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Abstract: Maraging steels are used to produce tools by Additive Manufacturing (AM) methods such
as Laser Metal Deposition (LMD) and Selective Laser Melting (SLM). Although it is well established
that dense parts can be produced by AM, the influence of the AM process on the microstructure—in
particular the content of retained and reversed austenite as well as the nanostructure, especially
the precipitate density and chemistry, are not yet explored. Here, we study these features using
microhardness measurements, Optical Microscopy, Electron Backscatter Diffraction (EBSD), Energy
Dispersive Spectroscopy (EDS), and Atom Probe Tomography (APT) in the as-produced state and
during ageing heat treatment. We find that due to microsegregation, retained austenite exists
in the as-LMD- and as-SLM-produced states but not in the conventionally-produced material.
The hardness in the as-LMD-produced state is higher than in the conventionally and SLM-produced
materials, however, not in the uppermost layers. By APT, it is confirmed that this is due to early
stages of precipitation induced by the cyclic re-heating upon further deposition—i.e., the intrinsic
heat treatment associated with LMD. In the peak-aged state, which is reached after a similar
time in all materials, the hardness of SLM- and LMD-produced material is slightly lower than
in conventionally-produced material due to the presence of retained austenite and reversed austenite
formed during ageing.

Keywords: laser metal deposition; additive manufacturing; maraging steel; intrinsic heat treatment;
precipitation strengthening; austenite reversion; atom probe tomography

1. Introduction

Maraging steels are materials that combine very high strength, hardness, and toughness [1].
Therefore, they are employed as tool steels in the mold and die making industry, but also for
high-performance parts—e.g., in the aerospace industry [2]. They achieve their mechanical properties
by a martensitic matrix that contains a high number density of nanometer-sized intermetallic
precipitates [3–6]. Different from most tool steels, the martensitic microstructure is not achieved by a
relatively high amount of carbon in the alloy composition, but instead by (usually) a high concentration
of nickel. The almost complete lack of interstitial alloying elements leads to a good weldability of
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this class of alloys [7]. This, in turn, makes them amenable to metal additive manufacturing (AM)
processes, in particular Laser Metal Deposition (LMD) and Selective Laser Melting (SLM) [8–16]. Since
these processes involve a small melt pool generated by a laser beam for the consolidation of powder
feedstock to a dense material, they share similarities with micro-welding processes.

One of the main strengths of AM processes is that very complex workpieces can be efficiently
generated. In the toolmaking industry, metal AM processes are rapidly becoming the state of the art in
the production of tool inserts for (polymer) injection molding processes. The geometrical freedom of
AM allows to place cooling channels very close to the tool surface, yielding a very efficient cooling of
the injected liquid polymer and avoiding ‘hot spots’ which would otherwise promote local material
damage. Conventionally, cooling channels are produced by deep hole drilling which is only suited to
produce (piecewise) straight cooling channels. Thus, cooling channels may not reach all locations in
a complex tool and the fluid flow of coolant is hindered by turbulence induced by the rapid change
of the channel axis where two bore holes intersect. It has been shown that, using AM-produced tool
inserts, the heat removal from the tool can be enhanced such that the cycle time of the process is
strongly reduced (by up to 60% [17]) and the productivity of the tool is equally improved.

Maraging steel that is used almost exclusively in AM processes today is the first-generation
steel 18Ni-300, also known as ‘grade 300 maraging steel’ with the material number 1.2709
or slight modifications thereof, such as ‘Böhler V720®’ (material number 1.6354.9) [18,19].
Conventionally-produced (C-P) material is usually supplied in the solution annealed and quenched
condition—i.e., fully martensitic without any precipitates present. These are formed during a
subsequent ageing treatment, typically between 480 and 510 ◦C. Most AM processes used to synthesize
metallic materials exhibit a rapid cooling rate during and after solidification (typically ~104 K/s in
LMD and up to 106 K/s in SLM). It is therefore reasonable to assume that the microstructure of
AM-produced (AM-P) maraging steel should also consist of martensite without precipitates. Indeed, it
has been shown [20] that the microstructure of as-SLM-produced 18Ni-300 maraging steel does not
contain any precipitates, however, it does contain a significant amount of retained austenite [13,20].
Normally, AM-produced parts made of maraging steel are not subjected to (thermo-)mechanical
treatments—e.g., solution annealing or HIPing—before the final ageing, in contrast to hot-rolled C-P
material. The microstructure of C-P and AM-P maraging steel at the start of the ageing treatment can
therefore be expected to be quite different.

The aim of this paper is to investigate the difference in crystallography, chemical homogeneity on
the micro- and nano-scale and phase distribution of C-P and AM-P 18Ni-300 maraging steel, and to
determine the influence of these differences on the microstructural evolution during ageing treatment.
For this purpose, we employ optical and electron microscopy including Electron Backscatter Diffraction
(EBSD), Energy Dispersive X-ray Spectroscopy (EDS), as well as Atom-Probe Tomography (APT).

2. Materials and Methods

2.1. Additive Manufacturing

The C-P grade 300 maraging steel ‘Böhler V720®’ was produced by Böhler Edelstahl GmbH
(Kapfenberg, Austria) via vacuum induction melting and vacuum arc re-melting. The material was
received in form of a rolled bar and analyzed in the solution annealed (0.5 h at 820 ◦C) and quenched
(rapid air quenching) condition. Its composition is given in Table 1.

Table 1. Chemical composition of the 1.6354.9 material used in this study determined by ICP-OES.

Alloying Element C Si Mn Mo Ni Al Co Ti Fe

wt % 0.0018 0.025 0.011 5.03 18.3 0.077 8.74 0.68 Bal.
at % 0.0087 0.052 0.012 3.03 17.95 0.165 8.57 0.82 Bal.
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LMD and SLM samples were produced using the parameters given in Table 2. Cuboids are
produced by LMD using a simple unidirectional scanning strategy. The LMD samples were produced
using a 3 kW diode laser. The powder is fed into the interaction zone of the laser beam and substrate
via a coaxial powder feed nozzle. Argon is used as a carrier gas which also provides shielding
from the surrounding atmosphere. The samples are 30 mm long (scanning direction, SD), 20 mm
wide (transverse direction, TD), and 10 mm high, (build direction, BD). A detailed description of the
production process of the SLM samples can be found in reference [13].

Table 2. Processing parameters of two Laser Additive Manufacturing (LAM) methods for 18Ni
maraging steels, Laser Metal Deposition (LMD), and Selective Laser Melting (SLM). The energy density
is calculated by dividing the laser power by the scan speed, layer thickness, and laser focus diameter.

LAM
Process

Laser
Power (W)

Scan Speed
(mm/s)

Laser Focus
Diameter (µm)

Layer
Thickness (µm)

Hatch
Spacing (µm)

Energy Density
(J/mm3)

Inert
Atmosphere

LMD 800 10 1700 420 900 112.0 Ar
SLM Data
from [13] 100 150 180 30 112 123.5 N2

2.2. Microstructural Analysis

The AM-P samples were cut in two planes: one is parallel to the scan direction and the build
direction (SD-BD) and the other is parallel to the transverse direction and the build direction (TD-BD).
The C-P samples were cut parallel to the rolling direction. Standard metallographic sample preparation
techniques, including a finishing step of polishing using colloidal silica suspension (OP-S from
Stuers ApS, Ballerup, Denmark), were used. A solution of 1% HNO3 in ethanol was used to reveal
the microstructure.

EBSD and EDS measurements were carried out in a JEOL 6500F (JEOL, Ltd., Tokyo, Japan) field
emitter gun scanning electron microscope (FEG-SEM) equipped with an EDAX Octane Plus EDS
detector and a TSL TexSEM DigiView EBSD camera using an acceleration voltage of 15 kV. TSL OIM
Analysis™ software (version 7, EDAX, Mahwah, NJ, USA) was used for EBSD data analysis.

APT sample preparation was performed in a FEI Helios NanoLab 600i (FEI, Hillsboro, OR, USA)
dual beam device employing the standard liftout process described in reference [21]. Tips were
sharpened by applying annular milling patterns with a final step of low kV milling at 5 kV acceleration
voltage to minimize Ga contamination at the surface. APT experiments were performed in a Cameca
LEAP 3000 X HR (Cameca Instruments, Inc., Madison, WI, USA) in laser mode at a target temperature
of 60 K, a laser energy of 0.4 nJ, and a laser pulse frequency of 250 kHz. The target evaporation rate
was set to five atoms per 1000 pulses. Data analysis was performed using the IVAS software (version
3.6.6, Cameca Instruments, Inc., Madison, WI, USA).

3. Results

3.1. Ageing Behavior

Figure 1 shows the microhardness of conventionally-produced (C-P), and LMD-produced (LMD-P)
maraging steel samples as a function of ageing time at 480 ◦C. The values are an average of at least six
hardness indents placed randomly in the middle of the sample (SD-BD plane) spaced at least 0.5 mm
apart. Additionally, the microhardness of SLM-produced (SLM-P) material in the as-produced state
and after 480 min ageing are shown (taken from reference [20]). Interestingly, the hardness of LMD-P
material is higher than that of C-P and SLM-produced material in the as-produced and as-received
states, respectively. The hardness of C-P and SLM-P material is roughly identical. This difference,
however, vanishes quickly during ageing and, after 5 to 10 min of ageing, the LMD-P material becomes
softer than the C-P material. Peak hardness is reached after 500 to 1000 min of ageing, and in this
state the SLM-P material shows a similar hardness than the LMD-P material, both being about 50 HV
softer than the C-P material. It is worth noting that the hardness drops after overageing occurs after a
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slightly longer time in the C-P material than in the LMD-P material. The origins of the differences in
hardness, in particular the change in the hardness of the LMD-P material that shifts from being harder
than C-P material (as-produced state) to being softer (peak aged state), will be investigated in detail in
the remainder of the paper.
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Figure 2. Optical micrograps of LMD-Produced and conventionally-produced material in the as-
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Figure 1. Microhardness of conventionally-produced and LMD-produced material as a function of
ageing time at 480 ◦C. Additionally, the hardness of SLM-produced material in the as-produced state
and after 480 min ageing is shown (data from [20]).

3.2. Microstructure in the As-Produced/As-Received State State

Optical micrographs of both C-P (right) and LMD-P material (left) in the as-produced/as-received
state are shown in Figure 2. At low magnification, the layer-by-layer structure of the LMD-P material
can be seen. The difference in contrast every four to five layers is an artifact from the etching.
The build direction of the sample is upwards in the micrographs and the sample was cut in the
TD-BD plane. At higher magnifications, the individual melt pools (delineated with dashed white
lines in Figure 1), with many solidification dendrites within, are visible. They often cross melt pool
boundaries, indicating epitaxial growth of grains between layers. At the highest magnification, it can
be seen that the solidification structures are indeed dendrites, albeit with very short (secondary) side
arms. The C-P material, on the other hand, does not show any of these solidification structures due
to the thermomechanical processing it has experienced after primary synthesis. Instead, etching
reveals a fine martensitic microstructure without preferred orientations of the martensite blocks.
Note that no features typical for martensitic microstructures such as packets or blocks are visible in the
LMD-P material.
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Figure 2. Optical micrograps of LMD-produced and conventionally-produced material in the
as-produced/as-received state. Etching with HNO3 in ethanol reveals the melt pool boundaries
and dendrites (LMD-produced material) and the martensite laths (conventionally-produced material).
The white arrows indicate the build direction of the LMD-produced sample. LMD samples are cut in
the TD-BD plane.
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The microstructure is investigated in more detail by EBSD and EDS in Figures 3, 4 and 6. Figure 3a
shows the phases detected by EBSD over a relatively large part of the as-LMD-P sample (scan step
size: 600 nm). Apparently, a considerable amount of retained austenite is present in the material. It is
present in the entire sample, but not distributed entirely homogeneously. There is, for example, a lower
apparent austenite fraction present in the areas just below melt pool boundaries. The austenite seems
to be located along dendrite boundaries, but the magnification in this figure is not high enough to be
certain. In panels (b) and (c), the crystallographic orientation of the martensite and retained austenite
phases are shown, respectively. It can be seen that the austenite grains that formed upon solidification
are quite large (up to one mm in diameter) and span several deposited layers. Due to this large (prior)
austenite grain size and the resulting limited number of grains (and martensite variants) in the EBSD
scan, it is not possible to make a statement about the overall crystallographic texture of the material.
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Figure 3. A large-area, low-magnification EBSD scan of as-LMD-produced material. (a) Phase map
showing the location of the martensite and ferrite phases; (b) Inverse pole figure map of martensite
only and (c) austenite only. Melt pool boundaries are indicated by dashed white lines. The black arrow
indicates the build direction.

The exact location of the retained austenite is displayed in Figure 4, where the phase map from a
higher resolution EBSD scan (step size: 200 nm) is shown alongside corresponding EDS mappings of
the Ti, Mo, Ni, and Co concentrations (the major alloying elements). The retained austenite indeed
occurs in the interdendritic regions. Depending on the orientation of the dendrites, the austenite
appears as a long needle in the EBSD phase map (when the dendrite axes are in the image plane) or
as small circles (when the dendrite axes are perpendicular to the image plane). The interdendritic
areas are enriched with Ti, Mo, and Ni. This is due to microsegregation during solidification—i.e.,
partitioning of solute elements into the remaining liquid during solidification. The enrichment in
solutes explains why retained austenite is found only in these locations. Even though Ti and Mo
are in general regarded as ferrite stabilizing elements, thermodynamic calculations show that in the
interdendritic regions the austenite is stable to lower temperatures than in the matrix. This is depicted
in Figure 5, where the relevant part of the phase diagram of the alloy is plotted as calculated by
Thermocalc® Version 2016a using database TCFE7 and not considering any phases besides austenite
and ferrite in the energy minimization. The compositions of the matrix and interdendritic regions are
determined by EDS spot measurements and are noted in the figure. Additionally, empirical equations
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for the calculation of the martensite start temperature, MS, of ultra-low carbon steels [22] predict that a
higher content of Ti, Mo, and Ni all lower MS and hence have an austenite-stabilizing effect.

In the EDS maps in Figure 4, also small (<1 µm) Ti-rich particles can be seen. They are most
probably oxides formed due to the non-ideal shielding by inert gas during the process (cf. reference [23],
wherein it was demonstrated that ODS-materials can be generated by LMD when the shielding gas is
turned off).
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It is difficult to quantify the exact amount of retained austenite in the LMD-P material. Due
to the aforementioned large grain size and unknown crystallographic texture, X-ray diffraction
measurements are unreliable. On the other hand, the austenite regions are so small (<5 µm in
width) that high-resolution EBSD scans must be performed to correctly capture small austenite grains.
Such high-resolution scans, however, only probe a small area and cannot reflect the slightly uneven
distribution of austenite within the melt pools (cf. Figure 3). By averaging several small, high-resolution
EBSD scans from the bottom to the top of the specimen, we estimate the volume fraction of retained
austenite in the as-produced state as 8.5% ± 3.5%.

The microstructure of as-received C-P material is shown in Figure 6. In the lower-resolution scan
(step size: 500 nm) of panel (a), it can be seen that the crystallographic texture is random. The prior
austenite grains (highlighted as boundaries in the martensite phase with a misorientation between
20◦ and 50◦) are much smaller than in the LMD-P material (cf. Figure 3). A higher-resolution scan
(step size: 200 nm, panels (b) and (c)) reveals that there is no detectable retained austenite in this
material, in contrast to the LMD-P material. EDS measurements (not shown) confirm the chemical
homogeneity of the material.
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The appearance of the martensitic microstructure of the LMD-P material is very different from
typical martensitic microstructures that contain a hierarchy of prior austenite grains, martensite
packets, blocks, and laths. The martensite blocks (delineated by white lines in Figure 4, i.e., boundaries
with misorientation above 50◦) are in many places confined to a single dendrite, even though all
dendrites belonging to the same prior austenite grain (i.e., all dendrites depicted in Figure 4) have
only small mutual misorientation. The retained austenite acts as an additional spatial confinement for
martensite blocks.

3.3. Hardness Drop in Topmost Layers of As-LMD-Produced Material

Figure 7 shows a peculiar feature of the hardness of the as-LMD-P material. The hardness is
constant along the build direction with the exception of the last few layers: At a height of ca. 7.5 mm
above the base plate (2.5–3.5 mm below the sample surface), the hardness drops by about 70 HV to
values of ca. 310 HV, comparable to the values of C-P and SLM-P material. Note that the scatter
in the hardness values of LMD-P material is much higher than that observed for the C-P material
(the range of hardness values of C-P materials is shown by the grey bar labelled ‘conventional’ in the
figure). Yet, the observed hardness drop is clearly significant and reproducible. To check this one
measurement, a series was performed on the plane build direction/scan direction, the other on the
plane build direction/normal direction.
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Figure 7. Microhardness of LMD-produced material as a function of distance from the substrate
(build plate) along the build direction for as-produced material (on the build direction/scan direction
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It is suspected that the higher hardness of LMD-P material compared to both C-P and SLM-P
material in the as-produced/as-received state might be due to a difference in the nanostructure of the
material—i.e., whether precipitates are present in the material or not. The fact that the upper layers of
LMD-P material do not show this increased hardness supports this hypothesis. These are the layers
that have experienced less intrinsic heat treatment in the process (i.e., less re-heating due to deposition
of overlying layers). To investigate the hypothesis, APT measurements were performed. Liftouts
were performed from an arbitrary position of C-P material, from the middle (in build direction) of
both LMD and SLM-produced materials as well as from the topmost layer (middle of a scan track)
of LMD-P material. No ageing heat treatment had been done on any of these specimens. The atom
maps (not shown here) of all measurements do not show any remarkable features (see reference [20]
for atom maps of SLM-produced material).
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However, a statistical analysis of the atom positions reveals differences between the datasets.
In Figure 8, radial distribution functions (RDFs), computed from these samples are shown. In panel (a),
only the Ti-Ti RDFs of the various samples are plotted. The RDFs are normalized by the bulk (average)
concentration such that a value of one for a given Ti-Ti-distance indicates that it is equally likely
to find a Ti atom at this interatomic distance than it would be to find it in a random solid solution.
For C-P and SLM-P material, the RDFs are equal to one (within the error of the measurement) for all
Ti-Ti distances. However, for the LMD-P sample taken from the middle of the specimen, i.e., having
experienced considerable intrinsic heat treatment, a value larger than one at small Ti-Ti distances is
found. This indicates that it is more likely to find two Ti atoms close together than further away from
each other, in other words, that clustering of Ti has begun. Note that this deviation from unity cannot
be seen for LMD-P material taken from the very top of the specimen (see the black, dashed curve), i.e.,
for material that has not experienced significant intrinsic heat treatment.
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After a short ageing treatment (5 min at 480 °C), both in LMD-P and in C-P material, strong Ti–
Ti clustering occurs. This is indicated by the high values of the RDFs at low interatomic distances as 
determined by APT and as shown in Figure 8a. In panel (b), the type of clustering is shown: Apart 
from Ti–Ti RDF values being larger than one, also the Ti-Ni RDF is increased at small interatomic 
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Figure 8. Radial distribution functions of various atom pairs normalized by their bulk average
concentrations for different samples as a function of interatomic distance. (a) Ti-Ti RDFs for SLM-
LMD- and conventionally produced samples in the as-produced (AP) state and after ageing for 5 min.
Additionally, the RDF for a sample taken from the very top of as-LMD-produced material is shown;
(b) Various RDFs (Ti as center atom and Fe, Ni, Ti, Mo, and Co as target atoms) of as-LMD-produced
material (taken from the middle of the specimen). Panel (a) reprinted from [24] under the Creative
Commons license (http://creativecommons.org/licenses/by/4.0/).

3.4. Microstructure after Short Term (5 min) Ageing

After a short ageing treatment (5 min at 480 ◦C), both in LMD-P and in C-P material, strong Ti-Ti
clustering occurs. This is indicated by the high values of the RDFs at low interatomic distances as
determined by APT and as shown in Figure 8a. In panel (b), the type of clustering is shown: Apart
from Ti-Ti RDF values being larger than one, also the Ti-Ni RDF is increased at small interatomic
distances. This indicates that the clusters contain both Ti and Ni atoms and are possibly very small
Ni3Ti precipitates, a phase that is expected to form in this steel. Corresponding atom maps for C-P and
LMD-P material are depicted in Figure 9. Even though clustering is definitely detected in the statistical
analysis and the hardness is already significantly increased compared to the as-produced state, the
arrangement of the atoms visually still appears random with the possible exception of the Ti atoms
(cf. the enlarged inset in the Ti atom map).

http://creativecommons.org/licenses/by/4.0/
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Figure 9. Atom maps obtained by APT of LMD-produced and conventionally-produced material
after 5 min of ageing at 480 ◦C. In the Ti atom maps, early stages of precipitation are beginning to
become visible.

3.5. Microstructure in the Peak Aged (480 min) State

After ageing for 480 min—i.e., nearly in the peak-aged condition—the microstructure of the C-P
maraging steel remains unchanged. In particular, still no austenite can be detected by a high-resolution
EBSD scan (step size: 50 nm, see Figure 10a. The LMD-P material, on the other hand (scan step size:
200 nm), shows an increase in austenite fraction. It is now at 16.5% ± 3.5% as compared to 8.5%
in the as-produced state (see, however, the discussion on the accuracy of this value in Section 3.2).
This means that, in addition to the presence of retained austenite, reversed austenite is now also
present in the microstructure. The same holds for aged SLM-P material (Figure 10c). Due to the very
small dendrite width in this material, no reliable mapping of phases by EBSD was possible. Instead, an
SEM micrograph of a lightly etched specimen is displayed that depicts very fine austenite films along
dendrite boundaries as well as unidentified linear and spherical structures (possibly precipitates).
The fcc (Cu type) crystal structure of the interdendritic films is confirmed in multiple spots by EBSD
point measurements.
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Figure 10. Small-area, high-magnification EBSD scans of conventionally-produced (a) and
LMD-produced material (b) after ageing for 480 min at 480 ◦C. There is no reversed austenite in
the conventionally-produced material while the increased fraction of austenite in the LMD-produced
material as compared to the as-produced state indicates that austenite reversion has occurred; (c) an
SEM micrograph of SLM-produced material aged at 480 ◦C for 480 min. Very fine austenite films along
dendrite boundaries as well as fine precipitates are visible.
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In the nanostructure, as revealed by APT, a strong change has taken place upon ageing: A very
high number density of precipitates emerges (see Figure 11). There are three different kinds of
precipitates present: (Fe,Ni,Co)3(Ti,Mo), (Fe,Ni,Co)3(Mo,Ti), and (Fe,Ni,Co)7Mo6. The different
precipitates are delineated in Figure 11 by three different iso-concentration surfaces: c(Mo) > 25 at %,
c(Mo) > 10 at % and c(Ti) > c(Mo). In Table 3, the compositions and number densities of the
various precipitates are compiled as determined by the constant concentration in the middle of
precipitates found in proximity histograms based on the three previously mentioned iso-concentration
surfaces. In our previous work [20], we analyzed SLM-produced material annealed for the same time
and found the same kinds of precipitates. We speculated that the (Fe,Ni,Co)3(Ti,Mo)-precipitates
were probably formed first, which we can now confirm by analyzing the APT measurements after
5 min annealing. Interestingly, the chemistry, number density, and sizes of precipitates in all three
differently produced materials are very similar. Note that due to the interconnected nature of the
(Fe,Ni,Co)7Mo6-precipitates, their number density cannot be determined. Due to the limited sample
size and the chemical inhomogeneity of the material, only an approximation of the average number
density values may be given.
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Figure 11. APT datasets of LMD-produced (a) and conventionally-produced material (b).
Three different kinds of precipitates are present in both materials, as delineated by three different kinds
of iso-concentration surfaces (panels (a,b) reprinted in modified form from [24] under the Creative
Commons license (http://creativecommons.org/licenses/by/4.0/)). In panel (c), a measurement
including both precipitate-containing martensite and precipitate-free austenite is shown.

Table 3. Chemical composition (in at %) of the precipitates in material produced by the three different
processes (conventionally produced, C-P; Laser Metal Deposition-produced, LMD-P; and Selective
Laser Melting-produced, SLM-P). The compositions and approximate number densities are determined
from proximity histograms based on the three different iso-concentration surfaces (see text).

Precipitate Material
Fe Ni Co Mo Ti Number Density

(at %) (m−3)

(Fe,Ni,Co)3(Ti,Mo)
C-P 10 60 6 4 20 ~4 × 1023

LMD-P 15 61 2 3 20 ~3 × 1023

SLM-P [20] 12 60 4 5 18 –

(Fe,Ni,Co)3(Mo,Ti)
C-P 21 50 5 19 5 –

LMD-P 22 52 2 22 2 –
SLM-P [20] 22 52 5 16 5 –

(Fe,Ni,Co)7Mo6

C-P 40 17 4 39 0 ~8 × 1022

LMD-P 38 20 2 40 0 ~5 × 1022

SLM-P [20] 37 17 4 38 0 –
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An additional APT data set of LMD-P material in aged condition is displayed in panel (c) of
Figure 11. In it, the two phases present in the maraging steel can be discerned: The martensite phase
contains a high density of precipitates while the austenite phase is completely devoid of precipitates.
The composition of the austenite is equal to the average composition of the alloy. Note that here,
for LMD-P material, we did not find a Ni-enriched shell around the retained austenite indicative of
austenite reversion as we did in the case of the SLM-produced material [20]. The EBSD measurements
(cf. Figure 10), however, prove that austenite reversion does occur. The interface between austenite
and martensite appears faceted, however the crystallographic orientation of the phases could not be
determined from this particular APT measurement.

4. Discussion

The most striking differences between AM-produced and conventionally-produced 18Ni-300
maraging steel are summarized by the hardness versus ageing time curve (Figure 1). There are three
notable effects:

(i). The hardness of as-LMD-produced material is higher than both as-SLM-produced and
conventional as-received material. The reason for this lies in the early stages of precipitation that
are detected by APT in the (and only in the) LMD-P material. Apparently, already the very small
clusters have a significant strengthening effect. In principle, the precipitation (clustering) could
occur either during the cooling down just after deposition and solidification of material in the
LMD-process or during the pulse-like re-heating (intrinsic heat treatment) upon deposition of
adjacent tracks and overlying layers. Both of these effects differ between SLM and LMD. In SLM,
the melt pool is smaller and the scanning speed is higher than in LMD (cf. Table 2), leading to
both a slower cooling rate after deposition and a less pronounced reheating during the intrinsic
heat treatment. However, the results of Figure 7 allow to separate the effects of cooling rate
and intrinsic heat treatment. Since the hardness of LMD-P material is comparable to C-P and
SLM-P material in the very top layers, clearly the clustering in the as-produced state is due to the
intrinsic heat treatment (that does not apply or applies less strongly to the very top layers). If the
cooling after deposition were the origin of the clustering, it could also be observed in the top
layers (cf. also the discussion in reference [24]). The fact that the intrinsic heat treatment is strong
enough to induce (early stages of) precipitation in the present maraging steel, a material that
needs several hours to reach a peak aged stage, suggests that the intrinsic heat treatment might
be exploited to design a maraging steel that is fully in-situ precipitation strengthened—i.e., that
does not need an additional heat treatment after AM production. We are currently optimizing
the LMD-process and designing a model maraging steel to achieve this goal. First results with a
Fe-Ni-Al alloy show promising results, including a very high number density of precipitates in
the as-LMD-P state (publication in preparation).

(ii). The peak hardness is lower in both AM-produced materials compared to the C-P material.
This is most likely due to the significant amount of comparatively soft retained (and reversed)
austenite in the AM-produced materials (cf. Figure 3, Figure 4 and Figure 10). The austenite,
in turn, is present because of the chemical inhomogeneity due to microsegregation during
solidification. This microsegregation is present also in SLM-P material [13,20] that has been
solidified at a higher rate than LMD-P material. Despite often being referred to as a process
inducing rapid solidification, obviously neither LMD nor SLM enable effective trapping of solutes
in the solidifying material in this particular alloy. Even though C-P material initially—i.e., after
casting—surely also contained such inhomogeneity, these had been homogenized during the
subsequent standard downstream thermomechanical processing such as hot rolling and annealing.
Due to the near-net shape nature of AM processes this is not a viable option for AM-P material.
Potentially, a prolonged solution annealing before ageing might remove the segregation and hence
the retained austenite in AM-produced material, yet, it would also add an undesired additional
processing step and additional cost to the AM production process. Note that the interdendritic
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spacing and thus also the width of the austenite regions is smaller in SLM-P material than in
LMD-P material. Also the volume fraction of retained and reversed austenite—namely, 5.8% and
9.4% in the as-produced and peak aged states, respectively [13]—could be smaller, but this is not
certain given the errors in the determination of the austenite content. The presence of reversed
austenite in (over-)aged maraging steels is well documented (see e.g., [6,25,26]). Even though
austenite lowers the strength of the material, it may be a desired microstructure constituent
because it allows tailoring the ductility and toughness [27,28]. A slightly overaged condition may
therefore be ideal for certain applications [29]. The exact influence of the fraction of retained and
reversed austenite on the hardness of the materials is beyond the scope of this study due to the
difficulty in separating the effects of grain size (prior austenite grain size, martensite block size,
and morphology) and crystallographic texture from the austenite fraction.

(iii). The kinetics of precipitation is not noticeably different between C-P and AM-P material. It could
have been expected that the presence of a high density of lattice defects in the AM-P material,
originating due to the high residual stress imposed in the AM processes, leads to a quicker
nucleation and growth of precipitates in the AM-produced materials or to a different morphology.
This is, however, not the case. After 480 min of ageing, all differences in the nanostructure that
have been present in the as-produced state are of no significance any more, as evidenced by
the very similar composition, distribution, and sizes of the observed three types of precipitates
(cf. Figure 11 and Table 3). Another point to note is a certain inhomogeneity in the LMD-P
material. This is visible in the slightly uneven distribution of austenite and in the high scatter of
the hardness values compared to the C-P material. We performed sets of microhardness indents
with decreased load across a melt pool but did not find systematic changes in hardness. Hence,
the observed variation in the hardness values seems to be truly random. A homogenizing heat
treatment might alleviate this effect, too.

5. Conclusions

We studied the same nominal 18Ni-300 maraging steel alloy produced by three different
processes: conventionally synthesized—i.e., by vacuum induction melting, vacuum arc re-melting,
and hot rolling, Selective Laser Melting (SLM) and Laser Metal Deposition (LMD), two additive
manufacturing methods. We find that the intrinsic heat treatment inherent to LMD (i.e., the heat
input by adjacent tracks and overlying layers) is sufficient to induce early stages of precipitation
in as-LMD-produced material, however, not in the topmost layers. This in turn leads to a higher
hardness of as-LMD-produced material compared to as-received conventionally-produced material
and as-SLM-produced material (except for the topmost layers). Upon ageing, however, the effect of
the intrinsic heat treatment is superseded by the hardness increase due to precipitation. Precipitation
kinetics and precipitate chemistry, size, and morphology is practically identical in all three studied
materials. In the peak aged condition, the hardness of the two AM-produced materials is lower than
that of the conventionally-produced material. This is due to the presence of both retained and reversed
austenite in these materials, while there is no austenite at all in the conventionally-produced material.
The reason for the austenite formation lies in the chemical inhomogeneity caused by microsegregation
upon solidification that is suppressed neither in SLM nor in LMD, despite relatively quick cooling and
solidification rates. This work illustrates that more microstructure and spatially resolving composition
investigations need to be conducted to reveal and understand the micro- and nanostructures of
allegedly well-known materials after synthesizing and processing them via the various novel AM
methods. Additionally, our study demonstrates the possibility of designing materials that are in-situ
precipitation hardened in the LMD process.
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