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Abstract

Nematic liquid crystals are fluids whose anisotropic molecules have long range
orientational order, but no positional order. When the particles are driven by
some chemical or biological mechanism, the system is called active. The energy
supplied at the microscopic scale is transformed into organized motion at the large
scale. The coupling of the orientation field to the hydrodynamic and active forces
leads to rich, dynamical behaviors. We develop a framework for simulating such
active liquid crystals, based on the multiparticle collision dynamics algorithm
for hydrodynamics. The solver captures thermal fluctuations, is highly tunable,
and suited for complex boundary conditions. It is successfully validated against
analytical and numerical results of the isotropic-nematic phase transition, defect
annihilation, and activity. We use it to study the behavior of an active NLC
in cylindrical confinement, as well as in a deformed capillary with an elliptical
cross-section. Applying four different types of boundary conditions across a wide
range of activity magnitudes, we find a new non-equilibrium steady state. It is
characterized by two disclination lines orbiting the capillary center in ellipses of
varying aspect ratios. We find large asymmetries between extensile and contractile
active stresses for all steady states. The results are discussed in the context of
current research.
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Symbols

X scalar quantity

X vector quantity

X tensor or matrix quantity

XT transpose of a matrix

ê unit vector

Xi vector in index notation; summation over repeated indices

Xi,j partial derivative Xi,j ≡ ∂jXi ≡ ∂Xi
/

∂rj

εijk Levi-Civita symbol
d
dt material derivative d

dt ≡ ∂
∂t + v ·∇

〈X〉 mean of quantity X

⊗ dyadic product (implied for the gradient∇X)

≡ defined as

S2 the 2-sphere

t time coordinate

r position vector r = (x, y, z)T

v convective velocity field

ρ density

p pressure

T temperature

F free energy density

kB Boltzmann constant

n local director of a nematic liquid crystal

Q local order parameter of a nematic liquid crystal

S local scalar order parameter of a nematic liquid crystal

∆t small discrete time step

ri position of particle i

vi velocity of particle i

vα center of mass velocity of cell α



Abbreviations

LC liquid crystal

NLC nematic liquid crystal

MPCD multiparticle collision dynamics

SRD stochastic rotation dynamics
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Chapter 1

Introduction

In between liquids and solids there exists another state of matter, the liquid crystal
(LC). Of particular interest are LCs consisting of rigid, rod-like molecules. Like
liquids, they have no long-range positional order. However, their molecules tend
to align parallel to each other. The degree of alignment, quantified by the scalar
order parameter S, depends on the temperature and material properties. Given a
low enough temperature, many LCs enter the nematic phase. A dominant local
director emerges, that molecule orientations are distributed around, closely. It has
the distinctive feature that it does not define a direction, but an axis with arbitrary
sign. This sets it topologically apart from ordinary vector fields. When a phase
transition occurs, the director field develops singularities. Elastic forces within
the nematic liquid crystal (NLC) seek to smooth the field and rectify these defects.
However, the boundaries may impose topological constraints that guarantee their
continued existence. In this way, the elastic forces come in conflict with the
boundaries and find a high-energy equilibrium. When the particles are driven by
some chemical or biological mechanism, the system is called active. The energy
supplied at the microscopic scale is transformed into organized motion at the large
scale, and acts mostly on the regions surrounding defects. In this thesis we study
such systems and find that their symmetries may not allow for the existence of
equilibria. Instead we discover an oscillating steady state. Similar observations
have been made in experiments with different topological constraints [1].

The mathematical models describing these active NLCs reach far beyond
molecular media. Many systems with similar ordering interactions behave in the
same way. Examples include mixtures of cytoskeletal filaments and associated
motor proteins [2] (see section 2.1), bacterial suspensions [3], and monolayers of
vibrated granular rods [4]. These active systems experience phenomena, such as
spontaneous flow [5, 6], large density fluctuations [7], self-organization [8, 9], and
low Reynolds number turbulence [10, 11].

The additional degrees of freedom, relating to the molecules’ orientations make
molecular dynamics simulations unfeasible at the length scale of microns or larger.
To simulate NLCs at the mesoscopic scale we, instead, employ a modified version
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of the multiparticle collision dynamics (MPCD) algorithm. It uses a bottom-
up approach to reproduce hydrodynamics, and we extended it to include the
additional interactions present in NLCs.

We start the thesis by giving biological background information, and motivat-
ing the study of active NLCs (section 2.1). Chapter 2 continues with a detailed
characterization of the NLC, and an investigation of its properties. After present-
ing a theory of nematic elasticity and its interplay with topology, we discuss the
significance of topological defects, in both passive, and active systems. We exam-
ine the isotropic-nematic phase transition from multiple points of view. Much
attention is given to the derivation of a model of ‘nematodynamics’, the branch of
hydrodynamics describing the flow of NLCs. The chapter concludes with a review
of how activity in nematic systems is treated in current research. In chapter 3,
we present the MPCD algorithm, and our adaptation that models active NLCs.
We employ it, to explore the behavior of a NLC confined to a cylindrical pore
(chapter 4). The dynamics are heavily influenced by the boundary conditions, for
which our algorithm offers high flexibility. Our study includes parameter regimes,
that have been studied in the recent literature. This allows us to verify the validity
of our model. Beyond that, we examined systems with tilted director anchoring.
A configuration, that has not been studied in this context. In our simulations,
this confinement causes the NLC to enter a non-equilibrium steady state. The
disclination lines enforced by the boundary perform orbits around the capillary
center at a tunable frequency. Properties, such as aspect ratio, and dispersion of
the trajectories vary, depending on the activity parameter. Finally, we discuss
these results and give an outlook in chapters 5 and 6.
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Chapter 2

Theoretical Background

“The cytoplasm, the substratum of life, is the most extraordinary substance we know.”

— Albert Frey-Wyssling

2.1 Biological Motivation

Figure 2.1: Schematic depiction of the cytoskeleton’s arrangement within a eukary-
otic cell. The cell cortex (or actin cortex) is especially visible with the blue filaments
densely packed on the inner side of the plasma membrane. Image credits: [12].

A very important setting where LC physics plays a key role is the cytoskeleton,
which is formed by a network of rigid molecules immersed in the cytoplasm. The
cytoplasm is a gel-like substance that makes up all of the cell’s content, except
for the nucleus. It has important elastic properties and behaves in many respects
like a non-Newtonian fluid [13]. In this way its viscosity depends not only on
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Figure 2.2: Confocal microscope image of the actin filaments within a cancer cell,
stained with a fluorescent peptide.1

the temperature, but also on the gradient of the flow rate (structural viscosity).
Experiments have shown that Stokes’ law for the frictional force does not apply
in the cytoplasm [14]. Small, passive particles in a constant force field do not
reach a terminal velocity. Instead, their movement is erratic. Furthermore, the
cytoplasm is anomalous in its optical properties. It is anisotropic and displays
double refraction under certain conditions [15, 16].

Since it includes the cell substance and the organelles (apart from the nucleus)
a comprehensive model of the cytoplasm is still out of reach. One of its most
intriguing constituents is the cytoskeleton, a network of linked microfilaments
and microtubules, that connects the organelles and gives the cell its structure and
shape [17]. Figure 2.1 shows the organization of the cytoskeleton inside a cell.
Depending on the type of cell, the cytoskeleton’s function and behavior change
radically [18]. Rapid disassembly and recomposition of actin and tubulin, the
proteins that make up most of the cytoskeleton, allow for arbitrary deformations of
the cell. This mechanism enables muscle contraction [19] and cell motility [20]. The
cytoskeleton is also involved in extracellular transport [21], intracellular transport,
cellular division [17], and cytokinesis [18].

Of these functions the deformative, mechanical aspect is the most independent,
making it one of the cell’s features that is more accessible to physics. The actin
filaments and tubulin microtubules can be considered flexible, but strong rods, as
figure 2.2 illustrates. In addition to the aforementioned treadmilling (disassembly
on one end and reassembly at the other) the filaments and microtubules are driven
by kinesin, a molecular motor that is fueled by ATP (adenosine triphosphate)
and moves along the tubules [22]. Kinesin clusters may bind to two neighboring
microtubules and induce sliding forces between them, if they move in opposite
directions, i.e. have opposite polarity [23, 24]. Actin filaments and the tubulin

1Image credits: Howard Vindin https://commons.wikimedia.org/wiki/File:Phalloidin_

staining_of_actin_filaments.tif, retrieved on 2018-06-04

https://commons.wikimedia.org/wiki/File:Phalloidin_staining_of_actin_filaments.tif
https://commons.wikimedia.org/wiki/File:Phalloidin_staining_of_actin_filaments.tif
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smectic LC liquidnematic LCsolid

Figure 2.3: Schematic representation of the thermodynamic phases an anisotropic
material may go through at low temperatures.

microtubules form a system that behaves in many ways like an active NLC. There-
fore, a better understanding of active nematics could advance the physical model
of the cell.

2.2 Nematic Liquid Crystals
Many organic materials are composed of molecules with rigid cores, and large
aspect ratios, having for example, prolate (rod-like) or oblate (disc-like) shapes. It
is observed that these kinds of substances exhibit different, intermediate (meso-
morphic) phases during a thermodynamic transition from the solid state to the
disordered liquid.

In crystalline solids the composing molecules are arranged on a regular lattice.
The thermodynamic phase is characterized by a long-range three-dimensional
order of position and orientation. For molecules with large aspect ratios there
exists a temperature range at which the particles are packed densely enough to
make steric interaction dominant, but retain sufficient kinetic energy to flow. They
can form short-range positional order in one or more directions with an anisotropic
correlation length µ that depends on their shape. The orientational correlation
length ξ also remains high in some directions. In the smectic phase, for example,
two-dimensional liquid layers are formed, that each have orientational alignment.
At a higher temperature the correlation length µ becomes very small and the
liquid isotropic. The material enters a state of positional disorder. In contrast, the
orientational order correlation length ξ also tends toward isotropy, but maintains a
relatively large magnitude. The result is the nematic phase in which the randomly
positioned molecules are locally aligned. As the temperature is increased further,
ξ becomes smaller and the orientational alignment is lost. The material turns into
a macroscopically isotropic liquid, in spite of its microscopic anisotropy. Figure 2.3
gives a schematic representation of a possible phase transition at low temperature.

The word nematic is derived from the ancient Greek n¨ma (nêma) meaning
thread. The name is motivated by the appearance of thread-like defects (disclination
lines) that are commonly observed in these LCs. The cylindrically symmetric
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Figure 2.4: The two classes of nematic liquid crystals, (a) calamitic and (b) discotic
with orientations a and director n (see section 2.3.1). Image credits: [25].

molecules that form NLCs can be classified as members of two categories. If they
are elongated along the rotational symmetry axis they are called calamitic. If they
are instead contracted along this axis, i.e. disk-like, they are called discotic (fig. 2.4).
In the present work we focus on the calamitic variant. Usually, the inner part
of the molecule is rigid and the outer part is flexible [25]. This structure drives
the molecules toward parallel alignment, while retaining a fluidity that can be
described in the hydrodynamic limit. The common axis of alignment is called the
director and denoted by n.

2.3 Nematic Order Parameter

2.3.1 Director

At the most basic level NLCs can be modeled by assuming that their molecules
are rigid rods. Each rod has an orientation, described by a unit vector a, identical
to its axis of rotational symmetry. Clearly, if the rods have a cylindrical shape, a
and −a refer to the same orientation. Even in materials within which individual
molecules only have rotational symmetry, nematic properties may be recovered, if
in any small volume there are just as many molecules with orientation a as with
orientation −a [25]. The rods tend to align parallel with one another, due to steric
and electrical interactions (see section 2.3.2). We introduce a dimensionless unit
vector n, called the (Frank) director, that represents the average of the molecular
orientation over a small volume element of material, taking into account the
equivalence of a and −a. Transitively, in NLCs n and −n are always equivalent
descriptions of the system

n⇔ −n. (2.1)

In the absence of external fields the individual symmetries about the axes ai
result in a collective, statistical symmetry about n, i.e. the plane perpendicular
to n is locally isotropic. Because in this case, geometrically, n gives the only
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relevant directions, the NLC is said to be uniaxial. Unconstrained NLCs will
always equilibrate in a uniaxial phase, but boundary conditions and external fields
may impose stresses that break the rotational symmetry about the director. The
additional preferred axis m̂1 is perpendicular to n and imposes a local orthonormal
basis (n, m̂1, m̂2) on the system, with m̂2 = ±n× m̂1. This describes the most
general case. The coordinate basis (n, m̂1, m̂2) need not be right-handed, since m̂1

and m̂2, like n, represent undirected axes (m̂1 ⇔ −m̂1 and m̂2 ⇔ −m̂2). Biaxial
systems can be approximated as uniaxial. In most cases this approximation gives
a good description, but, depending on the details of the system, the biaxiality may
have to be taken into account.

2.3.2 Order Parameter

We can use the symmetry properties of nematics to derive a suitable order param-
eter. Using the director as a basis for the construction of a spherical coordinate
system. Given the polar angle θ relative to n and the azimuthal angle φ the distri-
bution function f (θ, φ)dΩ yields the probability of finding a rod oriented in the
small angle dΩ = sin θ dθ dφ. As described in section 2.3.1 the defining nematic
property is the equivalence a⇔ −a, and consequently n⇔ −n. This implies for
the distribution function

f (θ, φ) = f (π − θ, φ). (2.2)

In uniaxial nematic materials the angular distribution function must also satisfy

f (θ, φ) = f (θ). (2.3)

The alignment of a molecule with the director is given by the inner product
a · n = cos θ. We can expand the orientational distribution function in terms of the
alignment using the Legendre polynomials Pn(x)

f (θ) =
∞

∑
n=0

fnPn(cos θ) =
∞

∑
n=0

(2n + 1) 〈Pn(cos θ)〉 Pn(cos θ), (2.4)

where we rewrote the coefficients

fn ≡
2n + 1

2

∫ 1

−1
f (θ)Pn(cos θ)d(cos θ) (2.5)

as
fn = (2n + 1)

∫
f (θ)Pn(cos θ)dΩ = (2n + 1) 〈Pn(cos θ)〉 . (2.6)

Examining this multipole expansion, we find that all terms with odd n vanish,
because of eq. (2.2). Since the monopole term

〈P0(cos θ)〉 = 〈1〉 =
∫

f (θ)dΩ = 1 (2.7)
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is trivial and only gives the normalization, the lowest order non-zero term with
descriptive power is the quadrupole term

S ≡ 〈P2(cos θ)〉 =
〈

1
2

(
3 cos2 θ − 1

)〉
=
∫

f (θ)
1
2

(
3 cos2 θ − 1

)
dΩ , (2.8)

which we call the order parameter S. It has the properties that we expect from
an order parameter. In the isotropic case

〈
cos2 θ

〉
= 1

/
3 and S vanishes. If the

molecules are perfectly aligned,
〈
cos2 θ

〉
= 1 and S reaches unity. However,

perfect alignment is only possible at vanishing temperature. Therefore, S only
approaches 1 asymptotically. Molecular LCs at room temperature typically have
S ≈ 0.6. This order parameter was first introduced by Tsvetkov in 1942 [26].

The coefficient S gives the scalar order, corresponding to the charge in the
multipole expansion of electrodynamics. To get information about the geometrical
configuration of the orientational distribution we need to look at the quadrupole
moment tensor. It captures not only the charge, but also the principal axes, in this
case, the director. Expanding f (θ) to the lowest descriptive order

f (θ) ≈
2

∑
n=0

(2n + 1) 〈Pn(cos θ)〉 Pn(cos θ) = 1 + 5SP2(cos θ) (2.9)

= 1 +
15
2

S
[
(a · n)2 − 1

3

]
= 1 +

15
2

Saiaj

(
ninj −

1
3

δij

)
(2.10)

= 1 + 5QU
ij aiaj (2.11)

yields the traceless, symmetric tensor order parameter QU
ij . In the uniaxial case

that we considered here it has the form

QU ≡ 3
2

S
(

n⊗ n− 1
3
I

)
. (2.12)

From a small calculation

QUn =
3
2

S
(

n− 1
3

n
)
= Sn (2.13)

we see, that its largest eigenvalue is S and the corresponding eigenvector is n. The
other two eigenvectors are perpendicular to n and have eigenvalues −S

/
2.

The tensor order parameter can also be constructed without a priori knowledge
of the director n. Because of the a⇔ −a symmetry, any nematic order parameter
has to be even in the particle orientations a. Considering the average 〈·〉 over a
volume, the lowest order tensor parameter that is even in a is the dyadic

〈
aiaj
〉
.

It contains exactly the same information as n, except for the sign of the direction.
The order parameter should measure the deviation from isotropy. Therefore, we
must remove the isotropic part (i.e. the trace), again, arriving at the tensor order
parameter

Q ≡ 3
2

〈
a⊗ a− 1

3
I

〉
. (2.14)
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The normalization constant 3/2 is arbitrary and ensures that the definition matches
eq. (2.12) for uniaxial nematics. This approach of constructing the order parameter
generalizes to any macroscopic response (see appendix A.1).

It is easily seen that the definition in eq. (2.14) reduces to eq. (2.12) in the
uniaxial case. Choosing a coordinate system with the z-axis parallel to the director,
êz ‖ n, we have

Qêz =
3
2

〈
a⊗ a− 1

3
I

〉
êz =

3
2

〈
cos(θ)a− 1

3
êz

〉
=

3
2

〈
cos2(θ)êz −

1
3

êz

〉

+
3
2
〈
cos(φ) sin(θ) cos(θ)êx + sin(φ) sin(θ) cos(θ)êy

〉
= Sêz.

If the NLC is not uniaxial, i.e. biaxial, the order parameter’s symmetry and
tracelessness leave five degrees of freedom. Three are taken up by the scalar order
parameter S and the director n. As discussed in section 2.3.1, biaxial systems have
one additional directional degree of freedom, the direction of m̂1 ⊥ n. The final
free parameter must describe the deviation from uniaxiality. This deviation is
quantified by the difference between the smaller eigenvalues ofQ, which we call
the biaxiality

P =
〈

sin2 θ cos 2φ
〉

. (2.15)

The biaxial order parameter has to be expressed in terms of n⊗ n, m̂1 ⊗ m̂1, and
m̂2 ⊗ m̂2 (see section 2.3.1), be traceless, reduce to Q in the uniaxial case and have
P as the only additional degree of freedom. Barring arbitrary scaling of P, the only
such order parameter is2

Q ≡ 3
2

S
(

n⊗ n− 1
3
I

)
+

1
2

P
(

m̂1 ⊗ m̂1 − m̂2 ⊗ m̂2
)

. (2.16)

With our choice of P the eigenvalue-eigenvector pairs are (S, n), (−[S + P]/2, m̂1)
and (−[S − P]/2, m̂2) with P ∈ [−3/2, 3/2]. Since Q is invariant under the
transformation (P, m̂1, m̂2) 7→ (−P, m̂2, m̂1), P can always be chosen as positive.
Note, that not only P, but also S and Q may be scaled arbitrarily, since any
constants can be absorbed by the coefficient in eq. (2.4). In uniaxial systems the
scalar order parameter is easily obtained, either from the diagonalization ofQ, or
from the second trace invariant

S2 =
2
3

Tr
[(
QU
)2
]
=

2
3

QU
ij QU

ij , (2.17)

directly. This generalizes to biaxial systems as

S2 +
1
3

P2 =
2
3

TrQ2 =
2
3

QijQij, (2.18)

2Equivalently, one can take a purely mathematical approach. The order parameterQ is symmet-
ric. Every real, symmetric matrix has an orthonormal eigenbasis. Calling the largest eigenvalue S,
the sum of the smaller ones is fixed at−S, becauseQ is traceless. This leaves their difference, which
we define as P, as the last free parameter. Associating the eigenvalues with their eigenvectors and
invoking the definition of P, one arrives at this representation.
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so that the third trace invariant

TrQ3 = QijQjkQki =
3
4

S
(

S2 − P2
)

(2.19)

is needed to calculate S.

2.4 Elasticity of Nematic Liquid Crystals
In an ideal, unconstrained LC at constant temperature the order parameter is
constant in space and time. Under the influence of external fields and boundary
conditions, however, the director n undergoes local deformations. Assuming the
deformations happen on a large enough scale

l nj,i � 1, (2.20)

with molecular scale typically l ≈ 20 Å, the distortions can be modeled in the
continuum limit. In this case the position-dependence of the order parameter Qij
can be described entirely by the spatial derivatives of the director nj,i. Making
use of the symmetries in uniaxial nematics we can find the general lowest-order
approximation of the distortion free energy density Fd. With knowledge of this
free energy density the task of finding the director configurations reduces to a
minimization problem of Fd for given boundary conditions.

Since nematic systems are invariant under the transformation n 7→ −n, Fd must
be even in n. We also require that our description be invariant under rotations
of the coordinate system. This rules out terms linear in nj,i, except for ni,i and
εijknink,j [27]. Neither conforms to eq. (2.1). In fact, terms of the form yi,i for any
vector field y(r) may be omitted. By Stokes’ law they only describe contributions
to the surface energy and not to the volume energy. At the lowest order we are left
with terms quadratic in nj,i. We may separate this tensor into a symmetric part

uij =
1
2
(
nj,i + ni,j

)
(2.21)

and an antisymmetric part

mij =
1
2
(
nj,i − ni,j

)
. (2.22)

They are related to the divergence of the director by

uii = ∇ · n (2.23)

and to the curl by

mij = −
1
2

εijk(∇× n)k. (2.24)
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The symmetric part uij is constrained by the normalization of n. In the coordinate
system introduced in section 2.3.2 the z-axis is parallel to the director. A simple
consideration of

0 = ∇n2 = ∇
(

n2
x + n2

y + n2
z

)
= 2nz∇nz. (2.25)

shows that the gradient of nz vanishes in all components. This implies for the
components of uij 




uzx = 1
2(∇× n)y ,

uzy = −1
2(∇× n)x ,

uzz = 0.
(2.26)

If we want to consider the contributions of uij and mij to Fd, separately, we need
to take into account cross terms F×, since the distortion free energy is quadratic in
nj,i. We can in general write

Fd ≡ Fu + Fm + F×, (2.27)

where Fu is the free energy term depending on uij, and Fm the one depending on
mij. Since we are studying uniaxial nematics, finding Fu is equivalent to finding
the free energy for a system of continuous rotational symmetry C∞ around êz. In a
hexagonal crystal (class C6) with symmetry axis êz the free energy is [28]

Fu = χ1u2
zz + χ2

(
uxx + uyy

)2
+ χ3uijuji + χ4uzz

(
uxx + uyy

)
+ χ5

(
u2

xx + u2
yy

)

(2.28)
where the χi are arbitrary material constants. Here, a deformation in the xy-plane,
i.e. a deformation with vanishing z-components in uij is determined by only
two elastic constants. Since this describes the elasticity of an isotropic body, the
elastic properties of the hexagonal system are isotropic in the xy-plane. Therefore,
eq. (2.28) also describes systems with C∞-symmetry. The properties in eq. (2.26)
imply that two of the terms vanish

Fu = χ2(∇ · n)2 + χ3uijuji + χ5
1
4
(n×∇× n)2. (2.29)

Using the identity

uijuji = (∇ · n)2 +
1
2
(∇× n)2 + ∂i

(
nj∂jni

)
− ∂j

(
ni∂inj

)
(2.30)

for the double dot product, and dropping its last two terms because they represent
surface contributions, we are left with

Fu = χ2(∇ · n)2 + χ3

[
(∇ · n)2 +

1
2
(∇× n)2

]
+ χ5

1
4
(n×∇× n)2.

Separating the curl into a part parallel to and a part perpendicular to n we can
re-parametrize this to

Fu = χ′1(∇ · n)
2 + χ′2(n · ∇× n)2 + χ′3(n×∇× n)2, (2.31)
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Figure 2.5: The three types of deformations that occur in nematic liquid crystals: (a)
splay, (b) twist, and (c) bend. Each can be attained independently. The black dashes
represent the local director. Image credits: [29].

where we used the fact that n is a unit vector. The contribution Fm can be given
purely in quadratic terms of the curl∇× n, as eq. (2.24) states. Isotropy in the
xy-plane demands the form

Fm = κ1(∇× n)2
z + κ2

[
(∇× n)2

x + (∇× n)2
y

]

= κ′1(n · ∇× n)2 + κ′2(n×∇× n)2, (2.32)

where, just as in eq. (2.31), we separated the curl into a part parallel to and a part
perpendicular to n.

Considering the contributions of mij to the cross term F×, the only term linear
in (∇× n)z allowed by the continuous rotational symmetry is

(∇× n)z
(
uxx + uyy

)
= (n · ∇× n)∇ · n, (2.33)

which must vanish because it is odd in n. The only terms linear in the components
within the isotropic plane (∇× n)x and (∇× n)y are

(∇× n)xuxz + (∇× n)yuyz = 0, (2.34)

(∇× n)yuzx − (∇× n)xuzy =
1
2
(n×∇× n)2. (2.35)

Because of the constraints on the symmetric tensor uij in eq. (2.26), the first term
vanishes. Therefore, the most general form of the cross term is

F× = ν1(n×∇× n)2. (2.36)

Combining the contributions in eqs. (2.31), (2.32) and (2.36) yields the complete
formulation of the distortion energy

Fd =
K1

2
(∇ · n)2 +

K2

2
(n · ∇× n)2 +

K3

2
(n×∇× n)2. (2.37)

It was first proposed by Frank [30]. The three terms can be physically interpreted
as the splay (K1), the twist (K2), and the bend (K3) of the medium. They are
visualized in figure 2.5. Since each of the three distortions can be generated
independently, they must all have positive coefficients in the free energy. The
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elastic constants Ki are strongly temperature dependent. They scale roughly as
the square of the order parameter S [27].

We may also express the free energy density in terms of Q. Analogously to
eq. (2.37) it should only contain terms that are quadratic products of the gradient
∇Q. Expanding the free energy density inQ as the sum of all possible variations
to the same order as before, we get

FQ
d =

κijklmn

2
Qij,kQlm,n +O

(
(QijQkl,m)

2
)

(2.38)

=
κ1

2
Qii,kQjj,k +

κ2

2
Qij,kQij,k +

κ3

2
Qik,iQjk,j +

κ4

2
Qik,jQjk,i +O

(
(QijQkl,m)

2
)

.

(2.39)

Because of the (ij)-, the (lm)- and the ((ijk)(lmn))-symmetries of κijklmn, the terms
can be grouped to have four effective constants. Through integration by parts over
the bulk, it can be shown that the κ4-term can be absorbed into the other terms [31].
Almost all of the next-higher order terms can also be absorbed into the present
ones; only one of them can not [32]

κ5

2
QijQkl,iQkl,j.

Including it, FQ
d can be mapped to Fd, exactly. Assuming uniaxiality [see eq. (2.12)]

the terms transform to
κ1

2
Qii,kQjj,k = 0, (2.40)

κ2

2
Qij,kQij,k = κ2S2ni,kni,k, (2.41)

κ3

2
Qik,iQjk,j = κ3S2(ninjnk,ink,j + ni,inj,j

)
, (2.42)

κ5

2
QijQkl,iQkl,j = κ5S3

(
ninjnl,inl,j −

1
3

ni,jni,j

)
. (2.43)

The final form of FQ
d is therefore

FQ
d =

L1

2
Qij,kQij,k +

L2

2
Qik,iQjk,j +

L3

2
QijQkl,iQkl,j. (2.44)

Comparing it to eq. (2.37) in index form

Fd =
K1

2
ni,inj,j +

K2

2
(
ni,jni,j − ni,inj,j − ninjnk,ink,j

)
+

K3

2
ninjnk,ink,j (2.45)

using eqs. (2.40)-(2.43) we see that FQ
d = Fd(Q) if [33]

L1 =
3K2 − K1 + K3

6S2 , (2.46)

L2 =
K1 − K2

S2 , (2.47)

L3 =
K3 − K1

2S3 . (2.48)
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The elastic constants depend on density and temperature of the medium, in-
creasing with density and decreasing with temperature. The splay constant K1
decreases exponentially with temperature. The decrease of K2 and K3 is approx-
imately linear [34]. For lyotropic chromonic LCs at room temperature the splay
and bending constants have similar magnitudes of about 20 pN [34]. The twisting
constant is smaller by a factor of 10. Low molecular weight thermotropic LCs
have negligible variation in the elastic constants. This justifies the so-called one-
constant approximation K ≡ K1 = K2 = K3, which greatly simplifies theoretical
considerations and practical applications, while maintaining qualitative behavior.
In the one-constant approximation the distortion free energy simplifies to

FK
d =

1
2

K
∣∣nj,i

∣∣2 (2.49)

=
1
2

L
∣∣Qij,k

∣∣2 (2.50)

with the relation
L = K

/
2S2 (2.51)

between the elastic constants. Already, given K1 = K3, L3 vanishes and no higher
order terms are needed in Fd(Q).

The potential in eq. (2.49) is pairwise additive. This property was used in
combination with the Maier-Saupe mean-field approximation (see section 2.6.1)
by Lebwohl and Lasher [35, 36]. They introduced a lattice model of NLCs that
considered an interaction potential of the form

U = −ε ∑
〈i,j〉

(
ai · aj

)2 (2.52)

for the orientations of neighboring molecules 〈i, j〉with interaction constant ε. This
description is equivalent to the one derived here in the one-constant approximation
[37]. The Lebwohl-Lasher model has since also been used in continuum theory of
NLCs [27].

In the presence of boundaries the total deformation energy differs by extra
surface terms from eq. (2.37). However, in most cases these extra terms dominate
only within their short range of influence [27]. The result is a strong anchoring
at the confining surface. In these cases the director configuration can be found
by minimizing Fd according to eq. (2.37) with n(r) fixed at the boundaries or
anchored to the direction n0(r) by an extra surface term [6]

FA
d =

1
2

WA(n− n0)
2 (2.53)

that is only present at the boundaries and has anchoring strength WA. Analogously,
Qmay be fixed at the boundaries or anchored by an additional surface term [6]

FA
d =

1
2

WA(Q−Q0)
2 (2.54)
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with

Q0(r) ≡ S0(r)
(

n0(r)⊗ n0(r)−
1
3
I

)
. (2.55)

This, unavoidably, anchors not only the director to n0, but also the scalar order
parameter to S0 at that location. Depending on the chemical properties of both
the nematic and the confinement material the surface alignment may take any
kind of orientation. Two important cases are the homeotropic (orthogonal to the
boundary) and homogeneous (parallel to the boundary) anchoring.

2.5 Topological Defects

(a) with defect (b) without defect

Figure 2.6: A defect in 2 dimensions with winding number 0 can be remediated by
a local transformation. Such transformations are brought about, automatically, by
the elastic forces of a nematic. Image credits [38].

The director characterizes the nematic properties of a system locally. For a
nematic model to be valid we require that deformations happen on a large scale
relative to the molecule size (see section 2.4). The director field should therefore
be continuous almost everywhere. We call the connected subsets of Rd where n is
not continuous defects. Simple defects, such as the one shown in figure 2.6, can be
rectified by a change of n within an arbitrarily small neighborhood of the defect.
Since they represent a large distortion, such defects will normally be prevented, as
the free energy is minimized (see section 2.4).

Unlike the one shown in figure 2.6, defects may have non-local structural
impact on a system. Consider a point y ∈ R2 with undetermined director that has
a neighborhood within which the director is continuous. If we look at the angle θ
between the director and a global coordinate axis and integrate in a closed loop C
around y ∮

C

dθ

ds
ds = 2πn, (2.56)

the result has to be a multiple of π, n ∈N/2, due to continuity of n and n ≡ −n
equivalence. If n 6= 0, there cannot exist a field n(x) that is continuous in y
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(a) charge +1
/

2 (b) charge +1 (c) charge +2

(d) charge −1
/

2 (e) charge −1 (f) charge −2

Figure 2.7: Commonly encountered topological defects and their charges. The
singularities are marked in red. The director field is indicated by the black dashes.

(imagine choosing C arbitrarily close to y). The factor n is called the winding
number. The topology of a region is completely determined by the sum of the
winding numbers of all defects inside. This is analogous to Gauss’s law

∫

∂V
E · dA =

1
ε0

∫

V
ρ dV (2.57)

where the electrical field E on a boundary depends on the sum of electrical charges∫
ρ dV inside. Therefore, n is also referred to as the topological charge of a defect.

Examples of defects with low |n| are displayed in figure 2.7. Note, that non-integer
values are only possible in nematic systems. Like their electrical counterparts,
topological charges of equal sign are repelled and charges of opposite sign are
attracted by one another.

Typically, global rotations of the director field are identical to some transforma-
tion of the coordinate system. An exception is the +1-charge defect. In equilibrium
there exist three different kinds of charge +1 defects. Figure 2.7 (b) shows an aster.
The remaining types, vortex and spiral are shown in figure 2.8.

Considering rotationally symmetric fields, it is convenient to introduce polar
coordinates r and θ. In two dimensions, the orientation of the field may be
parametrized by the angle ψ between the radial vector êr and the director n. With
this notation the aster in figure 2.7 (b) corresponds to a constant ψ = 0. The vortex
and spiral in figure 2.8 are described by ψ = π

/
2, and ψ = π

/
4, respectively.
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(a) Vortex (b) Spiral

Figure 2.8: Variations of the topological defect with charge +1.

For rotationally symmetric director fields ψ = ψ(r) the free energy density in
eq. (2.37) yields

F = 2πr

[
K1

2

(
1
r

d
dr

r cos ψ

)2

+
K3

2

(
1
r

d
dr

r sin ψ

)2
]

, (2.58)

assuming no twist (guaranteed in two dimensions), and neglecting the sponta-
neous splay which leads to a boundary term. Kruse et al. did a linear stability
analysis for constant ψ [39]. In equilibrium and two dimensions asters are stable
for δK ≡ K3 − K1 > 0. In the opposite case δK < 0, vortices are stable. If K1
and K3 are equal (given in the one-constant approximation), all constant solutions
ψ(r) = ψ0 are stable. This includes asters, vortices, and all spirals.

Kruse et al. also studied the stability of defects in driven systems. They found
that outside of equilibrium the same configurations are stable, depending on
δK, as in equilibrium, if the active stress is extensile ζ∆µ > 0 (ζ∆µ is an activity
parameter). This behavior also holds true for small contractile stresses (ζ∆µ < 0).
At a critical value ζ∆µC, that is linear in K3, spirals become more stable. They
become the energetically optimal solution for growing intervals around δK = 0.
The phase diagram is given in figure 2.9.

The arguments by Kruse et al. only hold in 2 dimensions. In 3 dimensions,
the director at the core of defects with winding number ±1 escapes into the third
dimension in order to lower the defect’s energy [40]. Still, the general tenets of this
section extend to 3 dimensions, where systems often form disclination lines. When
looked at in two dimensions these singular lines have exactly the same appearance
as the ordinary defects discussed here. From a topological point of view they are
periodic in the third dimension. Of course, this means that they can exhibit all
kinds of deformations along the third axis.

When a NLC experiences a sudden change in temperature or pressure and
goes from the isotropic to a nematic state, the elastic forces need some time to take
effect. Small regions with independent order parameters fuse together and form
defects to make the director field locally smooth. This process is called the Kibble
mechanism [41].
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Figure 2.9: Stability diagram of spirals (left), asters (top right), and vortices (bottom
right) in terms of elastic constant δK ≡ (K3 − K1)/K1 and activity parameter ζ∆µ.
For extensile, and for small contractile active stresses spirals are only stable at
δK = 0; asters are stable for δK > 0; vortices are stable for δK < 0. With increasing
contractile stress the stable region for spirals grows. Image credits: [39].

As the system evolves towards equilibrium, most of the newly formed defects
annihilate. In a simplified picture with only a +1/2 and a −1/2 defect, the
potential energy is [42]

E+,− = d′ log
s
sc

, (2.59)

where d′ is a proportionality constant, s ≡ |r+ − r−| is the separation of the defects,
and sc is the radius of the defect’s core. The force balance

0 = Ffriction −
d
ds

E+,− = µd ṡ− d′

s
, (2.60)

with friction coefficient µd, implies the differential equation [43]

ds
dt

∝
1
s

. (2.61)

The solutions
s = d0

√
t0 − t, (2.62)

with proportionality constant d0, are commonly used in nematics. There exist,
however, more precise models of defect annihilation. In experiments, the friction
coefficient µd is not a constant. Assuming a logarithmic increase in s [42, 44]

µd = µ0 log
s
sc

, (2.63)

eq. (2.60) implies
ds
dt

∝
[

s ln
(

s
sc

)]−1

. (2.64)
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This ordinary differential equation has solutions

s(t) =
d1
√

t0 − t
W
(
d2

1(t0 − t)/s2
ce
) (2.65)

with the product log function W(x), Euler’s number e, and proportionality con-
stant d1. Since eq. (2.65) is much harder to deal with than eq. (2.62), and gives only
marginally more accurate results, the simpler solution is often preferred.

The study of topological defects has many practical applications. They play a
large role in the behavior of NLCs inside complex environments, as they reflect
the topological properties of the boundaries. For example, defects have been used
to facilitate the self-assembly of colloidal particles. Muševič et al. [45] showed,
how these particles, when embedded in a few-micrometer-thick layer of a NLC,
arrange to 2-dimensional crystal structures bound by topological defects. For more
applications see the end of section 2.8.

2.6 Isotropic-Nematic Phase Transition
LCs can exist in many different phases, that differ in thermal energy, mass density,
and, most importantly, in the type of order (see section 2.2). We focus on the
nematic phase, which forms as an isotropic LC is cooled down. Phase transitions
such as these are characterized by the local behavior of thermodynamic poten-
tials around the transition point. Depending on whether the temperature T and
pressure p, or the temperature T and volume V are being kept constant, the sig-
nificant thermodynamic potential will be the Gibbs free energy or the Helmholtz
free energy. The phase transition is called first order, if the first derivative of
this free energy is discontinuous at the transition point. This implies coinciding
discontinuities of the entropy and of the order parameter. A second-order phase
transition has an exactly once differentiable thermodynamic potential, meaning
that the heat capacity (the second derivative of the free energy) diverges. The
isotropic-nematic phase transition is of first order, but the involved discontinuity
in the first derivative is small. The transition is therefore called weakly first-order.

There exist vastly differing theories that model this phase transition. We will
introduce two of them. The Maier-Saupe model focuses on anisotropic van-der-
Waals-forces of attraction in a mean field approximation. Landau-de Gennes
theory takes a phenomenological approach, expanding the free energy near the
transition point in powers of the order parameter, and leveraging symmetries.

The specific choice of thermodynamic potential under examination is insignifi-
cant. In practice, typically, the temperature and pressure are kept constant, leading
to a minimization of the Gibbs free energy. Computer simulations are much easier
at constant temperature and volume, describing minima of the Helmholtz free
energy. In the case of the isotropic-nematic transition the density or volume change
around the transition point is small (0.3% at atmospheric pressure), making the
derivatives of the Gibbs and the Helmholtz free energy practically identical [25].
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We will therefore use an abstract free energy that may be substituted for one of the
aforementioned at will.

2.6.1 Maier-Saupe Mean Field Theory

The mean field theory proposed by Maier and Saupe [46] models the transition
between the isotropic and the nematic phase. It has been very successful in spite
of completely ignoring short-range interactions [47]. The approach is analogous to
the molecular field approximation Weiss employed in 1906 for ferromagnets [48].
The theory yields the angular distribution function at different temperatures. This
allows for the calculation of the order parameter S(T) as a function of temperature.
We start from the free energy, which may be expressed as

F(p, T) = Fiso(p, T)− FTS + F1(p, T, S) (2.66)

with the entropic term

FTS = −kBT
∫

S2

f (θ) log[4π f (θ)]dΩ (2.67)

where Fiso is the free energy in the isotropic phase and F1 describes the effects of
intermolecular interactions. Since we are dealing with uniaxial nematics, f only
depends on the polar angle θ (see eq. (2.3)). Maier and Saupe postulated that the
orientational energy per molecule be

ui ∝ −1
2

(
3 cos2 θi − 1

)〈1
2

(
3 cos2 θi − 1

)〉
= −1

2

(
3 cos2 θi − 1

)
S, (2.68)

because it must have an orientational dependence varying as −P2(cos θ) (i.e.
exhibiting a minimum for θ = 0, and a maximum for θ = π

2 ) and because the
strength of the molecular interaction should be proportional to the global amount
of nematic order, that is S = 〈P2(cos θ)〉. We may use this in expressing F1 as

F1 = −1
2

U(p, T)S2 (2.69)

where U has to be a positive coefficient which depends on the material properties.
Minimizing F with respect to variations in the angular distribution f we obtain

δF = λ
∫

δ f (θ)dΩ (2.70)

which is further constrained by the normalization of f . The constituents of the
variation δF are

δF1 = −US δS = −US
∫ 1

2

(
3 cos2 θ − 1

)
δ f dΩ (2.71)
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Figure 2.10: The order parameter S as a function of temperature T in the Maier-
Saupe mean field theory.

and the entropic term

δFTS = −kBT
∫

∂[ f log(4π f )]
∂ f

δ f dΩ = −kBT
∫ [

log(4π f ) +
1

4π

]
δ f dΩ .

(2.72)
The isotropic term Fiso is of course independent of f . Equation (2.70) yields

log[4π f (θ)] =
λ

kBT
− 1

4π
+

1
2

US
kBT

(
3 cos2 θ − 1

)
. (2.73)

The normalized solution is

f (θ) =
1

4πZ
exp

(
3
2

US
kBT

cos2 θ

)
(2.74)

with

Z ≡
∫ 1

0
exp

(
mx2

)
dx =

1
2i

√
π

m
erf
(
i
√

m
)

(2.75)

and
m ≡ 3

2
US
kBT

. (2.76)

Since S must satisfy both eqs. (2.8) and (2.74), it is necessarily a solution of

S =
∫

f (θ)
1
2

(
3 cos2 θ − 1

)
dΩ

= −1
2
+

3
2Z

∫ 1

0
x2 exp

(
mx2

)
dx (2.77)

= −1
2
+

3
2Z

∂Z
∂m

. (2.78)
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One way of solving this equation for S(T) is interpreting eq. (2.77) as the map

g(S) = −1
2
+

3
2Z(S, T)

∫ 1

0
x2 exp

(
m(S, T)x2

)
dx (2.79)

with Z and m according to eqs. (2.75)–(2.76) and calculating the stable fixed points
within S ∈ [0, 1] numerically. The results are plotted in figure 2.10. At critical
temperature kBTc ≈ 0.22 U the order parameter drops to 0.

2.6.2 Landau-De Gennes Theory

The isotropic-nematic transition may be modeled purely in terms of the tensor
order parameter. The Landau-de Gennes theory is based on a mean field analysis
and assumes that the order parameter is constant in space and small in the nematic
phase close to the phase boundary. In the isotropic phase it should vanish on aver-
age, but may be subject to significant fluctuations. We can, therefore, expand the
difference in bulk free energy density in terms of the order parameter. Assuming
that there are no external fields impacting the alignment, the expansion reads [27]

FB =
1
2

a(T)QijQji −
1
3

b(T)QijQjkQki +
1
4

c(T)(QijQji)
2 +O

(
Q5

ij

)
. (2.80)

The linear term vanishes, since Qij is traceless. NLCs are not invariant under
transformations S 7→ −S and equivalently Qij 7→ −Qij. This makes an odd power
term necessary. It needs to be negative, because the equilibrium order parameter
is positive. With the presence of a third order term we require a fourth order
term to bound the free energy from below. Note, that other third and fourth order
terms are either linearly dependent on the ones present in eq. (2.80) or vanish.
Consider as an example the identity 2QijQjkQklQli = (QijQji)

2. Higher orders
may be taken into account, but are not needed for uniaxial nematics [27, 49]. Since
we did the series expansion in terms of the order parameter, this expression for the
free energy is invariant under all transformations permitted by nematic symmetry,
as required. de Gennes postulated that both b and c are mostly independent of
temperature and the transition is driven by a = A(T − T∗), which vanishes at the
supercooling temperature T∗.

In uniaxial nematics we can substitute Q with its expression in terms of S
[eq. (2.12)] so that eq. (2.80) reduces to

FB =
3
4

aS2 − 1
4

bS3 +
9
16

cS4. (2.81)

The minimum is the root of a quadratic polynomial and gives the equilibrium
order parameter

Seq =





b
6c +

1
2

√(
b
3c

)2
− 8a

3c if a < ac

0 if a > ac

(2.82)



2.7 Nematodynamics 23

0.0 0.1 0.2 0.3 0.4 0.5

Scalar order parameter S

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

Fr
ee

en
er

gy
de

ns
it

y
F

T > T∗∗

T = T∗∗
Tc < T < T∗∗

T = Tc
Tc > T > T∗

T = T∗

T < T∗

0.0 0.5

−20

0

Figure 2.11: The free energy density F as a function of the order parameter S at dif-
ferent temperatures close to the critical point. F is given in arbitrary dimensionless
units.

for the critical parameter ac = b2/27c, or, equivalently, the critical temperature
Tc = T∗ + b2/27Ac. These solutions correspond to the isotropic phase (Seq = 0)
and the nematic phase (Seq > 0).

Figure 2.11 shows the free energy minima at various temperatures. As the
system cools down from the isotropic state, at first, a metastable, nematic solution
S > 0 appears. This happens at the superheating temperature

T∗∗ = Tc +
B2

32aC
. (2.83)

At critical temperature Tc the solution S > 0 becomes stable. The change of
the absolute energy minimum from the isotropic state to the nematic state is
discontinuous. The figure makes apparent how the first-order nature of the
transition arises from the presence of the third order term in the free energy. Below
Tc the isotropic state remains metastable, until the supercooling temperature T∗ is
reached. In this way the isotropic-nematic transition exhibits hysteresis.

2.7 Nematodynamics

So far we have discussed the equilibrium phase transition between the isotropic
and the nematic state. We now introduce the principle of a hydrodynamic theory
to study the flow of NLCs: the so-called nematodynamics.

The most commonly used macroscopic model of nematodynamics was devel-
oped by Ericksen [50, 51] and Leslie [52, 53] in the early 1960s. It was based on the
static theory of NLCs established by Oseen [54] and Zöcher [55] 30 years earlier.
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The dynamics of NLCs can be described using the Navier-Stokes equations

ρ
d
dt

vi =
ρτf

3
∂j
[
δij
(
1− 3∂ρP0

)
∂kvk + 2Dij

]
+ σij,j, (2.84)

modified by an extra stress tensor σji that is defined up to a transformation σji 7→
σji + νji with νji,j ≡ 0. Here, τf is the kinematic viscosity. The stress is generally
separated into the equilibrium or Ericksen stress σe and the viscous stress σ′

σji = σe
ji + σ′ji. (2.85)

There have been multiple approaches to expressing the stress tensor that arrive
at equivalent descriptions of the observables. The approach described below is
based on F.M. Leslie’s [52, 53], I.W. Stewart’s [56], and S. Chandrasekhar’s [57]
works. Unlike Ericksen and Leslie we assume the temperature to be constant in
this examination. The model explored here uses the director as the fundamental
quantity and is only valid in the absence of topological defects [27]. In section 2.7.4
we will discuss the approach by Beris and Edwards [33, 58] that is based on the
tensor order parameter that is capable of modeling large variations in S, including
defects.

Compared to ordinary liquids, NLCs have additional degrees of freedom in
the director n. Forces in the fluid not only influence its velocity field, but also
cause rotations of the director. For this reason it is useful to study the local angular
velocity of the director w, defined such that ṅ = w× n. As we will see later, a
Lagrangian perspective of this angular velocity is often more useful. We, therefore,
define the relative angular velocity

W = w− ŵ (2.86)

with respect to the local angular velocity

ŵ =
1
2
∇× v, (2.87)

which describes the rotation of the fluid element. This motivates the definition of
the co-rotational time flux of the director

N = W× n = ṅ−ωn. (2.88)

Here, we separated the velocity gradient tensor into the vorticity tensor ω (anti-
symmetric)

ωij =
1
2
(
vi,j − vj,i

)
, (2.89)

and rate of strain tensorD (symmetric)

Dij =
1
2
(
vi,j + vj,i

)
, (2.90)

and used the identity
ωx = ŵ× x, ∀x ∈ R3. (2.91)
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2.7.1 Conservation Laws

The conservation laws of NLCs are very similar to the familiar equations of
hydrodynamics for an ordinary fluid. They deviate only in terms of the director n.
We will consider a volume V of incompressible LCs, bounded by the surface A.
Incompressibility requires

vi,i = 0 (2.92)

of the velocity v(r). Within the volume we have conservation of mass

d
dt

∫

V
ρ dV = 0, (2.93)

and conservation of momentum

d
dt

∫

V
ρvi dV =

∫

V
fi dV +

∮

A
σji dAj , (2.94)

where ρ is the density, fi is the body force per unit volume. Under the assumption
that there are no heat sources or sinks, conservation of energy states that [50]

d
dt

∫

V

(
1
2

ρvivi +
1
2

ρI ṅiṅi + U
)

dV =
∫

V
( fivi + Giṅi)dV +

∮

A
(tivi + siṅi)dA ,

(2.95)
where ρI is a material constant representing a moment of inertia density, U is
the internal energy density, Gi is the external director body force due to external
magnetic fields, ti = σjiej the surface force per unit area acting across the plane
with unit normal ej, si = πjiej the director surface force, and πji the elasticity
tensor. The left hand side represents the time derivative of the total energy with a
term for kinetic energy related to linear movement, kinetic energy of rotation, and
internal energy. The right hand side lists the external forces. These either fall in
the category of body forces acting on the whole volume, or surface forces, causing
stresses that originate at the interface of the volume. For both categories there is
the standard hydrodynamic term including the convective velocity field vi and
a nematic term for forces that act on the orientations of the molecules. Since n is
defined to be a unit vector, the latter forces only manifest as torques τG dV, τs dA,
with Giṅi = G · (w× n) = w · (n×G) ≡ w · τG and analogously siṅi ≡ w · τs.
Conservation of angular momentum states that [50]

d
dt

∫

V

(
ρεijkrjvk + ρIεijknjṅk

)
dV

=
∫

V

(
εijkrj fk + εijknjGk

)
dV +

∮

A

(
εijkrjtk + εijknjsk

)
dA . (2.96)

Similarly to the energy balance, the left hand side gives the time derivative of the
total angular momentum. It has a component related to the bulk movement of the
fluid and a component related to the rotation of the individual molecules. The
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right hand side lists both the hydrodynamic torques, as well as τG dV and τs dA.
Finally, we have Oseen’s equation [54]

∫

V
ρI n̈ dV =

∫

V
(Gi + hi)dV +

∮

A
πji dAj , (2.97)

where hi is the internal director body force, also called the molecular field. It
is the torque balance for NLCs. Equation (2.97) includes viscous terms with Gi
and hi and an elastic term, determined by πji. Applying Stokes’ law, equations
(2.93)–(2.97) simplify to

ρ̇ = 0, (2.98)
ρv̇i = fi + σji,j, (2.99)

U̇ = σjiDij + πjiNij − hiNi, (2.100)

ρI n̈i = Gi + hi + πji,j, (2.101)

σji − πkjni,k + hjni = σij − πkinj,k + hinj, (2.102)

in their differential forms. Here, we used the definition in eq. (2.90) for Dij and the
definition in eq. (2.88) for Ni. Nij is analogously defined by

N = ∇ṅ−ω(∇n). (2.103)

Changes in the orientation of the director are related to deformations of the LC.
Hence, ni,k is called the curvature strain tensor.

2.7.2 Constitutive Equations

Let us now consider thermodynamic arguments that will provide us with another
relation. The free energy density is

F = U − TS (2.104)

with entropy S. The second law of thermodynamics may be stated as

d
dt

∫

V
S dV ≥ 0. (2.105)

Applying this inequality to the internal energy density U in eq. (2.100) we obtain
the condition

σjiDij + πjiNij − hiNi − Ḟ ≥ 0 (2.106)

for a system in isothermal equilibrium.
In order to arrive at constitutive equations for F, tji, πji, and hi, some assump-

tions have to be made. If these quantities are single-valued in ni, ni,j, ṅi, and vi,j,
and are smooth enough, a first order expansion can be carried out with validity.
Since ṅi and vi,j are affected by superimposed rigid body rotations, they must be
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replaced by the reference-frame invariant Ni and Dij. Therefore, our parameters
are

ni, ni,j, Ni, Dij. (2.107)

The expansion of the free energy density’s temporal derivative with respect to
these parameters is

Ḟ =
∂F
∂ni

dni

dt
+

∂F
∂ni,j

dni,j

dt
+

∂F
∂Ni

dNi

dt
+

∂F
∂Dij

dDij

dt
. (2.108)

Using eqs. (2.88) and (2.103) we can eliminate ni and ni,j

Ḟ =
∂F
∂ni

Ni +
∂F
∂ni

njωij +
∂F

∂ni,j
Nij +

∂F
∂ni

Ṅi +
∂F

∂Dij
Ḋij

− ∂F
∂ni,k

nj,kωji −
∂F

∂nk,j
nkiDij −

∂F
∂nk,i

nk,jωji. (2.109)

Subjecting this expansion to the entropy inequality (eq. (2.106)) and grouping
coefficients we get
(

σji +
∂F

∂nk,j
nki

)
Dij +

(
πji −

∂F
∂ni,j

)
Nij −

(
hi +

∂F
∂ni

)
Ni

+

(
nj

∂F
∂ni

+ nj,k
∂F

∂ni,k
+ nk,j

∂F
∂nk,i

)
ωji −

(
∂F
∂Ni

)
Ṅi −

(
∂F

∂Dij

)
dDij

dt
≥ 0. (2.110)

Since Nij and Ṅi can be varied arbitrarily and independently, their coefficients
must vanish, therefore,

∂F
∂Ni

= 0, and πji −
∂F

∂ni,j
= 0. (2.111)

The symmetries of Dij and ωji make the constraints on their coefficients less
stringent

∂F
∂Dij

+
∂F

∂Dji
= 0, (2.112)

(
nj

∂F
∂ni

+ nj,k
∂F

∂ni,k
+ nk,j

∂F
∂nk,i

)
−
(

ni
∂F
∂nj

+ ni,k
∂F

∂nj,k
+ nk,i

∂F
∂nk,j

)
= 0. (2.113)

By using πji =
∂F

∂ni,j
[eq. (2.111)] and the ni,k-symmetry in eq. (2.113) we may reduce

eq. (2.102) to
σji + hjni = σij + hinj. (2.114)

Eqs. (2.110)–(2.113) leave us with the inequality
(

σji +
∂F

∂nk,j
nk,i

)
Dij −

(
hi +

∂F
∂ni

)
Ni ≥ 0. (2.115)
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We now separate the stress tensor [eq. (2.85)], and analogously the internal director
body force into an equilibrium part and a viscous part

hi = he
i + h′i. (2.116)

Plugging both into eq. (2.115) yields
(

σe
ji +

∂F
∂nk,j

nk,i

)
Dij −

(
he

i +
∂F
∂ni

)
Ni +

(
σ′jiDij − h′i Ni

)
≥ 0. (2.117)

Since this inequality must hold under any circumstances and Dij as well as Ni can
be varied arbitrarily, independently of σe

ji and he
i , the respective coefficients must

vanish

σe
ji = −

∂F
∂nk,j

nk,i, (2.118)

he
i = −

∂F
∂ni

. (2.119)

The hydrodynamic parts σ′ji and h′i are not involved, because they, Dij, and Ni are
interdependent. Plugging eqs. (2.118) and (2.119) into eq. (2.117), the inequality
states

σ′jiDij − h′i Ni ≥ 0. (2.120)

As we established at the beginning of section 2.7, equation (2.84) is invariant under
certain transformations of the stress tensor. Specifically, σ is defined irrespective of
an arbitrary pressure p. Analogously, eq. (2.100) shows that the temporal change
rate in free energy density Ḟ is invariant under transformations

(
ge

0, πij
)
7→
(

ge
0 + γni − ni,jβ j, πij + βinj

)
,

with arbitrary constants γ and βi. Thus, the generalized versions of eqs. (2.111),
(2.118), and (2.119) read

πji = βinj +
∂F

∂ni,j
, (2.121)

σe
ji = −pδji −

∂F
∂nk,j

nk,i, (2.122)

he
i = γni − ni,jβ j −

∂F
∂ni

. (2.123)

2.7.3 Coefficients of Viscosity

The remaining parts of the stress tensor and the intrinsic director body force
contain the viscous contributions. Like the free energy density in section 2.7.2,
Ericksen expanded them in terms of ni, Ni, and Dij. Due to the symmetries of
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uniaxial nematics σ′ji and h′i have to be isotropic in these variables and even in
n. The required reference-frame independence implies that σ′ji is a hemitropic
function (invariant relative to a proper orthogonal group) of ni, Ni, and Dij [56].
Experiments by Miesowicz [59] and Zwetkoff [60] suggested linearity in Ni and
Dij, motivating Ericksen’s ansatz [50]

σ′ji = A0
ji + A1

jikNk + A2
jikmDkm, (2.124)

h′i = B0
i + B1

ijNj + B2
ijkDjk. (2.125)

The Ap and Bp are functions of ni. Assuming that these equations are invariant
under reflections through all planes containing ni implies that the Ap and Bp are
transversely isotropic tensors with respect to ni [50]. Tensors with this property
can be expressed as a linear combination of dyadic products of ni and δij [61].
Therefore in their most general forms the coefficients read

A0
ji = µ0δji + µ1njni,

A1
jik = µ2δjink + µ3δjkni + µ4δiknj + µ5ninjnk,

A2
jikm = µ6δjinknm + µ7njnmδik + µ8ninjδkm + µ9δjkninm

+µ10δjmnink + µ11δimnjnk + µ12δjiδkm

+µ13δjkδim + µ14ninjnknm,

B0
i = γ0ni,

B1
ij = γ1δij + γ2ninj,

B2
ijk = γ3δijnk + γ4δiknj + γ5δjkni + γ6ninjnk.

Invoking the n⇔ −n symmetry or, more specifically, that the transformation

(ni, Ni) 7→ −(ni, Ni)

implies
σ′ji → σ′ji and h′i → −h′i

and using niNi = 0 as well as incompressibility Dii = 0, we can reduce the number
of coefficients

σ′ji = (µ0 + µ6Dkmnknm)δji + (µ1 + µ14Dkmnknm)ninj + µ13Dji

+µ15Dkjnink + µ16Dkinjnk + µ3niNj + µ4njNi,
(2.126)

h′i =
(
γ0 + γ6Dkjnknj

)
ni + γ9Diknk + γ1Ni, (2.127)

where

µ15 = µ9 + µ10, µ16 = µ7 + µ11, and γ9 = γ3 + γ4. (2.128)

Another constraint is given by eq. (2.114)

γ6 = µ16 − µ15, γ1 = µ4 − µ3. (2.129)
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The entropy inequality (2.120) dictates that

µ1ninjDij + h(Dij, Ni, ni) ≥ 0, (2.130)

where h is a function quadratic in Dij and Ni. Since Dij can be varied independently,
the coefficient µ1 must vanish. Because of the imposed incompressibility the
coefficient of δji (that is −p) in σ′ji and the coefficient of ni (that is γ) in h′i are
arbitrary. They do not contribute to the hydrodynamics and may be included in
the equilibrium parts σe

ji and he
i , instead. Renaming to coefficients

α1 = µ14 α2 = µ4

α3 = µ3 α4 = µ13

α5 = µ16 α6 = µ15

λ1 = γ1 λ2 = γ9

we arrive at our final description of the viscous stress tensor and intrinsic director
body force

σ′ji = α1nkDkmnmnjni + α2njNi + α3niNj + α4Dji + α5njnkDki + α6ninkDkj,
(2.131)

h′i = λ1Ni + λ2njDji. (2.132)

The full quantities then combine to

σji = −pδji −
∂F

∂nk,j
nk,i + α1nknmDkmninj + α2njNi

+α3niNj + α4Dji + α5njnkDki + α6ninkDkj,
(2.133)

hi = γni − β jni,j −
∂F
∂ni

+ λ1Ni + λ2njDji. (2.134)

From the time-reversal invariance of the equations of motion of individual parti-
cles, in 1969, Parodi [62] derived the relation

α2 + α3 = α6 − α5 (2.135)

between the viscosity coefficients. Thus, the viscosity of NLCs is described by five
independent coefficients. They must conform to the entropy inequality [eq. (2.120)].
Substituting eqs. (2.131) and (2.132) in (2.120) we get an inequality that implies [52]





α4 ≥ 0,
2α1 + 3α4 + 2α5 + 2α6 ≥ 0,
2α4 + α5 + α6 ≥ 0,
α3 − α2 ≥ 0,
4(α3 − α2)(2α4 + α5 + α6) ≥ (α2 + α3 + α6 − α5)

2.

(2.136)
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The coefficients αi are called Leslie viscosities and can—to varying degrees—be
interpreted physically. α4 corresponds to the ordinary dynamic viscosity, also
found in isotropic Newtonian fluids. The other coefficients have no counterparts
in isotropic fluids and give rise to the non-Newtonian properties of LCs. γ1 ≡
α3 − α2 is called the rotational or twist viscosity and is a measure of the director’s
relaxation rate. γ2 ≡ α2 + α3 is called the torsion coefficient and characterizes the
coupling between the director and the shear flow.

2.7.4 Beris-Edwards Formulation

A generalization of nematodynamics that captures nematic behavior in the prox-
imity of topological defects is the Beris-Edwards model. It uses the free energy
density given in sections 2.4 and 2.6. In the one-constant approximation we can
sum the distortion term [eq. (2.37)] and the bulk contribution [eq. (2.80)] to obtain

F =
a
2

QijQji −
b
3

QijQjkQki +
c
4
(
QijQji

)2
+

L
2

Q2
ij,k (2.137)

with material constants b and c, as well as temperature dependent a. The total free
energy density is given by

Ftot =
1
2

v2
i + Ψext + F, (2.138)

where Ψext represents the influence of outside fields. A magnetic field Bi and
magnetic susceptibility χ, for example, imply Ψext = −χBiBjQij/2 [33]. The order
parameterQminimizes the free energy over time. In the absence of flow, its time
derivative Q̇ is therefore proportional to the negative gradient of F with respect to
Q. We define this negative gradient as the molecular field

Hij = −
δF

δQij
+

1
3

δij Tr
δF

δQij
. (2.139)

Analogously to h in Ericksen-Leslie theory, it gives the internal director body force.
In addition, however, it also contains the internal force acting on the scalar order
parameter S. SinceQ remains traceless in time, transitivelyH has to be defined as
traceless. In the one-constant approximation the molecular field is

H = −aQ+ b
(
Q2 − I 1

3
TrQ2

)
− cQTrQ2 + L∇2Q. (2.140)

In the absence of flow the order parameter evolves in time according to Q̇ = ΓH
with collective rotational diffusion constant Γ. Through the use of a generalized
Poisson bracket Beris, Edwards, and Grmela [33] were able to show that, for
the full free energy, that takes flow into account, the time evolution of the order
parameter is given by

d
dt
Q−S = ΓH (2.141)
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with a generalized advection term

Sij = (ξDik + ωik)(Qkj + δkj/3) + (Qik + δik/3)(ξDkj −ωkj)

− 2ξ(Qij + δij/3)Qklvl,k. (2.142)

It couples the order parameter to the flow, allowing it to be rotated and stretched
by flow gradients. For a passive nematic they calculated the stress tensor, obeying
the momentum equation [eq. (2.84)]

ρ
d
dt

vi =
ρτf

3
∂j
[
δij
(
1− 3∂ρP0

)
∂kvk + 2Dij

]
+ σij,j, (2.143)

to be
σij = λij + τij. (2.144)

with symmetric part

λij = −P0δij − ξHik(Qkj + δkj/3)− ξ(Qik + δik/3)Hkj

+ 2ξ(Qij + δij/3)Qkl Hkl −Qkl,j
δF

δQkl,i
, (2.145)

and antisymmetric part
τij =

(
QikHkj − HikQkj

)
. (2.146)

The hydrostatic pressure is given by

P0 = ρT − L
2

Q2
ij,k. (2.147)

We will show that these equations reduce to Ericksen Leslie nematodynamics
for a uniaxial NLC, if the scalar order parameter S is constant. For reasons of
simplicity, here, we only consider elastic forces in the one-constant approximation.
In section 2.4 we already saw that the descriptions of the elastic free energy,
and consequently, the equilibrium molecular field are equivalent, if the elastic
constants fulfill eq. (2.51) L = K

/
2S2. Throughout the comparison we make use

of this condition, and neglect terms proportional to ni, since they only regulate
the normalization and don’t contribute to the dynamics. Applying eq. (2.141) to
a uniaxial NLC, which has order parameterQ according to eq. (2.12), yields the
molecular field

ΓHij = S
(
njNi + niNj

)
− Sξ

(
Diknknj + ninkDkj

)

+
2
3
(S− 1)ξDij + 2S2ξninjDklnlnk+

2
3

S(1− S)ξδijDklnlnk. (2.148)

Its relationship to the Ericksen Leslie molecular field is given by the chain rule

hi ≡ −
δF
δni

= − δF
δQjk

δQjk

δni
= S

(
Hijnj + njHji

)
. (2.149)
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Plugging eq. (2.148) into eq. (2.149), we get the expression

hi =
2S2

Γ
Ni −

2
3Γ

S(S + 2)ξnjDji, (2.150)

which has the same form as the viscous part of the Ericksen-Leslie molecular field.
Comparison with eq. (2.132) yields the correspondence

λ1 =
2S2

Γ
, (2.151)

λ2 = −2
3

S(S + 2)ξ
Γ

, (2.152)

for the Ericksen-Leslie coefficients.
Lastly, we consider the stress tensor’s components, individually. The isotropic

part maps trivially between the two theories. From section 2.4 we also know
the mapping of the elastic part proportional to δF

/
δQij . The remaining, viscous,

components of λij are with the molecular field H according to eq. (2.148) for a
uniaxial NLC

Γλij =−
Sξ

3
(S + 2)

(
njNi + niNj

)
+

Sξ2

3
(4− S)

(
Diknknj + ninkDkj

)

+
2ξ2

3
(S− 1)2Dij−

8S2ξ2

3

(
3
4
+ S− S2

)
ξninjDklnlnk. (2.153)

The antisymmetric part is under these conditions

Γτij = S2(niNj − Ninj)−
S(S + 2)

3ξ(ninkDkj − Diknknj)
. (2.154)

We see that their sum directly corresponds to eq. (2.131). Comparing the coeffi-
cients, we find the Leslie viscosities

α1 = −2
3

S2

Γ

(
3 + 4S− 4S2

)
ξ2 (2.155)

α2 =
1
Γ

[
−1

3
S(2 + S)ξ − S2

]
(2.156)

α3 =
1
Γ

[
−1

3
S(2 + S)ξ + S2

]
(2.157)

α4 =
4
9
(1− S)2

Γ
ξ2 + η (2.158)

α5 =
1
Γ

[
1
3

S(4− S)ξ2 +
1
3

S(2 + S)ξ
]

(2.159)

α6 =
1
Γ

[
1
3

S(4− S)ξ2 − 1
3

S(2 + S)ξ
]

. (2.160)
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2.8 Active Nematics
Cellular organisms store energy in the form of adenosine-triphosphate (ATP). This
energy is used to generate motion in the cytoskeleton by molecular motors such
as kinesin and myosin. They catalyze the hydrolysis to adenosine-diphosphate
(ADP) and a freed inorganic phosphate. Though the bonds in ATP are weak
and require little energy to break, the total energy of ATP is much higher than
that of the ADP+P pair [63]. On the length scale that our model operates on, we
do not need to concern ourselves with the biochemical origin of the forces the
molecular motors exert on the fluid, and can simply represent this additional
source of force as an active stress tensor to include in the hydrodynamic balance
of momentum [64–66]

σa ∝ Q. (2.161)

with
σ = σpassive + σa. (2.162)

Since the energy producing hydrolysis is predicated on a chemical potential dif-
ference between ATP and ADP+P pairs, we may either quantify this potential
through a local concentration c [67]

σa = −Λc2Q (2.163)

that diffuses and is used up in the force production according to

d
dt

c = ∂i

(
Dij∂jc + Λ′c2∂jQij

)
(2.164)

with anisotropic diffusion tensorDij = D0δij +D1Qij and coefficient Λ′, or assume
global abundance

σa = −ΛQ. (2.165)

The active stress may be chosen as extensile (Λ > 0), as in suspensions of micro-
tubule bundles and in most bacteria [68], or contractile (Λ < 0), as in actomyosin
networks and in migrating cell layers [69].

In a uniaxial NLC the force that arises due to activity is

Fa
i ≡ −∂jΛQij = −∂jΛ

3
2

S
(

ninj −
1
3

δij

)

= −3
2

Λ
[

ninj∂jS−
1
3

∂iS + S
(
ninj,j + ni,jnj

)]
. (2.166)

It obviously vanishes in regions whereQ is homogeneous. If the curvature strain
tensor ni,j is large, and∇S is small, as is the case in very close proximity to defects,
the active force is

Fa
∣∣∣∣
∇S=0

= −3ΛS
2

[Tr(∇⊗ n)n + (∇⊗ n) · n], (2.167)
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Figure 2.12: A +1/2 defect affected by extensile stress is propelled towards its head.

and acts predominantly parallel to n. If, on the other hand, ni,j is small, i.e. the
director only changes slowly in space, there is a force

Fa
∣∣∣∣
∇n=0

= −3Λ|∇S|
4

{[
cos(2ϑ) +

1
3

]
q + sin(2ϑ)p

}
, (2.168)

which we decomposed into a component parallel to q ≡ ∇S/|∇S| and an or-
thogonal component with p ⊥ q. It will tend to act parallel to∇S, if the angle
ϑ = ∠(n,∇S) is around 0, π/2, or π. If ϑ ≈ π/4 or ϑ ≈ 3π/4, the force Fa and
∇S are close to orthogonal. The active stress produces the greatest advective
force in the presence of +1/2 defects. They are driven in a direction along their
symmetry axis; for extensile stresses towards their ‘heads’, and for a contractile
stress in the direction of their ‘tails’ (see figure 2.12).

There are multiple symmetry-based propositions for extra terms. In studying
the rheology of active-particle suspensions, Hatwalne et al. found that higher
order contributions to the stress tensor of the form σa − 1/3 Tr(σa)I = −ΛQ+
Λ2Q

2 + . . . are allowed [65]. However, across the literature, these have mostly
been neglected [6, 67, 69–72]. Secondly, the activity contributes directly to the time
evolution of the order parameter through extra terms in eq. (2.141) [6, 65, 66]

d
dt
Q = S + ΓH + λQ+ Da∇2Q+ k0D. (2.169)

Here, λ is an additional activity parameter, that is suggested to take the negative
value λ = −1/τa with activity correlation time τa in dilute bacterial suspensions
[65], or negative values when describing concentrated actomyosin gels and other
self-aligning systems [6, 66], similarly to Λ. This parameter is incorporated into
some models of active nematics [6, 70]. The active diffusivity Da and kinetic
coefficient k0 are generally ignored. The neglect of these terms is well-founded.
For all three of them, terms of the same form are already present in the passive
equations [65]. Therefore, including them only corresponds to a rescaling of the
free energy [70]. The term λQ is in principle present in our model and in our
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(a) Transition between tetrahedral (left, right) and planar (center) de-
fect configurations.

(b) The angular distance between the defects is taken pair-wise
and averaged over.

Figure 2.13: An active NLC constrained to the surface of a lipid vesicle oscillates
between a tetrahedral (109.5◦) and a planar (120◦) defect configuration. Image
credits: [1].

algorithm (see chapter 3), but for the scope of this thesis we choose λ = 0, which
matches the limit of infinite activity correlation time.

For large enough values of the activity, active nematic fluids exhibit the remark-
able properties of spontaneous generation of topological defects. In such systems
defects have been observed to move spontaneously and behave like self-propelled
particles (see figure 2.12). In their seminal 2014 paper Keber et al. showed, how
an active nematic film encapsulated by a shape-changing lipid vesicle can form a
biomimetic material [1]. The initially spherical vesicle has a net topological charge
of 2 and distributes it in the form of four +1/2 defects. Since they are repelled
by one another, in equilibrium, they are positioned at the corners of an inscribed
tetrahedron, maximizing their separation. When the microtubules comprising
the nematic were supplied with an energy source in the form of ATP, the defects
began to move. However, no new defects were formed, annihilated or fused, since
the vesicle’s diameter was below the length scale at which the system is unstable
to bend deformations. The asymmetric shape of the +1/2 defects caused active
stresses, that could not be compensated in the confinement while keeping the
relative defect distances constant. As a result, the system oscillated between a
tetrahedral and a planar defect configuration (see figure 2.13). The corresponding
period time matched the time it would take a defect to orbit the vesicle. When
they deflated the vesicle slightly, it started to fluctuate around a mean spherical
shape, characterized by the extension and contraction of the major and minor axis
of an ellipse. The period was, again, proportional to the activity. Additionally, four
protrusions grew out of the vesicle. They became larger, as the bubble was deflated
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Figure 2.14: Schematic representation of the oscillation between an equatorial +2
defect and four +1/2 defects (orange triangles). Image credits: [1]

Figure 2.15: Local director (red) and active flow (blue) of a NLC in a cylinder with
(a) homeotropic and (b) circular anchoring. Image credits: [70]

further. After a re-inflation, the original shape could be recovered. The dynamics
were mainly governed by the activity parameter (ATP concentration), but switched
between different dynamical modes, depending on the vesicle diameter. For small
radii, for example, the microtubules formed a rotating, singular equatorial ring.
The ring grew due to the active stresses and deformed, giving rise to four +1/2
defects. They collided in pairs, initiating the collapse into a new ring, that was
rotated by π/2, compared to the original one (see figure 2.14).

Using a modified lattice Boltzmann algorithm, Ravnik and Yeomans [70] stud-
ied active nematic flows in a periodic cylindrical capillary. Similarly to the vesicle,
a cylinder’s topological properties can cause stable defects to emerge naturally,
depending on the boundary conditions. Specifically, if the director is anchored
parallel to the periodic (capillary) axis, no defects form. For any orthogonal type of
anchoring the equilibrium configuration includes exactly two defects with charge
+1/2. Their orientation depends on the angle between the anchoring direction
and the surface. If the anchoring is homeotropic, their heads face inward. With
parallel (circular) anchoring, their heads face outward (fig. 2.15). For homoge-
neous anchoring along the capillary axis, Ravnik and Yeomans observed three
distinct active flow regimes. At low activity there was no flow at all, at medium
activity a unidirectional flow formed along the capillary axis, and at high activity
the flow became bidirectional (fig. 2.16). In the cylinder-plane a secondary flow,
about two orders of magnitude weaker, emerged. In the second flow regime it
showed 8 distinct vortices, and in the third one 4 vortices. For in-plane anchoring
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Figure 2.16: Regimes of active flow in a cylinder with homogeneous boundary
conditions along the periodic axis. For increasing activity there are three different
modes. A basic state with no flow (left), an excited state with unidirectional flow
(middle), and a second excited state with bidirectional flow (right). The blue arrows
indicate the flow velocity within the capillary (yellow). Image credits: [70]

Figure 2.17: Position of the defects ∆ compared to the capillary radius R as a
function of the activity ζ for homeotropic and circular anchoring (left). At high
activity the defects escape in the third dimension (right). Image credits: [70]

the in-plane flow began to form at much lower activity. The extensile active stress
drove the defects in the directions of their heads. This deformed the director field,
increasing the opposed elastic stress, and balancing out the system. The net effect
was a change in the defects’ stationary positions (see figure 2.17 on the left). As
the activity rose higher, a globally, slowly deformed configuration became energet-
ically favorable to the two local, severe deformations, and the defects escaped in
the third dimension (fig. 2.17 on the right).
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Chapter 3

Multiparticle Collision Dynamics

The computational complexity of particle dynamics can be greatly reduced, if
the calculation of pair-wise interactions is avoided. On the basis of this idea
Malevanets and Kapral proposed a new computational method in 1999 [73], that is
now referred to as multiparticle collision dynamics (MPCD) or stochastic rotation
dynamics (SRD).

The MPCD algorithm uses a bottom-up approach to reproduce fluid dynamics.
Mass, momentum and energy are transported in the form of MPCD-‘particles’.
These particles are subjected to two alternating steps. In the streaming step they
move ballistically. In the collision step they stochastically exchange velocities,
conserving momentum and energy locally. Since particles are used, the positions
and velocities take on continuous values. Only time and mass are discretized.
The algorithm is well suited for mesoscale modeling, since it incorporates both
the macroscopic hydrodynamic fields and thermal fluctuations, while remaining
computationally efficient. We extended the algorithm to the domain of NLCs,
using the Beris-Edwards formulation of nematodynamics.

3.1 Basic MPCD
We will start with a description of the basic MPCD algorithm for hydrodynamics.
In a simulation there are N · Lx · Ly · Lz MPCD-particles i with positions ri, veloci-
ties vi, and unit masses. Initially, they are positioned uniformly at random within
the simulation domain of dimensions Lx · Ly · Lz and have Boltzmann-distributed
velocities with dimensionless thermal energy EkT. Time is discretized into time
steps ∆t. Each step is further separated into two stages. In the streaming step,
each particle i moves balistically

ri(t + ∆t) = ri(t) + vi(t)∆t, (3.1)

only deviating from its straight path, if it encounters a domain boundary. This
allows for the transport of mass, momentum and energy. Critically, in this step,
the particles do not interact with one another.
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The streaming step is complemented by the collision step. Here, the system is
coarse grained into cells of unit length. In the resulting Lx · Ly · Lz grid every cell
is treated independently. There exist two main variations of the MPCD algorithm.
We call the first one ‘standard MPCD’ or simply MPCD, and the second one SRD.
In both, first, the center of mass velocity

vα =
1

Nα
∑

j∈cell
vj, (3.2)

is calculated. To conserve momentum, it has to be kept constant. The two algo-
rithms differ in how they deal with the relative velocities vi − vα. In standard
MPCD an Andersen thermostat is applied. New relative velocities vran

i are ran-
domly generated from a normal distribution with variance EkT. They are shifted
to have exactly 0 mean, and substituted for the old ones

vi(t + ∆t) = vα(t) + vran
i − 1

NC
∑

j∈cell
vran

j . (3.3)

In SRD the computationally costly generation of the N random numbers vran
i is

avoided. Instead, the relative velocities are rotated around a random axis bα by a
fixed angle β. DefiningRα as the corresponding rotation matrix, the SRD collision
step is given by

vi(t + ∆t) = vα(t) +Rα(bα, β)[vi(t)− vα(t)]. (3.4)

The angle β needs to have a value different from 0 and π (commonly π
/

2 or 2π
/

3).
To keep particles from accumulating artificial correlations with their neighbors,

the cell grid is shifted randomly for each collision step [74]. Figure 3.1 gives a
schematic representation of the algorithm’s core operations in a 2-dimensional
system.

3.2 Angular Momentum Conservation
Both standard MPCD and SRD can be modified to conserve angular momentum
in the collision step. In 2-dimensional SRD this is accomplished by choosing the
rotation angle β in accordance to [75, 76]

sin β = − 2AB
A2 + B2 , and cos β =

A2 − B2

A2 + B2 , (3.5)

where

A =
NC

∑
i=1

[ri× (vi − uC)] ·m, and B =
NC

∑
i=1

ri · (vi − uC). (3.6)

In 3 dimensions the calculation of the center of mass

rα =
1

Nα
∑

j∈cell
rj (3.7)
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Figure 3.1: The standard MPCD algorithm includes two steps. (a) In the free
streaming step the particles move ballistically. (b) In the collision step the fluctuating
part of their velocities is generated randomly from a Boltzmann distribution. The
SRD variant of MPCD has the same streaming step (c), but in the collision step a
stochastic rotation is applied to the fluctuating velocity components (d). In both
cases, the collision step is surrounded by a coordinate shift and its inverse.

for every cell α is required. Defining

rα
i ≡ ri − rα, (3.8)

we can compute the angular momentum of cell α before the collision step

Lα
Before = m ∑

i∈cell
rα

i × (vi − vC) = m ∑
i∈cell

rα
i × vi, (3.9)

and after the collision step

Lα
After = m ∑

i∈cell
rα

i × (vran
i + vC) = m ∑

i∈cell
rα

i × vran
i . (3.10)
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The difference in angular momentum, that needs to be compensated is therefore

∆Lα = Lα
After − Lα

Before = m ∑
i∈cell

rα
i × (vran

i − vi). (3.11)

We may revert it by applying an angular velocity Ωα, satisfying

tΩα = −∆Lα

⇔ Ωα = −t−1∆Lα (3.12)

with moment of inertia tensor t ≡ t(α). For the MPCD algorithm with angular
momentum conservation, called MPCD+a, this implies the collision rule [76]

vi(t + ∆t) = vα(t) + vran
i − 1

NC
∑

j∈cell
vran

j + Ωα× ri. (3.13)

For SRD+a we have [77]

vi(t + ∆t) = vα(t) +Rα[vi(t)− vα(t)] + Ωα× ri. (3.14)

3.3 Nematic Adaptation
We incorporate nematodynamics into MPCD by giving every particle extra proper-
ties that describe the medium’s nematic characteristics. Using the Beris-Edwards
model described in section 2.7.4, it is most convenient to directly equip every
particle with its own order parameterQi. We introduce new ‘nematic’ step to the
scheme, in which we work out the nematodynamics of the system.

3.3.1 Initialization

Our algorithm is capable of dealing with boundaries of arbitrary shape. The spatial
derivatives appearing in the free energy make the values of the order parameter
outside of the LC’s domain important, and the free energy gains additional terms
close to the boundary. Therefore, we start the initialization process by establishing
the computation area. Here, all of the cells are classified. Most of them are
completely contained within the LC and are classified as normal. Cells that are
intersected by a domain boundary we call ‘border’ cells. They contain normal and
ghost particles. The free energy of these cells includes boundary terms, leading
to an anchoring of the director. Cells, that are outside the domain, but tangential
to the boundary are classified as ghost cells. They contain only ghost particles
and are anchored in the same way as border cells. Since they are not a part of the
LC, they don’t couple to the flow, directly. If any cells are left, they are classified
as ‘outside’. They are less significant and their local order parameter Q is kept
constant. Figure 3.2 gives a schematic representation of the computational grid.

Afterwards N particles are positioned randomly within every cell. Similarly to
the computational grid particles positioned outside of the domain are assigned
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Figure 3.2: The computational grid is determined by the shape of the boundary
(black line) and includes normal cells (blue), border cells (red), ghost cells (yellow),
and outside cells (green).

‘ghost’ status. This discrimination is based on the exact shape of the bounding
surface, not on the cell type. However, ghost particles in ‘outside’ cells only play a
role in the collision step, where they exchange (angular) momentum with other
particles. The rest of the ghost particles also interact via their order parametersQi.

Next, the ordinary particle velocities are initialized according to a Boltzmann
distribution. All velocity components are drawn from a standard normal distri-
bution, since we choose EkT = 1. Then, the center of mass drift of the system is
subtracted and a rescaling is applied, to make sure there is unit variance across all
velocity components. Ghost particle velocities, on the other hand, are initialized at
zero.

If there are non-periodic boundaries, now S0 and n0(r) are calculated, which
are needed for the anchoring of the order parameterQ (see eqs. (2.54) and (2.55)).
For S0 we use the analytical value for the equilibrium-scalar-order-parameter in
uniaxial NLCs [eq. (2.82)]

S0 =
b
6c

+
1
2

√(
b
3c

)2

− 8a
3c

. (3.15)

The direction of anchoring is calculated at all ghost- and border-cells. Using the
unit surface normal Â and the geometric center cα of cell α, the vector can be
expressed as

nα
0 = RÂ(cα) (3.16)

with a constant rotation matrix R, that depends on the type of boundary condi-
tion. For homeotropic boundary conditionsR = 1, for homogeneous boundary
conditionsR needs to rotate by an angle π

/
2 and has a degree of freedom. Any

other rotation matrices are also permissible and correspond to anchoring with a
specific angle to the surface.

3.3.2 Algorithm

After the initialization, we loop through the time steps. At the start of every step,
we set all ghost particle positions to zero and randomize their positions. This
randomization process keeps them within the same cell, and outside of the domain.
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Then, the particle positions are shifted randomly. This is equivalent to a shift of
the coordinate system. Before the particles are shifted back, the collision step is
performed. It requires no adaptation to LCs. In this step, ghost particles are treated
in the same way as ordinary particles, leading to a change in their velocities.

After the second shift, a stage new to the MPCD-algorithm is executed. We
will call this the nematic step. In the nematic step we want to calculate the internal
force, that arises due to the nematic properties of the medium, and we want
to evolve the order parameter Q in time. Since the Beris-Edwards theory is a
macroscopic model, we need to apply it to macroscopic quantities. Therefore, we
discretize the system in the same way as in the collision step. Cell averages yield
the macroscopic order parameter

Qα =
1

Nα
∑

j∈cell
Qj, (3.17)

and velocity (see eq. (3.2)) for every cell α. Calculating the gradients of the order
parameter Qα

ij,k and of the velocity vα
i,j ↔ (Dα

ij, ωα
ij) across the grid allows us

to construct elastic and advective terms. All spatial derivatives are performed
symmetrically, if the boundary conditions allow. Otherwise we use the second
order one-sided finite-difference [78], for example

d
dx

v(x, y, z) = ∓3v(x, y, z)− 4v(x± ∆x, y, z) + v(x± 2∆x, y, z)
2∆x

+O
(

∆x2
)

.
(3.18)

The upper sign is used, if the simulation domain ends at (x, y, z), facing a boundary
in negative x-direction. The lower sign is used, if a boundary is encountered in
the positive x-direction.

If we consider the hydrostatic pressure in eq. (2.147), we see a hydrodynamic
component ρT and a nematic component − L

2 Q2
ij,k. The former is implicitly present

in the MPCD algorithm. The latter can be calculated on an individual cell level as

Pα
0 = −L

2
Qα

ij,kQα
ij,k. (3.19)

The system should minimize the free energy in eq. (2.138) with no external field
Ψext = 0. Employing the one-constant approximation [see eq. (2.140)] we obtain
the molecular field for each cell as

Hα
ij = −aQα

ij + b
[

Qα
ikQα

kj − δij
1
3

Qα
klQ

α
kl

]
− cQα

ijQ
α
klQ

α
kl + L∇2Qα

ij, (3.20)

where we used the symmetry of Qα
ij. Eqs. (3.17), (3.19), and (3.20) allow us to

calculate the stress tensor within each cell according to eqs. (2.144) and (2.165)

σα
ij = −Pα

0 δij − ξHα
ik(Q

α
kj + δkj/3)− ξ(Qα

ik + δik/3)Hα
kj

+ 2ξ(Qα
ij + δij/3)Qα

kl H
α
kl − LQα

kl,iQ
α
kl,j + Qα

ikHα
kj − Hα

ikQα
kj −ΛQij. (3.21)



3.3 Nematic Adaptation 45

Here, we used the one-constant approximation, again, in which the distortion free
energy density Fd is given by eq. (2.50), so that

δF
δQkl,i

= LQkl,i.

The stress tensor field defines a force, that we can apply in the streaming step. In
eq. (2.84) we see a hydrodynamic term and a nematic term. The former is, again,
implicit in the MPCD algorithm. The latter yields said force

ρα d
dt

vα = ∇ ·σα. (3.22)

Keeping in mind, that vα is composed of individual particle motion, we take the
time derivative of eq. (3.2) and multiply by Nα. This yields

ρα

ρ0

d
dt

vα = ∑
j∈cell

d
dt

vj, (3.23)

with a scaling parameter

ρ0 ≡
ρα

Nα
=

ρ

N
. (3.24)

It is a material constant and independent of α, because the MPCD-particles repre-
sent fluid elements and their number density is proportional to the fluid’s local
density. Since we chose the cell as the smallest unit of discretization for the force,
we have d

dt vj =
d
dt vi ∀j, i ∈ cell. This simplifies eq. (3.23) to

ρα

ρ0

d
dt

vα = Nα
d
dt

vj ∀j ∈ cell. (3.25)

Taking into account eq. (3.22), we see that the acceleration of an individual particle
within the cell α is

aα ≡ d
dt

vj =
1

ρ0Nα
∇ ·σα. (3.26)

It is applied in the streaming step. In the nematic step, with the knowledge of
Dα and ωα, we can calculate the generalized advection term for every cell from
eq. (2.142)

Sα
ij = (ξDα

ik + ωα
ik)(Q

α
kj + δkj/3) + (Qα

ik + δik/3)(ξDα
kj −ωα

kj)

− 2ξ(Qα
ij + δij/3)Qα

klD
α
lk, (3.27)

where we substituted QklDlk for Qklvl,k, since their difference Qklωlk vanishes due
to symmetries. We can now integrate the order parameter according to eq. (2.141)

Qα
i (t + ∆t) = Qα

i (t) + ∆Q(t)∆t. (3.28)
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For the three types of cells inside the medium we have




∆Q(t) = ΓHα(t) +Sα(t), if α ∈ normal,
∆Q(t) = ΓHα(t) +Sα(t) + WA(Q−Q0), if α ∈ border,
∆Q(t) = ΓHα(t) + WA(Q−Q0), if α ∈ ghost,

(3.29)

where we took into account the additional free energy close to boundaries from
eq. (2.54). Additionally, Qi must be ensured to remain numerically traceless at
every time step. We enforce this by substituting ∆Q with ∆Q− I Tr(∆Q)/3 in
each cell. Even though the underlying equation for the time evolution ofQ gives
the material derivative dQ

/
dt , it can be integrated without being expanded, since

we apply the incremental changes to the particles i, which are advected, and not
to the cells α. Still, every particle i within a cell α experiences the same change in
order parameter.

The time step concludes with the streaming step. Here, position and velocity
are integrated. For every particle i in cell α we set

ri(t + ∆t) = ri(t) + vi(t)∆t +
1
2

aα(t)∆t2, (3.30)

vi(t + ∆t) = vi(t) + aα(t)∆t, (3.31)

with acceleration aα(t) from the nematic step. If periodic boundaries are encoun-
tered by a particle, its position is shifted, without affecting the modulus with
respect to the corresponding dimension Lk. If non-periodic boundaries are encoun-
tered, the bounce-back condition is applied. That is, the particle is propagated until
it collides with the surface, then its velocity is reversed, and it is propagated for
the remainder of the time step. If an energy concentration c is used, the streaming
step ends with the integration of c [see eq. (2.164)]

c(t + ∆t) = c(t) + ∂i

[
Dijc,j(t) + Λ′c(t)2Qij,j(t)

]
∆t. (3.32)

3.3.3 Dimensionless Parameters

The algorithm presented here has many dimensionless parameters. Principally,
there are the three lengths of the cuboid that encloses the system Lx + Gx, Ly + Gy,
and Lz + Gz, the number of MPCD-particles per cell N ≡ 〈Nα〉, the length of a
time step ∆t, and total simulation time M∆t. The cuboid lengths are divided into
the maximal length of the nematic fluid Li and the length of the remaining ghost
cells in the respective dimension i.

The nematodynamics, further, depend on the elastic constant L, the activity
parameter Λ, the tumbling constant ξ, and on the collective rotational diffusion
constant Γ. There is another set of parameters governing the boundary conditions,
namely the shape of the boundary, the anchoring coefficient W0, and the rotation
matrix R used for calculating the anchoring director nα

0 for every cell α. Table 1
gives an overview of the parameters.
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parameter symbol

system dimensions Lx, Ly, Lz

number of MPCD-particles per cell N

time step ∆t

Laundau-de Gennes coefficients a, b, c

collective rotational diffusion constant Γ

elastic constant L

anchoring strength WA

tumbling parameter ξ

activity parameter Λ

Table 1: Primary input parameters for our algorithm.

Within the simulations we fix the dimensionality at ND = 3, the lengths of
every cell ds, as well as the thermal energy EkT, and the mass of every particle
ms at 1. The allows us to relate the dimensionless parameters from the previous
paragraph to reality, choosing three reference values: a length d0, a time τ0, and a
mass m0. The elastic constant has a unit of force and can be expressed as

L =
L∗

L0
= L∗

τ2
0

d0m0
. (3.33)

We mark dimensional values, such as L∗, with an asterisk and construct the
reference quantities (in this case L0) from d0, τ0, and m0. The collective rota-
tional diffusion constant has units of inverse dynamic viscosity and can be non-
dimensionalized as

Γ =
Γ∗

Γ0
= Γ∗

m0

d0τ0
. (3.34)

The same holds for the anchoring strength

WA =
W∗A
Γ0

= W∗A
m0

d0τ0
. (3.35)

The dimensional coefficients in the Laundau-de Gennes free energy a∗, b∗, and
c∗, as well as the activity Λ have units of pressure. By way of example we will
consider

b =
b∗

b0
= b∗

L∗d0

kBT
= b∗

L∗τ2
0

d0m0
. (3.36)

For the time step we simply have

∆t =
∆t∗

τ0
. (3.37)
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In this thesis, we restrict ourselves to ξ = 1, ∆t = 0.01, N = 60. As basic
reference quantities we choose d0 = 1× 10−5 m, and τ0 = 1× 10−2 s. Since, in
MPCD, the viscosity of the fluid depends on the time step ∆t, we can calculate a
reference mass

m0 = α4
τ0d0

4ηs
≈ 6.67× 10−12 kg, (3.38)

with a Leslie viscosity of α4 = 0.0652 Pa s. The dimensionless shear viscosity in
MPCD is given by a kinetic and a collisional contribution ηs = N(νk + νc) ≈ 4.07
with [79, 80]

νk =
EkT∆t

ms

(
N

N − (ND + 2)/4
− 1

2

)
, (3.39)

νc =
d2

s
24∆t

N − 7/5
N

. (3.40)

Unless stated otherwise, we use the dimensional parameters L∗ = 40 pN,
Γ∗ = 730/(Pa s), W∗A = 1000/(Pa s), and (a∗, b∗, c∗) = (−0.08 Pa, 0.92 Pa, 0.76 Pa).
The resulting dimensionless parameters are given in table 2.

a b c Γ L WA

−20 230 190 0.05 100 12000

Table 2: Values of the dimensionless input parameters for most simulations.
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Chapter 4

Results

Our modified MPCD algorithm is capable of modeling NLCs in the presence of
complex boundary conditions on mesoscopic length scales. In this chapter we will
first confirm the validity of the simulations, and go on to investigate the behavior
of NLCs in cylindrical confinement, a setup with experimental relevance [70].

Although we implemented and tested the algorithm to a high degree of gen-
erality, here we naturally restrict ourselves to a narrow set of configurations. To
this end, all of the following simulations were done with the angular momentum
conserving MPCD collision step, and not the SRD variant. Energy sources are
assumed to be abundant, driving the molecules as expressed in eq. (2.165)

σa = −ΛQ,

and requiring no concentration field [cf. eq. (2.163)]. Excluding the verification,
the simulations all use the dimensionless parameters given in section 3.3.3. In
particular, the second activity parameter λ is fixed at 0. This leaves the system
dimensions Lx, Ly, Lz, the activity Λ and the boundary conditions as variables.

4.1 Verification
We start with a passive, uniform, unconstrained NLC and verify its basic hydrody-
namic behavior in the presence of a pressure gradient. Then, we examine how the
transition between the isotropic and the nematic phase takes place and test how
well the dynamics of defects are reproduced in our simulations. The verification
concludes with a look at the impact of an active stress on nematodynamics.

4.1.1 Poiseuille Flow

Before studying nematodynamics, it is useful to check the validity of the hydrody-
namics produced by our algorithm. If we apply a constant pressure gradient to
a system bounded by parallel walls with homogeneous anchoring, we expect a
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Figure 4.1: Flow profile at constant pressure gradient in x-direction. The simulations
were done with walls of thickness y0 = 1 parallel to the xz-plane, Lx = 15, Ly = 40,
Lz = 4, P,x = 0.5, ∆t = 0.01, Γ = 0.05, L = 100, and Seq = 0.633

Poiseuille flow to form, which has a parabolic profile

v(y) =
1

4µ
P,x

[(
Ly

2

)2

−
(

y− y0 −
Ly

2

)2
]

, (4.1)

with dynamic viscosity µ. In our simulations the director field evolves to be
completely homogeneous, fully aligned with the x-axis. Figure 4.1 shows the
simulation results and the theoretical profile for the velocity. They match up
very well and allow us to calculate the dimensionless viscosity µ = 118.8 for this
parameter configuration. The computational grid used for these simulations is
given in figure A.1 of the appendix.

4.1.2 Isotropic-Nematic Phase Transition

To explore the isotropic-nematic phase transition, we consider the idealization
of an unconstrained NLC on an infinite domain. A common parametrization
a = (1 − γ/3), b = c = γ [58, 81, 82] for the study of the transition makes
use of Doi’s excluded volume parameter γ = ρDqDν2

/
αD [83–85]. Here, ρD is

the concentration, qD the molecular aspect ratio, and αD and ν2 are geometrical
constants. An unconstrained NLC will evolve towards a uniaxial state. We have
shown in section 2.6, that, in this case, the Landau-de Gennes free energy reduces
to [eq. 2.81]

FB =
3
4

aS2 − 1
4

bS3 +
9
16

cS4,

with temperature-dependent parameter a = A(T − T∗). It is minimized for the
equilibrium order parameter Seq according to eq. (2.82). Rewriting it in terms of γ
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Figure 4.2: Isotropic nematic phase transition. Initialized isotropically. The simula-
tions were done with γ = 1.5, ∆t = 0.01, Γ = 0.1, and L = 100.

yields

Seq(γ) =

{
1
6 +

1
2

√
1− 8

3γ if γ ≥ 8/3,

0 if γ < 8/3.
(4.2)

The numerical analogue to the infinite, unconstrained NLC is a LC with periodic
boundary conditions. Initializing the system isotropically, and evolving it for
3× 104 time steps, we obtain the equilibrium order parameter values Seq for
different γ. The results are plotted in figure 4.2. They match up very well with
both the analytics, and the results of different numerical methods, i.e. Denniston
et al. [81]. As expected in 3D, we find a first-order phase transition from the
isotropic to nematic phase. For Seq(γ) > 0 the simulations take at most 2× 104

time steps to equilibrate. Figure 4.3 shows the process in some detail. Order
forms slowly and the LC finds a locally favorable biaxial configuration. Then,
the biaxiality decreases to zero, as the scalar order parameter reaches a value
close to equilibrium at teq. Afterwards, Seq is approached asymptotically. The
system chooses its director freely, as there is no imposition from outside. The
final direction is already established by about teq/3, much earlier than Seq. The
figure also demonstrates that nematically initialized systems take about an order
of magnitude less time to equilibrate. Of course, this depends on the details of
the initialization. Once established, the director is constant. Even as the order
changes for the nematically initialized system, there is no change to the director.
For Seq(γ) = 0 the simulations take much less time to equilibrate (fig. 4.4). Even
initialized at complete order, the system is very close to its asymptotic state by
about 1× 104 time steps. The biaxiality is always zero.



52 4. Results

0.0

0.1

0.2

0.3

0.4

0.5

0.6
O

rd
er

Order parameter S
Biaxiality P

0 2500 5000 7500 10000 12500 15000 17500 20000

Time t/∆t

0

π
4

π
2

A
ng

le

Azimuthal angle φxy
Polar angle θz

Figure 4.3: Transition to equilibrium from the isotropic state (continuous lines) and
from the nematic state S(t = 0) = 0.8 (dotted lines). The simulations were done
with parameters γ = 4.0, ∆t = 0.01, Γ = 0.1, L = 100, and Seq(γ) = 0.455.
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Figure 4.4: Transition to (isotropic) equilibrium from the nematic state S(t = 0) = 1
(continuous lines) and from the nematic state S(t = 0) = 0.5 (dotted lines). The
simulations were done with parameters γ = 1.5, ∆t = 0.01, Γ = 0.1, L = 100, and
Seq(γ) = 0.
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Figure 4.5: Schematic of the director field in our simulations of defect annihilation.
The +1/2 defect (red) and the −1/2 defect (blue) are attracted and converge, until
they collide. The resulting director field is singularity-free.

4.1.3 Defect annihilation

By studying how defects annihilate in our simulations, we can verify that a more
complex and stringent prediction of nematodynamics is reproduced. We prepare a
relatively clean form of this process, by initializing a +1/2 and a−1/2 disclination
line parallel to the z-axis. They are separated by a distance of s(t = 0) = 64 cells
along the x-axis, in a domain with periodic boundary conditions. Alternatively,
walls could be used in the x- and y-directions, if the anchoring is weak. The simu-
lation domain has dimensions Lx = 160, Ly = 90, and Lz = 4, ensuring minimal
interference from the boundaries. Figure 4.5 gives a schematic representation of the
setup. As discussed in section 2.5, we expect the distance between the disclination
lines to shrink approximately as s(t) = d0

√
t0 − t [eq. (2.62)]. Figure 4.6 shows the

separation over time in our simulations. In spite of the coarse computational grid,
the algorithm is able to resolve the process very well. The data matches eq. (2.62)
closely, as can be seen from the fit.

4.1.4 Activity

We model microscopic activity as an additional contribution to the stress tensor
[see eq. (2.165)]. Its magnitude is controlled by the parameter Λ, but qualitatively
it only produces two kinds of forces. As discussed in section 2.8, values Λ > 0
correspond to extensile stress, while Λ < 0 corresponds to contractile stress. The
model applies exclusively to nematic systems and the force is proportional to the
divergence of the order parameterQ. Therefore, we only need to consider defects
to see its effect. As long as the external constraints are not too dominant, NLCs
close to their steady state only contain charge ±1/2 disclination lines (see sec-
tion 2.5). We initialized a low-temperature active system with periodic boundary
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Figure 4.6: The blue line gives the measured distance between a +1/2 and a -1/2
defect over time. The red line gives the best fit s(t) = d0

√
t0 − t with fit parameters

d0 = 0.245 and t0 = 69910. The defects annihilate after t0 ≈ 7× 104 time steps. The
parameters used were Lx = 160, Ly = 90, Lz = 4, and N = 50.

conditions along all axes and small thickness Lz = 4 in the isotropic state. It under-
went the Kibble mechanism (see section 2.5) and entered the nematic phase with a
number of defects. Figure 4.7 shows how they are affected by the extensile active
stress. Forces from a contractile stress would act in the exact opposite direction.
Clearly, both kinds of defects produce flow fields in their surrounding volumes.
However, only the +1/2 defect experiences a net force in isolation. This matches
up with experiments [1]. In the following section we will see that, in confinement,
the elastic force often counteracts the active one. Additionally, the hydrodynamic
force and higher order interactions between the order parameter field and the flow
field need to be taken into account. The mental picture suggested by figure 4.7 (a)
is, therefore, very simplified.
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Figure 4.7: In our simulations of active quasi-2D-systems, defects produce force
fields, that decay strongly with distance. The positively charged +1/2 defects
experience a large, directed force, while the forces acting on −1/2 defects cancel
out. The colored pixels represent the discretized cells. However, in the collision
step, they are randomly shifted.
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4.2 Active Nematics Inside a Cylindrical Channel
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Figure 4.8: Equilibrium order parameter fields (activity Λ = 0) in our simulations
of a cylindrical channel. The director (white lines) and the scalar order parameter
(background color) are given for circular and radial anchoring.

The behavior of active NLCs is heavily influenced by their boundary condi-
tions. In this respect, the topological constraints are especially relevant, since they
determine the defect configuration. As we saw in the previous section, defects are
the force poles of nematic activity. We study the effects of boundary conditions on
active NLCs in a 3-dimensional channel. The focus is on a cylindrical channel with
circular cross-section, but we also investigate one with elliptical cross-section.

4.2.1 Circular Cross-Section

The channel has a radius of Rc = 50. We accommodate it within a simulation
domain of Lx = 102, Ly = 102, that leaves room for ghost cells which represent the
walls. Boundary conditions along the capillary z-axis are periodic, to approximate
an infinite length. The actual length is fixed at Lz = 4. This is computationally
economical, but leaves enough cells for the calculation of meaningful finite differ-
ences [70]. The computational grid (see section 3.3) is displayed in figure A.2 of
the appendix. The MPCD-particles are subject to no-slip boundary conditions on
the channel’s wall.

We investigate four different anchoring conditions for this geometric setup.
Across a wide range of activities Λ ∈ [−0.135, 0.135] we simulate systems with
constant Λ for 250 000 time steps and apply either (i) homeotropic anchoring,
which we call ‘radial’, (ii) tangential (homogeneous) anchoring in the polar plane,
which we call ‘circular’, (iii) tangential (homogeneous) anchoring parallel to the
cylinder axis, called ‘axial’, and (iv) 45◦ anchoring within the polar plane, called
‘tilted’. In a 3-dimensional system, these would accommodate an aster (i), a vortex
(ii), or a spiral (iv), perfectly (see section 2.5). Every one of the constraints has
topological implications for the system. In equilibrium, the axial configuration
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Figure 4.9: Equilibrium order parameter fields (activity Λ = 0) in our simulations
of a cylindrical channel. The director (white lines) and the scalar order parameter
(background color) are given for tilted and axial anchoring.

will align the NLC uniformly along the z-axis. The other setups enforce the
formation of defects, since loop integrals along the cylinder boundary evaluate
to a director angle change of 2π. We observe that the implied charge of n = 1 is
always distributed in the form of two +1/2 disclination lines, even if the system is
initialized with a central +1 defect and an otherwise smooth order parameter field.
This is consistent with experiments (see section 2.5). The position and orientation
of the defects depends on the specifics of the system. Figures 4.8 and 4.9 show 2D
cross-sections of the equilibrium states our four setups reached. Motivated by the
geometry and symmetry of our systems, we use 2D polar coordinates (R̄, φ). The
only positions with mesoscopic relevance are those of the defects rd. To increase
generality, we normalize the distance from the center rc with the cylinder radius

R ≡ R̄
Rc

=
|rd − rc|

Rc
. (4.3)

The value of R will generally be close to identical for both defects, so we take the
average. We find, that independently of the anchoring condition, the equilibrium
defect separation is R0 = 0.67. The boundary conditions change the orientations
of the defects, which we parameterize via the angle ϑ (see figure 4.10). For circular
anchoring the defects face outward (ϑ = π), for radial anchoring they face inward
(ϑ = 0), and for tilted anchoring their symmetry axes are orthogonal to the radial
vector (ϑ = π/2).

As minor activity Λ ∈ (0, 0.02] is introduced into the system, the steady
state changes. Defects are subjected to new stresses and macroscopic flow fields
form. The extensile active force advects them in the direction of their heads.
However, this deviation from equilibrium leads to an increase in free energy.
The resulting elastic force counteracts the activity. As the order parameter field
becomes increasingly distorted, the elastic force grows, until both forces cancel out.
This defines a new steady state with laminar flow and different defect positions.
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Figure 4.10: We describe the orientation of the defect (blue) in terms of the angle ϑ.
The cylinder center rc is marked in green, the defect position rd in red.

Since with circular anchoring the defects face outward, here R increases with
extensile activity. Radial anchoring has the defects facing inward, leading to a
decrease of R with increasing Λ.

If the anchoring director angle is tilted at a 45◦ angle the defect configuration
becomes chiral. Since the defects are no longer oriented along a symmetry axis of
the system, the elastic force and the active force are not antiparallel. Consequently,
they cannot cancel out and a net force on the defect remains. We observe the
formation of a non-equilibrium steady state. The uncompensated force component
drives each defect roughly in a circle around the center. Figure 4.11 shows the
trajectories of both defects at low and high activity. They turn from circles (close
to equilibrium) into ellipses, as |Λ| increases. In contractile systems the defects
deviate more from circular trajectories, resulting in higher eccentricity. In extensile
systems the ellipses are less pronounced, but the trajectories of the two defects
separate. Independently of the activity, each defect enters its final trajectory
within the first 40 000 time steps. After completing an orbit, it retraces its steps,
exactly. A closer look at the defects’ polar coordinates over time (figs. 4.12 and 4.13)
reveals that they orbit the center at varying velocities, depending on Λ. Starting
at activities |Λ| ≈ 0.02, both the defects’ distances from the center, and their
velocities vd (fig. 4.14), begin to oscillate. The oscillation period matches a half-
orbit, implying that once both defects have swapped positions, the system is back
in the same state. However, this symmetry is broken at high extensile activity.
Figure 4.14 shows that for Λ > 0.1 a period turns into a half-period. At such a
large activity the trajectories of both defects are no longer identical, as illustrated
in figure 4.11 (c).

The trajectories vary in their average radii. Figure 4.15 compares this effect to
the shifts we observed for circular and radial anchoring. For tilted anchoring, R
seems to be roughly centrally symmetric with respect to the activity Λ. As contrac-
tile activity increases, it appears to approach a value of R− = 0.82 asymptotically.
R reaches a minimal value Rmin = 0.54 at extensile activity Λc = 0.035, before
slowly increasing back to values near R0. The critical value Λc is the same for
all boundary conditions and marks the onset of capillary flow (see below). If the
anchoring is circular, the steady state is always static in terms of the velocity and
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(b) Λ = 0.035.
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(d) Λ = −0.11.

Figure 4.11: Trajectories of both defects (blue and red arrows) for tilted anchoring
at (a) low activity, (b) moderate activity, (c) high contractile activity, and (d) high
extensile activity.

order parameter fields. R is not centrally symmetric with respect to activity. Con-
tractile stress has a significantly greater effect for this type of anchoring, reducing
R to less than 0.4. The large anchoring strength WA could be responsible for the
low maximal distance R = 0.81 we observe, by keeping defects away from the
walls.

In the case of radial anchoring, the pattern of defect shifts described above
continues up until moderate extensile stress and even for high contractile activity.
Interestingly, at critical value Λc = 0.035 the radially anchored system breaks its
axial symmetry about the line through both defects. The laminar flow becomes
unstable, the defects orient sideways in opposite directions, and begin orbiting the
center, as if the anchoring was tilted. Comparing the defect velocity with the tilted
anchoring (fig. 4.17), we see that they have similar values, until at about Λ = 0.1
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Figure 4.12: Average polar angle (in radians) of both defects over time for tilted
anchoring at different activities Λ. Constant phases have been applied for an
approximate initial alignment.
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Figure 4.13: Normalized defect separation from the center R for tilted anchoring as
a function of time at different activities Λ. Systems with extensile active stress are
shown in the upper panel, systems with contractile stress are below.
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Figure 4.14: Average velocities of both defects for tilted anchoring as a function of
time at different activities Λ.
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Figure 4.15: Time averages of normalized defect separation from the center R at
differing activities Λ for different anchoring conditions.
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(a) The trajectories of the defects (blue and
red arrows) at Λ = 0.085 do not overlap,
but remain close to the central axis.
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(b) At activity Λ > 0.1, after a brief
damped oscillation, the defects escape in
the third dimension.

Figure 4.16: At high activity the radially anchored system exhibits an oscillating
steady state, and an escape of the defects.

the defects escape in the third dimension (fig. 4.16 (b)) for radial anchoring. The
trajectory of the highest activity we recorded for the steady state is shown in
figure 4.16 (a). As with tilted anchoring, the trajectories of both defects separate at
high activity. The emergence of this state is clearly visible in the R(Λ) diagram
(fig. 4.15). At (Λc = 0.035, Rc = 0.4) the free energy seems to heavily penalize
further convergence of both defects, creating an elastic force exactly opposed to
the active one. The forces become so large, that thermal fluctuations reorienting
the forces cause an instability, which grows, until the new steady state is reached.

For tilted anchoring, the defect velocity vd seems to be linear in the activity
parameter Λ, with different proportionality constants k± in the extensile (+) and
in the contractile (−) case. A linear regression suggests k+ = 6.3 and k− = −2.5
with quotient −k+/k− = 2.6. The oscillation frequency fd, shown in figure 4.18,
follows a similar pattern. For radial anchoring above Λc the defect velocity is
similar to the tilted system, before leveling off quickly, as the defects escape in
the third dimension. With these boundary conditions the oscillation frequency
is higher, because the defects stay closer to the capillary center rc. This becomes
apparent with consideration of the trajectory length C = 2vd/ fd of a period, given
in figure 4.19. Assuming convexity, the longest trajectory possible for a disclination
line is a circle with length C0 = 314. If the activity is contractile, C saturates at
around Λ = −0.05 for a maximal value of 253, corresponding to Cmax = 0.80C0.
Close to equilibrium we have C = 2πR0Rc = 210 = 0.67C0. For extensile activity
C drops to a minimal value Cmin = 168 = 0.54C0 at Λc, before slowly increasing.
In the case of radial anchoring C(Λ) follows a similar pattern, but is consistently
about 20% smaller.

The velocity field in the xy-plane cannot be resolved well given our system
dimensions, but similarly to Ravnik et al. [70] we observe different modes of
flow along the capillary axis. Given circular anchoring and extensile activity of
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Figure 4.17: Time averages of defect velocity < vd > at differing activities Λ for
different anchoring conditions.
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Figure 4.18: The oscillation frequency fd of a half-orbit applies to the defect velocity
vd and the distance from the center (R). The plot shows time averages of fd for vary-
ing boundary conditions and activity. Non-oscillating configurations, are defined to
have fd ≡ 0.
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Figure 4.19: Distance traveled by a defect doing a single orbit around the center
C = 2vd/ fd for different activities and anchoring conditions.
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Figure 4.20: Order parameter field (top left), capillary velocity field (top right), and
cross-section of the velocity at activity Λ = 0.06. The cross-section is marked by a
dashed line in the upper right image. The defect positions are pointed out by red
vertical lines in the plot.
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Figure 4.21: Order parameter field (top left), capillary velocity field (top right), and
cross-section of the velocity at activity Λ = 0.035.

Λ ≥ Λc, a bidirectional flow pattern forms. It reaches its extremal values close to
the defects. Figure 4.20 shows the order parameter and flow field at Λ = 0.06, as
well as a cross-section of the capillary velocity vz. At activities of this magnitude
the defects tend to deviate slightly from their mirror-symmetric positions. The
cross-section is, therefore, superimposed on the line connecting both defects. The
velocity changes almost linearly from 0 at the walls to the minimum (maximum).
Between the extrema the velocity gradient ∂xvz is also close to constant. Given
radial anchoring, we observe three different modes of capillary flow. At activity
Λ = Λc a unidirectional flow emerges (fig. 4.21). Exhibiting an inflection point
ca. 20 units from the walls, it differs considerably from the Poiseuille flow seen
in section 4.1.1. The direction of the flow is sensitive to the randomized initial
conditions and thermal fluctuations. At Λ ≥ 0.085 the disclination lines orbiting
the center are accompanied by a bidirectional flow pattern that appears to differ
slightly from the one we observe for circular anchoring (fig. 4.22). The increase in
velocity near the walls and the cylinder axis is stronger than linear. As with circular
anchoring, the two channels are induced by, and co-localized with the defects.
Therefore, they revolve around the center, together. When the defects escape in
the third dimension, the capillary flow field changes again to the unidirectional
flow we saw earlier. Here, the maximal z-velocity is reached at the line (position
in the xy-plane) where the local director is parallel to the z-axis n ‖ êz. Figure 4.23
shows a system that recently transitioned out of the orbiting steady state into the
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Figure 4.22: Order parameter field (top left), capillary velocity field (top right), and
cross-section of the velocity at activity Λ = 0.085.
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Figure 4.23: Order parameter field (top left), capillary velocity field (top right), and
cross-section of the velocity at activity Λ = 0.09.
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Figure 4.24: Order parameter field (top left), velocity field (top right), and cross-
section of the velocity at activity Λ = 0.01.

defect-less state and still has a twist in the director, as well as an off-center flow
maximum.

If the anchoring is tilted, capillary flow also starts to form at activity Λc. Since
the flow in the xy-plane is less delicate for this anchoring, we can resolve it to a
sufficient degree. Figure 4.24 shows a simulation below Λc. The only movement
along the capillary axis is thermal noise. In the xy-plane, however, a vortex rotates
the NLC. As the critical value Λc is reached, a bidirectional capillary flow emerges
(fig. 4.25). Unlike for circular and radial anchoring, the lines of maximum flow
seem to coincide with the disclination lines. The planar flow peaks at the same
locations. Its flanks appear flat. This changes, as activity is increased further.
At Λ = 0.085 (fig. 4.26) the flow magnitude has grown in all components. The
absolute value of the planar velocity has a Poiseuille-like profile in each half-plane,
as there is no inflection point. The two opposed channels revolve around the
central axis, together with the defects.
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Figure 4.25: Order parameter field (top left), velocity field (top right), and cross-
section of the velocity at activity Λ = Λc = 0.035.
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Figure 4.26: Order parameter field (top left), velocity field (top right), and cross-
section of the velocity at activity Λ = 0.085.
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4.2.2 Elliptical Cross-Section
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Figure 4.27: Equilibrium order parameter fields in our simulations of an elliptical
channel. For each of the four anchorings the director (white lines) and the scalar
order parameter (background color) are given.

In addition to the systems described above, we briefly investigated capillaries
with an elliptical cross-section. Choosing a major axis 2Re = 100 and a minor axis
2re = 70 for the ellipse, we found that the reduced symmetry of the system forces
the defects in the same positions, independently of initial conditions and thermal
fluctuations. They always align along the major axis, with a distance R̄ = 40 from
the center. Normalizing with Re, this corresponds to R = 0.8. Figure 4.27 shows
the equilibrium order parameter fields for all examined types of anchoring.

Outside of equilibrium, steady states with static order parameter configurations
also have fixed defect polar angles of φ1,2 = ±π. Besides this loss of symmetry, the
deformation of the capillary does not change the behavior we observe qualitatively,
irrespective of the anchoring condition. The most significant quantitative change
is a shift in the critical activity Λc, where the radially anchored system enters an
orbiting steady state, to ca. Λell

c = 0.06.
For tilted anchoring, the defects move in an ellipse, even at low activity. They

accelerate very distinctly when traveling parallel to the (elongated) x-axis, and
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Figure 4.28: Average velocities of both defects over time at different activities Λ. In
cylindrical confinement with elliptical cross-section.
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Figure 4.29: Normalized defect separation from the center R as a function of time at
different activities Λ and for different anchoring conditions in the elliptical channel.
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Figure 4.30: Trajectories of both defects (blue and red arrows) for tilted anchoring
in confinement with elliptical cross-section.

slow down enormously when close to the high curvature apex. Figure 4.28 shows
that the difference between the maximal and the minimal velocity is about a
factor of 6. For comparison, in the cylindrical capillary the maximal velocity was
only 15 % to 50 % larger. The effect is most pronounced at Λ = 0.035, where the
maximal velocity is 10 times higher than the turning velocity. The defects are
unable to turn smoothly and overshoot their minima in the energy landscape. As
a result, they reverse orientations rather sharply and asymmetrically, even after a
long simulation time (see figure 4.30). Another consequence is, that the defects
are much further from the center when turning in a Λ = 0.035 system, than when
turning at higher activity (see figure 4.29). They also spend much more time there.
Comparing the proportionality constant between vd and Λ to the setups with
circular cross-section, we arrive at a large discrepancy of kell

+ = 3.6 = 0.57k+ (see
figure 4.31). As we saw, this is mostly due to a difference in minimal velocity,
rather than maximal velocity. The onset of the capillary flow field is shifted to
Λ = 0.06, just as for the oscillating state. Qualitatively, the behavior remains the
same. Figure 4.32 gives the axial velocity field for radial anchoring with Λ = 0.85.
At this activity, after 175 000 time steps in a damped version of the oscillating state,
the defects escaped in the third dimension. The flow remained unidirectional for
the entire time.

For axial anchoring, variations in the activity parameter Λ had no effect. In
both the circular and elliptical capillary the equilibrium state was maintained.
More details are given in the discussion (chapter 5).
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Figure 4.31: Average velocities of both defects for tilted anchoring as a function of
time at different activities Λ in the elliptical channel.

50 100

Position x

20

40

60

Po
si

ti
on

y

radial

50 100

Position x

radial

0.00

0.15

0.30

0.45

0.60

Scalar
order

param
eter

S

-0.82

0

0.82

Velocity
v

z

10 20 30 40 50 60 70

Position y

−1.00

−0.75

−0.50

−0.25

0.00

0.25

Ve
lo

ci
ty

v z

Figure 4.32: Order parameter field (top left), capillary velocity field (top right), and
cross-section of the velocity at activity Λ = 0.085 for the deformed cylinder.
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Chapter 5

Discussion

Initially, we tried to implement an SRD-version of Ericksen-Leslie nematody-
namics. With this formulation in terms of the director n we encountered many
problems. When anchoring n at a boundary, there was no practical way to allow
both n and −n equally. Since a choice had to be made, this choice would impose a
director configuration on the system, that was not necessarily physical. This is be-
cause the opposite choice could permit lower free energy configurations. Another
issue was the miscalculation of spatial derivatives in the presence of n = ±1/2
defects. Since the director only rotates by an angle ±π on any contour around
them, it has to change sign discontinuously at some point. This problem is only
solved by considering a quantity quadratic in n, such as the order parameterQ.

Our algorithm has shown to be sufficiently robust. Specifically, many alter-
natives corresponding to physical initial conditions or computational variations
have no impact on the results of simulations. If, for example, instead of setting the
ghost particles’ velocities to 0 at each time step, we redistribute them normally,
the behavior of the system is unchanged. To initialize the system isotropically, we
can set Qi(t = 0) = 0 for every particle i, or we can choose a random director
ni(t = 0) for each particle and use eq. (2.12) for uniaxial NLCs with S = 1 to
constructQi(t = 0). Both evolve toward equilibrium in the same way.

In equilibrium the number density of MPCD-particles was constant across
the whole domain. At high activity, however, the distribution was no longer
homogeneous. Since circular anchoring orients the defects with their heads facing
outwards, the active force drives particles to the bounds of the domain. The
effect was not strong in our simulations. Average cell number density varied from
Nα = 55 at the center to around 65 near the walls. For radial anchoring the effect
is reversed. The generally high number density peaks around halfway from the
center and drops dramatically at the border with similar magnitudes as in the
circular case. Both distributions are shown in appendix A.3. In oscillating systems
with tilted anchoring we observed much larger inhomogeneities. Independently
of the sign of Λ (see appendix A.3), at high absolute values, the outer half of
the cylinder had almost twice as many particles per cell as the inner volume.
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Figure 5.1: Average cell number density Nα for tilted anchoring at high activity
(Λ = 0.135).

Figure 5.1 shows how number density increases gradually with distance from the
center dc, and peaks near the boundary. This means, that the average number
of MPCD-particles per cell N of the simulation has to be chosen high enough to
remain meaningful in dilute regions of active systems. In our case, a value of
Nmin

α = 37 should be high enough.

In the scope of this thesis we were able to develop an algorithm capable of
modeling active NLCs on the mesoscale. It captures microscopic fluctuations, is
highly tunable, and suited for complex boundary conditions. We used it to study
the behavior of an active NLC in cylindrical confinement, as well as in a deformed
capillary with a compressed axis. For circular and radial anchoring at low extensile
activity the defects were shifted in the direction of their heads with increasing
Λ. The same behavior has been observed in lattice Boltzmann simulations by
Ravnik et al. [70]. We were able to cover a wider range of activities, including
contractile stress, and saw the trend of shifted defects continue. For a previously
unstudied type of tilted anchoring and for radial anchoring at high activity we
discovered a new non-equilibrium steady state, in which the disclination lines
orbited the capillary center in ellipses of varying aspect ratios. This dynamical
mode has features resembling those Keber et al. [1] found for active NLCs confined
to a vesicle surface (see section 2.8). Strong topological confinement with sharply
defined minima in the energy landscape come in conflict with the active force,
driving the system out of equilibrium. Our simulations of the deformed capillary
demonstrated that along the major axis of the system the defects were able to
accelerate with few constraints. As they encountered the opposed stress emanating
from the boundaries, they were very fast, overshooting the energetic minimum
imposed by the elastic forces. Consequently, for a while, the active and the elastic
force facilitate one another, accelerating both defects. The result is an oscillating
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steady state. Like Keber et al. we found the oscillation frequency to be linear in the
activity parameter Λ.

We were not able to confirm the findings of Ravnik et al. for axial anchoring.
While they observed two different modes of flow, in our simulations no convective
velocity field emerged. The same modes did, however, appear for radial and
circular anchoring. At high activity we saw, both, a unidirectional flow, and a
bidirectional flow, pinned by the defects.

Our study of extensile and contractile active stresses revealed large asymme-
tries between the two. For tilted anchoring and given |Λ| the positive value results
in a high frequency, low amplitude oscillation, whereas a negative value has the
opposite effect. Further, we observed the separation of both defects’ trajectories.
This happened exclusively at high extensile activity. In all other cases, the trajecto-
ries of both defects traced identical paths. Although extensile forces in radially
anchored systems act in the same direction as contractile forces in circular anchor-
ing, the behavior of both was different quantitatively, as well as qualitatively, with
circularly anchored systems never entering an oscillating state.

The (non-deformed) geometry we investigated is identical to the one explored
by Ravnik et al. in [70]. In addition to the many commonalities described above,
there were some discrepancies. Especially, the absence of flow in our capillaries
with axial anchoring was surprising. Moreover, we saw no difference in the
defects’ equilibrium positions between circular and radial anchoring. Apart from
us studying a broader range of activities, the main physical differences to Ravnik
et al. were a high rotational diffusion constant (low rotational viscosity), very
strong anchoring, and a different capillary radius in our case. It would be useful
to look at different regimes for these parameters. More suggestions for extending
the scope of this project are given in the outlook.
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Chapter 6

Outlook

Our algorithm allows the study of rather complex geometries. For example, it
would be interesting to incorporate boundary conditions matching those of an ac-
tive NLC confined to the surface of a lipid vesicle, as in [1]. A weak homogeneous
anchoring that is agnostic of the in-plane angle could be implemented, to keep the
directors pointed mostly parallel to the sphere. However, the surface would have
a finite thickness, and be incapable of deforming.

It would be interesting to drop the one-constant approximation. Our algorithm
can be easily extended to solve for a more complex free energy. As seen in sec-
tion 2.5, the relationship between the elastic constants determines which director
patterns are stable. A generalization to K2 6= K1 = K3 would not even require
expanding to a higher order in Q (see section 2.4), and is important in confined
geometries where strong deformation is imposed by the boundaries [34]. Here,
an energetically cheaper twist will replace other types of deformations and might
lead to the emergence of chiral structures [86]. It has also been found to introduce
an explicit coupling between the director and the order parameter [87, 88]. In
reality, for different types of LCs, the splay-, twist- and bending viscosities η1,2,3
can also differ substantially. In our model this would lead to the introduction of
multiple rotational diffusion constants Γi. However, since the relevant parameter
for the dynamics is the characteristic director relaxation time ti = ηi

/
Ki = 1

/
ΓiKi

the variation in ηi can be absorbed into the elastic constants Ki. To model lyotropic
chromonic LCs, for example, the modification K3 � K1 � K2 would have to be
made, since t3 � t1 � t2.

Overall, the main advantage of our adapted NLC-MPCD algorithm is that it
can be tuned and modified to include a limitless variety of additional boundary
conditions, and interactions, even with foreign particles submerged within, while
remaining computationally efficient.
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[45] I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, and S. Žumer, Two-dimensional
nematic colloidal crystals self-assembled by topological defects, Science 313, 954
(2006).

[46] W. Maier and A. Saupe, Eine einfache molekular-statistische Theorie der nematis-
chen kristallinflüssigen Phase., Zeitschrift für Naturforschung A 14, 882 (1959).

[47] G. Luckhurst and C. Zannoni, Why is the Maier–Saupe theory of nematic liquid
crystals so successful?, Nature 267, 412 (1977).

[48] B. Cullity and C. Graham, Introduction to Magnetic Materials (Wiley, 2009).

[49] D. Allender and L. Longa, Landau–de Gennes theory of biaxial nematics reexam-
ined, Physical Review E 78, 011704 (2008).

[50] J. L. Ericksen, Anisotropic fluids, Archive for Rational Mechanics and Analysis
4, 231 (1959).

[51] J. Ericksen, Inequalities in liquid crystal theory, The Physics of Fluids 9, 1205
(1966).

[52] F. M. Leslie, Some constitutive equations for anisotropic fluids, The Quarterly
Journal of Mechanics and Applied Mathematics 19, 357 (1966).

[53] F. M. Leslie, Some constitutive equations for liquid crystals, Archive for Rational
Mechanics and Analysis 28, 265 (1968).

[54] C. Oseen, The theory of liquid crystals, Transactions of the Faraday Society 29,
883 (1933).

[55] H. Zocher, The effect of a magnetic field on the nematic state, Transactions of the
Faraday Society 29, 945 (1933).

[56] I. W. Stewart, The static and dynamic continuum theory of liquid crystals: a
mathematical introduction (CRC Press, 2004).

[57] S. Chandrasekhar, Liquid crystals (Cambridge University Press, 1993).

[58] A. N. Beris and B. J. Edwards, Thermodynamics of flowing systems: with internal
microstructure, 36 (Oxford University Press on Demand, 1994).

[59] M. Miesowicz, Der Einfluß des magnetischen Feldes auf die Viskosität der Flüs-
sigkeiten in der nematischen Phase, Bull Acad Pol A 228–247 (1936).

[60] V. Zwetkoff, Bewegung anisotroper Flussigkeiten im rotierenden Magnetfeld, Acta
Physiochimica, URSS 10, 555 (1939).

[61] G. Smith and R. S. Rivlin, The anisotropic tensors, Quarterly of Applied Mathe-
matics 15, 308 (1957).



References 81

[62] O. Parodi, Stress tensor for a nematic liquid crystal, Journal de Physique 31, 581
(1970).

[63] H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, J. Darnell,
et al., Molecular cell biology, vol. 3 (WH Freeman New York, 1995).

[64] T. B. Liverpool and M. C. Marchetti, Instabilities of isotropic solutions of active
polar filaments, Physical Review Letters 90, 138102 (2003).

[65] Y. Hatwalne, S. Ramaswamy, M. Rao, and R. A. Simha, Rheology of active-
particle suspensions, Physical Review Letters 92, 118101 (2004).

[66] R. Voituriez, J.-F. Joanny, and J. Prost, Spontaneous flow transition in active polar
gels, EPL (Europhysics Letters) 70, 404 (2005).

[67] L. Giomi, M. J. Bowick, X. Ma, and M. C. Marchetti, Defect annihilation and
proliferation in active nematics, Physical review letters 110, 228101 (2013).

[68] M. C. Marchetti, J.-F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost, M. Rao,
and R. A. Simha, Hydrodynamics of soft active matter, Reviews of Modern
Physics 85, 1143 (2013).

[69] L. Giomi, M. J. Bowick, P. Mishra, R. Sknepnek, and M. C. Marchetti, Defect
dynamics in active nematics, Phil. Trans. R. Soc. A 372, 20130365 (2014).

[70] M. Ravnik and J. M. Yeomans, Confined active nematic flow in cylindrical capil-
laries, Physical review letters 110, 026001 (2013).

[71] S. P. Thampi, R. Golestanian, and J. M. Yeomans, Instabilities and topological
defects in active nematics, EPL 105 (2014).

[72] A. Doostmohammadi, M. F. Adamer, S. P. Thampi, and J. M. Yeomans, Stabi-
lization of active matter by flow-vortex lattices and defect ordering, Nature Com-
munications 7, 1 (2016).

[73] A. Malevanets and R. Kapral, Mesoscopic model for solvent dynamics, Journal of
Chemical Physics 110, 8605 (1999).

[74] T. Ihle and D. Kroll, Stochastic rotation dynamics: a Galilean-invariant mesoscopic
model for fluid flow, Physical Review E 63, 020201 (2001).

[75] J. F. Ryder, Mesoscopic simulations of complex fluids, Ph.D. thesis, University of
Oxford (2005).

[76] G. Gompper, T. Ihle, D. Kroll, and R. Winkler, Multi-particle collision dynamics:
a particle-based mesoscale simulation approach to the hydrodynamics of complex
fluids, in Advanced computer simulation approaches for soft matter sciences III, 1–87
(Springer, 2008).



82 References

[77] M. Theers, E. Westphal, G. Gompper, and R. G. Winkler, Modeling a spheroidal
microswimmer and cooperative swimming in a narrow slit, Soft Matter 12, 7372
(2016).

[78] K. Rahul and S. Bhattacharyya, One-sided finite-difference approximations suitable
for use with richardson extrapolation, Journal of Computational Physics 219, 13
(2006).

[79] H. Noguchi and G. Gompper, Transport coefficients of off-lattice mesoscale-
hydrodynamics simulation techniques, Physical Review E 78, 016706 (2008).

[80] D. S. Bolintineanu, J. B. Lechman, S. J. Plimpton, and G. S. Grest, No-slip
boundary conditions and forced flow in multiparticle collision dynamics, Physical
Review E 86, 066703 (2012).

[81] C. Denniston, E. Orlandini, and J. Yeomans, Lattice boltzmann simulations of
liquid crystal hydrodynamics, Physical Review E 63, 056702 (2001).

[82] G. Tóth, C. Denniston, and J. Yeomans, Hydrodynamics of domain growth in
nematic liquid crystals, Physical Review E 67, 051705 (2003).

[83] N. Kuzuu and M. Doi, Constitutive equation for nematic liquid crystals under
weak velocity gradient derived from a molecular kinetic equation, Journal of the
Physical Society of Japan 52, 3486 (1983).

[84] M. Doi, Explanation for the 3.4-power law for viscosity of polymeric liquids on the
basis of the tube model, Journal of Polymer Science: Polymer Physics Edition
21, 667 (1983).

[85] M. Doi and S. F. Edwards, The theory of polymer dynamics, vol. 73 (Oxford
University Press, 1988).

[86] L. Tortora and O. D. Lavrentovich, Chiral symmetry breaking by spatial confine-
ment in tactoidal droplets of lyotropic chromonic liquid crystals, Proceedings of the
National Academy of Sciences 108, 5163 (2011).

[87] Y.-K. Kim, S. V. Shiyanovskii, and O. D. Lavrentovich, Morphogenesis of defects
and tactoids during isotropic–nematic phase transition in self-assembled lyotropic
chromonic liquid crystals, Journal of Physics: Condensed Matter 25, 404202
(2013).

[88] S. Zhou, S. V. Shiyanovskii, H.-S. Park, and O. D. Lavrentovich, Fine structure
of the topological defect cores studied for disclinations in lyotropic chromonic liquid
crystals, Nature Communications 8, 14974 (2017).



Acknowledgments

I would like to express my gratitude to the people who supported me in the
process of creating this thesis. To my advisor Dr. Marco G. Mazza for his guidance
and comments. To Dr. Shubhadeep Mandal for the stimulating conversations and
help. Thanks to my colleagues at university and at the MPI DS. A special thank
you to my parents and sister for their continued love and support.



Declaration

I declare that this thesis has been composed solely by myself, no other materials
except the ones listed in this thesis were used. This thesis is until now neither
handed in nor will it be used to apply for any other degrees. The digital copy
received by the registrar’s office is identical to the physical version.

Göttingen, February 18, 2019

Joscha Tabet



i

Chapter A

Appendix

A.1 Macroscopic Responses of Nematic Liquid Crys-
tals

Studying the electric polarizability, the dielectric constant or magnetic response,
one finds the same order parameter as the nematic order parameter in eq. (2.14)
[27]. The order parameter of the magnetic properties for example can be obtained
from the relation between the magnetic field H, the magnetic moment M and the
magnetic susceptibility χ

Mi = χijHj. (A.1)

Requiring that the tensor order parameterQ vanishes in the isotropic state yields

Qij ∝ χij −
1
3

δijχkk. (A.2)



ii A. Appendix

A.2 Computational Grids
Some of the computational grids used for simulations are given here.
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Figure A.1: Computational grid used for Poiseuille flow. The domain of the LC
comprises of normal cells (blue), bound by ghost cells (yellow) on one axis. Along
the other axes the system is periodic.
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Figure A.2: Computational grid used to simulate a cylindrical compartment. The
domain of the LC comprises of normal cells (blue), bound by border cells (red) and
ghost cells (yellow). Along the axis perpendicular to the plane of projection the
system is periodic after a length of 4 cells.
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Figure A.3: Zoomed in version of the computational grid used to simulate a cylin-
drical compartment. The domain of the LC comprises of normal cells (blue), bound
by border cells (red) and ghost cells (yellow). Along the axis perpendicular to the
plane of projection the system is periodic after a length of 4 cells.
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A.3 MPCD-Particle Density
In passive systems we saw a completely homogeneous MPCD-particle distribution.
In active systems there was a large variance.
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Figure A.4: Average cell number density Nα for passive systems in cylindrical
confinement.
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Figure A.5: Average cell number density Nα for circular anchoring at activity Λ =
0.09.
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Figure A.6: Average cell number density Nα for radial anchoring at activity Λ =
0.09.
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Figure A.7: Average cell number density Nα for tilted anchoring at contractile
activity Λ = −0.135.
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