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1 Introduction and results

In this work we consider the tree-level scattering amplitudes of massless states in the

NS-NS (Neveu-Schwarz) sector of closed superstrings, and analyze the behavior of the

amplitude when one of the external states, either a graviton, dilaton or a Kalb-Ramond

field, becomes soft with respect to the other (hard) states. This is a direct continuation of

our earlier works in ref. [1, 2], where we dealt with the same problem, but in the bosonic

string only. In ref. [1] the soft behavior of a massless closed string was computed through

subsubleading order in the soft momentum, when the hard states were all tachyons, and

through subleading order, when the hard states were any other massless closed state in the

bosonic string. These soft behaviors were shown for the graviton and dilaton to generically

admit soft theorems with the factorizing soft part being equal to the known leading and

subleading soft theorems of a graviton in pure field theory [3–6], and of a dilaton in string

theory [7, 8]. The subsubleading soft behavior, when scattering on hard tachyons was

found instead to have an additional factorizing piece, only relevant for a soft dilaton, as

compared to the recently discovered subsubleading soft theorem for the graviton in field

theory [9–11] (for complementary discussions, see also ref. [12–27]).

As shown in [11], the field theory soft theorem results for the graviton all follow by

just imposing gauge invariance of the scattering amplitudes. This same analysis can be

extended to also cover the dilaton collectively with the graviton, and as shown in ref. [28],

one indeed recovers the additional piece at subsubleading order, found explicitly in ref. [1],

when scattering on hard tachyons, signalling universality of the soft theorem. In ref. [2] we

extended our analysis in the bosonic string by computing the subsubleading soft behavior

of a massless closed state scattering on other hard massless closed states. The soft theorems

for the graviton and dilaton were again uncovered, and it was shown that an additional
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factorizing soft operator proportional to the string slope α′ appears at subsubleading order,

when the soft state is a graviton, while the dilaton soft theorem remains equal to the field

theory result of ref. [28]. By including the α′ corrections in the three-point amplitude for

massless states, this was shown to again follow from gauge invariance of the scattering

amplitudes. While this shows that the graviton soft theorem at subsubleading order is not

universal, but depends on higher-order operators in its effective action, it is intriguing to

think that the soft behavior of the dilaton is universal in any theory through subsubleading

order, signalling some underlying hidden symmetry. (For recent discussions on existing

relations between broken symmetries of Lagrangians and soft theorems, see refs. [28–35].)

Indeed, as shown in ref. [28], the dilaton soft theorem does bare striking resemblance to the

soft theorem of the Nambu-Goldstone boson of spontaneously broken conformal symmetry,

which is universal through subsubleading order.

In this work we are in fact going to confirm that the dilaton in superstrings obeys the

same soft theorem as in the bosonic string through subsubleading order, when scattering on

other massless closed states of the NS-NS sector of closed superstrings. The soft theorem

of the graviton in superstrings, on the other hand, does not have any string corrections,

in contrast to the bosonic string. Furthermore, we will show by using gauge invariance

that also in the heterotic string, the dilaton soft operator has no string corrections at

subsubleading order. In conclusion, we find that the dilaton soft operator is tree-level

universal through subsubleading order in all string theories, and in particular, does not

contain string corrections, making it the same as in field theory. We leave out in this work

any discussions on the soft behavior of the Kalb-Ramond field. We plan to discuss it in a

future work, collecting also our previous results in the bosonic string.

The subject of this work has seen tremendous progress in recent years, both in field

theory and in string theories. We restrict ourselves here to referring only to the more

related string theory papers [36–41], while the interested reader is invited to look up our

recent paper [2] for a brief count of the progress also on the field theory side, including the

relevant references.

Let us summarize the results of this work, while at the same time introducing our

notation: the n-point tree-level scattering amplitudes, Mn, of closed massless superstrings

can generically be written as a convolution of a bosonic part, M b
n, with a supersymmetric

part, M s
n, as follows:

Mn = M b
n ∗M s

n , (1.1)

The expressions for bosonic and supersymmetric parts of the n-point supersymmetric string

amplitude are defined by:

M b
n =

8π

α′

(κD
2π

)n−2
∫

∏n
i=1 d

2zi
dVabc|z1 − z2|2

2
∏

i=1

dθiθi

2
∏

i=1

dθ̄iθ̄i

n
∏

i=3

dθi

n
∏

i=1

dϕi

n
∏

i=3

dθ̄i

n
∏

i=1

dϕ̄i

×
∏

i<j

|zi − zj |
α′ki·kj exp

[

1

2

∑

i 6=j

Ci · Cj

(zi − zj)2
+

√

α′

2

∑

i 6=j

Ci · kj
zi − zj

+ c.c.

]

, (1.2)
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M s
n = exp

[

−
1

2

∑

i 6=j

Ai ·Aj

zi − zj
+ c.c.

]

. (1.3)

where κD is theD-dimensional Newton’s constant, dVabc is the volume of the Möbius group,

zi are the Koba-Nielsen variables, ϕi and θi are Grassmannian integration variables, and

we have introduced the following superkinematical quantities:

Aµ
i = ϕiǫ

µ
i +

√

α′

2
θik

µ
i ; Cµ

i = ϕiθiǫ
µ
i , (1.4)

where ǫµi and kµi are respectively the holomorphic polarization vector and momentum of

the state i, and α′ is the string slope.

Apart from the integration measure, M b
n is equivalent at the integrand level to the

same amplitude in the bosonic string; the integrands, in fact, become equal if one makes

the identification θiǫi → ǫi and remembers that, after this substitution, ǫi has become a

Grassmann variable. The difference in the measure between M b
n and the bosonic string

amplitude is only the presence in M b
n of the integrals over the Grassmann variables θi,

θ̄i, and the additional factor
∏2

i=1 θiθ̄i/|z1 − z2|
2 coming from the correlator of the su-

perghosts. The latter factor in the measure effectively kills any term involving θ1, θ2, θ̄1, θ̄2,

which readily follows from an expansion of the exponentials and an integration over those

variables. We will not need to use this property, and thus leave the integrand as it is.

When considering an amplitude with an additional state, which is soft, it is useful to

factorize the string amplitude at the integrand level into a soft part S and a hard part as

follows:

Mn+1 = Mn ∗ S (1.5)

where Mn is the full superstring amplitude of n closed massless states, and S is a function

that when convoluted with the integral expression for Mn provides the additional soft state

involved in the amplitude. The function S can be further decomposed into its bosonic part

and supersymmetric part as follows:

S = Sb + Ss + S̄s , (1.6)

where Sb is the bosonic part and Ss + S̄s is the supersymmetric part, with S̄s being the

complex conjugate of Ss. This decomposition is useful, since the bosonic part can be related

to the soft function in the bosonic string. In fact, after the identification θiǫi → ǫi, the

bosonic soft function Sb is the same as the one given for the bosonic string in ref. [1, 2],1

which was computed therein through O(q), where q is the momentum of the soft state.

In this work we need therefore only to consider the additional contributions from the

supersymmetric states, described by Ss + S̄s. We have computed this function through

1The Grassmanian variables ϕi are equivalent to those of ref. [1, 2] denoted therein by θi.
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O(q), and our result reads:

Ss + S̄s = κDǫµǭν
∑

i 6=j

{

qρ
(ki · q)

Ā
[ρ,
i Ā

ν]
j k

µ
i

(z̄i − z̄j)
+ qρ

(

α′

2

) 3

2 q · kjC̄
[ρ,
i k

ν]
i

z̄i − z̄j

(

kµi
q · ki

−
kµj

q · kj

)

+ qρ

√

α′

2

Āρ
{i,Ā

ν
j}

z̄i − z̄j

∑

l 6=i

[

q · kl
q · ki

(

Cµ
i

zi − zl
+

√

α′

2
kµi log |zi − zl|

2

)

+

(

Cµ
l

zi − zl
−

√

α′

2
kµl log |zi − zl|

2

)]

+ qρqσ

[(

1

2
Aσ

{i,A
µ
j} −

√

α′

2
Cσ
{i,k

µ
j}

)

∑

l 6=i

Āρ
{i,Ā

ν
l}

q · ki(zi − zj)(z̄i − z̄l)

−
α′

2

C̄
[σ,
i k

ν]
i C̄ρ

j

(z̄i − z̄j)2

(

kµj
q · kj

−
kµi
q · ki

)

−

√

α′

2

∑

l 6=i,j

kµi

(

C̄σ
j Ā

ρ
{i,Ā

ν
l} +

1
2 C̄

σ
i Ā

ρ
{j,Ā

ν
l}

)

q · ki(z̄i − z̄j)(z̄i − z̄l)

−
∑

l 6=i

Cσ
[i,C

µ
j]Ā

ρ
{i,Ā

ν
l}

q · ki(zi − zj)2(z̄i − z̄l)

]}

+ c.c. +O(q2) , (1.7)

where the brackets and curly-brackets in the indices denote commutation and anticommu-

tation of the indices, e.g.:

C
[ρ,
i k

ν]
i ≡ Cρ

i k
ν
i − Cν

i k
ρ
i

Aµ
{i,A

ν
j} ≡ Aµ

i A
ν
j +Aµ

jA
ν
i = A

[µ,
i A

ν]
j ,

(1.8)

where the latter identity is due to the Aµ
i being Grassmannian. The expression in eq. (1.7)

starts at O(q0). This means that only the bosonic part contributes to the amplitude

at O(q−1), and is thus responsible for the Weinberg graviton soft theorem. When the

above expression is projected onto a soft state which is symmetric in its polarization, i.e.

a graviton or a dilaton, we will show that the explicit results above can be reproduced by

the following soft theorem:

(Mn+1)S = (Ŝ(−1) + Ŝ(0) + Ŝ(1))Mn +O(q2) (1.9)

where the subscript S denotes that the soft state must be symmetrically polarized, and

Ŝ(−1) = κD ǫSµν
∑

i=1

kµi k
ν
i

ki · q
, (1.10a)

Ŝ(0) = −iκDǫ
S
µν

n
∑

i=1

qρk
ν
i J

µρ
i

ki · q
, (1.10b)

Ŝ(1) = −κD
ǫSµν
2

n
∑

i=1

(

qρJ
µρ
i qσJ

νσ
i

ki · q
+

qµηνρqσ + qµηνσqρ − ηµνqσqρ

ki · q
Aiρσ

)

, (1.10c)
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and where ǫSµν = 1
2(ǫµǭν + ǫν ǭµ), Ji is the total angular momentum operator,

Jµν
i = Lµν

i + Sµν
i + S̄µν

i , (1.11)

Lµν
i = i

(

kµi
∂

∂kiν
− kνi

∂

∂kiµ

)

, Sµν
i = i

(

ǫµi
∂

∂ǫiν
− ǫνi

∂

∂ǫiµ

)

, S̄µν
i = i

(

ǭµi
∂

∂ǭiν
− ǭνi

∂

∂ǭiµ

)

,

and Ai is an operator:

Aiρσ = kiρ
∂

∂kσi
+Πiρσ , Πiρσ = ǫiρ

∂

∂ǫσi
+ ǭiρ

∂

∂ǭσi
(1.12)

that acts covariantly on the superkinematical variables, i.e.

A
µρ
i Aσ

j = δijη
σρAµ

i , A
µρ
i Cσ

j = δijη
σρCµ

i . (1.13)

It follows that Jµν
i is also covariant acting on these variables, since

Jµν
i = i(Aµν

i −A
νµ
i ) . (1.14)

In contrast, we notice that the subsubleading soft operators obtained in the bosonic

string [2]:

Ŝ
(1)
bos = Ŝ(1) +

α′

2
κD ǫSµν

n
∑

i=1

(

qσkνi η
ρµ + qρkµi η

σν − ηρµησν(ki · q)− qρqσ
kµi k

ν
i

q · ki

)

Πiρσ , (1.15)

and, as we will show in this work, also in heterotic string:

Ŝ
(1)
het = Ŝ(1) +

α′

2
κD ǫSµν

n
∑

i=1

(

qσkνi η
ρµ + qρkµi η

σν − ηρµησν(ki · q)− qρqσ
kµi k

ν
i

q · ki

)

ǫiρ
∂

∂ǫσi
,

(1.16)

differ from eq. (1.10c) by terms due to string corrections. These additional parts, pro-

portional to α′, do not act covariantly on the superkinematical variables, and thus are

not supersymmetric operators. We have consistently found that they only appear in the

bosonic and in the heterotic string. They furthermore vanish when projected onto the

dilaton state. Therefore the subsubleading soft operator in eq. (1.10c) is, nevertheless, uni-

versally valid for the dilaton in the bosonic string, in superstrings, in the heterotic string,

and in field theory [28].

The paper is organized as follows: in section 2 we review the superstring amplitude of

n+1 massless closed states and rewrite it in a convenient form for computing its behavior

in the limit where one of the external states becomes soft with respect to the momenta of

the other n external states. Here we also introduce our notation. Then in section 3 we

show the calculational details of the soft part of the amplitude and provide our explicit

results. In section 4 we demonstrate that the explicit results for the graviton and the

dilaton can be expressed equally as a soft theorem, where the soft part is provided by the

action of an operator acting on the lower point amplitude involving only the n external

hard states. We furthermore explicitly show how the supersymmetric part of the amplitude

– 5 –
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cancels the purely bosonic string corrections to the amplitude at the subsubleading order,

found in ref. [2]. In section 5, using gauge invariance, we compute the string corrections in

the heterotic string and we show that they do not contribute to the dilaton soft behavior.

Finally, section 6 offers our conclusions and remarks. An appendix is additionally provided

for the details of the calculation in section 4.

2 Amplitude of one soft and n massless closed superstrings

In this section, we review the closed superstring amplitude and rewrite it in a convenient

form, when one particle is soft, which allows us to directly express the results using the

calculations already done in the bosonic string in ref. [1, 2].

The massless closed superstring vertex, in the (−1,−1) and (0, 0) pictures, is given by

the compact expression:

V (−p,−p) =
κD
2π

∫

dθ θp V (p)(z, θ; k)

∫

dθ̄ θ̄p V̄ (p)(z̄, θ̄; k) , (2.1)

with

V (p)(z, θ; k) = e−pφ(z) ǫµ DXµ ei
√

α′

2
k·X(z, θ) , (2.2)

where θ and θ̄ are Grassmannian variables, ǫµǭν = ǫµν is the polarization of the massless

state, and the superfield notation is given by

Xµ(z, θ) ≡ xµ(z) + θψµ(z) , D ≡
∂

∂θ
+ θ

∂

∂z
. (2.3)

The relevant expectation values for massless amplitudes are:

〈Xµ(z1, θ1)X
ν(z2, θ2)〉 = −ηµν log(z1 − z2 − θ1θ2) ,

〈e−φ(z1) e−φ(z2)〉 =
1

z1 − z2
.

(2.4)

The amplitude of n+ 1 massless states in closed superstring can be written as:

Mn+1 =
8π

α′

(κD
2π

)n−1
∫

d2z
∏n

i=1 d
2zidθdθ̄

dVabc|z1 − z2|2

[ 2
∏

i=1

dθiθi

n
∏

i=3

dθi

][ 2
∏

i=1

dθ̄iθ̄i

n
∏

i=3

dθ̄i

]

(2.5)

× 〈0|

∫

dϕ e
i

(

ϕǫDX(z,θ)+
√

α′

2
qX(z,θ)

)

n
∏

i=1

(∫

dϕi e
i(ϕiǫiDiX(zi,θi)+KiX(zi,θi))

)

|0〉

× 〈0|

∫

dϕ̄ e
i

(

ϕ̄ǭD̄X(z̄,θ̄)+
√

α′

2
qX(z̄,θ̄)

)

n
∏

i=1

(∫

dϕ̄i e
i(ϕ̄iǭiD̄iX(z̄i,θ̄i)+KiX(z̄i,θ̄i))

)

|0〉 ,

where new Grassmanian variables (ϕ,ϕi, ϕ̄, ϕ̄i) are introduced, and dVabc is the volume of

the Möbius group. The states with the indices 1 and 2 are in the (−1,−1) picture, while

the others are in the (0, 0) picture. This effectively means that, in the expressions for the

integrands that follow, terms involving θ1, θ2, θ̄1, θ̄2 can be equated to zero because of the

– 6 –



J
H
E
P
1
2
(
2
0
1
6
)
0
2
0

overall integration measures
∫

dθiθi and
∫

dθ̄iθ̄i for i = 1, 2. Since this choice could have

been made for any two of the n states, we will not explicitly impose these zero conditions

in the expressions that follow.

The n+1 point amplitude, with the help of the correlation functions written in eq. (2.4)

and after having integrated over the variables θ and θ̄, reduces to an expression which can

be factorized at the integrand level as follows:

Mn+1 = Mn ∗ S , (2.6)

where by ∗ a convolution integral is understood, and the two parts Mn and S can be

conveniently expressed in terms of the superkinematical quantities:

Aµ
i = ϕiǫ

µ
i +

√

α′

2
θik

µ
i ; Cµ

i = ϕiθiǫ
µ
i , (2.7)

such that

Mn =
8π

α′

(κD
2π

)n−2
∫

∏n
i=1 d

2zi
dVabc|z1 − z2|2

2
∏

i=1

dθiθi

2
∏

i=1

dθ̄iθ̄i

n
∏

i=3

dθi

n
∏

i=1

dϕi

n
∏

i=3

dθ̄i

n
∏

i=1

dϕ̄i

∏

i<j

|zi − zj |
α′kikj exp





1

2

∑

i 6=j

Ci · Cj

(zi − zj)2
+

√

α′

2

∑

i 6=j

Ci · kj
zi − zj

−
1

2

∑

i 6=j

Ai ·Aj

zi − zj





× exp





1

2

∑

i 6=j

C̄i · C̄j

(z̄i − z̄j)2
+

√

α′

2

∑

i 6=j

C̄i · kj
z̄i − z̄j

−
1

2

∑

i 6=j

Āi · Āj

z̄i − z̄j



 ,

(2.8)

while for convenience we express S as a sum of three terms

S ≡ Sb + Ss + S̄s , (2.9)

where Sb is the purely bosonic part, which is simply equal to the similar expression in the

bosonic string after identifying θiǫi → ǫi (whereby ǫi becomes a Grassmann variable) and

is given by:2

Sb =
κD
2π

∫

d2z
n
∏

l=1

|z − zl|
α′qkl

n
∏

l=1

exp

[

−

√

α′

2

q · Cl

z − zl
−

√

α′

2

q · C̄l

z̄ − z̄l

]

×

(

n
∑

i=1

ǫ · Ci

(z − zi)2
+

n
∑

i=1

√

α′

2

ǫ · ki
z − zi

)





n
∑

j=1

ǭ · C̄j

(z̄ − z̄j)2
+

n
∑

j=1

√

α′

2

ǭ · kj
z̄ − z̄j



 ,

(2.10)

2For comparison with the expressions in ref. [1, 2] we notice that the variables here denoted by ϕi are

equivalent to the variables denoted by θi in those papers.
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and Ss and S̄s are the complex conjugates of each other and they provide the contributions

from the additional supersymmetric states. They are given by

S̄s =
κD
2π

∫

d2z
n
∏

l=1

|z − zl|
α′qkl

n
∏

l=1

exp

[

−

√

α′

2

q · Cl

z − zl
−

√

α′

2

q · C̄l

z̄ − z̄l

]

×





1

2

n
∑

i=1

√

α′

2

q ·Ai

z − zi

n
∑

j=1

ǫ ·Aj

z − zj

n
∑

l=1

√

α′

2

q · Āl

z̄ − z̄l

n
∑

m=1

ǭ · Ām

z̄ − z̄m

+

(

n
∑

i=1

ǫ · Ci

(z − zi)2
+

n
∑

i=1

√

α′

2

ǫ · ki
z − zi

)

n
∑

j=1

√

α′

2

q · Āj

z̄ − z̄j

n
∑

l=1

ǭ · Āl

z̄ − z̄l



 ,

(2.11)

and Ss is given by the complex conjugate of this expression, where complex conjugation

sends zi → z̄i, ǫ
µ
i → ǭµi , θi → θ̄i, and ϕi → ϕ̄i, while the momenta ki are left invariant. The

superkinematical quantities Aµ
i and Cµ

i are respectively anticommuting and commuting

kinematic factors. Furthermore, since ϕ2
i = θ2i = 0, they obey the following useful identities:

Aµ
i A

ν
i =

√

α′

2
C

[µ,
i k

ν]
i , Cµ

i C
ν
i = Aµ

i C
ν
i = 0 , (2.12)

where we have used the notation C
[µ,
i k

ν]
i ≡ Cµ

i k
ν
i −Cν

i k
µ
i . This antisymmetrizing notation

will be used throughout this paper. Furthermore an equivalent notation will be used with

curly brackets for denoting symmetrization.

Let us remark that Mn can be decomposed in a bosonic and a supersymmetric part as

well, as follows:

Mn = M b
n ∗M s

n , (2.13)

where the first part yields the complete bosonic case and is given by

M b
n =

8π

α′

(κD
2π

)n−2
∫

∏n
i=1 d

2zi
dVabc|z1 − z2|2

2
∏

i=1

dθiθi

n
∏

i=3

dθi

n
∏

i=1

dϕi

2
∏

i=1

dθ̄iθ̄i

n
∏

i=3

dθ̄i

n
∏

i=1

dϕ̄i

∏

i<j

|zi − zj |
α′kikj exp





1

2

∑

i 6=j

Ci · Cj

(zi − zj)2
+

√

α′

2

∑

i 6=j

Ci · kj
zi − zj

+ c.c.



 ,

(2.14)

and the second part gives the supplement of the additional superstring states and reads

M s
n = exp



−
1

2

∑

i 6=j

Ai ·Aj

zi − zj
+ c.c.



 . (2.15)
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3 Soft expansion through subsubleading order

The integral Sb has been computed through subsubleading order in q, that is through O(q),

in refs. [1, 2]. Thus for this work we only need to consider the other parts of S, i.e. Ss and

S̄s, where the latter can be conveniently written in the following compact form:

S̄s =

√

α′

2
κDǫµǭν

{

qρ
∑

i,j,l=1

Āρ
j Ā

ν
l

(

Cµ
i I

jl
ii +

√

α′

2
kµi I

jl
i

)

+

√

α′

2
qρqσ

∑

i,j,l,m=1

Āσ
l Ā

ν
m

[(

1

2
Aρ

iA
µ
j −

√

α′

2
Cρ
i k

µ
j

)

I lmij

− Cρ
i C

µ
j I

lm
ijj − Cµ

i C̄
ρ
j I

jlm
ii −

√

α′

2
kµi C̄

ρ
j I

jlm
i

]}

, (3.1)

where all the integrals involved in the calculus of the amplitude are represented as:

Ij1j2...i1i2...
=

∫

d2z

2π

∏n
l=1 |z − zl|

α′qkl

(z − zi1)(z − zi2) · · · (z̄ − z̄j1)(z̄ − z̄j2) · · ·
. (3.2)

Notice that according to eq. (2.12) the term involving Cρ
i C

µ
j vanishes for i = j, and that

the terms involving C̄ρ
j vanish for j = l,m. It turns out that all integrals involved in the

calculation have already been computed in ref. [2], and they are all obtained from two

master integrals, I ii and Iji , through an iteratively use of the identities:

Ijii =
1

1− α′

2 (qki)
∂ziI

j
i (3.3)

valid even for i = j and

Ij1j2...i1i2...
=

Ij1j2...i1...
− Ij1j2...i2...

zi1 − zi2
=

Ij1...i1...
− Ij2...i1...

− Ij1...i2...
+ Ij2...i2...

(zi1 − zi2)(z̄j1 − z̄j2)
= . . . (3.4)

The explicit expressions of the master integrals are [1, 2]:

Iii =
2

α′(kiq)

(

1+ α′
∑

j 6=i

(kjq) log |zi−zj |+
(α′)2

2

∑

j 6=i

∑

k 6=i

(kjq)(kkq) log |zi−zj | log |zi−zk|

)

+ (α′)2
∑

j 6=i

(kjq) log
2 |zi − zj |+ log Λ2 +O(q2) , (3.5)

Iji =
∑

m 6=i,j

α′(qkm)

2

(

Li2

(

z̄i − z̄m
z̄i − z̄j

)

− Li2

(

zi − zm
zi − zj

)

− 2 log
z̄m − z̄j
z̄i − z̄j

log
|zi − zj |

|zi − zm|

)

− log |zi − zj |
2 + log Λ2 +O(q2) , (3.6)

with Λ a cut off that cancels in the final expression of the amplitude. The notation of two

momenta in a round bracket is hereafter used to denote (kjq) ≡ kj · q. It is worthwhile to

notice that only I ii shows a pole in the soft momentum and therefore the integrals Ij1j2...i1i2...

can yield a term of O(q−1) only if one of its lower indices is equal to one of the upper ones.
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To derive S̄s through subsubleading order, let us first notice that with the integrand

explicitly containing a factor of q, the leading part can only be of O(q0), and therefore

the entire O(q−1) terms are produced by the bosonic part only. Next, to obtain the terms

of order q0 and q, we notice by inspection of eq. (3.1) that the integrals Ijlii and Ijli must

be equated through the O(q0), while for all other integrals only the leading q−1 order is

relevant. The integral Ijlmii , only relevant at O(q−1), does not contribute, since by having

two lower indices equal it cannot be divergent in the soft momentum. For the same reason,

all the other integrals which are only relevant at O(q−1) contribute only when one of the

indices l or m is equal to i or j.

The complete expression through O(q) of S̄s can be explicitly given in the following

form, where each integral is now unique and we discard integrals that do not give any

relevant contribution:

S̄s =

√

α′

2
κDǫµǭνqρ

{

α′

2

∑

i=1

C̄
[ρ,
i k

ν]
i

(

kµi I
ii
i +

∑

j 6=i

kµj I
ii
j

)

+
∑

i 6=j

Āρ
{i,Ā

ν
j}

(

Cµ
i I

ji
ii +

√

α′

2
kµi I

ij
i

)

+
∑

i 6=j 6=l

Āρ
j Ā

ν
l

(

Cµ
i I

jl
ii +

√

α′

2
kµi I

jl
i

)

+

√

α′

2
qσ

[

∑

i 6=j

∑

i 6=l

1

2
Āσ

{i,Ā
ν
l}A

ρ
{i,A

µ
j}I

li
ij

−

√

α′

2

∑

i 6=j

Āσ
{i,Ā

ν
j}C

ρ
j k

µ
i I

ij
ij −

√

α′

2

∑

i 6=j 6=l

Āσ
{i,Ā

ν
l}C

ρ
{i,k

µ
j}I

il
ij −

∑

i 6=j

Āσ
{i,Ā

ν
j}C

ρ
jC

µ
i I

ij
jii

−
∑

i 6=j 6=l

Cρ
jC

µ
i

(

Āσ
{i,Ā

ν
l}I

il
jii + Āσ

{j,Ā
ν
l}I

jl
jii

)

−
α′

2

∑

i 6=j

C̄
[σ,
i k

ν]
i kµi C̄

ρ
j I

iij
i

−
α′

2

∑

i 6=j

C̄
[σ,
j k

ν]
j kµi C̄

ρ
i I

jji
i −

√

α′

2

∑

i 6=j 6=l

kµi

(

Āσ
{i,Ā

ν
l}C̄

ρ
j I

jli
i + Āσ

l Ā
ν
j C̄

ρ
i I

lji
i

)

]}

+O(q2) (3.7)

where we made explicit use of eq. (2.12) and particularly of the identity Āρ
i Ā

ν
i =

√

α′

2 C
[ρ,
i k

ν]
i .

We recall for convenience the notations:

C
[ρ,
i k

ν]
i ≡ Cρ

i k
ν
i − Cν

i k
ρ
i

Aµ
{i,A

ν
j} ≡ Aµ

i A
ν
j +Aµ

jA
ν
i = A

[µ,
i A

ν]
j

(3.8)

where the latter equality is due to the Grassmannian nature of the Ai.

The O(q0) part of S̄s is obtained from the term involving Ijli only, since Ijlii does not

have a O(q−1) term, and the only nonzero part reads:

S̄s = κDǫµǭν
α′

2
qρ

∑

i 6=j

(

Āρ
j Ā

ν
i + Āρ

i Ā
ν
j

)

kµi I
ij
i +O(q)

= κDǫµǭν
∑

i 6=j

qρĀ
[ρ,
i Ā

ν]
j k

µ
i

(ki · q)(z̄i − z̄j)
+O(q) . (3.9)

It is worth noticing that this expression does not involve any overall α′-factor.
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Finally we express explicitly the terms of O(q), which after some simplifications read:

S̄s

∣

∣

∣

O(q)
=κDǫµǭν

∑

i 6=j

{

qρ

(

α′

2

) 3

2 qkjC̄
[ρ,
i k

ν]
i

z̄i − z̄j

(

kµi
qki

−
kµj
qkj

)

+ qρ

√

α′

2

Āρ
{i,Ā

ν
j}

z̄i − z̄j

∑

l 6=i

[

qkl
qki

(

Cµ
i

zi − zl
+

√

α′

2
kµi log |zi − zl|

2

)

+

(

Cµ
l

zi − zl
−

√

α′

2
kµl log |zi − zl|

2

)]

+ qρqσ

[(

1

2
Aσ

{i,A
µ
j} −

√

α′

2
Cσ
{i,k

µ
j}

)

∑

l 6=i

Āρ
{i,Ā

ν
l}

qki(zi − zj)(z̄i − z̄l)

−
α′

2

C̄
[σ,
i k

ν]
i C̄ρ

j

(z̄i − z̄j)2

(

kµj
qkj

−
kµi
qki

)

−

√

α′

2

∑

l 6=i,j

kµi

(

C̄σ
j Ā

ρ
{i,Ā

ν
l} +

1
2 C̄

σ
i Ā

ρ
{j,Ā

ν
l}

)

qki(z̄i − z̄j)(z̄i − z̄l)

−
∑

l 6=i

Cσ
[i,C

µ
j]Ā

ρ
{i,Ā

ν
l}

qki(zi − zj)2(z̄i − z̄l)

]}

. (3.10)

4 Soft action on the lower-point amplitude

In section 3 we have seen that the n-point string amplitudes with all massless external

legs can be written as the convolution integral of M b
n with M s

n. The dependence of M b
n

on the momenta and polarizations is the same as for the amplitude of n massless particles

in the bosonic string, which is in turn already known to obey a soft theorem through

subsubleading order when the soft particle is a graviton or dilaton [1, 2], i.e.

M b
n+1 = Mn ∗ Sb =

(

Ŝ
(−1)
bos + Ŝ

(0)
bos + Ŝ

(1)
bos

)

M b
n +O(q2) , (4.1)

where

Ŝ
(−1)
bos =κD ǫSµν

∑

i=1

kµi k
ν
i

ki · q
, (4.2a)

Ŝ
(0)
bos =− iκDǫ

S
µν

n
∑

i=1

qρk
ν
i J

µρ
i

ki · q
, (4.2b)

Ŝ
(1)
bos =− κD

ǫSµν
2

n
∑

i=1

[

qρJ
µρ
i qσJ

νσ
i

ki · q
+

qµηνρqσ + qµηνσqρ − ηµνqσqρ

qki
Aiρσ

−α′

(

qσkνi η
ρµ + qρkµi η

σν − ηρµησν(ki · q)− qρqσ
kµi k

ν
i

ki · q

)

Πiρσ

]

, (4.2c)

where the different quantities and operators were defined in the introduction,

eqs. (1.11)–(1.12).

In this section we will establish a soft theorem for gravitons and dilatons in superstring

amplitudes. By using the above results for M b
n, we will do this by showing that also M s

n
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satisfies similar soft identities. In this way we will crucially see how the supersymmetric

part cancels the α′-terms in the soft theorem of the bosonic string, eq. (4.2c), leaving a

superstring soft theorem free of any α′-correction through subsubleading order. Let us first

notice the trivial leading order result,

Mn+1 = Mn ∗ (Sb + Ss + S̄s) = Mn ∗ Sb +O(q0) = (M b
n ∗M s

n) ∗ Sb +O(q0)

= M b
n+1 ∗M

s
n +O(q0) = Ŝ

(−1)
bos Mn +O(q0) (4.3)

thus at leading order we can trivially identify Ŝ(−1) = Ŝ
(−1)
bos .

In order to identify the superstring soft operator at subleading order, it is useful,

in analogy with the bosonic calculation [1], to make the holomorphic and antiholomor-

phic sectors completely independent. This is achieved by replacing, in the antiholomor-

phic sector, the momentum k of the hard particles with a spurious quantity k̄. By do-

ing this, the integrand of a closed string amplitude completely factorizes, at the cost of

Mn ≡ Mn(ki, ǫi, k̄i, ǭi) only becoming a physical amplitude after identifying k̄ with k. This,

however, leads us to introduce holomorphic angular momentum operators,

Lµρ
i = i

(

kµi
∂

∂kiρ
− kρi

∂

∂kiµ

)

, Sµρ
i = i

(

ǫµi
∂

∂ǫiρ
− ǫρi

∂

∂ǫiµ

)

, (4.4)

with similar expressions for the antiholomorphic quantities. The action of these operators

on the superkinematical variables, defined in eq. (2.7), gives:

(Li + Si)
µρAσ

j = iδij (η
σρAµ

i − ησµAρ
i ) , (L̄i + S̄i)

µρ
i Āσ

j = iδij
(

ησρĀµ
i − ησµĀρ

i

)

,

(Li + Si)
µρCσ

j = iδij (η
σρCµ

i − ησµCρ
i ) , (L̄i + S̄i)

µρC̄σ
j = iδij

(

ησρC̄µ
i − ησµC̄ρ

i

)

.
(4.5)

From these identities it is straightforward to show a pseudo-soft theorem at subleading

order for any soft state (graviton, dilaton, Kalb-Ramond) in the following form:

Mn+1 = −iκDǫµǭν

n
∑

i=1

[

qρk
ν
i (Li + Si)

µρ

qki
+

qρk
µ
i (L̄i + S̄i)

νρ

qki

]

Mn(ki, ǫi; k̄i, ǭi)

∣

∣

∣

∣

∣

k=k̄

+O(q)

(4.6)

This is easiest to see by noting that in the bosonic string the same expression holds for

the O(q0) part, as shown in ref. [1], and therefore also for M b
n as defined in this work, and

since the operator above is linear on Mn = M b
n ∗M s

n, it needs only to be checked that the

operation above on M s
n reproduces Ss + S̄s at O(q0), given explicitly in eq. (3.9).

By taking the symmetric, respectively antisymmetric combinations of the above ex-

pression in the polarization of the soft state, it is possible to turn the above pseudo-soft

theorem into a physical soft theorem. We postpone the full antisymmetric analysis to a

future work, and here focus on the symmetric part, which reads:

(Mn+1)S = −iκDǫ
S
µν

n
∑

i=1

qρk
ν
i

qki

(

Li + L̄i + Si + S̄i

)µρ
Mn(ki, ǫi; k̄i, ǭi)

∣

∣

∣

k=k̄
+O(q) (4.7)

where the sub/superscript S is for symmetric and where ǫSµν = 1
2(ǫµǭν + ǫν ǭµ). Now using

the equivalence (Li + L̄i)
µρMn(ki; k̄i)|k=k̄ ≡ Lµρ

i M s
n(ki), we can readily set k̄ = k and
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thus get:

(Mn+1)S = −iκDǫ
S
µν

n
∑

i=1

qρk
ν
i

qki

(

Li + Si + S̄i

)µρ
Mn(ki, ǫi, ǭi) +O(q)

= −iκDǫ
S
µν

n
∑

i=1

qρk
ν
i J

µρ
i

qki
Mn(ki, ǫi, ǭi) +O(q)

≡ Ŝ(0)Mn(ki, ǫi, ǭi) +O(q) (4.8)

where we identified the total angular momentum operator Jµρ
i = Lµρ

i +Sµρ
i +S̄µρ

i , and in the

last line we defined the subleading operator Ŝ(0). This result is the well-known subleading

soft theorem for the graviton. Here we have shown, however, that it also applies to the

dilaton, by taking its proper polarization tensor, and furthermore that in superstring theory

there are no string corrections to the soft operator through this order. It follows that to

the subleading order, the soft theorem for the graviton and dilaton in superstring theory

is exactly the same as in bosonic string theory. Since Ŝ(0) = Ŝ
(0)
bos, we could equally well

have shown this from the computation:

Ŝ(0)Mn = Ŝ(0)(M b
n ∗M s

n) = (Ŝ(0)M b
n) ∗M

s
n +M b

n ∗ (Ŝ(0)M s
n)

=
[

Mn ∗ Sb +Mn ∗ (Ss + S̄s)
]

O(q0)
(4.9)

and checking that Ŝ(0)M s
n reproduces Ss + S̄s at O(q0).

At the subsubleading order we proceed by considering the recently established soft

theorem in the bosonic string eq. (4.2c). Let us also recall that the α′-terms in eq. (4.2c)

arise as a consequence of gauge invariance together with the fact that the three-point

amplitude in the bosonic string has terms with higher powers in α′. In superstring these

latter terms are missing in the three-point amplitude of massless closed states. We thus

do not expect that the subsubleading soft operator for the superstring contains the part

proportional to α′. We therefore would like to check, as an ansatz, whether the action

−κD
ǫSµν
2

n
∑

i=1

[

qρJ
µρ
i qσJ

νσ
i

qki
+

qµηνρqσ + qµηνσqρ − ηµνqσqρ

qki
Aiρσ

]

Mn ≡ Ŝ(1)Mn , (4.10)

reproduces the explicit results derived in the previous section. Let us first notice that the

term involving Jµρ
i Jνσ

i is a nonlinear operator. Therefore the above action, decomposed

on the M b
n and M s

n parts, gives:

Ŝ(1)Mn = Ŝ(1)(M b
n ∗M s

n)

= (Ŝ(1)M b
n) ∗M

s
n +M b

n ∗ (Ŝ(1)M s
n)− κD ǫSµν qρqσ

n
∑

i=1

(Jµρ
i M b

n) ∗ (J
νσ
i M s

n)

qki
, (4.11)

and we would like to check whether this reproduces the explicit expressions given for

Mn ∗ (Sb + Ss + S̄s). Since Ŝ(1)M b
n does not reproduce fully the complete subsubleading

soft behavior of M b
n ∗Sb, it is useful to know explicitly the remaining part, which is simply
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derived from the action of the α′-terms in eq. (4.2c), reading:

(M b
n ∗ Sb)

∣

∣

∣

O(q)
− (Ŝ(1)M b

n)

= κDǫ
S
µν

α′

2

n
∑

i=1

(

qσkνi η
ρµ + qρkµi η

σν − ηρµησν(ki · q)− qρqσ
kµi k

ν
i

qki

)

ΠiρσM
b
n

= M b
n ∗



κDǫ
S
µν

α′

2

n
∑

i=1

∑

j 6=i

qρqσ
qki

C
[µ,
i k

ρ]
i

(

C
[σ,
j k

ν]
i

(zi − zj)2
+

√

α′

2

k
[σ,
j k

ν]
i

zi − zj

)

+ c.c



 . (4.12)

We will explicitly show that this part of Sb is exactly cancelled by the additional super-

symmetric contributions coming from Ss + S̄s. Having the above expression at hand and

the result from ref. [1, 2], we will not need to compute the first term in eq. (4.11) involving

Ŝ(1)M b
n. We need only to consider the action of the last two operators of eq. (4.11). The

derivation is straightforward but tedious, and we therefore leave it in the appendix. The

result is:

M b
n ∗ (Ŝ(1)M s

n)− κD ǫSµν qρqσ

n
∑

i=1

(Jµρ
i M b

n) ∗ (J
νσ
i M s

n)

qki

= (M b
n ∗M s

n) ∗ κDǫ
S
µν

√

α′

2

{

qρ

[

∑

i 6=j 6=l

Āρ
i Ā

ν
j

(

Cµ
l I

(q0)ij

ll +

√

α′

2
kµl I

(q0)ij

l

)

+
∑

i 6=j

Āρ
{i,Ā

ν
j}

(

Cµ
j I

(q0)ij

jj +

√

α′

2
kµi I

(q0)ij

i

)

]

+

√

α′

2
qρqσ

[

∑

i 6=j

∑

l 6=i

1

2
Āσ

{l,Ā
ν
i}A

ρ
{j,A

µ
i}I

(q−1)il

ij −

√

α′

2

∑

i 6=j 6=l

Āρ
{i,Ā

ν
j}k

µ
{i,C

σ
l}I

(q−1)ij

il

−

√

α′

2

∑

i 6=j

Āρ
{i,Ā

ν
j}k

µ
i C

σ
j I

(q−1)ij

ij −
∑

i 6=j

Āρ
{i,Ā

ν
j}C

µ
i C

σ
j I

(q−1)ij

iij

−
∑

i 6=j 6=l

Cµ
i C

σ
l Ā

ρ
{i,Ā

ν
j}I

(q−1)ij

iil−
∑

i 6=j 6=l

Cµ
i C

σ
l Ā

ρ
{l,Ā

ν
j}I

(q−1)lj

iil−

√

α′

2

∑

i 6=j 6=l

Āρ
{j,Ā

ν
i}k

µ
i C̄

σ
l I

(q−1)ilj

i

−

√

α′

2

∑

i 6=l 6=j

Āρ
j Ā

ν
l k

µ
i C̄

σ
i I

(q−1)ijl

i +
∑

i 6=j

C
[ρ,
j k

ν]
j C

[µ,
i k

σ]
i

qki(zi − zj)2

)]}

+ c.c. (4.13)

The derivation in the appendix involves first computing the action of the operators and

then rewriting everything in terms of the expressions for the integrals Ij1j2...i1i2...
, up to the

relevant order. Therefore we have introduced the superscripts (qa), a = −1, 0, on the

Ij1j2...i1i2...
, denoting the relevant order in q to which the integrals Ij1j2...i1i2...

have been identified.

In this way we can directly compare this expression with the explicit expression in eq. (3.7)

for Ss through O(q). The last term, which has not been expressed in terms of Ij1j2...i1i2...
, is

the ‘left-over’ term from this identification procedure. All the other terms can be matched

one-by-one with similar terms in eq. (3.7). In eq. (3.7) only the terms not involving Ai’s
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remain unmatched. Specifically we have:

[

Ŝ(1)Mn − (Ŝ(1)M b
n) ∗M

s
n

]

−
[

Mn ∗ (Ss + S̄s)
]

S

∣

∣

∣

O(q)

= κDǫ
S
µν

[

α′

2
qρqσ

∑

i 6=j

C
[ρ,
j k

ν]
j C

[µ,
i k

σ]
i

qki(zi − zj)2
−

(

α′

2

)3/2

qρ
∑

i=1

C
[ρ,
i k

ν]
i

(

kµi I
i
ii +

∑

j 6=i

kµj I
j
ii

)

+

(

α′

2

)2

qρqσ
∑

i 6=j

C
[σ,
i k

ν]
i kµi C

ρ
j I

i
iij +

(

α′

2

)2

qρqσ
∑

i 6=j

C
[σ,
j k

ν]
j kµi C

ρ
i I

i
jji

]

+ c.c.

= κDǫ
S
µν





α′

2
qρqσ

∑

i 6=j

C
[µ,
i k

ρ]
i C

[σ,
j k

ν]
i

qki(zi − zj)2
−

(

α′

2

) 3

2
n
∑

i=1

∑

j 6=i

qρqσ
C

[ρ,
i k

ν]
i k

[µ,
i k

σ]
j

qki(zi − zj)



+ c.c , (4.14)

where the first part of the left-hand side was identified with eq. (4.13) using eq. (4.11). To

arrive to the final equality we made use of:

Iiii =
∑

j 6=i

qkj
qki(zi − zj)

+O(q) ; Ijii = −
1

zi − zj
+O(q) (4.15)

Iiiij = −
2

α′qki(zi − zj)2
+O(q0) ; Ijiij =

2

α′qkj(zi − zj)2
+O(q0) (4.16)

The right-hand side of eq. (4.14) is exactly equal to the α′-correction in the bosonic string,

given in eq. (4.12). Since the soft-behavior of the bosonic part M b
n is given by eq. (4.1),

which is exactly Ŝ(1) plus the above α′ corrections, we arrive at the conclusion that:

Ŝ(1)Mn = Mn ∗ (Sb + Ss + S̄s)S
∣

∣

O(q)
= (Mn+1)S

∣

∣

O(q)
(4.17)

This is a subsubleading soft theorem for the graviton and dilaton in the supersymmetric

string, with Ŝ(1) defined in eq. (4.10), and it is simply equal to the field theory result

derived in refs. [11, 28], without further string corrections. To be specific, what we have just

observed is that the α′ corrections appearing in Sb are exactly cancelled by the additional

supersymmetry parts Ss + S̄s.

5 String corrections in heterotic string from gauge invariance

Both in ref. [2] for the bosonic string and in this paper for the superstring we have computed

the soft behavior through subsubleading order by explicitly performing the string integrals.

On the other hand, in ref. [2] we have also determined the soft behavior, including the string

corrections, by imposing gauge invariance and the fact that the three-point amplitude

involving massless particles already has string corrections. In this section, we extend this

second procedure to the heterotic string fixing also in this case the string corrections at

subsubleading order for a soft graviton or dilaton. It turns out that, as in the bosonic

string, the soft graviton behavior includes string corrections that are, however, absent for

a soft dilaton. This implies that the soft behavior of the dilaton is uniquely encoded in

an operator universally applicable to all string theories and field theory.
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The basic ingredient is the three-point amplitude involving gravitons, dilatons and

Kalb-Ramond fields that in the heterotic string is equal to

2κD
[

ηµµiqαi − ηµαiqµi + ηµiαkµi −
α′

2
kµi q

µiqαi
][

ηννiqβi − ηνβiqνi + ηνiβikνi
]

, (5.1)

where the three particles have the following momenta and polarizations: (q, µ, ν), (ki, µi, νi)

and ((−q − ki), αi, βi). In writing the previous equation we have used momentum conser-

vation and we have eliminated terms that are zero when we saturate it with the three

polarization vectors.

The leading term of the scattering amplitude of (n+1) massless particles, when one of

them becomes soft, is given by the diagram where the soft particle is attached to the other

hard external particles. Since we are only interested in the term corresponding to string

corrections and of order q in the momentum of the soft particle, this pole term is given by,

Mµν
n+1(k1 . . . kn, q) ∼ −α′κD

n
∑

i=1

ǫiµi
ǭiνik

µ
i k

ν
i q

µiqαiηνiβi
ηαiriηβisi

2kiq
M risi

n (ki + q) . (5.2)

In order to get a gauge invariant expression we have to add also a term that is regular in

the soft limit (q ∼ 0):

Mµν
n+1(k1 . . . kn, q) |α′= −α′κD

n
∑

i=1

kµi k
ν
i

2kiq
qρqσTi ρσ Mn(ki + q) +Nµν(q, ki) , (5.3)

where we also used

Ti ρσ = ǫi ρ
∂

∂ǫσi
; Mn(ki + q) ≡ ǫrii ǭ

si
i M

risi(ki + q) , (5.4)

and we have omitted to strip off the polarization vectors for the other, j 6= i, n− 1 states.

Since the pole term is symmetric under the exchange of the indices µ and ν, gauge invariance

can only determine the symmetric part of Nµν . This is consistent with the fact that gauge

invariance does not fix the term of order q in the soft limit of the Kalb-Ramond field.

Gauge invariance implies:

qµM
µν
n+1 |α′= −

α′κD
2

n
∑

i=1

kνi q
ρqσTi ρσMn(ki + q) + qµN

µν(q, ki) = 0 . (5.5)

Expanding for small q we get Nµν(q = 0; ki) = 0 and

∂

∂qρ
Nµν +

∂

∂qµ
Nρν =

α′κD
2

n
∑

i=1

kνi (T
µρ
i + T ρµ

i )Mn(ki) . (5.6)

Inserting it in eq. (5.3) we get

Mµν
n+1 |α′ = −

α′κD
2

n
∑

i=1

kνi k
µ
i

kiq
qρqσTi ρσMn(ki)

+
α′κD
8

n
∑

i=1

qρ [k
ν
i (T

µρ
i + T ρµ

i ) + kµi (T
νρ
i + T ρν

i )]Mn

+
1

4
qρ

[

∂

∂qρ
Nµν −

∂

∂qµ
Nρν +

∂

∂qρ
Nνµ −

∂

∂qν
Nρµ

]

, (5.7)
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where we have symmetrized under the exchange of ν and µ because, as already observed, the

amplitude has such a symmetry. Imposing gauge invariance on the index ν; i.e. qνM
µν
n+1 = 0,

we get the following condition:

qνqρ

[

∂

∂qρ
Nµν −

∂

∂qµ
Nρν

]

= α′κDqνqρ

n
∑

i=1

[

kµi T
νρ
i −

1

2
kνi (T

µρ
i + T ρµ

i )

]

Mn(ki) (5.8)

that implies

1

2

[(

∂

∂qρ
Nµν −

∂

∂qµ
Nρν

)

+

(

∂

∂qν
Nµρ −

∂

∂qµ
Nνρ

)]

= α′κD

n
∑

i=1

[

1

2
kµi (T

νρ
i + T ρν

i )−
1

4
kνi (T

µρ
i + T ρµ

i )−
1

4
kρi (T

µν
i + T νµ

i )

]

Mn(ki) . (5.9)

From the previous relation we can extract the part that is symmetric under the exchange

of µ and ν obtaining

1

4

[(

∂

∂qρ
Nµν −

∂

∂qµ
Nρν

)

+

(

∂

∂qρ
Nµν −

∂

∂qν
Nµρ

)]

= α′κD

n
∑

i=1

[

1

8
kµi (T

νρ
i + T ρν

i ) +
1

8
kνi (T

µρ
i + T ρµ

i )−
1

4
kρi (T

µν
i + T νµ

i )

]

Mn(ki) , (5.10)

which fixes the last part of eq. (5.7). An alternative way of deriving the previous expression

is by noticing that eq. (5.6), together with the symmetric and antisymmetric parts of

eq. (5.9), under the exchange of µ and ν, actually allow to determine the derivative of Nµν :

∂

∂qρ
Nµν =

α′κD
4

n
∑

i=1

[kµi (T
νρ + T νρ) + kνi (T

µρ + Tµρ)− kρi (T
µν + T νµ)]Mn(ki) . (5.11)

One can then use this to fix the last part of eq. (5.7), equivalent to eq. (5.10).

Inserting eq. (5.10) in eq. (5.7) we finally get the completely fixed string corrections

in the case of the heterotic string:

Mµν
n+1 |α′=−

α′κD
4

n
∑

i=1

[

kµi k
ν
i

kiq
qρqσ−qρkνi η

µσ−qρkµi η
νσ+(kiq)η

µσηνρ
]

(T ρσ
i +T σρ

i )Mn(ki) ,

(5.12)

By saturating it with the dilaton polarization ǫ
(D)
µν = ηµν − qµq̄ν − qν q̄µ we get

ǫ(D)
µν Mµν

n+1 |α′= −
α′κD
2

n
∑

i=1

[−2qρkσi + (kiq)η
ρσ]

1

2
(T ρσ

i + T σρ
i )Mn(ki) = 0 , (5.13)

which vanishes because of transversality, (kiǫi) = 0, gauge invariance, kσi
∂

∂ǫσi
Mn = 0, and

momentum conservation,
∑n

i=1 ki = −q.

In conclusion, as in the bosonic string and in superstring, also in the heterotic string

the soft theorem of the dilaton has no α′ corrections.
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6 Conclusions and remarks

In this paper we have computed superstring amplitudes with an arbitrary number of mass-

less external states in the kinematic region where one of the massless states carries low

momentum, be it a graviton, dilaton or a Kalb-Ramond field. The soft behaviour of the

amplitude has been determined through the subsubleading order. When the soft external

state is a graviton or a dilaton we have further been able to identify soft operators that,

when acting on the amplitude involving only the hard states, reproduce our results, thus

demonstrating a soft theorem for these states.

The calculation is an extension of the one done in ref. [2] for the bosonic string and

despite the much more complicate expressions of the amplitudes it requires exactly the

same ingredients and techniques developed for the bosonic theory.

In the case of the graviton, we have found that the soft operators coincide up to

subsubleading order with the ones already identified in the literature without any string

correction. More specifically, we have shown that the string corrections appearing in the

bosonic string are exactly cancelled by the additional supersymmetric contributions to the

amplitude. This result confirms the validity of the procedures developed in ref. [2, 11] where

the soft behaviour is determined via gauge invariance from the interaction vertices with

three massless closed string states. The absence of string corrections in the soft theorem is

a consequence of the absence of such corrections in the three-point amplitude of massless

states in superstring theory.

In the case of the dilaton we have found a universal soft behavior; i.e. it is the same in

superstring, as well as in heterotic and bosonic string. The universality is a consequence

of the vanishing of the string corrections to the soft theorem in all models. It thus also

coincide with the field theory result. The dilaton soft operator contains the generators of

scale transformations at subleading order, and the special conformal transformations at

subsubleading order, as shown in refs. [2, 28]. Curiously this property is similar to the

soft theorem, derived recently also in ref. [28], of another scalar known as a dilaton; i.e.

the Nambu-Goldstone boson of spontaneously broken conformal symmetry. Both dilatons

couple to the trace of the energy momentum tensor, but they obey slightly different soft

theorems through the subsubleading order. Understanding this difference, as well as un-

derstanding the physical origin of the string dilaton soft behavior, are indeed problems

that deserve further studies.
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A Explicit action of the subsubleading soft operator

In this appendix we compute the action of the subsubleading soft operator given in

eq. (4.10) on the n-point amplitude with only hard particles. We denote this operator
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by Ŝ(1), i.e.:

Ŝ(1) = −κD
ǫSµν
2

n
∑

i=1

[

qρJ
µρ
i qσJ

νσ
i

qki
+

qµηνρqσ + qµηνσqρ − ηµνqσqρ

qki
Aiρσ

]

, (A.1)

with Ji the total angular momentum operator and Ai given in eq. (1.12).

We observed in section 2 that the superstring amplitudes with generically n-massless

states can be decomposed at the integrand level into two parts; i.e. Mn = M b
n ∗ M s

n,

where one part is related to to the bosonic string, and the other part is a pure superstring

contribution. We can therefore write the action of Ŝ(1) on Mn as follows:

Ŝ(1)Mn = Ŝ(1)(M b
n ∗M s

n)

= (Ŝ(1)M b
n) ∗M

s
n +M b

n ∗ (Ŝ(1)M s
n)− κD ǫSµν qρqσ

n
∑

i=1

(Jµρ
i M b

n) ∗ (J
νσ
i M s

n)

qki
(A.2)

The first term, where the soft operator acts on the bosonic string amplitude M b
n, has

already been determined in ref. [2], and given in eq. (4.1), for α′ = 0. Here we analyze the

remaining action of Ŝ(1) on the full superstring amplitude.

The action of the angular momentum operator on M b
n and M s

n, given respectively in

eq. (2.14) and (2.15), is easily computed and reads:

Jµρ
i M b

n = iM b
n ∗

n
∑

j 6=i=1

[

α′

2
k
[µ,
i k

ρ]
j log |zi − zj |

2 +

(
√

α′

2

Cµ
{i,k

ρ
j} − Cρ

{i,k
µ
j}

zi − zj
+

C
[µ,
i C

ρ]
j

(zi − zj)2
+ c.c

)]

(A.3)

and

Jµρ
i M s

n = iM s
n ∗

n
∑

j 6=i=1

[

Aρ
{i,A

µ
j}

zi − zj
+ c.c.

]

(A.4)

where the antisymmetric and symmetric combinations of the indices are denoted with

k
[µ,
i k

ν]
j = kµi k

ν
j − kνi k

µ
j and k

{µ,
i k

ν}
j = kµi k

ν
j + kνi k

µ
j .

Let us consider in eq. (A.2) the ‘mixing’ part, which by the above formulas can be

written as

−
n
∑

i=1

qρqσ
qki

(Jµρ
i M b

n) ∗ (J
νσ
i M s

n) = Mn ∗
n
∑

i=1

qρqσ
qki

∑

j 6=i

Āρ
{i,Ā

ν
j}

z̄i − z̄j

∑

l 6=i

[

α′

2
k
[µ,
i k

σ]
l log |zi − zl|

2

+

√

α′

2

Cµ
{i,k

σ
l}

zi − zl
−

√

α′

2

Cσ
{i,k

µ
l}

zi − zl
+

C
[µ,
i C

σ]
l

(zi − zl)2
+

√

α′

2

C̄
[µ,
l k

σ]
i

z̄i − z̄l
+

]

+ c.c. , (A.5)

where we made use of the Grassmannian identity Āα
i C̄

β
i = 0, cf. eq. (2.12), to cancel

some terms.

The idea is now to rewrite every term in terms of the integrals Ij1j2...i1i2...
to be able to

directly compare with the expression in eq. (3.7). All the identities involving the integrals

that we give in this appendix, are obtained starting from eqs. (3.3), (3.4) and the explicit

expression of the master integrals.

Let us consider the terms one by one:

– 19 –



J
H
E
P
1
2
(
2
0
1
6
)
0
2
0

• The terms containing the logarithm can be equivalently written as:

∑

i 6=j

∑

l 6=i

α′

2
qρ

(

qkl
qki

kµi − kµl

)

(

Aρ
{i,A

ν
j}

zi − zj
+ c.c

)

log |zi − zl|
2

=−
∑

i 6=j 6=l

α′

2
kµl qρ

Aρ
{i,A

ν
j}

zi − zj
log |zi − zl|

2

+
∑

i 6=j

α′

2
kµi qρ

Aρ
{i,A

ν
j}

zi − zj



log |zi − zj |
2 +

∑

i 6=l

qkl
qki

log |zi − zl|
2



+ c.c

=
∑

i 6=l 6=j

α′

2
kµl qρA

ρ
iA

ν
j I

(q0)l

ij +
∑

i 6=j

α′

2
kµi qρA

ρ
{i,A

ν
j}I

(q0)i

ij + c.c (A.6)

where we have used eqs. (3.4), (3.5) and (3.6) to identify:

I(q
0)l

ij =
log

|zj−zl|
2

|zi−zl|2

zi − zj
; I(q

0)i

ij =
log |zi − zj |

2

zi − zj
+

∑

i 6=l

qkl
qki

log |zi − zl|
2

zi − zj
(A.7)

Here I(q
0) denotes soft expansion of the integral I through O(q0).

• The term involving Cµ
{i,k

σ
l} in eq. (A.5) can be written as:

n
∑

i=1

√

α′

2

qρqσ
qki

∑

l;j 6=i

Āρ
{i,Ā

ν
j}

z̄i − z̄j

Cµ
{i,k

σ
l}

zi − zl

=
∑

i 6=j 6=l

√

α′

2
qρC

µ
l Ā

ρ
i Ā

ν
j I

ji
ll +

∑

i 6=j

√

α′

2
qρC

µ
i Ā

ρ
{j,Ā

ν
i}I

ij
ii +O(q2) (A.8)

where we have used eqs. (3.3), (3.4) and the master integrals to get:

I(q
0)ji

ll =
1

z̄i − z̄j

(

1

zi − zl
−

1

zj − zl

)

; I(q
0)ij

ii =
1

z̄i − z̄j





∑

l 6=i

qkl
qki(zi − zl)

+
1

zi − zj





(A.9)

• In the same way the term in eq. (A.5) involving Cσ
{i,k

µ
l} becomes:

−

n
∑

i=1

√

α′

2

qρqσ
qki

∑

l;j 6=i

Āρ
{i,Ā

ν
j}

z̄i − z̄j

Cσ
{i,k

µ
l}

zi − zl
(A.10)

= −

(

α′

2

) 3

2

qσqρ





∑

i 6=j 6=l

kµi C
σ
l

(

Āρ
{i,Ā

ν
j}I

ij
il + Āρ

{l,Ā
ν
j}I

lj
il

)

+
∑

i 6=j

kµi C
σ
j Ā

ρ
{i,Ā

ν
j}I

ij
ij





+O(q2)

where

Iijil =
2

α′qki(z̄i − z̄j)(zi − zl)
+O(q0); I ljil = −

2

α′qkl(z̄l − z̄j)(zi − zl)
+O(q0) (A.11)
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• The term in eq. (A.5) involving C
[µ,
i C

σ]
l is rewritten in the form:

n
∑

i=1

qρqσ
qki

∑

l;j 6=i

Āρ
{i,Ā

ν
j}

z̄i − z̄j

C
[µ,
i C

σ]
l

(zi − zl)2
(A.12)

= −
α′

2
qσqρ





∑

i 6=i 6=l

Cµ
i C

σ
l Ā

ρ
{i,Ā

ν
j}I

ij
iil +

∑

i 6=i 6=l

Cµ
i C

σ
l Ā

ρ
{l,Ā

ν
j}I

lj
iil +

∑

i 6=j

Āρ
{i,Ā

ν
j}C

µ
i C

σ
j I

ij
iij





+O(q2)

where we have used the identities:

Iijiil =−
2

α′qki(zi − zl)2(z̄i − z̄j)
+O(q0) ; I ljiil =

2

α′qkl(zi − zl)2(z̄l − z̄j)
+O(q0)

Iijiij =−
2

α′(z̄i − z̄j)(zi − zj)2

(

1

qki
+

1

qkj

)

+O(q0) (A.13)

• Finally, the term in eq. (A.5) involving C̄
[µ,
l k

σ]
i can be written as:

n
∑

i=1

√

α′

2

qρqσ
qki

∑

l;j 6=i

Āρ
{i,Ā

ν
j}

z̄i − z̄j

C̄
[µ,
l k

σ]
i

z̄i − z̄l
(A.14)

= −
∑

i 6=j 6=l

√

α′

2
qρ

C̄µ
i Ā

ρ
j Ā

ν
l

(z̄i − z̄l)(z̄i − z̄j)
−

∑

i 6=j 6=l

(

α′

2

) 3

2

qρqσk
µ
i C̄

σ
l Ā

ρ
{j,Ā

ν
i}I

ilj
i +O(q2)

where the following identity was used:

I ilji =
2

α′qki(z̄i − z̄l)(z̄i − z̄j)
+O(q0) . (A.15)

Next we consider the ‘pure’ supersymmetric part of eq. (A.2) and analyze the term:

−
n
∑

i=1

qρqσ
2qki

M b
n ∗ (Jµρ

i Jνσ
i M s

n)

= −
n
∑

i=1

qρqσ
2qki

M b
n ∗ Jµρ

i



i





∑

j 6=i

Aσ
{i,A

ν
j}

zi − zj
+ c.c



M s
n





=

n
∑

i=1

qρqσ
2qki

M b
n ∗









∑

j 6=i

Aµ
i A

ν
j η

σρ +Aρ
iA

σ
j η

µν − ηνρAµ
i A

σ
j − ησµAρ

iA
ν
j

zi − zj
+ c.c





+
∑

j,l 6=i

(

(Aρ
{i,A

µ
j})(A

σ
{i,A

ν
l})

(zi − zj)(zi − zl)
+

(Aρ
{i,A

µ
j})(Ā

σ
{i,Ā

ν
l})

(zi − zj)(z̄i − z̄l)
+ c.c.

)



M s
n (A.16)

The first term after the second equality involving ησρ vanishes since q2 = 0, while all

the other terms under the same parenthesis can be rewritten in terms of the following
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differential operator acting on the M s
n:

n
∑

i=1

qρqσ
2qki

M b
n ∗

∑

j 6=i

(

Aρ
iA

σ
j η

µν − ηνρAµ
i A

σ
j − ησµAρ

iA
ν
j

zi − zj
+ c.c

)

M s
n

= −M b
n ∗

n
∑

i=1

(

qσqρηνµ − qρqµηνσ − qσqµηρµ

2kiq

)

Ai ρσM
s
n (A.17)

This is nothing but the second part of Ŝ(1) with opposite sign, as given in eq. (A.1). Thus

the two cancel.

The term in eq. (A.16) involving four unbarred Ai’s gives:

n
∑

i=1

qρqσ
2qki

M b
n ∗

∑

j;l 6=i

(

Aρ
iA

µ
jA

σ
i A

ν
l +Aρ

iA
µ
jA

σ
l A

ν
i +Aρ

jA
µ
i A

σ
i A

ν
l +Aρ

jA
µ
i A

σ
l A

ν
i

(zi − zj)(zi − zl)
+ c.c.

)

M s
n

= Mn ∗

√

α′

2
qρqσ





∑

i 6=l 6=j

Aρ
jA

ν
l C

[µ,
i k

σ]
i

2qki(zi − zj)(zi − zl)
+

√

α′

2

∑

i 6=j

C
[ρ,
j k

ν]
j C

[µ,
i k

σ]
i

2qki(zi − zj)2
+ [µ ↔ ν]



+ c.c.

= Mn ∗

√

α′

2
qρ





∑

i 6=l 6=j

Aρ
jA

ν
l C

µ
i

2(zi − zj)(zi − zl)
−

α′

4
qσA

ρ
jA

ν
l k

µ
i C

σ
i I

i
ijl

+

√

α′

2
qσ

∑

i 6=j

C
[ρ,
j k

ν]
j C

[µ,
i k

σ]
i

2qki(zi − zj)2
+ [µ ↔ ν]



+ c.c. +O(q2) (A.18)

where we have used eq. (2.12) and the identities:

Iiijl =
2

α′kiq(zi − zj)(zi − zl)
+O(q0) ; qρqσA

ρ
iA

σ
i = 0 ;

∑

i 6=j 6=l

Aµ
i A

ν
i (qAj)(qAl)

qki(zi − zl)(zi − zj)
= 0

(A.19)

The last identity comes out due to the different parity of the numerator and denominator

in the exchange of the indices l and j. We observe that the term involving Aρ
jA

ν
l C

µ
i in

eq. (A.18) will cancel the similar term coming from eq. (A.14).

The last term in eq. (A.16) can be equivalently written in the form:

qρqσ
∑

i 6=j

∑

i 6=l

Aµ
{i,A

ρ
j}Ā

ν
{i,Ā

σ
l}

2qki(zi − zj)(z̄i − z̄l)
=

α′

2
qρqσ

∑

i 6=j

∑

i 6=l

1

2
Aµ

{i,A
ρ
j}Ā

ν
{i,Ā

σ
l}I

il
ij +O(q2) (A.20)

where we have used the identities

Iilij =
2

α′kiq(zi − zj)(z̄i − z̄l)
+O(q0) ; Iijij =

2

α′|zi − zj |2

[

1

kiq
+

1

kjq

]

+O(q0)

which follow from eqs. (3.4) and (3.5).

We can now summarize the result of eq. (A.2). We are only interested in the second and

third part in that expression, since we know already the result of Ŝ(1)M b
n from ref. [1, 2].
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In other words, cf. eq. (A.2), we have found that

Ŝ(1)(M b
n ∗M s

n)− (Ŝ(1)M b
n) ∗M

s
n = (M b

n ∗M s
n) ∗ ǫ

S
µν

√

α′

2

{

qρ

[

∑

i 6=j 6=l

Āρ
i Ā

ν
j

(

Cµ
l I

(q0)ij

ll +

√

α′

2
kµl I

(q0)ij

l

)

+
∑

i 6=j

Āρ
{i,Ā

ν
j}

(

Cµ
j I

(q0)ij

jj +

√

α′

2
kµi I

(q0)ij

i

)

]

+

√

α′

2
qρqσ

[

∑

i 6=j

∑

l 6=i

1

2
Āσ

{l,Ā
ν
i}A

ρ
{j,A

µ
i}I

(q−1)il

ij −

√

α′

2

∑

i 6=j 6=l

Āρ
{i,Ā

ν
j}k

µ
{i,C

σ
l}I

(q−1)ij

il

−

√

α′

2

∑

i 6=j

Āρ
{i,Ā

ν
j}k

µ
i C

σ
j I

(q−1)ij

ij −
∑

i 6=j

Āρ
{i,Ā

ν
j}C

µ
i C

σ
j I

(q−1)ij

iij

−
∑

i 6=j 6=l

Cµ
i C

σ
l Ā

ρ
{i,Ā

ν
j}I

(q−1)ij

iil −
∑

i 6=j 6=l

Cµ
i C

σ
l Ā

ρ
{l,Ā

ν
j}I

(q−1)lj

iil −

√

α′

2

∑

i 6=j 6=l

Āρ
{j,Ā

ν
i}k

µ
i C̄

σ
l I

(q−1)ilj

i

−

√

α′

2

∑

i 6=l 6=j

Āρ
j Ā

ν
l k

µ
i C̄

σ
i I

(q−1)ijl

i +
∑

i 6=j

C
[ρ,
j k

ν]
j C

[µ,
i k

σ]
i

qki(zi − zj)2

)]}

+ c.c. (A.21)
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