects found in the case of the Riegert action reappear in the expansion
for the dilaton, invalidating the expansion. It is possible (though not likely) that this
expansion can be resummed to remove this effect and we have not excluded this possibility
in the paper.
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A Variations

In this appendix, we collect the variation of some tensors with respect to the metric. These
variations are used to derive the corrections to the Einstein equation from the effective
action.

The variation of the Christoffel connection and the curvature tensor is
1
6FZV = igpA(Vu(sg)\u + szég)\u - V)\ég;w) )

1
~0" [V, Vil 69re + 97X (Vi V6095, — Vo Vie09,) (A1)

P =
OR 510 5

which immediately gives

1 1 1 1
SRy, = —§D(5gw, - 5vuvy(g@%gaﬁ) + 5vAvMagM + §V>‘V,,5gu>\
SR = —R%5gn5 — O(g*?6gas) + VHV g, .

From above, we can write

1 1
——0(V=gRupo R""7) = [4R“°‘5"V Vo — 2(RW"RBV o — Ry (,R‘“’p"gaﬁ>] 89
/_g ( K p ) K P 4 Qv p B
1
——5(v/=gRR"™) = [QR’”BVO‘V _ gaﬂR’WVVV — R
\/jg ( (ad ) 12 ]
1
-2 <RWR”5 - ZRWRWQW )] 09ap
1 1
——6(v/—gR?) = [23 vevh — g0y — 2R<Raﬂ — Rg"‘5>] 8Gas - A2
\/jg ( ) ( ) 4 B ( )

It is easy to see that the only combination that does not depend on the trace part is
V=9C? = V/=g(Ruwpe R"*° — 2R, R" + 1 R?).

The variation of the box operator, when acting on a scalar quantity, is

1 1
——0(v/—gd) =V, [(590‘5 — —g*Py 55gv‘$>8 ] . A3
Therefore,
1 1
ﬁa(\ﬁ—gm) = O[(Rag + gop0 — VaVp)dg™] + Va Kdgaﬂ - 290‘59755975> aﬁR} :
(A.4)
B Weyl transformations
We collect a list of the transformation of some tensors under Weyl transformation
G — 0? Guv = e G - (B.1)
The curvature tensor,
R,uzxpa = C,u,l/pcr + 29#[/) Pzﬂy - 2gu[p Pzﬂu ’ (B2)

,16,



its contractions and the Schouten tensor,

1 1
P, = B <R;W - égw/ R) ) (B.3)

transform as follows:

RMVpO’ — Rﬂl/pa' — 25'{:} VO_}VZ/O' + 29/“)Z gy[P VU]VQO' + 5{; 80_]0'61/0'

— 92 g#a gy[p aU]O' aaO' — 2 5'[1:) gg}y gaﬂ 8aO' 850’, (B4)
Ry, — Ry, —2V,NVy,0+420,00,0 — g, 0o —2g,, g7 0,0 050, (B.5)
R— Q*(R—600 —6g" 0,00,0), (B.6)
1
P, — P, —V,V,0+ 0,00,0 — 3 Iuv g7 0,0 0g0 . (B.7)

The covariant derivative also transforms under a Weyl transformation. In particular, the
Christoffel symbol transforms as

rh, — Ih, +2 (5& 9,y0 = 9" Guv 050 . (B.8)
For completeness, the spin connection transforms as

wuo‘ﬁ — w”“b + 2el[fell’,]g”‘)6pa. (B.9)

C Weyl invariant actions for spins s = 0, %, 1

Given the transformation property of the quadratic operator introduced in equation (2.4),
1 1
Fg<— O+ 6R> — Q%ﬁ—g<— 0+ 6R> — Q2g"(0,00,0 + 9,00,) — Q*0o~ (C.1)
the operator is Weyl covariant if it acts on a scalar ¢ of conformal weight —1,
¢ — Q1o (C.2)

Furthermore, it is then clear that

\/?g¢<_ O+ éR)qﬁ (C.3)

is Weyl invariant.
For a spinor v of conformal weight —%,

Wb —s Q3 (C.4)
the Dirac action .
@WMVM@ZJ = E’Y“ <a,u + Zwu ab7ab> Yy, (C.5)

is Weyl-invariant without any modification. This can be seen using the the transformation
of the spin connection, (B.9), and noting that

Yy = 3" (C.6)

The invariance of the Yang-Mills action is anyhow clear because of the invariance of the
factor \/—gg/"” ¢’ multiplying Tr(F),, F,s) under Weyl transformations.
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D

Quantities in conformally flat spacetime

In conformally flat spacetime (where C),,» = 0) the metric can be chosen to be

Gudrtdz” = a(n)?*(—dn® + dx*). (D.1)
With respect to this metric,
a’ a’ ' a
_ n o _ . 1 (]
Iy, ==, LY = =y, Iy, = =3k, (D.2)
a/ / . a/ / X . a/ 2 X .
R = (a) 0ij,  R'yjm = — a> % R = <a> (01,051 — 610%), (D.3)

a\’ a’ a 2 a’
Rnn——?’(a)’ Fij = *() b =00 (D4

where the prime denotes differentiation with respect to 7.
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