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Abstract. We review the recently proposed class of σ-models with complex homoge-

neous target spaces, whose equations of motion admit zero-curvature representations.

1 The models

The action of a σ-model describing maps X from a 2D worldsheet C to a target space M with

metric h is given by

S = 1

2

∫
C

d2z hi j(X) ∂μXi ∂μX j (1)

Its critical points X(z, z̄) are called harmonic maps. We will be interested in the case when the target

space M is homogeneous: M = G/H, G compact and semi-simple. We will use the following

standard decomposition of the Lie algebra g of G:

g = h ⊕m, (2)

where m ⊥ h with respect to the Killing metric on g. For a reductive homogeneous space one has the

following relations:

[h, h] ⊂ h ⇒ h is a subalgebra of g

[h,m] ⊂ m ⇒ m is a representation of h

A homogeneous space G/H is called symmetric if

[m,m] ⊂ h (3)

Equivalently, there exists a Z2-grading on g, i.e. a Lie algebra homomorphism σ of g, such that

σ(a) = a for a ∈ h and σ(b) = −b for b ∈ m.
The action of a σ-model with homogeneous target space G/H is globally invariant under the Lie

group G. Therefore, there exists a conserved Noether current Kμ ∈ g:
∂μKμ = 0 (4)
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Since the group G acts transitively on its quotient space G/H, the equations of motion are in fact

equivalent to the conservation of the current.

It was observed by Pohlmeyer [1] that in the case when the target space is symmetric, the current

K is, moreover, flat (when viewed as a one-form and with proper normalization):

dK − K ∧ K = 0 (5)

To get an idea, why this can be the case, recall that the Maurer-Cartan equation has the solution

K = −g−1dg, g ∈ G (6)

What is the relation between g and a point in the configuration space [g̃] ∈ G/H? The answer is given

by Cartan’s embedding G/H ↪→ G:

g = σ̂(g̃)g̃−1 (7)

σ̂ is a Lie group homomorphism induced by the Lie algebra involution σ.
Another observation of Pohlmeyer was that the two conditions

d ∗ K = 0 (Conservation) (8)

dK − K ∧ K = 0 (Flatness)

may be rewritten as an equation of flatness of a connection

Au =
1 + u
2

Kzdz +
1 + u−1

2
Kz̄dz̄, (9)

where we have decomposed the current K = Kzdz + Kz̄dz̄. We have

dAu − Au ∧ Au = 0 (10)

This leads to an associated linear system (Lax pair)

(d − Au)Ψ = 0 (11)

The existence of a linear system described above is often a sufficient condition for the classical in-

tegrability of the model. The linear system was used in [2] to solve the equations of motion for the

principal chiral model (target space G), with worldsheet CP1. A more rigorous approach was devel-

oped in [3]. Solutions of the e.o.m. for σ-models with symmetric target spaces may be obtained

by restricting the solutions of the principal chiral model. These constructions could not be directly

generalized to the case of homogeneous, but not symmetric target spaces (in particular, because there

is no Cartan involution).

We will consider a different class of models, with target spacesM of the following type:

• M = G/H is a homogeneous space; for simplicity we take G compact and semi-simple

g = h ⊕m, [h, h] ⊂ h, [h,m] ⊂ m
• M has an integrable G-invariant complex structure I

m = m+ +m−, [h,m±] ⊂ m±, [m±,m±] ⊂ m±
Herem± may be thought of as the holomorphic/anti-holomorphic tangent spaces toM, i.e. I ◦m± =
±i m±.
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• The Killing metric h is Hermitian (i.e. of type (1, 1)) w.r.t. I

h(m±,m±) = 0

Complex homogeneous spaces were classified in [4] a long time ago. They are toric bundles over flag

manifolds. Consider for simplicity the case of G = S U(N). Then the relevant manifolds are of the

form

M = S U(N)

S (U(n1) × . . . × U(nm))
,

m∑
i=1

ni ≤ N ,

One has to choose the integers ni in such a way that M is even-dimensional. If
m∑

i=1
ni = N, this

is the manifold of partial flags in CN . Otherwise it is a U(1)2s-bundle over a flag manifold, where

2s = N − m∑
i=1

ni.

Given a homogeneous space of the type just described, one can introduce the action of the

model [5]:

S =
∫
C

d2z ‖∂X‖2 +
∫
C

X∗ω =

=

∫
C

d2z
(
hi j∂μXi∂μX j + εμνωi j∂μXi∂νX j

)
,

where ω = h◦I is the Kähler form. Note, however, that, in general, the metric h is not Kähler, hence

the form ω is not closed: dω � 0. Therefore the second term in the action contributes to the e.o.m.!

Let K be the Noether current constructed using the above action. As we already discussed, the

e.o.m. are equivalent to its conservation:

d ∗ K = 0

The key observation is that, for the models considered, it is also flat:

dK − K ∧ K = 0

These two equations mean, in essence, that the described models are sub-models of the principal chiral

model (PCM). In particular, the solutions of these models are a subset of solutions of the PCM. The

Lax pair representation can be constructed in parallel with the Pohlmeyer procedure.

Symmetric spaces of the group S U(N) are the Grassmannians

Gn|N :=
S U(N)

S (U(n) × U(N − n))

In this case the canonical one-parametric family of flat connections has the form

Ãλ =
1 − λ
2

K̃zdz +
1 − λ−1

2
K̃z̄dz̄,

where K̃ is the canonical Noether current, i.e. the one constructed using the standard action

S = 1

2

∫
C

d2z hi j(X) ∂μXi ∂μX j (12)
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The models, which we described above, feature an additional term in their action:
∫
C

X∗ω , the

integral of the Kähler form. Therefore the Noether current K defined using this action will be different

from K̃, the difference being a ‘topological’ current:

K = K̃ + ∗dM

Nevertheless both K and K̃ are flat. The one-parametric family of connections constructed using the

current K has the form

Au =
1 + u
2

Kzdz +
1 + u−1

2
Kz̄dz̄,

A natural question arises: How are Ãλ and Au related? The answer is: Ãλ and Au are related by a

gauge transformation Ω:

Ãλ = ΩAuΩ
−1 −ΩdΩ−1

Ω can be written out explicitly (g is the ‘dynamical’ group element):

Ω = gΛg−1, where Λ = diag(λ−1/2, . . . , λ−1/2︸�������������︷︷�������������︸
n

, λ1/2, . . . , λ1/2︸����������︷︷����������︸
N−n

)

Rather important is the nontrivial relation between the spectral parameters:

λ = u1/2

This relation may be confirmed by analyzing the limiting behavior of the holonomies of the connection

as u → 0 (such analysis can be borrowed from [6]).

2 An example. The flag manifold.

As an example let us consider one of the simplest homogeneous, but non-symmetric spaces – the

flag manifold

F3 =
U(3)

U(1)3
(13)

It is the space of ordered triples of lines through the origin in C3, and can be parametrized by three

orthonormal vectors ui, i = 1, 2, 3, ūi ◦ u j = δi j, modulo phase rotations: uk ∼ eiαk uk.

To formulate the model, we need to pick a particular complex structure on F3. The (co)tangent

space to F3 is spanned at each point by the one-forms

Ji j := ui ◦ dū j, i � j (14)

One can pick any three non-mutually conjugate one-forms and define the action of the complex struc-

ture operator I on them:

I ◦ J12 = ±iJ12, I ◦ J23 = ±iJ23, I ◦ J31 = ±iJ31 (15)

Altogether there are 23 = 8 possible choices, so that there are 8 invariant almost complex structures.

However, only 6 of them are integrable.
Pick the integrable complex structure I , in which J12, J13, J23 are holomorphic one-forms. Then

the action can be written as [7]

S =
∫

d2z
(
|(J12)z̄|2 + |(J13)z̄|2 + |(J23)z̄|2

)
(16)
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The e.o.m. are:

Dz(J12)z̄ = 0, Dz(J31)z̄ = 0, Dz(J23)z̄ = 0 and c.c. ones (17)

From the action (16) it is clear that the holomorphic curves defined by (J12)z̄ = (J13)z̄ = (J23)z̄ = 0

minimize the action, hence are solutions of the e.o.m. From (17) it follows that (J12)z̄ = (J31)z̄ =

(J23)z̄ = 0 is a solution as well. This defines a curve, holomorphic in a different, non-integrable

almost complex structure I. We have seen that the curves, holomorphic in at least two different almost
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Figure 1. The triangles indicate the complex structures, whose associated holomorphic curves are solutions of

the σ-model. The three top triangles correspond to integrable complex structures, whereas the two lower ones

correspond to the non-integrable ones.

complex structures, satisfy the e.o.m. As we discussed, there are 8 almost complex structures on the

flag manifold. Are there any other holomorphic curves that still solve the e.o.m.? The answer is

positive. The relevant complex structures are shown in Fig. 1.

We have already discussed why the QI-holomorphic curves and Q1-holomorphic curves satisfy

the e.o.m. To see why the Q2- and Q3-holomorphic curves satisfy the e.o.m., one should note that the

differences between the respective Kähler forms are closed forms, i.e. for example ω1 − ω2 = Ωtop

with dΩtop = 0. Therefore the two actions S1 and S2 differ by a topological term:

S1 − S2 =

∫
C

Ωtop (18)

This leads to an interesting bound on the instanton numbers of the holomorphic curves. To see this,

note that the flag manifold may be embedded as

i : F3 ↪→ CP2 × CP2 × CP2 (19)

The second cohomology H2(F3,R) = R
2 can be described via the pull-backs of the Fubini-Study

forms of the CP2’s, and the corresponding instanton numbers are ni =
∫
C

i∗(Ω(i)
FS ), i = 1, 2, 3.

These are subject to the condition

n1 + n2 + n3 = 0. (20)

The bounds on the topological numbers ni for the holomorphic curves, which follow from the non-

negativity of the actions Si, are shown in Fig. 2.
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Figure 2. Admissible instanton numbers for various complex structures on U(3)

U(1)3
are shown by black dots.

In [8] we were able to construct all solutions to the e.o.m. of the flag manifoldσ-model for the case

when the worldsheet is a sphere, C = CP1. In that case all solutions to the e.o.m. are parametrized

by the following data:

• One of the projections πi : F3 → (CP2)i, i = 1, 2, 3

• A harmonic map vhar : CP1 → (CP2)i to the base of the projection

• A holomorphic map whol : CP1 → CP1 to the fiber of the projection, .

For every triple (i, vhar, whol) there exists a solution of the e.o.m., and all solutions are obtained in this

way [8]. The crucial point is that the harmonic maps to the base manifold CP2 are known explicitly [9]

(and the holomorphic maps CP1 → CP1 are just rational functions).

3 Discussion

It has been known for a long time that the e.o.m. of σ-models with symmetric target spaces

admit zero-curvature representations – this fact is the cornerstone of integrability of these models. In

our recent works we have considered modified σ-models with complex homogeneous target spaces,

not necessarily symmetric ones, for which there exist Lax pairs as well [5]. This class of models

was reviewed above in section 1. We have also considered in detail a concrete example of such

model, namely the case when the target space is the flag manifold U(3)

U(1)3
[7]. When the worldsheet is

a sphere CP1, all solutions of the e.o.m. have been constructed [8]. These results were summarized

in section 2. The crucial test of integrability of the proposed models would lie in the construction

of classical solutions for the case when the worldsheet is a torus S 1 × S 1 (as was done in [6] for

M = S U(2)). Other directions for future research include supersymmetrization of the models and

the clarification of the role of Lie algebra gradings (such as Z2 for symmetric spaces, or Z4 for semi-

symmetric spaces).
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