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Abstract. The non-geometric Q- and R-monopole are shown to be a particular case of

the DFT-monopole solution. The notion of magnetic charge for the solutions is defined

and shown to be equal to the magnetic charge of the NS5-brane solution. This is a talk

presented by the author at the conference QUARKS’16 in St.-Petersburg.

1 T-duality and Double Field Theory

It is known that string theory respects a hidden symmetry, called T-duality, on the quantum perturba-

tive level. The most intuitive way of understanding the action of this symmetry is consider swapping

of momentum and winding modes of a closed string on a d-torus Td. In this case the T-duality sym-

metry group is O(d, d). It has long been conjectured that these symmetries must carry some geometric

meaning which would allow to define them on non-toroidal backgrounds.

The recently constructed O(d, d)-covariant gravity-like theory called Double Field Theory exploits

the old ideas by Tseytlin [1] and Siegel [2] that left and right movers on the string worldsheet should

be considered independently and generalizes the construction of generalized geometry by Hitchin,

Cavalcanti and Gualtiery (see [3] for review and further links). The pioneering works in this direction

were [4, 5] by Hull, Hohm and Zwiebach who presented the background independent duality covariant

formulation of the action of DFT in terms of the so-called generalized metric HMN . Soon after the

same was done for the U-duality groups in [6–8] for the internal sector only, and in [9–12] for the full

theory including p-forms. Supersymmetric extension and inclusion of fermions has been presented in

[13, 14] for DFT and in [15, 16] for EFT.

The idea behind Double Field Theory is that one doubles the space-time by adding dual coordi-

nates x̃μ corresponding to winding modes of closed strings. The resulting space-time (better to say

’space’ to avoid issues with imaginary time) is parametrized by (d + d) coordinates XM = {xμ, x̃μ}.
The fields of the NS-NS sector, i.e. the metric, the B-field, and the dilaton, combine into the general-

ized metric HMN that transforms covariantly under O(d, d) transformations O and depends on all the

coordinates

HMN =

[
g − Bg−1B g−1B

Bg−1 g−1

]
, H → OTHO. (1)
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By an O(d) ×O(d) rotation this can equivalently be parametrized by the metric and a bivector field β,
that is useful for defining non-geometric fluxes

HMN =

[
g βg−1

g−1β g−1 − βg−1β

]
. (2)

Locally T-duality transformations are represented by generalized Lie derivative that combines these

with conventional diffeomorphisms and gauge transformations of the B-field, and is defined by its

action on a generalized vector V M along a generalized vector UM

LUV M = UN∂NV M − VN∂NUM + ηMNηKL∂NUKVL, (3)

where ηMN is the (skew-diagonal) invariant tensor of O(d, d). Algebra of these transformations gen-

eralizes that of the Dorfmann brackets and closes on the so-called C-bracket, that generalizes the

Courant bracket, upon a special constraint

[LV1
,LV2

] = L[V1,V2]C + F0,

Jac(LV1
,LV2
,LV3

) = F1.
(4)

Here the additional terms F0 and F1 represent breaking of the closure and Jacobi conditions, and

vanish upon setting

ηMN∂MΦ∂NΨ = 0 (5)

for any fields Φ,Ψ. This constraint called the section condition effectively reduces the number of

coordinates to d and returns the dynamics back to the conventional supergravity.

Given this equivalence there has been a lot of discussion in the community whether DFT is just

a more convenient rewriting of supergravity or it may actually give new results. The results dis-

cussed below suggest that DFT (and similarly EFT) is indeed able in principle to capture dynamics

of non-geometric backgrounds. One of the ways of doing that is to consider backgrounds with fields

satisfying the section condition, but which depend explicitly on dual (winding) coordinates. These

have no description in the framework of the conventional supergravity as it does not know anything

about the dual coordinates. Hence, these are purely DFT backgrounds, some particular examples of

which will be shown to carry non-geometric flux. In what follows we briefly describe the results of

[17] sending those interested in the technical details to the original paper.

2 Exotic branes in string theory

Probably the most famous example of non-geometric fluxes is given by Q- and R-fluxes, which are

known to correspond to non-commutative and non-associative behavior of strings respectively. These

appear as nodes of the T-duality orbit starting from the geometric flux H = dB. Hence, one writes

Hxyz
Tx−→ τx

yz
Ty−→ Qxy

z
Tz−→ Rxyz, (6)

where τx
yz is the so-called geometric flux, related to curvature of the background. Existence of this

orbit was conjecture in [18] where a simple toy model of twisted torus has been considered. Here we

would like to proceed with realistic backgrounds starting with NS5-brane with non-zero H-flux. This

is written in terms of the harmonic function H = H(x1, . . . , xd) that is a solution of the (flat) Laplace

equation with a Dirac-delta-like source term in the RHS

(
∂2

1 + · · · + ∂2
d

)
H(x1, . . . , xd) ∼ δ(x1, . . . , xd). (7)
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In what follows we will not take into account the source term and focus only on the vacuum solution,

however an extensive discussion of the issue of sources for geometric and non-geometric solutions

can be found in [19]. The harmonic function

H(x1, . . . , xd) = 1 +
h0(

x2
1
+ . . . + x2

d

) d−2
2

, (8)

where for d = 2 the power function should be replaced by the log and hence is not well defined. This

is the well known issue of the non-geometric 52
2-brane, carrying Q-flux (see [20] for discussion).

Table 1. Under T-dualities an NS5-brane stretched in directions marked by × turns into a Kaluza-Klein

monopole and a 52
2-brane. Dotted circles denote special cycles along which the T-duality acts, these are

compactified.

1 2 3 4 5 6 7 8 9

NS5 · · · · × × × × ×
KKM · · · � × × × × ×

52
2 · · � � × × × × ×

To act by a T-duality along an isometry direction of the NS5-brane solution one should first smear

the brane along, say, x4 =: z, that is equivalent to compactification of this direction. I.e. the back-

ground with smeared harmonic function is a solution of the theory compatified on a circle [21]

h0(
x2

1
+ . . . + x2

d

) d−2
2

=⇒ 2πRdh0(
x2

1
+ . . . + x2

d−1

) d−3
2

(9)

and the resulting background is that of the Kaluza-Klein monopole

ds2 = ds2
056789 + H

(
dρ2 + ρ2dθ2 + (dx3)2

)
+ H−1(dx4 + ω)2,

B(2) = 0, ρ2 = (x1)2 + (x2)2.
(10)

This solution is characterized by the geometric flux τmn
k defined as a structure constant of the algebra

of right-invariant vector fields (vielbeins) [em, en] = τmn
kek.

Smearing along another direction, say x3, and performing T-duality Tx3 one arrives to a non-

geometric background usually referred to as 52
2-brane [20]

ds2 = H(dρ2 + ρ2dθ2) +
H

H2 + σ2θ2
ds2

34 + ds2
056789,

B(2) =
σθ

H2 + σ2θ2
dx3 ∧ dx4, e−2φ =

H
H2 + σ2θ2

.

(11)

This solution was constructed in [20] as a realistic example of the toy background of [18], which was

conjectured to carry a portion of Q-flux. The most interesting property of the solution is the non-trivial

monodromy around the brane θ → θ + 2π that mixes the metric and the B-field acting as a T-duality

transformation on the torus (x3, x4). Namely, the size of the special 2-torus does not come back to

itself
θ = 0 : G33 = G44 = H−1,

θ = 2π : G33 = G44 =
H

H2 + (2πσ)2
.

(12)
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In the DFT notation the monodromy takes the form of an O(2, 2) rotation acting as

H(θ′ = θ + 2π) = OtrH(θ)O, O =
[

12 0

β(θ′) 12

]
, (13)

where β(θ′) = β(θ′)34∂3 ∧ ∂4 is a bivector.

Hence, the background is defined globally only up to a T-duality transformation and in principle

could be described by the T-fold construction. However, formally performing T-duality along the

remaining coordinate we arrive to a background, which carry a portion of R-flux and which cannot be

described by supergravity even locally. To deal with such kind of backgrounds and to define T-duality

along a non-isometry direction one has to use the formalism of Double Field Theory.

3 Exotic objects in DFT

3.1 DFT monopole

Dynamics of DFT is encoded by the following effective potential

V = e−2d
(

1

8
HMN∂MHKL∂NHKL − 1

2
HKL∂LHMN∂NHKM − 2∂Md∂NHMN + 4HMN∂Md∂Nd

)
,

(14)

which drops back to the bosonic Lagrangian density of supergravity upon the section condition. In

[22] a solution of DFT equations of motion called DFT-monopole has been found. To write the

solution it is convenient to understand the generalized metric as a Kaluza-Klein decomposition and to

write the following DFT interval

ds2
DFT = (gμν − BμρBρν)dxμdxν + 2Bμνdxμdx̃ν + gμνdx̃μdx̃ν. (15)

One should note that this is just a notation and the above quantity in principle does not have to indeed

measure distance in the extended space.

With that in hands one writes the solution in the Taub-NUT form as follows

ds2
DFT = H(1 + H−2A2)dz2 + H−1dz̃2 + 2H−1Ai(dyidz̃ − δi jdỹ jdz)

+ H(δi j + H−2AiAj)dyidy j + H−1δi jdỹidỹ j

+ ηrsdxrdxs + ηrsdx̃rdx̃s,

(16)

where the functions H, Ai and the invariant dilation are given by (i, j, k, l = 1, 2, 3)

H(y) = 1 +
h√
δi jyiy j

,

2∂[iA j] = εi jk∂kH,

e−2d = He−2ϕ0 .

(17)

The coordinates (xr) with r, s running from 5 to 9 and 0, labeling the remaining directions; in addition

we keep the notation z = x4.

The solution depends on 20 parameters (z, yi, xr, z̃, ỹi, x̃r), which in principle can be identified

with either physical or dual coordinates of DFT. This is equivalent to choosing a T-duality frame or

performing a T-duality transformation. The important difference here is, that these coordinates do not

have to be compact.

  
 

  
DOI: 10.1051/,125 12505017EPJ Web of Conferences epjconf/201605017 (2016)

QUARKS-2016

4



The most intriguing feature of the DFT-monopole solution is that it combines the three back-

grounds of Type II supergravity, H-, KK-monopoles and the 52
2-brane, and the locally non-geometric

background of R-brane upon a choice of a solution of the section condition. While the behaviour of

string on the background of 52
2-brane is known to be non-commutative, the R-brane background was

conjectured to show signs of non-associativity. Indeed, commutator and Jacobiator of string coordi-

nates on backgrounds with Q- and/or R-fluxes can be written as (see e.g. [23])

[xm, xn] = Qmn
k xk,

[xm, xn, xk] = Rmnk.
(18)

Since a solution of the section condition is determined by a choice of physical and dual coordinates,

one may write the following general rule for embedding of the backgrounds with H, τ, Q and R fluxes

into the DFT-monopole solution

Table 2. Rules for identification of the parameters (z, yi, z̃, ỹi) with the physical coordinates (xz, x1, x2, x3). The

remaining parameters are identified with the dual coordinates.

(xz, x1, x2, x3) = (z, y1, y2, y3), NS5-brane (H-monopole),

(xz, x1, x2, x3) = (z̃, y1, y2, y3), KK-monopole,

(xz, x1, x2, x3) = (z̃, y1, y2, ỹ3), Q-monopole,

(xz, x1, x2, x3) = (z̃, ỹ1, ỹ2, y3), R-monopole.

Definition of fluxes in DFT in similar to that of the geometric flux τmn
k in supergravity, i.e. these

are structure constants of the algebra of generalized vielbeins EM
A

HMN = EM
ĀEM

B̄HĀB̄,

[EĀ, EB̄]C = FĀB̄
C̄ EC̄ .

(19)

Components of the generalized flux FĀB̄
C̄ = {Fāb̄c̄,Fāb̄

c̄,Fā
b̄c̄,F āb̄c̄} are identified with the fluxes of

the T-duality orbit in question. In addition in DFT generalized flux with one index FA is defined

F Ā
B̄C̄ = 2EĀ

MEN
[B̄∂N EM

C̄]
− EĀ

Mη
MNηKL∂N EK

[B̄EL
C̄]
,

FĀ = ∂MEM
Ā + 2EM

Ā ∂Md.
(20)

Using this we have for the backgrounds of H- and KK-monopoles

H-monopole: Fz̄āb̄ = 2ez
z̄ek

āel
b̄∂[kAl], F ā

b̄c̄ = −δā[b̄fc̄], Fā =
3

2
H−1∂āH,

KK-monopole: F ā
b̄c̄ = 2eā

zek
b̄el

c̄∂[kAl] − 1

3
δā[b̄fc̄], Fā = −3

2
H−1∂āH,

(21)

with (ā, b̄, c̄) running from 1 to 3.

Note that for the above cases the harmonic function H = H(y1, y2, y3) depends only on physical

coordinates and hence the story does not differ much from the conventional supergravity. In contrast,

for the non-geometric backgrounds of Q- and R-monopoles H becomes a function of dual coordinates,

that is an expected behavior given contributions from worldsheet instantons [24–26]. From the tech-

nical side this is crucial for reproducing non-geometric fluxes, whose definition includes derivatives

with respect to dual coordinates.
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3.2 Q- and R-monopoles

As follows from the Table 2 choosing the physical coordinates as (xz, x1, x2, x3) = (z̃, y1, y2, ỹ3) we

obtain the background of Q-monopole

ds2 = ηrsdxrdxs + H−1
[(

dz̃ + Aθdθ
)2
+ dỹ2

3

]
+ H

(
dρ2 + ρ2dθ2

)
,

Aθ = h
(
1 − y3√

ρ2 + (y3)2

)
, e−2(ϕ−ϕ0) = H−1, B(2) = 0

ρ2 = (y1)2 + (y2)2,

(22)

where the polar coordinates (ρ, θ) in the physical plane (x1, x2) have been adopted. Interestingly, the

solution is purely metric, i.e. it does not have non-trivial 2-form or bivector fields similarly to the KK-

monopole. However, it still carries non-geometric Q-flux, thas is justified by calculating components

of the generalized flux

Qθ̄
3̄z̄ = −H− 3

2 ∂ρH, Fᾱβ̄3̄ = −1

2
δβ̄ᾱH− 3

2 ∂̃3H

Q-monopole: F z̄
ρ̄z̄ = F 3̄

ρ̄3̄ = −F θ̄ 1̄2̄ =
1

3
Fρ̄ = 1

2
H− 3

2 ∂ρH

Fz̄
z̄3̄ =

1

3
F 3̄ =

1

2
F z̄

1̄2̄ =
1

2
H− 3

2 ∂̃3H,

(23)

where one notes that ∂̃3 = ∂/∂x̃3
is the derivative along a winding mode coordinate, the indices {α, β}

run through {1, 2} and the barred indices are flat indices.

We see, that the background indeed carries a portion of Q-flux and does not carry non-trivial

components of other fluxes. Note that the harmonic function has always the same form (17), and for

this background it becomes a function of the dual coordinate x̃3 := y3.

For the background of R-monopole the harmonic function becomes a function of two dual coor-

dinates x̃1 := y1, x̃2 := y2, and the background fields become

ds2 = ηrsdxrdxs + H−1
(
dz̃2 + dρ2 + ρ2dθ2

)
+ H(dy1)2,

βθz = Aθ, e−2(ϕ−ϕ0) = 1.

Aθ = h
(
1 − y1√

ρ̃2 + (y1)2

)
, ρ2 = (ỹ2)2 + (ỹ3)2 = (x2)2 + (x3)2.

(24)

It is important to note the different meaning of the coordinates ρ and ρ̃, with the latter defined as

x̃2 = y
2 = ρ̃ cos θ̃,

x̃3 = y
3 = ρ̃ sin θ̃,

x1 = y1.

(25)

With that notations in hands components of the generalized flux can be written in the following form

Rz̄ᾱβ̄ = εᾱβ̄H− 3
2 ∂1H, Fz̄

z̄ᾱ = F1̄
1̄ᾱ = −1

2
H−1∂̃ᾱH,

R-monopole: Fā
b̄c̄ = δ1

[b̄δā
c̄]H− 3

2 ∂1H, Fᾱβ̄γ̄ = 1

2
εβ̄γ̄εᾱδ̄H

−1∂̃δ̄H, F1̄
z̄ᾱ = εᾱβ̄H−1∂̃β̄H

F ᾱ = 3

2
H−1∂̃ᾱH F1̄ =

3

2
H− 3

2 ∂1H,

(26)
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where α, β now take the values 2 and 3. One notices that the R-flux itself is written in terms of

derivative of the harmonic function along the physical coordinate, that is the consequence of using the

β-frame of DFT. In addition one finds components of the generalized flux, which as in the previous

case, are proportional to derivatives of the harmonic function with respect to dual coordinates.

In principle, one is able to obtain the above results in the B-frame as well, however, we found

these calculations too lengthy.

4 Conclusions

This letter briefly describes the result of [17] where the solutions of Double Field Theory characterised

by non-geometric Q- and R-fluxes have been constructed as particular cases of the DFT-monopole of

Berman and Rudolph [27]. By making use of the notion of generalized flux it is explicitly shown, that

these solutions indeed carry a portion of Q-flux or R-flux, which satisfy generalized Bianchi identities

of [28].

The most interesting feature of these solutions is that the fields depend on dual coordinates. Al-

though, this is an expected behaviour due to worldsheet instanton corrections, one should no forget,

that DFT is a low energy field theory and does not have to know about stringy effects. The described

effect however gives a hint, that it actually may know about strings more, than conventional super-

gravity. Performing smearing procedure along these dual coordinates one obtains the known 52
2-brane

solution of [20] from Q-monopole and a co-dimension-1 solution from R-monopole. For both of

these the harmonic function becomes not well defined at spatial infinity and hence the solutions are

pathological.

In contrast in DFT the solutions behave well at infinity, that allows to define and explicitly calcu-

late magnetic charge, that reads

4πμ =

∫
Σ

FMNKdXM ∧ dXN ∧ dXK . (27)

Here the integration is performed along a special 3-cycle Σ ≡ S2 × S1 which is defined differently for

the backgrounds. However, for all the solutions considered in this paper such defined magnetic charge

gives the same result μ = QNS 5, that is just the magnetic charge of the NS5-brane (without smearing).

This is expected as the initial definition is O(d, d)-invariant.

Table 3. The 3-cycle Σ ≡ S2 × S1 is a product of a 1-circle and a 2-sphere. Here the bullet • denotes the

direction of the 1-circle, while the crosses × denote the directions in which the 2-sphere lives.

Σ x1 x2 x3 xz x̃1 x̃2 x̃3 x̃z

H × × × •
KK × × × •
Q × × × •
R × × × •

The main idea behind such defined integration surface is (i) that it cannot vary both in a physical

and the corresponding dual directions, that follows from the section condition, (ii) the rest is just

chosen by the generalized flux itself and one has nothing else to write.

Note that the coordinates xz or x̃z are always compact as the fields does not depend on them. In

general one may consider the full solution that depends on (one of) these coordinates and to obtain

similar results. Such solution of the DFT equations of motion has already been constructed in [27]

and called the localized DFT monopole.
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