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Abstract

Microswimmers, such as bacteria or motile algae, which typically live in water and

soil encounter boundaries very frequently. A wide range of different microswimmers

seem to spend a significant amount of time close to such boundaries as opposed

to staying in the bulk. Different physical mechanisms have been proposed to ex-

plain these observations, such as hydrodynamic interactions or steric forces. While

hydrodynamics are able to give a good explanation for pusher-type swimmers, its

predictions for puller-type swimmers do not explain the trapping at walls. Here the

“wall-hugging” effect of puller-type swimmers will be explained. A simple dumbbell

model for the cell’s shape will be introduced to model the steric wall interactions of

Chlamydomonas reinhardtii in a quasi 2d environment. Simulations of this model

will be performed and compared with experimental results.



1 Introduction

1.1 Active Brownian particles

Particles within a fluid experience collisions with the randomly moving molecules of

the fluid. These collisions lead to a random movement of the particle which is called

Brownian motion. Einstein was the first to theoretically describe this phenomenon

[1]. While the concept of Brownian motion itself is very well studied, active Brown-

ian particles have lately been the subject of many publications [2–4]. In contrast to

passive ones, active Brownian particles do not just stay in thermodynamic equilib-

rium with their surroundings. By definition they possess the ability to inject energy

into the system making them an interesting subject of nonequilibrium physics [5].

Microorganisms living in an aqueous environment, whether they are bacteria

like E. coli, algae like Chlamydomonas reinhardtii or spermatozoa, that do not rely

on thermal fluctuations for their movement and instead have the additional ability

to propel themselves forward are classified as microswimmers. In addition to the

biological ones, there are efforts to create artificial microswimmers for various pur-

poses, like localizing and transporting nanoscopic objects for targeted drug delivery

or gene therapy [6, 7].

The ability of self-propulsion leads to a mixture of aimed movement and the

random walk of passive Brownian motion. This behavior drives them out of thermo-

dynamic equilibrium with their surroundings [8]. While passive Brownian particles

follow the fluctuation-dissipation theorem and thereby the Stokes-Einstein relation

D = kBT
γ

, this relation no longer holds true for active particles [9].

1.2 Chlamydomonas reinhardtii

Chlamydomonas reinhardtii is a unicellular alga found worldwide mainly in soil and

fresh water. It is quite easy to grow in labs and comparably easy to handle and

characterize its mutants. Additionally, the complete Chlamydomonas genome has

been sequenced [10]. Therefore, it has served as a model organism for many studies

concerning microorganisms over the last years [5]. It has two flagella attached to the

“front” of its spherical cell body. When the cell swims they beat in a breaststroke-

like pattern at ∼ 50Hz. This behavior makes the cells movement fundamentally

different from other microswimmers that have their flagella attached at their rear

end like spermatozoa or E. coli which will be discussed in more detail in section

2.1.2. Chlamydomonas flagella have a length of ∼ 10 − 12µm [5] which is roughly

twice as long as the cell’s body. When studying their movement it is important to
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keep in mind that they possess an eyespot, giving them the ability to sense light

and perform phototaxis. Additionally, their center of mass is displaced towards their

rear end, so a gyrotactic torque acting on them induces a tendency to swim upward

[5].

In addition to its breaststroke Chlamydomonas has the ability to perform a

second kind of motion called ‘gliding’, where the cell’s flagella adhere to a boundary

and the cell crawls along it. This movement typically lasts for a couple of seconds

and leads to velocities of ∼ 1.5µm s−1 [5] which is considerably slower than their

swimming speed, which is about 60µm s−1 [11].

1.3 Wall interactions of microswimmers

On its way through a medium a microswimmer is likely to encounter different kinds

of boundaries, e.g. liquid-liquid or liquid-gas interfaces, cell membranes or solid

walls. Chlamydomonas, for examples, can be found in soil [5], so their habitat is filled

with boundaries of different geometries. A great variety of microswimmers seems

to accumulate at such boundaries [12]. This behavior is explained with a variety of

effects, like van der Waals forces, hydrodynamics, and steric forces [12, 13]. Which

effect is dominant seems to vary for different swimmers and environments. While

hydrodynamic interactions can change the speed and trajectories of swimmers near

a wall, they mainly depend on the mechanism the swimmer uses for propulsion [12].

This will be illuminated further in section 2.1.2. Steric forces on the other hand

mostly depend on the swimmer’s shape and softness as well as wall curvature [11].

The shape of the microswimmer is often just modeled as a rod or a simple sphere

[13]. Since microswimmers are of a more complex shape a different and more refined

model, which comes closer to the actual stroke-averaged shape of Chlamydomonas,

will be introduced in section 2.2.2.

2



2 Theoretical basics

2.1 Microswimmer hydrodynamics

To understand the swimming strategies of microswimmers and hence the equations

of motion used to model the swimmer trajectories it is important to get an under-

standing of the environment they live in [12, 14]. Swimming on a microscopic scale is

vastly different from what humans usually think of when they talk about swimming.

2.1.1 Low Reynolds number hydrodynamics

For incompressible Newtonian fluids, such as water, hydrodynamic flows follow the

Navier-Stokes equations [12]

ρ

(
∂

∂t
+ u · ∇

)
u = −∇p+ η∇2u,

∇ · u = 0,

(1)

where ρ is the density, u the convective velocity, p the hydrostatic pressure, and η the

viscosity of the fluid. The first equation represents the conservation of momentum

in the fluid, and the second one the condition of incompressibility.

To nondimensionalize the Navier-Stokes equations (1) the Reynolds number

R = ρUL/η [12] is commonly used. U and L are the characteristic velocity and

length scales of the flow. One possible interpretations of the Reynolds number is

the ratio of inertial to viscous forces R = finertial/fviscous [12], so that processes hap-

pening at low R are dominated by viscous drag forces, while inertia plays little to

no role. Macroscopic creatures, such as humans, usually operate at larger Reynolds

numbers, where it is preferable to utilize inertia to keep moving. At Reynolds

numbers close to zero inertia is not important due to the large viscous damping.

Therefore microorganisms have developed swimming strategies quite different to

overcome drag.

For the organisms we are going to consider here the Reynolds number usually is

around 10−4 down to 10−5 [14]. Thus, it is appropriate to consider the limit R → 0

where one can neglect the inertia terms in equation (1), which leads to the so called

Stokes equations [12]

−∇p+ η∇2u = 0

∇ · u = 0.
(2)
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These equations are linear and time independent. That implies that microswimmers

will travel the same distance with one stroke whether they perform it fast or slow.

There is even the possibility to perform movements in reverse to exactly reverse the

trajectory. A micro-scallop for example, closing fast and then slowly reversing its

motion would not have any net displacement away from its initial position at such

conditions [12, 14].

2.1.2 Hydrodynamic interactions at low Reynolds numbers

Although there are many possible forms of non-reciprocal motion that would lead

to movement, it seems that most biological microswimmers use slender appendages

to generate thrust. There are a few exceptions to that like Spiroplasma, which is

helically shaped and swims by propagating kinks along its body [15]. The number

and length of appendages can vary from just one long flagellum, like sperm has, to

thousands of short cilia covering the swimmer’s surface following a beating pattern,

like Paramecium [16]. Flagella can be used in different ways such as the rotating he-

lix of E. coli [17], whip-like motions of spermatozoa or the breaststroke like patterns

of Chlamydomonas [18].

Apart from steric wall interactions, that will be described in section 2.2.3, mi-

croswimmers also interact with walls through hydrodynamics. Since solutions of

the Stokes equation (2) can be approximated using a multipole expansion, similar

to the electric field in electrostatics, the method of image charges from electrostatics

can be carried over to low Reynolds number hydrodynamics. The point charge ana-

logue here is called a Stokeslet [12]. It represents a flow field produced by a point

force acting upon the fluid. Since we can effectively fulfill the no-slip condition at

a wall by superposition of the flow fields of two swimmers on either side of the wall

studying hydrodynamic swimmer-swimmer interactions will also give an idea of how

swimmers will behave near a wall.

Since the system as a whole has to be force free, the easiest approximation of

a microswimmer has to be a force dipole, that is two equal and opposite point

forces. Swimmers with a body elongated along their swimming direction can typi-

cally be categorized into two different types, determined by the force dipole needed

to describe them. This dipole typically points in the swimming direction and can

either have positive or negative sign, which classifies the swimmer as a ‘pusher’ or

a ‘puller’, respectively [12]. Prototypical ‘pushers’ are for example spermatozoa or

E. coli, which repel fluid from their front and back and draw fluid in to their sides

(figure 1a). Chlamydomonas pull in fluid from their front and back, while pushing

it out from their sides. This makes them an example for ‘pullers’. The flow induced
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by a pure force dipole p = pê reads

u(r) =
pr

8πµr3
(
3 cos2(θ)− 1

)
, (3)

where θ denotes the angle between the dipole p and position r [12]. Plugging

θ = π/2 into that equation yields the velocity two identical swimmers experience,

when swimming side by side, namely u(θ = π/2) = −pr/8πµr3. This velocity

makes pushers attract each other when swimming next to each other, while pullers

get repelled. Taking the curl of the velocity field in equation (3) [12]

∇× u =
3p

4πν

(e · r)(e× r)

r5
(4)

gives insight into the behavior of microswimmers when approaching each other.

Spherical swimmers would rotate at a rate Ωsphere = 1
2
(∇ × u) [19]. Additionally,

flattened or elongated spheroids will align with the principal axis of strain with

Ω2 ∝ e× (E ·e), where E is the rate of strain E = 1
2

(
∇u+∇uT

)
. Ω2 has positive

sign for prolate spheroids and negative sign for oblate ones. Since E and ∇ × u
change their sign with p, different rotational behavior for pushers and pullers has to

be expected. Two converging pushers for example will align parallel to each other,

while pullers will align antiparalell (see figure 1c and 1d).

(a) (b)

(c) (d)

Figure 1: Schematic representation of the flow fields created by pushers with a
positive force dipole (a) and pullers with a negative one (b), and hydrodynamic cell
cell interactions for pushers aligning parallel to each other (d) and pullers aligning
antiparallel (c) when approaching. The large black arrows represent the swimming
direction.
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(a) (b)

Figure 2: Rotation of microswimmers induced by a nearby wall for pushers (a) and
pullers (b).

Analogously, swimmers at flat boundaries experience the force and torque of

their mirror image, leading to the fact that swimmers near walls will show the

same behavior and will align parallel (figure 2a) or antiparallel (figure 2b) to walls.

Additionally, boundaries can have another effect on some swimmers, especially the

ones using helical flagella for propulsion. When swimming freely the force applied

by the flagellum is parallel to the swimming direction when averaged over one period

of the helix rotation, but there are still perpendicular forces that average out over

time. Close to walls there is a coupling between the forces applied from the flagellum

in direction of the wall and the cells body, leading to a net torque on the cell [12].

Swimmers experiencing this effect tend to swim in circles near boundaries.

2.2 Modeling microswimmers

2.2.1 The Langevin equation

An active Brownian particle, as described in section 1.1, that uses its energy to

swim at a constant speed v0 in direction e is a simple model for a microswimmer.

We assume overdamped dynamics, meaning that R → 0 from which follows that

finertial � fviscous (see section 2.1.1). Furthermore, the inertial terms mr̈ in the

Newtonian equation of motion can be dropped, leaving a first order differential

equation [20] which is sufficient to describe the swimmer’s motion. The result is a

Langevin equation

dr

dt
= v0e(t) + η, (5)

where η is a Gaussian white-noise vector with zero mean representing the variations

in the swimmers velocity, and with correlation 〈η(t)η(t′)〉 = 2kBTγw1δ(t−t′), where

δ(t) is the Dirac delta distribution [13]. The orientation of the swimmer then evolves
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according to

de

dt
= ξ × e, (6)

where ξ is a Gaussian white-noise vector with zero mean and 〈ξ(t)ξ(t′)〉 = 2kBT
τp

1δ(t−
t′), modeling variations in the swimmers orientation [13].

2.2.2 Modeling Chlamydomonas

A Chlamydomonas cell is modeled as an asymmetric dumbbell consisting of two

spheres, inspired by the model used by Wysocki et al. [13]. One sphere represents

the stroke-averaged shape of the cell’s flagella with radius a1 = 5µm, and the other

one represents the cell’s body with radius a2 = 2.5µm. These sizes correspond to

the actual dimensions of Chlamydomonas. The two spheres are separated by a fixed

distance l = 5µm. The swimming direction e points from the center of the second

sphere towards the first sphere. A graphical representation of this model can be

seen in figure 3(a). A dumbbell model is chosen because it is the simplest model

which will experience a torque due to steric interactions with the wall. Notice that

this is not the case for a simple sphere.

(a)

2a2
e

l

2a1

(b)
(b)

Figure 3: (a) Asymmetric dumbbell modeling a Chlamydomonas cell for steric wall
interactions consisting of a small sphere of radius a2 for the cell’s body and a larger
sphere of radius a1 representing the stroke-averaged shape of the cell’s flagella [11].
(b) Plot of the WCA potential used to model a hard wall.

Similar models to the one described above have been used before to understand

steric interactions with walls. Wysocki et al. [13] varied the radii a1 and a2 and
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determined the mean time τ a swimmer stays at the wall as a function of the

swimmer’s persistence length. They found fundamentally different behavior for polar

(meaning a1 < a2) and antipolar (a1 > a2) swimmers, like Chlamydomonas. For

short persistence lengths they found that the trapping times are quite similar for

polar and antipolar swimmers, since the turning frequency is very high. For larger

persistence lengths however polar swimmers get trapped for really long times, since

they continuously bump into the wall (see figure 4b). Antipolar swimmers align with

the wall with an angle θ making their swimming direction pointing slightly away

from the wall, making them escape much faster (see figure 4a). The angle θ is a

feature coming from the swimmer’s geometry. For the model parameters used for the

Chlamydomonas cell, the alignment angle is determined by θ = arcsin((a1−a2)/l) =

30◦. The swimmer therefore should be able to scatter of the wall with any angle

0◦ < θ ≤ 30◦.

e θ

(a)

e

θ
(b)

Figure 4: Antipolar swimmers escape the wall at an angle θ > 0 after aligning (a),
while polar ones continuously bump into it with θ < 0 (b).

In addition to the swimmer’s polarity, another topic of interest is the effect of

wall curvature on the swimmer’s “wall-hugging” behavior. Again [13] analyzes the

behavior of swimmers with different alignment angles θ concluding that a change in

wall curvature has similar effects as changing the swimmer’s geometry and thereby

θ. Convex walls effectively increase the swimmer’s escape angle θ and concave walls

decrease it.

2.2.3 Steric wall interactions

The wall interactions are described using a fast rising repulsive potential to approx-

imate a hard wall. For computational speed the Weeks-Chandler-Anderson (WCA)

potential is used. It is constructed by shifting up the Lennard-Jones potential and

cutting it off at the minimum:

Uα(δ)

kBT
=

{
4ε
[(

aα
δ

)12 − (aα
δ

)6]
+ ε , if δ < 21/6aα

0 , otherwise.
(7)
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This potential can be seen in figure 3(b). Here δ denotes the distance of the sphere

α ∈ {1, 2} to the wall. The parameter ε is chosen as ε = 10 to get a steep potential

wall. The force on the cell is then given by

F w = F 1 + F 2, with F α = −∇Uα(δ), (8)

and the torque acting on it

T w = T 1 + T 2

with T 1 = (r1 − r)× F 1 =
l

2
(e× F 1)

and T 2 = (r2 − r)× F 2 = − l
2

(e× F 2).

(9)

In the overdamped limit force and torque can be added to the Langevin equations

(5) and (6) giving

dr

dt
= v0e(t) + γwF w + η,

de

dt
=

(
T w

τw
+ ξ

)
× e.

(10)

Here the fluctuation-dissipation theorem (FDT) connects the coefficient of the force

and the Gaussian white-noise correlation function 〈η(t)η(t′)〉 = 2kBTγw1δ(t − t′).
For 〈ξ(t)ξ(t′)〉 = 2kBT

τp
1δ(t − t′) however, we choose not to use the the FDT to

connect persistence time τp = 5.1 s [21] and the shear time at the wall τw = 0.15 s

[22], since the persistence time is connected to the cells active motion and syn-

chronicity of the beating flagella, while the shear time is associated with cell-wall

interactions. Hence there is no physical reason to employ the FDT. The value of

v0 = 60µm s−1 is based on experimental measurements [11]. Determining a diffusiv-

ity for a single Chlamydomonas cell is a challenging task. To date only estimates

for populations of cells are available, but these values include effects of hydrody-

namics and collective motion. So we are forced to give a rough estimate for the

diffusivity of an isolated cell. The cell’s diffusivity D = kBTγw can be estimated as

D ≈ 〈x2〉 /(2 〈τ〉) = L2v0/(2L) = Lvo/2 where L is a typical length scale and v0 a

typical speed. Estimating L to be in the order of a few µm for such swimmers yields

diffusivity values in the range of D = kBTγw ∼ (101 − 102)µm2 s−1. Simulations for

different values within this range have been performed showing no visible effect of

this parameter. Since the cell within confinement is mostly moving ballistic anyways

this was to be expected. For historical reasons we chose kBTγw = 20µm2 s−1 for the

simulations to perform analysis on.
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2.3 Numerical methods

2.3.1 Time discretization of the stochastic process

To integrate the differential equations (10) a discretization in time is necessary. Here,

the Euler method has a sufficient speed and accuracy [20]. The transformation of

the differential equations to finite difference equations for times tn = t0 + n∆t

dr

dt
−→ rn+1 − rn

∆t
,

de

dt
−→ en+1 − en

∆t
(11)

yields a time step

rn+1 = rn + ∆t (v0e+ γwF ) +
√

2∆tγwη̃, (12)

where η̃ is again random and its components are drawn from a Gaussian distribution

with zero mean and unit standard deviation [4, 23].

Figure 5: Examples of simulation trajectories without boundaries. A time span of
10s was simulated with all trajectories starting at the origin and the swimmer being
oriented to face the positive x-direction.

The cell’s orientation has to be normalized, therefore a Lagrange multiplier λ is

introduced. The time evolution of a unit vector turning around ω is:

de

dt
= ω × e︸ ︷︷ ︸

T

+λe. (13)
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A step with the Euler method then becomes

en+1 = en + ∆t (T + λen) . (14)

The value of λ can be derived as follows:

e2n+1 = e2n + 2∆ten · (T + λen)

+ ∆t2
(
T2 + 2λen ·T + λ2e2n

)
,

(15)

since the orientation is normalized e2 = 1 and e ·T = −e · (e× ω) = 0, we obtain:

λ2 +
2λ

∆t
+ T2 = 0

⇒ λ =
1

∆t

(
−1±

√
1−∆t2T2

)
.

(16)

In the case that T = 0, the orientation should not change. Therefore the solution

with a plus sign in front of the square root has a physical justification and is chosen.

For the equation of motion (10) we get a discrete time step of

en+1 = en +

(
∆t
T w

τw
+

√
2∆t

τp
ξ̃

)
× en + ∆tλ (17)

with ξ̃ distributed similarly to η̃.

Example trajectories produced by this algorithm in free space are shown in

figure 5.

2.3.2 Calculating the steric force

Since the “wall-hugging” behavior of Chlamydomonas reinhardtii in a confined en-

vironment and the effect of different parameters, including the wall’s curvature, are

of interest here, we study quasi two-dimensional confinement with circular and el-

liptical boundary. Two dimensional means that the compartment the cell swims in

is so shallow, that the cell has basically no space to swim up and down. Elliptical

compartments are also chosen because they show a variety of curvatures along the

wall and some experimental data exists to compare to [11]. Since the WCA poten-

tial in equation (7) is calculated using the distance from the wall it is crucial to the

simulations to find the point on the wall which is closest to position (x, y). For an

ellipse there are various methods of doing that, one of which will be shown below.
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2.3.2.1 Determining the distance to the wall using a quartic formula

An ellipse whose major axis is parallel to the x-axis and minor axis is parallel to the

y axis can be written in parametric form

xe(ϕ) = a cosϕ, ye(ϕ) = b sinϕ with ϕ ∈ [0, 2π), (18)

where a and b are the lengths of the semi-major and semi-minor axis respectively.

To find the closest point on the wall the distance δ between (x, y) and (xe, ye) is

minimized. The squared distance and its derivative are given by

δ2(ϕ) = (x− a cosϕ)2 + (y − b sinϕ)2 (19)

and
d(δ2)

dϕ
= 2(x− a cosϕ)a sinϕ− 2(y − b sinϕ)b cosϕ. (20)

To minimize the distance it is necessary that d(δ2)/dϕ
!

= 0, yielding

xa sinϕ− yb cosϕ = (a2 − b2) sinϕ cosϕ. (21)

This equation can be transformed into a polynomial equation using a transforma-

tion1 ξ = tan(ϕ/2) which is bijective for ϕ ∈ (−π, π), and therefore it is sufficient

to look at the first quadrant (x ≥ 0 and y ≥ 0), since the result can simply be

mirrored into the other quadrants, due to the ellipse symmetry. This gives values

ϕ ∈ [0, π/2] and ξ ∈ [0, 1], making the transformation well defined and limiting the

calculation results to a numerically favorable interval. Making use of the identities

(for the derivation see appendix A.1)

cosϕ =
1− ξ2

1 + ξ2
and sinϕ =

2ξ

1 + ξ2
(22)

equation (21) transforms into a quartic formula (fourth degree polynomial) for t:

ybξ4 + (2xa+ 2c)ξ3 + (2xa− 2c)ξ − yb = 0 (23)

with c = a2− b2. Since quartic formulas have analytic solutions the four possible so-

lutions for ξ can be computed using standard solving methods. One of the solutions

1The use of this transformation was inspired by a piece of work from Robert Estalella from the
University of Barcelona accessible under http://www.am.ub.edu/~robert/Documents/ellipse.
pdf [Accessed 15 September 2016].
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then gives the closest point

xe = a cosϕ = a
1− ξ2

1 + ξ2
,

ye = b sinϕ = b
2ξ

1 + ξ2
.

(24)

The distance to the wall δ =
√

(x− xe)2 + (y − y2e) can then be used with equation

(8) to determine the steric force

F α = −∇Uα = 24ε
(aα
δ

)6 [
2
(aα
δ

)6
− 1

]
δ−1n, (25)

where n is the unit vector pointing inwards perpendicular to the wall at (xe, ye).
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3 Simulation results

3.1 Circular compartments

Simulations of the model introduced in section 2.2 have been carried out for circular,

quasi 2d compartments. They show a “wall-hugging” effect, that is, the probability

of finding the swimmer near a concave wall is greatly increased compared to finding

it at some other position in the bulk [11]. The relative probability density can be

seen in figure 6 and 7. The probability exhibits a rather flat plateau in the “bulk”

of the chamber. In close proximity of the boundary, however, the probability P (r)

exhibits a steep peak. This peak represents the “wall-hugging” effect.

These results reproduce the experimental measurements quantitatively for dif-

ferent compartment sizes (see figure 6) and therefore different wall curvatures.

Defining the probability to be in a wall-hugging state Φ as the increase in area

under the radial probability distribution P (r) close to the wall as compared to

the plateau height (see figure 8) gives the possibility to quantify this effect in a

single number. The probability to be in a “wall-hugging” state, as seen in figure 9,

monotonically increases with curvature κ = R−1, where R is the compartment radius

[11]. From a compartment radius of ∼ 100µm, up to the maximum compartment
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Figure 6: Experimentally measured radial probability P (r) of the cells position for
different compartment radii normalized so that

∫
P (r)dr = 1. The inset shows a

comparison of experimental data, simulations and analytics for a compartments of
radius rc = 100µm. Image adapted from [11].
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Figure 7: Relative probability density in circular confinements of different size from
simulations according to section 2.3 (dotted line denotes the compartment wall). The
relative probability density is normalized with p(x) = nbinAtot/(AbinΣnbin), where
nbin is the number of counted trajectory points in a square bin, Abin = (R/500)2 is
the area of said bin and Atot = πR2 is the area of the compartment, with radius R.

size used in experiments (500µm), Φ scales linearly with the curvature, falling below

this 1/R behavior for smaller compartments. Simulations and experimental results

using a round pillar in the center of the compartment suggest that the swimmer

scatters off convex interfaces almost immediately, while getting trapped at concave

walls (see figure A.1).

Because simulations and experiments in circular compartments suggest a strong

link between the wall-hugging effect and the wall curvature, more complex geome-

tries like elliptical chambers are of interest, since they show a continuous variation

of wall curvatures.

A swimmer consisting of just one sphere is not able to experience a torque at

the wall, making it rely just on random fluctuations to escape the border region.

Thereby, it is impossible to find a value of τp that reproduces the strength of “wall-

hugging” and the tumble time seen in experiments by just simulating a spherical
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Figure 8: Visualization of the meaning of the wall hugging probability. Φ measures
the “area” under the radial probability distribution, that gets added to the plateau
near the wall, that is the probability that the swimmer does not swim around freely,
but got stuck at the wall for a certain time.

Figure 9: The wall-hugging probability of the cell according to the definition in [11]
for different compartment sizes. Image adapted from [11].

swimmer. Simulations of a spherical swimmer using the measured value of τp have

been carried out, showing completely different behavior, from what is observed in

experiments. The dumbbell swimmer introduced in section 2.2 mainly escapes the

wall due to the torque acting on it when swimming into it, making it show a weaker

“wall-hugging” effect.
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3.2 Relative probability density in elliptical compartments

Figure 10: Relative probability density in elliptical confinements of different ec-
centricity and area Atot = 50000(µm)2 from simulations (dotted line denotes the
compartment wall). The relative probability density is normalized similarly to fig-
ure 7 with Abin = ab/5002 and Atot = πab, where a and b are the semi-major and
minor axes. Eccentricity values shown are 0.00, 0.70, 0.90 and 0.95 going from left
to right, top to bottom.

To verify the curvature dependencies of the observed “wall-hugging” behavior

the simulation’s code was modified to deal with an elliptical confinement, giving

information for a continuous interval of curvatures at once. The strength of this

effect rises with the ellipse’s eccentricity

ε =

√
1−

(
b

a

)2

, (26)

where a and b denote the length of the semi-major and minor axis, respectively,

since ellipses show an increasing range of wall curvatures

κ ∈
[
b

a2
,
a

b2

]
(27)

for larger eccentricities. The relative probability density obtained through simula-

tions for elliptical compartments of different eccentricity is shown in figure 10. Here,

the compartment area is kept constant, and the eccentricity is increased from ε = 0
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up to ε = 0.95 showing a shift of probability density from the area near points with

a local curvature of κ = b/(a2) towards locations close to the apex with κ = a/(b2).

This shift becomes more and more prominent as the range of curvature increases

with eccentricity. Simulation results for elliptical compartments confirm the obser-

vation from the circular ones that the swimmer is more likely to be found at a wall

of higher curvature. For elliptical compartments this means that the cell is most

likely to be found near the antipodal points of the major axis.

3.2.1 Comparison with experimental results

Comparison of simulations and experimental results for circular compartments have

been done in [11] and can be seen in figure 6. For elliptical compartments, experi-

mentally measured trajectory points were kindly supplied from the experiments of

[11] making it possible to compare them with simulation results. Relative proba-

bility density heat maps can bee seen in figure 11 for experiments and simulation

results in elliptical compartments with the same geometry and size. Experiments

and simulations show similar behavior, with increased probability to find the cell

near the compartment wall. This effect is greatly increased near the apex regions,

growing weaker upon decreasing curvature. It is hard to quantify the level of agree-

ment just by comparing the heat maps, therefore, it will be analyzed in more detail

in the following.

3.3 Maximum probability density along rays

To quantify the effect of the walls curvature on the probability density the relative

probability density is evaluated along rays emerging from the center of the ellipse

going outward at constant angle θ. This method is visualized in figure 12. Looking

at the peak heights of the probability along different rays gives an estimate of how

strong the “wall-hugging” effect is depending on the walls curvature, since the max-

imum always occurs in close proximity to the wall. Even though the peak height is

not to be compared to the “wall-hugging” probability in figure 9 without caution,

because they measure different things, it makes quantifying the agreement of sim-

ulations and experiments relatively easy. It yields some intuition of how the wall

curvature influences the swimmers behavior. However, this is not as useful of a mea-

sure as the “wall-hugging” effect defined in section 3.1 for circular compartments,

but a local variant of the “wall-hugging” probability will be defined later in section

3.5. Figure 13 shows the maximum probability along the ray passing the wall at a

point of curvature κ for different areas and eccentricities of the confining ellipse. For
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Figure 11: Relative probability density in an elliptical confinement of eccentricity
ε = 0.91 and an area of Atot = 31316.7(µm)2. Probability density derived from
experimentally measured and simulated trajectories is shown on the top and bottom
panel, respectively. The probability density is normalized to the area as in figure 10
with the resolution of bins for experimental values decreased to 150 bins vertically
and horizontally because of less available statistics from the experiment.
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Figure 12: Evaluating the relative probability density in the compartment along a
ray going out from the center of the ellipse (top panel) produces curves like the
one shown in the bottom. Although they look similar to the radial probability
distribution in a circular compartment, comparing them is not appropriate since
the rays are not perpendicular to the compartment wall. This method however has
proven quite useful to quantify the agreement of simulation results with experimental
data by comparing the peak heights of these curves for different angles and repeating
the procedure for all quadrants gives an approximation of the statistical uncertainty.

curvatures in a range 0.002µm−1 . κ . 0.015µm−1 the calculated values seem to

grow approximately linear with κ with their slope decreasing for higher curvatures.

This is similar to what was found for Φ in section 3.1 and shown in figure 9 where

the biggest circular compartment had a radius of rc = 500µm giving a curvature

of the before mentioned κ = r−1c = 0.002µm−1. Below this curvature the “wall-

hugging” effect seems to stay at a constant strength. Note that, of course, for bigger

compartments the ratio of the ellipses circumference to available area decreases, so

naturally the cell is less likely to be found at the wall, therefore the probability

density is normalized to the area such that∫
p(r)dr = Atot (28)

as explained in figure 7 and 10, making the curves in figure 13 collapse almost

completely.
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Figure 13: The relative probability density peak height along different rays in dif-
ferent elliptical compartments evaluated as explained in figure 12. The value of
curvature κ corresponds to the local curvature of the ellipse, where the ray passes
the compartment wall, resulting in a range of values for elliptical and only one value
of κ for the circular compartment.

3.3.1 Comparison with experimental results: Maximum probability den-

sity along rays

The comparison for experimental measurements and simulations of the maximum

probability density along the rays with origin at the ellipses center and passing

the ellipse at the wall point with local curvature κ is shown in figure 14. The

simulations seem to predict the slope of the curve with an accuracy within the

uncertainty of the experiment, in the entire range of curvatures. The simulations

also capture the crossover from a linear slope for κ ≤ 0.01(µm)−1 to a second linear

regime with a smaller slope. The simulations however seem to overestimate the

peak height, which was already observable for the radial probability distribution in

circular compartments, as it can be seen in the inset of figure 6. This results in a

vertical shift of the simulation results with respect to the experiments.
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Figure 14: The relative probability density peak height evaluated as explained in
section 3.3 for experimental measurements compared to simulation results and a
linear fit for values of κ ≤ 0.01(µm)−1. Simulations and experiments were carried
out in an elliptical compartment of eccentricity ε = 0.91 and an area of Atot =
31316.7(µm)2. The error bars denote the uncertainty of values when the peak height
is evaluated in all four quadrants separately.

Figure 15: The distribution of swimming angles after scattering off a flat wall. Values
were taken at a distance of (20 ± 2.5)µm away from the wall, after the swimmer
scattered off to ensure the swimmer is no longer in contact with the wall and has
finished the turning process.
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3.4 Scattering Angle

Since Wysocki et al. [13] claim that there is an equivalence of shape asymmetry and

wall curvature, that is, a concave wall effectively decreases the swimmer’s escape or

scattering angle, the scattering angle of the simulated model is measured similarly

to what has been done experimentally in [22]. The swimmer is confined within a

straight channel, with solid walls in the y-direction and periodic boundary condition

in the x-direction. After each scattering event recorded off the wall the angle spanned

by the x-axis and the swimming direction is recorded. This is done for a channel

of width 300µm. The scattering angle is recorded when the cell is separated by a

distance of (20± 2.5)µm from the wall. This distance is chosen to directly compare

with experimental values from [22], where they considered a distance of 20µm from

the wall, and also to make sure the swimmer has finished turning at the wall and

is swimming freely. This is surely the case since at this distance the swimmer

is not subject to the wall potential any more because the model only considers

steric interactions. These measurements yield an angle distribution that is shown in

figure 15, with a mode for the scattering angle of ∼ 18◦ which is close to what was

experimentally found in [22, 24].

3.5 Wall hugging is affected by local curvature and available

space

To compare the wall hugging effect in elliptical and circular compartments the prob-

ability distribution along a ray of constant angle θ like in section 3.3 is no viable

tool since these rays do not intersect the compartment border normally for ellipses.

The appropriate comparison would be a the distribution perpendicular to the wall.

This is done by finding the osculating circles for different points of curvature κ along

the elliptical compartment’s wall and comparing the distribution perpendicular to

the wall with the distribution of a circular compartment with the same size as the

osculating circle. This procedure is explained in detail in figure 16. Since one ellipse

shows a range of curvatures κ ∈ [a/(b2), b/(a2)] it yields data to compare with mul-

tiple, differently sized circular compartments as shown in figure 17. By comparing

the resulting probability distribution curves from one ellipse with different circular

compartments as done in figure 17(c) one gets to the impression that there always

is one point of curvature where the probability distribution of the ellipse and the

corresponding circular compartment match best. It turns out that this is always the

case at the point of curvature where the osculating circle has the same area as the

ellipse.
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Figure 16: The relative probability density inside an ellipse is shown in panel (a). To
be able to compare with circular compartments in a meaningful way, we consider the
osculating circle tangent to the ellipse at the point of curvature κ. This osculating
circle is shown using a dashed line in (a) with the tangent point marked in green and
the center of the osculating circle in red. The probability distribution is evaluated
along the line of length κ−1 connecting these two points at distance d to the wall.
Panel (b) shows the relative probability density in a circular compartment with the
radius of the osculating circle from (a). The outline of the elliptical compartment
is shown with a dashed line as a reference. The probability distribution is then
evaluated similarly to what is done in (a). Panel (c) shows the comparison of the
resulting probability distributions normalized equally. This method however has its
limitations. When the center of the osculating circle (the circle of radius κ−1 being
tangent to the ellipse at the point of curvature κ), which is the red dot in panel (a),
comes too close to the elliptic wall on the other side, the probability distribution is
influenced by the opposing wall. A demonstration of this problem is shown in figure
17.

To quantify this agreement, the quantity∫ rc

0

√
(Pellipse − Pcircle)

2dr (29)

is calculated for different points of curvature, and thereby differently sized osculating

circles and corresponding circular compartments. The value of this difference always

reaches its minimum at the point of curvature where Acircle ≈ Aellipse. To show

this universal behavior in figure 18 the curvature κ, and thereby the radius of the

osculating circles, are given in units of this characteristic radius Req of a circle
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Figure 17: Panel (a) and (c) show the use of the method shown in figure 16 multiple
times along the ellipse starting at the apex and going down in curvature. The
distance along which the probability distribution needs to be evaluated grows, as
one can see in (a). This yields a range of curves for one ellipse, all comparable to
their corresponding circular compartments as done in (c). Panel (b) shows when this
method starts to break down. When d = κ−1 becomes so large that the center of the
corresponding osculating circles (marked in red) gets so close to the compartment
border the probability distribution along the connecting line is influenced by the
opposing wall, or even cut off. The resulting partially cut off probability distributions
can be seen in panel (d). For high-eccentricity ellipses, this problem limits the range
of curvatures where a meaningful comparison with circles can be done.

covering the same area as the examined ellipse.

Aellipse = Acircle = πR2
eq =⇒ Req =

√
Aellipse/π. (30)

The results of this procedure for multiple compartments of different eccentricities
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Figure 18: The level of agreement
∫ rc
0

√
(Pellipse − Pcircle)

2dr of relative probabil-

ity distributions perpendicular to the wall for different radii of curvature r = κ−1

along elliptical compartment walls with the radial probability distribution in circu-
lar compartments when both are normalized to

∫ rc
0
Pellipse/circledr = 1. The radius of

curvature is normalized to the radius where the circle covers the same area as the
elliptical compartment.
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and areas are shown in figure 18. All data sets seem to show a minimum, in close

proximity of r/Req = 1. This means that probability distributions for a fixed curva-

ture in circular compartments and elliptical ones are in fact most similarly shaped

when ellipse and circle cover the same amount of area, seemingly independently of

how big this area actually is and how eccentric the ellipse is. The flattening of the

curve for large eccentricities and small areas can be explained with the limits of this

method for obtaining Pellipse, as shown in figure 17.

3.6 Broken detailed balance in elliptical compartments

Although probability-density heat maps like in figure 7, 10 and 11 nicely show where

the swimmer is likely to be found and where it spends most of the time, they give no

indication where the swimmer is most likely to move in the future. To visualize the

flow of probability the compartment is, similarly to the creation of the heat maps,

divided into bins, but now instead of measuring how much time the swimmer spends

in a bin over the course of one run, its swimming direction at this point is averaged

over time 〈e(x)〉t. A visualization of this vector field for compartments of different

eccentricity is shown in figure 19.

In circular compartments 〈e(x)〉t ≈ 0 is homogeneously observed in the compart-

ment, meaning that there is no net flow of probability and no preferred orientation

once a stationary distribution is reached. This indicates that detailed balance holds,

that is, the transition from one state to another is equally likely as going exactly

the other way round. For circular compartments there can practically not be a pre-

ferred angular direction because of their radial symmetry, so a probability flux in

angular direction makes no sense. The only spacial direction left for a flux in prob-

ability would be radial. Since probability needs to be conserved the only possibility

for that, given there are no sources and sinks within the confinement is a vortex.

Since vortices need at least two spacial directions to exist they cannot exist only in

radial direction, resulting in the fact that circular compartments do not allow any

probability flux.

With increasing eccentricity much more interesting results can be observed. Un-

like in the circular compartment case, distinct preferred orientations emerge in cer-

tain parts of the compartment, forming a vortex in every quadrant. This is also

observable in the normalized orientation field’s rotation ∇ × (〈e(x)〉t /| 〈e(x)〉t |)
also shown in figure 19 for a circular and elliptical compartments for comparison.

Fluxes of probability are the hallmark of nonequilibrium and indicate without any

ambiguity that detailed balance is broken. The swimmer is more likely to be ori-

ented in certain directions at certain positions. The ensuing vortices fill the whole
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ellipse for lower eccentricity but are rather separated for eccentricities ε & 0.8, leav-

ing an area in the middle where 〈e(x)〉t ≈ 0 again. The simplest explanation for

all the observed effects is that the swimmer, when approaching the compartment

wall at high local curvature, tends to swim down the curvature gradient along the

wall, until low curvature makes an escape from the wall more likely. The observed

vortices then have to arise because of conservation of probability. This may also

explain the stagnation in the drop of peak height for low curvature in figure 13,

since the cell tends to swim towards these areas.

The breaking of detailed balance is most likely also the cause for the small

difference in peak heights when considering compartments of different eccentricity

like in the upper part of figure 13 since the breaking of detailed balance causes a

change in the global dynamics, giving the swimmer a preferred direction in some

parts of the compartment, while the peak height is measured only locally. “Wall

hugging” effects, therefore, cannot only be linked to local curvature, even though it

does seem to be the dominant factor, but they are also influenced by global dynamics.

How far the system is away from detailed balance seems to be determined by the

local curvature gradient. Ellipses of large eccentricity have much higher gradients

of curvature near the antipodal points of the major axis than near the ones of the

minor axis. This could be an explanation why the curves in the bottom of figure

13 collapse much better than those in the top, since changing the ellipses area does

not change the range of curvature nearly as much as changing the eccentricity does,

allowing much higher curvature gradients. This is also supported by the fact that

in both the upper and lower plot of figure 13 the elliptical compartment with the

biggest range of curvature always shows the lowest probability density at the wall.

The plots in figure 19 always show an average swimming direction pointing per-

pendicularly away from the wall when in contact with it. This is an artifact of

the fact that the swimmers position is measured between the centers of the two

spheres (see section 2.2). This results in the swimmer being detected at a1 + l/2 dis-

tance from the wall, when swimming “head-first” into it, but only a2 + l/2 distance

when facing away from it (with the swimmer being modeled as antipolar meaning

a1 > a2). The latter state is incredibly rare, since the probability density so close

to the wall is nearly zero (see figure 6) Thus, these points, showing a strong bias

in orientation are made up of only a statistically not significant number of points

when the swimmer was brought into such an unlikely state by fluctuations. But

since the only orientation it can have so “close” to the wall is facing away from it

the orientation seems biased.
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Figure 19: Broken detailed balance in elliptical compartments. Compartment eccen-
tricities and areas are the same as in figure 10. The left side shows the time averaged
swimming direction in the compartment 〈e(x)〉t with the norm of the vector repre-
sented as its color. The right side shows the rotation corresponding to these vector
fields, which is a pseudo-scalar for two dimensional fields. Positive values correspond
to counterclockwise rotations.
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Figure 20: The measure D =
∫
D(x)dx/Atot, with D(x) = | 〈e(x)〉t | for simulations

of elliptical compartments of different size and eccentricity. With higher D the more
likely it is to predict the cells swimming direction from its position according to what
is shown in figure 19. The error bars in the bottom image additionally shows how
much this measure varies over the whole area of the compartment using the error
bars. The compartments all show a peak in D, with increasing ε after which D goes
down rapidly, but with the variations in D rising over the whole range of ε.
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To quantify the emergence of probability fluxes we consider the norm of the time

averaged orintation vector

D(x) = | 〈e(x)〉t |. (31)

The normalized integral of this field over the compartment area

D =

∫
D(x)dx/Atot (32)

then can be seen as a measure of how strong the probability fluxes in the whole

system are. The results of this integration are shown in figure 20 for different

eccentricities and areas. To avoid the above described artifacts at the border this

measure is calculated only where the swimmer is not touching the wall, so when

it is more than one swimmer length (a1 + l + a2) away from the wall. A standard

deviation √∫ (
D−D(x)

)2
dx/Atot (33)

is shown there as error bars. This is of course no real standard deviation, but its

growth can be seen as a measure of the separation of the vortices with increasing

eccentricity separating areas far from detailed balance from those closer to it. So

the overall concentration of probability flux for the swimmer’s orientation rises up

to a certain eccentricity, where curvature gradients along the wall are relatively high

along the whole compartment wall and the resulting vortices all fill a whole quarter of

the ellipse. The value of D goes down again when the difference in curvature gradient

along the ellipse wall increases, separating areas with no preferred orientation from

those with a stronger bias. This explains the rise of the variance of D depicted using

the error bars in the bottom of figure 20. Since the breaking of detailed balance

in this case is an effect induced by the confinement (no preferred orientation is to

be expected in free space) the overall strength of the effect goes down with less

confining geometries, meaning bigger compartments.
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4 Conclusions

We have studied a minimal model of Chlamydomonas reinhardtii that can reproduce

the experimentally observed curvature-guided motion of Chlamydomonas reinhardtii

in strong confinement. The “wall-hugging” probability, defined as Φ, for circular

compartments is reproduced within the margin of error as it can be seen in figure

6 and the slope of peak heights for elliptical compartments is almost identical as

shown in figure 14, even though they exhibit a slight offset when considering the ab-

solute values. The dominant scattering angle of ∼ 18◦ at flat walls (see section 3.4)

is consistent with what was measured in [22] (12◦ − 20◦ for mutants with different

flagella length) and in [24](12◦−20◦ for different mutants), while [24] aims to repro-

duce these with a more complex model using three spheres connected by springs and

including hydrodynamics. A simpler model of swimmer consisting only of a single

sphere would not be able to experience a torque from the wall leading to different

dynamics with the swimmer continuously bumping into the wall, because it cannot

escape for very long times, when the persistence time τp is kept at realistic values.

This not only results in enormous probabilities to find the swimmer at a wall, but

also to a qualitatively different curvature dependence of the probability peak height

(as it can be seen in figure A.2) compared to a real swimmer. The simulations with

a single-sphere swimmer were carried out by simply removing the smaller sphere of

the swimmer by setting a2 and l to zero, which results in automatically disabling

the wall-induced torque acting on the swimmer. The strength of the effect is proba-

bly adjustable to levels similar to what was measured in the experiment by heavily

adjusting the model parameters. Doing so, however, is not really appropriate since

the biggest strength of the two sphere model is that it reproduces the increased

probability density of the experiment reasonably well using only model parame-

ters that come from various measurements and has not a single variable adjusted to

match the experimental results better. Thus, an asymmetric swimmer is much more

adequate to reproduce the “wall-hugging” observed for real Chlamydomonas cells,

when just considering steric interactions. The two sphere model has a clear physical

motivation, by just considering wall induced torque because of the swimmers shape

asymmetry as the only reorientation mechanism at the wall, as opposed to the model

in [25] that produces similar results, but puts a direct curvature dependence into

the equations of motion. The model simulated here simply produces the curvature

dependence from the swimmers asymmetric shape. All in all, the model does not

consider any hydrodynamic effects at all. Hydrodynamic interactions are commonly

considered for the interactions of such microswimmers with walls [12, 24, 26] but
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nevertheless we obtain good agreement with the experimental results, even without

adjusting any parameters at all. The results of the performed simulations suggest

not only a curvature guidance of these microalgae in confinement [11] (by changing

the swimmers chance to escape a wall) but additionally a guidance due to curvature

gradients, by influencing the orientation of the swimmer. Future experiments will

explore the presence of this mechanism, but it does not seem unlikely considering

the agreement in probability distribution.

4.1 Limits of the model

With the simplicity of the model there are some limitations that one has to keep in

mind while studying it. The first is, of course, the fact that the model was until now

only tested in quasi two-dimensional confinement, meaning that simulations were

run in a 2d environment and experiments were carried out in confinements so strong

that the swimmer could barely move up and down. Although simulations should

be easily extendable to three-dimensional space, it remains unclear if two spheres

are the right shape two choose in this case, since flagella probably do not draw a

perfect 3d sphere while beating. Additionally the model has so far only been tested

in strong confinement. How well predictions hold for less confining geometries is

still to be tested.

The results of the simulations, when compared to experiments, give confidence

that swimmer-wall interactions in strong confinement, similar to the natural habi-

tat of Chlamydomonas reinhardtii as a soil-dwelling algae, can be reasonably well

explained as due to steric interactions with the confining surface, and not due to

hydrodynamics. Behavior of multiple cells may be different, with hydrodynamic

interactions playing a bigger role there.

4.2 Outlook

Since Chlamydomonas reinhardtii as soil-dwelling algae are mostly found in geomet-

rical environments much more complex than just circles or ellipses, the simulation

code has been further modified to handle other geometrical shapes as well. Some

of the images for the relative probability density, the time averaged orientation and

the resulting rotation are shown in figure 21. They show even more pronounced

vortices than in the elliptical compartments considered above. The figures shown

here serve as an outlook to what potentially else can be done in the future and give a

bit of an intuition of how Chlamydomonas reinhardtii may behave in more complex

environments.
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Figure 21: Relative probability density, average orientation vector field and its ro-
tation for simulations in compartments of various shapes. It can be observed, that
the swimmer barely stays at convex interfaces and that shapes with even higher
gradients of curvature seem to produce even more probability flux.
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In the future, the curvature gradient dependency may be studied with a focus on

not only describing the effect qualitatively but on developing methods to quantify

it better than just by visualizing the orientation vector field. Investigating how the

model behaves with extreme gradients in curvature and extreme values of curvature

up to confinements with sharp edges may give better insight on these effects as

well. Expanding the model to three dimensions would also be interesting, especially

investigating how the swimmer behaves on three dimensional walls with varying

curvature.

Another point of interest would be to test if the predictions of the model hold true

for other swimmers. A good starting point would be modeling Chlamydomonas mu-

tants with different flagella length, but maybe even different microswimmer species

employing similar propulsion techniques.
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A Materials and Methods

A.1 Trigonometric identities

For ϕ ∈ (−π, π) the following identity holds true [27]:

tan
ϕ

2
=

√
1− cosϕ

1 + cosϕ
=

sinϕ

1 + cosϕ
. (A.1)

Now applying the transformation ξ = tan(ϕ/2) from section 2.3.2.1 gives

ξ2 =
1− cosϕ

1 + cosϕ

⇔ ξ2 = 1− (ξ2 − 1) cosϕ

⇔ cosϕ =
1− ξ2

1 + ξ2
, (A.2)

which is the first identity used in section 2.3.2.1. Then using the second equality

from (A.1) and plugging in (A.2) leads to the second identity that is used:

sinϕ = ξ

(
1 +

1− ξ2

1 + ξ2

)
=

2ξ

1 + ξ2
. (A.3)
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A.2 Convex interfaces

Figure A.1: Simulations and experiments were also carried out for circular compart-
ments with a pillar in the middle. The swimmer spends much less time at convex
interfaces. The left plot shows the radial probability distribution for experiments
and simulations for circular compartments of R = 150µm with and without a pillar
in the middle. The left plot shows the corresponding relative probability density for
a simulation with pillar in the middle. Image adapted from [11].

A.3 Circular swimmer

Figure A.2: The relative probability density peak height similar to figure 14, but
with simulations for a circular swimmer. Simulations of a circular swimmer and
experiments with Chlamydomonas reinhardtii [11] were carried out in an elliptical
compartment of eccentricity ε = 0.91 and an area of Atot = 31316.7(µm)2. A circular
swimmer exhibits a much larger probability to be found at the wall, and a different
dependence on curvature.
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ngemäß aus veröffentlichten Schriften entnommen wurden, als

solche kenntlich gemacht habe.
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