GEORG-AUGUST-UNIVERSITAT
7/ GOTTINGEN

BACHELORARBEIT AM MAX-PLANCK-INSTITUT GOTTINGEN

ABT. DYNAMIK KOMPLEXER FLUIDE

Modellierung von
Chlamydomonas reinhardtit
Motilitat in geschlossenen
Geometrien

Modeling of
Chlamydomonas reinhardtia
motility in confinement

NES))

Jan Cammann

jan.cammann@stud.uni-goettingen.de

Erstgutachter: Dr. Marco G. Mazza
MPI fiir Dynamik und Selbstorganisation Gottingen
Dynamik komplexer Fluide

Zweitgutachterin:  Prof. Annette Zippelius

Georg-August-Universitat Gottingen
Institut fiir Theoretische Physik

Datum: 02. Dezember 2016






Contents

1 Introduction
1.1 Active Brownian particles . . . . .. .. .. ... ... ..
1.2 Chlamydomonas reinhardtic . . . . . . . . . .. ...

1.3 Wall interactions of microswimmers . . . . . . . . . oo

2 Theoretical basics
2.1  Microswimmer hydrodynamics . . . . . . . .. . ... ... ... ...
2.1.1 Low Reynolds number hydrodynamics . . . .. .. ... ...
2.1.2  Hydrodynamic interactions at low Reynolds numbers . . . . .
2.2 Modeling microswimmers . . . . . . . . . . ...
2.2.1 The Langevin equation . . . . . . . . .. .. ... ... ....
2.2.2  Modeling Chlamydomonas . . . . . . . . . . . ... ... ...
2.2.3 Steric wall interactions . . . . . . .. ..o
2.3 Numerical methods . . . . . . ... .. . oo
2.3.1 Time discretization of the stochastic process . . . . . . . . ..
2.3.2 Calculating the steric force . . . . . . . ... ...
2.3.2.1 Determining the distance to the wall using a quartic

formula . . . . ...

3 Simulation results

3.1 Circular compartments . . . . . . . .. .. ... ... ... ... ...
3.2 Relative probability density in elliptical compartments . . . . . . ..
3.2.1 Comparison with experimental results . . . . ... .. .. ..
3.3 Maximum probability density along rays . . . . .. .. .. ... ...

3.3.1 Comparison with experimental results: Maximum probability
density along rays . . . . .. ... oo
3.4 Scattering Angle . . . . ...
3.5  Wall hugging is affected by local curvature and available space . . . .

3.6 Broken detailed balance in elliptical compartments . . . . . . . . ..

4 Conclusions
4.1 Limits of the model . . . . . . . . . . ...
4.2 Outlook . . . . .

A Materials and Methods

A.1 Trigonometric identities . . . . . . . ... ... L.



A.2 Convex interfaces

A.3 Circular swimmer



Abstract

Microswimmers, such as bacteria or motile algae, which typically live in water and
soil encounter boundaries very frequently. A wide range of different microswimmers
seem to spend a significant amount of time close to such boundaries as opposed
to staying in the bulk. Different physical mechanisms have been proposed to ex-
plain these observations, such as hydrodynamic interactions or steric forces. While
hydrodynamics are able to give a good explanation for pusher-type swimmers, its
predictions for puller-type swimmers do not explain the trapping at walls. Here the
“wall-hugging” effect of puller-type swimmers will be explained. A simple dumbbell
model for the cell’s shape will be introduced to model the steric wall interactions of
Chlamydomonas reinhardtii in a quasi 2d environment. Simulations of this model

will be performed and compared with experimental results.



1 Introduction

1.1 Active Brownian particles

Particles within a fluid experience collisions with the randomly moving molecules of
the fluid. These collisions lead to a random movement of the particle which is called
Brownian motion. Einstein was the first to theoretically describe this phenomenon
[1]. While the concept of Brownian motion itself is very well studied, active Brown-
ian particles have lately been the subject of many publications [2-4]. In contrast to
passive ones, active Brownian particles do not just stay in thermodynamic equilib-
rium with their surroundings. By definition they possess the ability to inject energy
into the system making them an interesting subject of nonequilibrium physics [5].

Microorganisms living in an aqueous environment, whether they are bacteria
like E. coli, algae like Chlamydomonas reinhardtii or spermatozoa, that do not rely
on thermal fluctuations for their movement and instead have the additional ability
to propel themselves forward are classified as microswimmers. In addition to the
biological ones, there are efforts to create artificial microswimmers for various pur-
poses, like localizing and transporting nanoscopic objects for targeted drug delivery
or gene therapy [6, 7].

The ability of self-propulsion leads to a mixture of aimed movement and the
random walk of passive Brownian motion. This behavior drives them out of thermo-
dynamic equilibrium with their surroundings [8]. While passive Brownian particles
follow the fluctuation-dissipation theorem and thereby the Stokes-Einstein relation

D= ’“BTT, this relation no longer holds true for active particles [9].

1.2 Chlamydomonas reinhardtii

Chlamydomonas reinhardtii is a unicellular alga found worldwide mainly in soil and
fresh water. It is quite easy to grow in labs and comparably easy to handle and
characterize its mutants. Additionally, the complete Chlamydomonas genome has
been sequenced [10]. Therefore, it has served as a model organism for many studies
concerning microorganisms over the last years [5]. It has two flagella attached to the
“front” of its spherical cell body. When the cell swims they beat in a breaststroke-
like pattern at ~ 50Hz. This behavior makes the cells movement fundamentally
different from other microswimmers that have their flagella attached at their rear
end like spermatozoa or FE. coli which will be discussed in more detail in section
2.1.2. Chlamydomonas flagella have a length of ~ 10 — 12um [5] which is roughly

twice as long as the cell’s body. When studying their movement it is important to



keep in mind that they possess an eyespot, giving them the ability to sense light
and perform phototaxis. Additionally, their center of mass is displaced towards their
rear end, so a gyrotactic torque acting on them induces a tendency to swim upward
[5].

In addition to its breaststroke Chlamydomonas has the ability to perform a
second kind of motion called ‘gliding’, where the cell’s flagella adhere to a boundary
and the cell crawls along it. This movement typically lasts for a couple of seconds
and leads to velocities of ~ 1.5ums™! [5] which is considerably slower than their

swimming speed, which is about 60gm s~ [11].

1.3 Wall interactions of microswimmers

On its way through a medium a microswimmer is likely to encounter different kinds
of boundaries, e.g. liquid-liquid or liquid-gas interfaces, cell membranes or solid
walls. Chlamydomonas, for examples, can be found in soil [5], so their habitat is filled
with boundaries of different geometries. A great variety of microswimmers seems
to accumulate at such boundaries [12]. This behavior is explained with a variety of
effects, like van der Waals forces, hydrodynamics, and steric forces [12, 13]. Which
effect is dominant seems to vary for different swimmers and environments. While
hydrodynamic interactions can change the speed and trajectories of swimmers near
a wall, they mainly depend on the mechanism the swimmer uses for propulsion [12].
This will be illuminated further in section 2.1.2. Steric forces on the other hand
mostly depend on the swimmer’s shape and softness as well as wall curvature [11].
The shape of the microswimmer is often just modeled as a rod or a simple sphere
[13]. Since microswimmers are of a more complex shape a different and more refined
model, which comes closer to the actual stroke-averaged shape of Chlamydomonas,

will be introduced in section 2.2.2.



2 Theoretical basics

2.1 Microswimmer hydrodynamics

To understand the swimming strategies of microswimmers and hence the equations
of motion used to model the swimmer trajectories it is important to get an under-
standing of the environment they live in [12, 14]. Swimming on a microscopic scale is

vastly different from what humans usually think of when they talk about swimming,.

2.1.1 Low Reynolds number hydrodynamics

For incompressible Newtonian fluids, such as water, hydrodynamic flows follow the

Navier-Stokes equations [12]

0
p <§+U-V) u = —Vp+nViu,
(1)

V-u=0,

where p is the density, u the convective velocity, p the hydrostatic pressure, and n the
viscosity of the fluid. The first equation represents the conservation of momentum
in the fluid, and the second one the condition of incompressibility.

To nondimensionalize the Navier-Stokes equations (1) the Reynolds number
R = pUL/n [12] is commonly used. U and L are the characteristic velocity and
length scales of the flow. One possible interpretations of the Reynolds number is
the ratio of inertial to viscous forces R = finertial/ fviscous [12], 80 that processes hap-
pening at low R are dominated by viscous drag forces, while inertia plays little to
no role. Macroscopic creatures, such as humans, usually operate at larger Reynolds
numbers, where it is preferable to utilize inertia to keep moving. At Reynolds
numbers close to zero inertia is not important due to the large viscous damping.
Therefore microorganisms have developed swimming strategies quite different to
overcome drag.

For the organisms we are going to consider here the Reynolds number usually is
around 10™* down to 107° [14]. Thus, it is appropriate to consider the limit R — 0
where one can neglect the inertia terms in equation (1), which leads to the so called

Stokes equations [12]

—Vp+nViu =0

V-u=0. @)



These equations are linear and time independent. That implies that microswimmers
will travel the same distance with one stroke whether they perform it fast or slow.
There is even the possibility to perform movements in reverse to exactly reverse the
trajectory. A micro-scallop for example, closing fast and then slowly reversing its
motion would not have any net displacement away from its initial position at such
conditions [12, 14].

2.1.2 Hydrodynamic interactions at low Reynolds numbers

Although there are many possible forms of non-reciprocal motion that would lead
to movement, it seems that most biological microswimmers use slender appendages
to generate thrust. There are a few exceptions to that like Spiroplasma, which is
helically shaped and swims by propagating kinks along its body [15]. The number
and length of appendages can vary from just one long flagellum, like sperm has, to
thousands of short cilia covering the swimmer’s surface following a beating pattern,
like Paramecium [16]. Flagella can be used in different ways such as the rotating he-
lix of E. coli [17], whip-like motions of spermatozoa or the breaststroke like patterns
of Chlamydomonas [18].

Apart from steric wall interactions, that will be described in section 2.2.3, mi-
croswimmers also interact with walls through hydrodynamics. Since solutions of
the Stokes equation (2) can be approximated using a multipole expansion, similar
to the electric field in electrostatics, the method of image charges from electrostatics
can be carried over to low Reynolds number hydrodynamics. The point charge ana-
logue here is called a Stokeslet [12]. Tt represents a flow field produced by a point
force acting upon the fluid. Since we can effectively fulfill the no-slip condition at
a wall by superposition of the flow fields of two swimmers on either side of the wall
studying hydrodynamic swimmer-swimmer interactions will also give an idea of how
swimmers will behave near a wall.

Since the system as a whole has to be force free, the easiest approximation of
a microswimmer has to be a force dipole, that is two equal and opposite point
forces. Swimmers with a body elongated along their swimming direction can typi-
cally be categorized into two different types, determined by the force dipole needed
to describe them. This dipole typically points in the swimming direction and can
either have positive or negative sign, which classifies the swimmer as a ‘pusher’ or
a ‘puller’, respectively [12]. Prototypical ‘pushers’ are for example spermatozoa or
E. coli, which repel fluid from their front and back and draw fluid in to their sides
(figure 1a). Chlamydomonas pull in fluid from their front and back, while pushing

it out from their sides. This makes them an example for ‘pullers’. The flow induced



by a pure force dipole p = pé reads

u(r) = 8:;7’3 (3cos?(6) — 1), (3)
where 6 denotes the angle between the dipole p and position = [12]. Plugging
0 = m/2 into that equation yields the velocity two identical swimmers experience,
when swimming side by side, namely w(f = 7/2) = —pr/8rur3. This velocity
makes pushers attract each other when swimming next to each other, while pullers
get repelled. Taking the curl of the velocity field in equation (3) [12]

V% — 3p (e-r)(exr)

(4)

Ay 7D

gives insight into the behavior of microswimmers when approaching each other.
Spherical swimmers would rotate at a rate Qgphere = %(V x w) [19]. Additionally,
flattened or elongated spheroids will align with the principal axis of strain with
Qy x e x (E-e), where E is the rate of strain E = % (Vu + V'u,T). (25 has positive
sign for prolate spheroids and negative sign for oblate ones. Since E and V X u
change their sign with p, different rotational behavior for pushers and pullers has to
be expected. Two converging pushers for example will align parallel to each other,

while pullers will align antiparalell (see figure 1c and 1d).

(a) | (b) v
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Figure 1: Schematic representation of the flow fields created by pushers with a
positive force dipole (a) and pullers with a negative one (b), and hydrodynamic cell
cell interactions for pushers aligning parallel to each other (d) and pullers aligning
antiparallel (¢) when approaching. The large black arrows represent the swimming
direction.



(a) (b)

Figure 2: Rotation of microswimmers induced by a nearby wall for pushers (a) and

pullers (b).
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Analogously, swimmers at flat boundaries experience the force and torque of
their mirror image, leading to the fact that swimmers near walls will show the
same behavior and will align parallel (figure 2a) or antiparallel (figure 2b) to walls.
Additionally, boundaries can have another effect on some swimmers, especially the
ones using helical flagella for propulsion. When swimming freely the force applied
by the flagellum is parallel to the swimming direction when averaged over one period
of the helix rotation, but there are still perpendicular forces that average out over
time. Close to walls there is a coupling between the forces applied from the flagellum
in direction of the wall and the cells body, leading to a net torque on the cell [12].

Swimmers experiencing this effect tend to swim in circles near boundaries.

2.2 Modeling microswimmers

2.2.1 The Langevin equation

An active Brownian particle, as described in section 1.1, that uses its energy to
swim at a constant speed vy in direction e is a simple model for a microswimmer.
We assume overdamped dynamics, meaning that R — 0 from which follows that
finertial < fuiscous (see section 2.1.1). Furthermore, the inertial terms m# in the
Newtonian equation of motion can be dropped, leaving a first order differential
equation [20] which is sufficient to describe the swimmer’s motion. The result is a
Langevin equation

dr

T voe(t) +m, (5)

where 7 is a Gaussian white-noise vector with zero mean representing the variations
in the swimmers velocity, and with correlation (n(t)n(t')) = 2kgT,15(t—t'), where

d(t) is the Dirac delta distribution [13]. The orientation of the swimmer then evolves



according to

Ezsxev (6)

where £ is a Gaussian white-noise vector with zero mean and (£(¢)&€(t')) = 2’2—2T15 (t—

'), modeling variations in the swimmers orientation [13].

2.2.2 Modeling Chlamydomonas

A Chlamydomonas cell is modeled as an asymmetric dumbbell consisting of two
spheres, inspired by the model used by Wysocki et al. [13]. One sphere represents
the stroke-averaged shape of the cell’s flagella with radius a; = 5um, and the other
one represents the cell’s body with radius a; = 2.5um. These sizes correspond to
the actual dimensions of Chlamydomonas. The two spheres are separated by a fixed
distance [ = 5um. The swimming direction e points from the center of the second
sphere towards the first sphere. A graphical representation of this model can be
seen in figure 3(a). A dumbbell model is chosen because it is the simplest model
which will experience a torque due to steric interactions with the wall. Notice that

this is not the case for a simple sphere.

3.0
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Figure 3: (a) Asymmetric dumbbell modeling a Chlamydomonas cell for steric wall
interactions consisting of a small sphere of radius a, for the cell’s body and a larger
sphere of radius a; representing the stroke-averaged shape of the cell’s flagella [11].
(b) Plot of the WCA potential used to model a hard wall.

Similar models to the one described above have been used before to understand

steric interactions with walls. Wysocki et al. [13] varied the radii a; and as and
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determined the mean time 7 a swimmer stays at the wall as a function of the
swimmer’s persistence length. They found fundamentally different behavior for polar
(meaning a; < ag) and antipolar (a; > ag) swimmers, like Chlamydomonas. For
short persistence lengths they found that the trapping times are quite similar for
polar and antipolar swimmers, since the turning frequency is very high. For larger
persistence lengths however polar swimmers get trapped for really long times, since
they continuously bump into the wall (see figure 4b). Antipolar swimmers align with
the wall with an angle # making their swimming direction pointing slightly away
from the wall, making them escape much faster (see figure 4a). The angle 6 is a
feature coming from the swimmer’s geometry. For the model parameters used for the
Chlamydomonas cell, the alignment angle is determined by 6 = arcsin((a; —a2)/l) =
30°. The swimmer therefore should be able to scatter of the wall with any angle
0° < 6 <30°.

(a) (b)

Figure 4: Antipolar swimmers escape the wall at an angle > 0 after aligning (a),
while polar ones continuously bump into it with 6 < 0 (b).

In addition to the swimmer’s polarity, another topic of interest is the effect of
wall curvature on the swimmer’s “wall-hugging” behavior. Again [13] analyzes the
behavior of swimmers with different alignment angles 6 concluding that a change in
wall curvature has similar effects as changing the swimmer’s geometry and thereby
0. Convex walls effectively increase the swimmer’s escape angle 6 and concave walls

decrease it.

2.2.3 Steric wall interactions

The wall interactions are described using a fast rising repulsive potential to approx-
imate a hard wall. For computational speed the Weeks-Chandler-Anderson (WCA)
potential is used. It is constructed by shifting up the Lennard-Jones potential and

cutting it off at the minimum:

Uw () { te[(2) " = (2)°] +e i 5 <2V,

0 , otherwise.



This potential can be seen in figure 3(b). Here § denotes the distance of the sphere
a € {1,2} to the wall. The parameter € is chosen as e = 10 to get a steep potential

wall. The force on the cell is then given by
FW:F1+F2, with Fa:—VUa<5), (8)
and the torque acting on it

TW:T1+T2
l
WithT1:<T’1—’r’)XF1:§(€XF1) (9)

andTQ:(rg—’r)Xng—é(eng).

In the overdamped limit force and torque can be added to the Langevin equations
(5) and (6) giving

d

d_: = er(t) + Y F + 1,
de _(Tu o) e “°>
dt \n, '

Here the fluctuation-dissipation theorem (FDT') connects the coefficient of the force
and the Gaussian white-noise correlation function (n(t)n(t')) = 2kgTyw10(t — t').
For (&(t)&(t)) = Qi—iTlé(t — t') however, we choose not to use the the FDT to
connect persistence time 7, = 5.1s [21] and the shear time at the wall 7, = 0.15s
[22], since the persistence time is connected to the cells active motion and syn-
chronicity of the beating flagella, while the shear time is associated with cell-wall
interactions. Hence there is no physical reason to employ the FDT. The value of
vp = 60ums~! is based on experimental measurements [11]. Determining a diffusiv-
ity for a single Chlamydomonas cell is a challenging task. To date only estimates
for populations of cells are available, but these values include effects of hydrody-
namics and collective motion. So we are forced to give a rough estimate for the
diffusivity of an isolated cell. The cell’s diffusivity D = kg1, can be estimated as
D ~ (z%) /(2(r)) = L*vy/(2L) = Lv,/2 where L is a typical length scale and vy a
typical speed. Estimating L to be in the order of a few pum for such swimmers yields
diffusivity values in the range of D = kgT", ~ (10! — 10*)um?s~!. Simulations for
different values within this range have been performed showing no visible effect of
this parameter. Since the cell within confinement is mostly moving ballistic anyways
this was to be expected. For historical reasons we chose kT, = 20um?s~! for the

simulations to perform analysis on.



2.3 Numerical methods

2.3.1 Time discretization of the stochastic process

To integrate the differential equations (10) a discretization in time is necessary. Here,
the Euler method has a sufficient speed and accuracy [20]. The transformation of

the differential equations to finite difference equations for times ¢, = ty + nAt

dr Thil — Tn de €1 — €,

e n — s 11

dt At ' dt At ( )
yields a time step

’rn-‘rl =Tn + At (’er + /VWF) + ZAt’YWﬁ; (12)

where 7] is again random and its components are drawn from a Gaussian distribution

with zero mean and unit standard deviation [4, 23].

400 . . | . . T T T

300 - .

200 | :

100+ i
OF - 4

—100 p .

Y position / pm

—200 .

—300 g

0 1
-300-200-100 0 100 200 300 400 500 600
X position / pm

Figure 5: Examples of simulation trajectories without boundaries. A time span of
10s was simulated with all trajectories starting at the origin and the swimmer being
oriented to face the positive x-direction.

The cell’s orientation has to be normalized, therefore a Lagrange multiplier A is

introduced. The time evolution of a unit vector turning around w is:

de
i w;< e+\e. (13)
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A step with the Euler method then becomes
€ni1 =€, + At (T + Ne,) . (14)

The value of A can be derived as follows:

er., =e.+2Ale, (T+ Ney)

(15)
+ A (T2 +2)e, - T+ Ne}) ,
since the orientation is normalized e = 1 and e - T = —e - (e x w) = 0, we obtain:
2\
A+ ~ T =0
f (16)

N Azé(—li 1—At2‘22>.

In the case that ¥ = 0, the orientation should not change. Therefore the solution
with a plus sign in front of the square root has a physical justification and is chosen.

For the equation of motion (10) we get a discrete time step of

T, [2At ~
€1 =€, + (At— + —£> X e, + At (17)
Tw Tp

with £ distributed similarly to 7.
Example trajectories produced by this algorithm in free space are shown in

figure 5.

2.3.2 Calculating the steric force

Since the “wall-hugging” behavior of Chlamydomonas reinhardtii in a confined en-
vironment and the effect of different parameters, including the wall’s curvature, are
of interest here, we study quasi two-dimensional confinement with circular and el-
liptical boundary. Two dimensional means that the compartment the cell swims in
is so shallow, that the cell has basically no space to swim up and down. Elliptical
compartments are also chosen because they show a variety of curvatures along the
wall and some experimental data exists to compare to [11]. Since the WCA poten-
tial in equation (7) is calculated using the distance from the wall it is crucial to the
simulations to find the point on the wall which is closest to position (z,y). For an

ellipse there are various methods of doing that, one of which will be shown below.
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2.3.2.1 Determining the distance to the wall using a quartic formula
An ellipse whose major axis is parallel to the x-axis and minor axis is parallel to the
y axis can be written in parametric form

Te(ip) = acosp, ye(p) =bsing with ¢ € [0,27), (18)

where a and b are the lengths of the semi-major and semi-minor axis respectively.
To find the closest point on the wall the distance ¢ between (x,y) and (e, ye) is

minimized. The squared distance and its derivative are given by

6%(¢) = (x — acos)? + (y — bsin p)? (19)
d(6?) . :
and 1 = 2(x —acosyp)asing — 2(y — bsin )b cos p. (20)

To minimize the distance it is necessary that d(§2)/de = 0, yielding
rasing — ybcos g = (a® — b*) sin p cos . (21)

This equation can be transformed into a polynomial equation using a transforma-
tion' ¢ = tan(p/2) which is bijective for ¢ € (—m,7), and therefore it is sufficient
to look at the first quadrant (x > 0 and y > 0), since the result can simply be
mirrored into the other quadrants, due to the ellipse symmetry. This gives values
¢ € [0,7/2] and & € [0, 1], making the transformation well defined and limiting the
calculation results to a numerically favorable interval. Making use of the identities

(for the derivation see appendix A.1)

1€
1+

28
e

cos p = and sinp = (22)

equation (21) transforms into a quartic formula (fourth degree polynomial) for t:
yb&* + (2ra + 2¢)&* + (2va — 2¢)¢ — yb =0 (23)

with ¢ = a? — b%. Since quartic formulas have analytic solutions the four possible so-

lutions for ¢ can be computed using standard solving methods. One of the solutions

!The use of this transformation was inspired by a piece of work from Robert Estalella from the
University of Barcelona accessible under http://www.am.ub.edu/~robert/Documents/ellipse.
pdf [Accessed 15 September 2016].
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then gives the closest point

12
Te :CLCOSQO:CL—2,
= bsin :bi

The distance to the wall § = \/(z — z.)2 + (y — y2) can then be used with equation

(8) to determine the steric force

Fo = —VU, = 24¢ (%?‘)6 [2 (%“)6 . 1} 5 n, (25)

where m is the unit vector pointing inwards perpendicular to the wall at (z., y.).

13



3 Simulation results

3.1 Circular compartments

Simulations of the model introduced in section 2.2 have been carried out for circular,

¢

quasi 2d compartments. They show a “wall-hugging” effect, that is, the probability
of finding the swimmer near a concave wall is greatly increased compared to finding
it at some other position in the bulk [11]. The relative probability density can be
seen in figure 6 and 7. The probability exhibits a rather flat plateau in the “bulk”
of the chamber. In close proximity of the boundary, however, the probability P(r)
exhibits a steep peak. This peak represents the “wall-hugging” effect.

These results reproduce the experimental measurements quantitatively for dif-
ferent compartment sizes (see figure 6) and therefore different wall curvatures.

Defining the probability to be in a wall-hugging state ® as the increase in area
under the radial probability distribution P(r) close to the wall as compared to
the plateau height (see figure 8) gives the possibility to quantify this effect in a

.

single number. The probability to be in a “wall-hugging” state, as seen in figure 9,
monotonically increases with curvature k = R~1, where R is the compartment radius

[11]. From a compartment radius of ~ 100um, up to the maximum compartment

0.2 T T T T T
— =25 um ‘ ‘ ‘ ‘ ‘
— =50 ym 0.06r o Experiment
r.=75um ==== Simulation
015 F — .= 100 pm 005 ——Analytics J
— r.=125um
0.04f
=150 um -~
— =250um & ;3
T o1t — .= 500 pm 4
o 0.02f
0.01
0.05F 0 ‘ ‘ ‘ ‘ ]
0O 20 40 60 8 100
Distance r from the center / um
0 MJ\L + —“"/\_l

0 100 200 300 400 500
Distance r from the center / um

Figure 6: Experimentally measured radial probability P(r) of the cells position for
different compartment radii normalized so that [ P(r)dr = 1. The inset shows a
comparison of experimental data, simulations and analytics for a compartments of
radius 7. = 100pm. Image adapted from [11].
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Figure 7: Relative probability density in circular confinements of different size from
simulations according to section 2.3 (dotted line denotes the compartment wall). The
relative probability density is normalized with p(@) = npinAios/ (Abin2"nbin), Where
Npin is the number of counted trajectory points in a square bin, Ay, = (R/500)? is
the area of said bin and Ay = mR? is the area of the compartment, with radius R.

size used in experiments (500pum), ® scales linearly with the curvature, falling below
this 1/R behavior for smaller compartments. Simulations and experimental results
using a round pillar in the center of the compartment suggest that the swimmer
scatters off convex interfaces almost immediately, while getting trapped at concave
walls (see figure A.1).

Because simulations and experiments in circular compartments suggest a strong
link between the wall-hugging effect and the wall curvature, more complex geome-
tries like elliptical chambers are of interest, since they show a continuous variation
of wall curvatures.

A swimmer consisting of just one sphere is not able to experience a torque at
the wall, making it rely just on random fluctuations to escape the border region.
Thereby, it is impossible to find a value of 7, that reproduces the strength of “wall-

hugging” and the tumble time seen in experiments by just simulating a spherical
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Figure 8: Visualization of the meaning of the wall hugging probability. ® measures
the “area” under the radial probability distribution, that gets added to the plateau
near the wall, that is the probability that the swimmer does not swim around freely,

Distance r from the center

but got stuck at the wall for a certain time.

Figure 9: The wall-hugging probability of the cell according to the definition in [11]
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for different compartment sizes. Image adapted from [11].

swimmer. Simulations of a spherical swimmer using the measured value of 7, have
been carried out, showing completely different behavior, from what is observed in
experiments. The dumbbell swimmer introduced in section 2.2 mainly escapes the
wall due to the torque acting on it when swimming into it, making it show a weaker

“wall-hugging” effect.
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3.2 Relative probability density in elliptical compartments
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Figure 10: Relative probability density in elliptical confinements of different ec-
centricity and area Ay = 50000(um)? from simulations (dotted line denotes the
compartment wall). The relative probability density is normalized similarly to fig-
ure 7 with Ay, = ab/500% and Ay = mab, where a and b are the semi-major and
minor axes. Eccentricity values shown are 0.00, 0.70, 0.90 and 0.95 going from left
to right, top to bottom.

To verify the curvature dependencies of the observed “wall-hugging” behavior
the simulation’s code was modified to deal with an elliptical confinement, giving
information for a continuous interval of curvatures at once. The strength of this

effect rises with the ellipse’s eccentricity

ey -

where a and b denote the length of the semi-major and minor axis, respectively,

since ellipses show an increasing range of wall curvatures
b a
ve|nn] (27)

for larger eccentricities. The relative probability density obtained through simula-
tions for elliptical compartments of different eccentricity is shown in figure 10. Here,

the compartment area is kept constant, and the eccentricity is increased from ¢ = 0
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up to £ = 0.95 showing a shift of probability density from the area near points with
a local curvature of k = b/(a?) towards locations close to the apex with k = a/(b?).
This shift becomes more and more prominent as the range of curvature increases
with eccentricity. Simulation results for elliptical compartments confirm the obser-
vation from the circular ones that the swimmer is more likely to be found at a wall
of higher curvature. For elliptical compartments this means that the cell is most

likely to be found near the antipodal points of the major axis.

3.2.1 Comparison with experimental results

Comparison of simulations and experimental results for circular compartments have
been done in [11] and can be seen in figure 6. For elliptical compartments, experi-
mentally measured trajectory points were kindly supplied from the experiments of
[11] making it possible to compare them with simulation results. Relative proba-
bility density heat maps can bee seen in figure 11 for experiments and simulation
results in elliptical compartments with the same geometry and size. Experiments
and simulations show similar behavior, with increased probability to find the cell
near the compartment wall. This effect is greatly increased near the apex regions,
growing weaker upon decreasing curvature. It is hard to quantify the level of agree-
ment just by comparing the heat maps, therefore, it will be analyzed in more detail

in the following.

3.3 Maximum probability density along rays

To quantify the effect of the walls curvature on the probability density the relative
probability density is evaluated along rays emerging from the center of the ellipse
going outward at constant angle #. This method is visualized in figure 12. Looking
at the peak heights of the probability along different rays gives an estimate of how
strong the “wall-hugging” effect is depending on the walls curvature, since the max-
imum always occurs in close proximity to the wall. Even though the peak height is
not to be compared to the “wall-hugging” probability in figure 9 without caution,
because they measure different things, it makes quantifying the agreement of sim-
ulations and experiments relatively easy. It yields some intuition of how the wall
curvature influences the swimmers behavior. However, this is not as useful of a mea-
sure as the “wall-hugging” effect defined in section 3.1 for circular compartments,
but a local variant of the “wall-hugging” probability will be defined later in section
3.5. Figure 13 shows the maximum probability along the ray passing the wall at a

point of curvature « for different areas and eccentricities of the confining ellipse. For
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Figure 11: Relative probability density in an elliptical confinement of eccentricity
e = 0.91 and an area of Ay = 31316.7(um)?.  Probability density derived from
experimentally measured and simulated trajectories is shown on the top and bottom
panel, respectively. The probability density is normalized to the area as in figure 10
with the resolution of bins for experimental values decreased to 150 bins vertically
and horizontally because of less available statistics from the experiment.
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Figure 12: Evaluating the relative probability density in the compartment along a
ray going out from the center of the ellipse (top panel) produces curves like the
one shown in the bottom. Although they look similar to the radial probability
distribution in a circular compartment, comparing them is not appropriate since
the rays are not perpendicular to the compartment wall. This method however has
proven quite useful to quantify the agreement of simulation results with experimental
data by comparing the peak heights of these curves for different angles and repeating
the procedure for all quadrants gives an approximation of the statistical uncertainty.

curvatures in a range 0.002um™! < k < 0.015um™! the calculated values seem to
grow approximately linear with x with their slope decreasing for higher curvatures.
This is similar to what was found for ® in section 3.1 and shown in figure 9 where
the biggest circular compartment had a radius of r. = 500um giving a curvature
of the before mentioned x = r;' = 0.002um™'. Below this curvature the “wall-
hugging” effect seems to stay at a constant strength. Note that, of course, for bigger
compartments the ratio of the ellipses circumference to available area decreases, so
naturally the cell is less likely to be found at the wall, therefore the probability

density is normalized to the area such that

/p(r)dr = Atot (28)

as explained in figure 7 and 10, making the curves in figure 13 collapse almost

completely.
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Figure 13: The relative probability density peak height along different rays in dif-
ferent elliptical compartments evaluated as explained in figure 12. The value of
curvature k corresponds to the local curvature of the ellipse, where the ray passes
the compartment wall, resulting in a range of values for elliptical and only one value
of k for the circular compartment.

3.3.1 Comparison with experimental results: Maximum probability den-

sity along rays

The comparison for experimental measurements and simulations of the maximum
probability density along the rays with origin at the ellipses center and passing
the ellipse at the wall point with local curvature x is shown in figure 14. The
simulations seem to predict the slope of the curve with an accuracy within the
uncertainty of the experiment, in the entire range of curvatures. The simulations
also capture the crossover from a linear slope for k < 0.01(gm)~! to a second linear
regime with a smaller slope. The simulations however seem to overestimate the
peak height, which was already observable for the radial probability distribution in
circular compartments, as it can be seen in the inset of figure 6. This results in a

vertical shift of the simulation results with respect to the experiments.
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Figure 14: The relative probability density peak height evaluated as explained in
section 3.3 for experimental measurements compared to simulation results and a
linear fit for values of x < 0.01(gm)~'. Simulations and experiments were carried
out in an elliptical compartment of eccentricity ¢ = 0.91 and an area of Ay, =
31316.7(um)?. The error bars denote the uncertainty of values when the peak height
is evaluated in all four quadrants separately.
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Figure 15: The distribution of swimming angles after scattering off a flat wall. Values
were taken at a distance of (20 &+ 2.5)um away from the wall, after the swimmer
scattered off to ensure the swimmer is no longer in contact with the wall and has
finished the turning process.
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3.4 Scattering Angle

Since Wysocki et al. [13] claim that there is an equivalence of shape asymmetry and
wall curvature, that is, a concave wall effectively decreases the swimmer’s escape or
scattering angle, the scattering angle of the simulated model is measured similarly
to what has been done experimentally in [22]. The swimmer is confined within a
straight channel, with solid walls in the y-direction and periodic boundary condition
in the x-direction. After each scattering event recorded off the wall the angle spanned
by the z-axis and the swimming direction is recorded. This is done for a channel
of width 300um. The scattering angle is recorded when the cell is separated by a
distance of (20 £ 2.5)pm from the wall. This distance is chosen to directly compare
with experimental values from [22], where they considered a distance of 20um from
the wall, and also to make sure the swimmer has finished turning at the wall and
is swimming freely. This is surely the case since at this distance the swimmer
is not subject to the wall potential any more because the model only considers
steric interactions. These measurements yield an angle distribution that is shown in
figure 15, with a mode for the scattering angle of ~ 18° which is close to what was

experimentally found in [22, 24].

3.5 Wall hugging is affected by local curvature and available

space

To compare the wall hugging effect in elliptical and circular compartments the prob-
ability distribution along a ray of constant angle # like in section 3.3 is no viable
tool since these rays do not intersect the compartment border normally for ellipses.
The appropriate comparison would be a the distribution perpendicular to the wall.
This is done by finding the osculating circles for different points of curvature s along
the elliptical compartment’s wall and comparing the distribution perpendicular to
the wall with the distribution of a circular compartment with the same size as the
osculating circle. This procedure is explained in detail in figure 16. Since one ellipse
shows a range of curvatures € [a/(b?),b/(a?)] it yields data to compare with mul-
tiple, differently sized circular compartments as shown in figure 17. By comparing
the resulting probability distribution curves from one ellipse with different circular
compartments as done in figure 17(c) one gets to the impression that there always
is one point of curvature where the probability distribution of the ellipse and the
corresponding circular compartment match best. It turns out that this is always the
case at the point of curvature where the osculating circle has the same area as the

ellipse.
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Figure 16: The relative probability density inside an ellipse is shown in panel (a). To
be able to compare with circular compartments in a meaningful way, we consider the
osculating circle tangent to the ellipse at the point of curvature . This osculating
circle is shown using a dashed line in (a) with the tangent point marked in green and
the center of the osculating circle in red. The probability distribution is evaluated
along the line of length x~! connecting these two points at distance d to the wall.
Panel (b) shows the relative probability density in a circular compartment with the
radius of the osculating circle from (a). The outline of the elliptical compartment
is shown with a dashed line as a reference. The probability distribution is then
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