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Abstract

We consider the tree-level scattering amplitudes in the NS-NS (Neveu-Schwarz) massless

sector of closed superstrings in the case where one external state becomes soft. We compute

the amplitudes generically for any number of dimensions and any number and kind of the

massless closed states through the subsubleading order in the soft expansion. We show

that, when the soft state is a graviton or a dilaton, the full result can be expressed as a

soft theorem factorizing the amplitude in a soft and a hard part. This behavior is similar

to what has previously been observed in field theory and in the bosonic string. Differently

from the bosonic string, the supersymmetric soft theorem for the graviton has no string

corrections at subsubleading order. The dilaton soft theorem, on the other hand, is found

to be universally free of string corrections in any string theory.
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1 Introduction and Results

In this work we consider the tree-level scattering amplitudes of massless states in the
NS-NS (Neveu-Schwarz) sector of closed superstrings, and analyze the behavior of the
amplitude when one of the external states, either a graviton, dilaton or a Kalb-Ramond
field, becomes soft with respect to the other (hard) states. This is a direct continuation of
our earlier works in Ref. [1, 2], where we dealt with the same problem, but in the bosonic
string only. In Ref. [1] the soft behavior of a massless closed string was computed through
subsubleading order in the soft momentum, when the hard states were all tachyons, and
through subleading order, when the hard states were any other massless closed state in
the bosonic string. These soft behaviors were shown for the graviton and dilaton to
generically admit soft theorems with the factorizing soft part being equal to the known
leading and subleading soft theorems of a graviton in pure field theory [3], and of a dilaton
in string theory [4]. The subsubleading soft behavior, when scattering on hard tachyons
was found instead to have an additional factorizing piece, only relevant for a soft dilaton,
as compared to the recently discovered subsubleading soft theorem for the graviton in
field theory [5, 6, 7] (for complementary discussions, see also Ref.[8]).

As shown in [7], the field theory soft theorem results for the graviton all follow by
just imposing gauge invariance of the scattering amplitudes. This same analysis can
be extended to also cover the dilaton collectively with the graviton, and as shown in
Ref. [9], one indeed recovers the additional piece at subsubleading order, found explicitly
in Ref. [1], when scattering on hard tachyons, signalling universality of the soft theorem.
In Ref. [2] we extended our analysis in the bosonic string by computing the subsubleading
soft behavior of a massless closed state scattering on other hard massless closed states.
The soft theorems for the graviton and dilaton were again uncovered, and it was shown
that an additional factorizing soft operator proportional to the string slope α′ appears
at subsubleading order, when the soft state is a graviton, while the dilaton soft theorem
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remains equal to the field theory result of Ref. [9]. By including the α′ corrections in
the three-point amplitude for massless states, this was shown to again follow from gauge
invariance of the scattering amplitudes. While this shows that the graviton soft theorem at
subsubleading order is not universal, but depends on higher-order operators in its effective
action, it is intriguing to think that the soft behavior of the dilaton is universal in any
theory through subsubleading order, signalling some underlying hidden symmetry. (For
recent discussions on existing relations between broken symmetries of Lagrangians and soft
theorems, see Refs. [10, 9].) Indeed, as shown in Ref. [9], the dilaton soft theorem does bare
striking resemblance to the soft theorem of the Nambu-Goldstone boson of spontaneously
broken conformal symmetry, which is universal through subsubleading order.

In this work we are in fact going to confirm that the dilaton in superstrings obeys
the same soft theorem as in the bosonic string through subsubleading order, when scat-
tering on other massless closed states of the NS-NS sector of closed superstrings. The
soft theorem of the graviton in superstrings, on the other hand, does not have any string
corrections, in contrast to the bosonic string. Furthermore, we will show by using gauge
invariance that also in the heterotic string, the dilaton soft operator has no string cor-
rections at subsubleading order. In conclusion, we find that the dilaton soft operator is
tree-level universal through subsubleading order in all string theories, and in particular,
does not contain string corrections, making it the same as in field theory. We leave out
in this work any discussions on the soft behavior of the Kalb-Ramond field. We plan to
discuss it in a future work, collecting also our previous results in the bosonic string.

The subject of this work has seen tremendous progress in recent years, both in field
theory and in string theories. We restrict ourselves here to referring only to the more
related string theory papers [11], while the interested reader is invited to look up our
recent paper [2] for a brief count of the progress also on the field theory side, including
the relevant references.

Let us summarize the results of this work, while at the same time introducing our
notation: The n-point tree-level scattering amplitudes, Mn, of closed massless superstrings
can generically be written as a convolution of a bosonic part, M b

n, with a supersymmetric
part, M s

n, as follows:

Mn = M b
n ∗M s

n , (1.1)

The expressions for bosonic and supersymmetric parts of the n-point supersymmetric
string amplitude are defined by:

M b
n =

8π

α′

(κD
2π

)n−2
∫ ∏n

i=1 d
2zi

dVabc|z1 − z2|2
2∏
i=1

dθiθi

2∏
i=1

dθ̄iθ̄i

n∏
i=3

dθi

n∏
i=1

dϕi

n∏
i=3

dθ̄i

n∏
i=1

dϕ̄i

×
∏
i<j

|zi − zj|α
′ki·kj exp

[
1

2

∑
i 6=j

Ci · Cj
(zi − zj)2

+

√
α′

2

∑
i 6=j

Ci · kj
zi − zj

+ c.c.

]
,

(1.2)
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M s
n = exp

[
−1

2

∑
i 6=j

Ai · Aj
zi − zj

+ c.c.

]
. (1.3)

where κD is the D-dimensional Newton’s constant, dVabc is the volume of the Möbius
group, zi are the Koba-Nielsen variables, ϕi and θi are Grassmannian integration variables,
and we have introduced the following superkinematical quantities:

Aµi = ϕiε
µ
i +

√
α′

2
θik

µ
i ; Cµ

i = ϕiθiε
µ
i , (1.4)

where εµi and kµi are respectively the holomorphic polarization vector and momentum of
the state i, and α′ is the string slope.

Apart from the integration measure, M b
n is equivalent at the integrand level to the

same amplitude in the bosonic string; the integrands, in fact, become equal if one makes
the identification θiεi → εi and remembers that, after this substitution, εi has become a
Grassmann variable. The difference in the measure between M b

n and the bosonic string
amplitude is only the presence in M b

n of the integrals over the Grassmann variables θi,
θ̄i, and the additional factor

∏2
i=1 θiθ̄i/|z1 − z2|2 coming from the correlator of the su-

perghosts. The latter factor in the measure effectively kills any term involving θ1, θ2, θ̄1, θ̄2,
which readily follows from an expansion of the exponentials and an integration over those
variables. We will not need to use this property, and thus leave the integrand as it is.

When considering an amplitude with an additional state, which is soft, it is useful to
factorize the string amplitude at the integrand level into a soft part S and a hard part as
follows:

Mn+1 = Mn ∗ S (1.5)

where Mn is the full superstring amplitude of n closed massless states, and S is a function
that when convoluted with the integral expression for Mn provides the additional soft state
involved in the amplitude. The function S can be further decomposed into its bosonic
part and supersymmetric part as follows:

S = Sb + Ss + S̄s , (1.6)

where Sb is the bosonic part and Ss + S̄s is the supersymmetric part, with S̄s being
the complex conjugate of Ss. This decomposition is useful, since the bosonic part can
be related to the soft function in the bosonic string. In fact, after the identification
θiεi → εi, the bosonic soft function Sb is the same as the one given for the bosonic string
in Ref. [1, 2],1 which was computed therein through O(q), where q is the momentum of
the soft state. In this work we need therefore only to consider the additional contributions

1The Grassmanian variables ϕi are equivalent to those of Ref. [1, 2] denoted therein by θi.
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from the supersymmetric states, described by Ss + S̄s. We have computed this function
through O(q), and our result reads:

Ss + S̄s = κDεµε̄ν
∑
i 6=j

{
qρ

(ki · q)
Ā

[ρ
i Ā

ν]
j k

µ
i

(z̄i − z̄j)
+ qρ

(
α′

2

) 3
2 q · kjC̄ [ρ,

i k
ν]
i

z̄i − z̄j

(
kµi
q · ki

−
kµj
q · kj

)

+ qρ

√
α′

2

Āρ{i,Ā
ν
j}

z̄i − z̄j

∑
l 6=i

[
q · kl
q · ki

(
Cµ
i

zi − zl
+

√
α′

2
kµi log |zi − zl|2

)
+

(
Cµ
l

zi − zl
−
√
α′

2
kµl log |zi − zl|2

)]

+ qρqσ

[(
1

2
Aσ{i,A

µ
j} −

√
α′

2
Cσ
{i,k

µ
j}

)∑
l 6=i

Āρ{i,Ā
ν
l}

q · ki(zi − zj)(z̄i − z̄l)
− α′

2

C̄
[σ,
i k

ν]
i C̄

ρ
j

(z̄i − z̄j)2

(
kµj
q · kj

− kµi
q · ki

)

−
√
α′

2

∑
l 6=i,j

kµi

(
C̄σ
j Ā

ρ
{i,Ā

ν
l} + 1

2
C̄σ
i Ā

ρ
{j,Ā

ν
l}

)
q · ki(z̄i − z̄j)(z̄i − z̄l)

−
∑
l 6=i

Cσ
[i,C

µ
j]Ā

ρ
{i,Ā

ν
l}

q · ki(zi − zj)2(z̄i − z̄l)

]}
+ c.c. +O(q2) ,

(1.7)

where the brackets and curly-brackets in the indices denote commutation and anticom-
mutation of the indices, e.g.:

C
[ρ,
i k

ν]
i ≡ Cρ

i k
ν
i − Cν

i k
ρ
i

Aµ{iA
ν
j} ≡ Aµi A

ν
j + AµjA

ν
i

(1.8)

The above expression starts at O(q0). This means that only the bosonic part contributes
to the amplitude at O(q−1), and is thus responsible for the Weinberg graviton soft theo-
rem. When the above expression is projected onto a soft state which is symmetric in its
polarization, i.e. a graviton or a dilaton, we will show that the explicit results above can
be reproduced by the following soft theorem:

(Mn+1)S = (Ŝ(−1) + Ŝ(0) + Ŝ(1))Mn +O(q2) (1.9)

where the subscript S denotes that the soft state must be symmetrically polarized, and

Ŝ(−1) = κD ε
S
µν

∑
i=1

kµi k
ν
i

ki · q
, (1.10a)

Ŝ(0) = −iκDεSµν
n∑
i=1

qρk
ν
i J

µρ
i

ki · q
, (1.10b)

Ŝ(1) = −κD
εSµν
2

n∑
i=1

(
qρJ

µρ
i qσJ

νσ
i

ki · q
+
qµηνρqσ + qµηνσqρ − ηµνqσqρ

ki · q
Aiρσ

)
, (1.10c)

and where εSµν = 1
2
(εµε̄ν + εν ε̄µ), Ji is the total angular momentum operator,

Jµνi = Lµνi + Sµνi + S̄µνi , (1.11)

Lµνi = i

(
kµi

∂

∂kiν
− kνi

∂

∂kiµ

)
, Sµνi = i

(
εµi

∂

∂εiν
− ενi

∂

∂εiµ

)
, S̄µνi = i

(
ε̄µi

∂

∂ε̄iν
− ε̄νi

∂

∂ε̄iµ

)
,

4



and Ai is an operator:

Aiρσ = kiρ
∂

∂kσi
+ Πiρσ , Πiρσ = εiρ

∂

∂εσi
+ ε̄iρ

∂

∂ε̄σi
(1.12)

that acts covariantly on the superkinematical variables, i.e.

Aµρ
i A

σ
j = δijη

σρAµi , Aµρ
i C

σ
j = δijη

σρCµ
i . (1.13)

It follows that Jµνi is also covariant acting on these variables, since

Jµνi = i(Aµν
i −Aνµ

i ) . (1.14)

In contrast, we notice that the subsubleading soft operators obtained in the bosonic
string [2]:

Ŝ
(1)
bos = Ŝ(1) +

α′

2
κD ε

S
µν

n∑
i=1

(
qσkνi η

ρµ + qρkµi η
σν − ηρµησν(ki · q)− qρqσ

kµi k
ν
i

q · ki

)
Πiρσ ,

(1.15)

and, as we will show in this work, also in heterotic string:

Ŝ
(1)
het = Ŝ(1) +

α′

2
κD ε

S
µν

n∑
i=1

(
qσkνi η

ρµ + qρkµi η
σν − ηρµησν(ki · q)− qρqσ

kµi k
ν
i

q · ki

)
εiρ

∂

∂εσi
,

(1.16)

differ from Eq. (1.10c) by terms due to string corrections. These additional parts, pro-
portional to α′, do not act covariantly on the superkinematical variables, and thus are
not supersymmetric operators. We have consistently found that they only appear in the
bosonic and in the heterotic string. They furthermore vanish when projected onto the
dilaton state. Therefore the subsubleading soft operator in Eq. (1.10c) is, nevertheless,
universally valid for the dilaton in the bosonic string, in superstrings, in the heterotic
string, and in field theory [9].

The paper is organized as follows: In Sec. 2 we review the superstring amplitude of
n+1 massless closed states and rewrite it in a convenient form for computing its behavior
in the limit where one of the external states becomes soft with respect to the momenta of
the other n external states. Here we also introduce our notation. Then in Sec. 3 we show
the calculational details of the soft part of the amplitude and provide our explicit results.
In Sec. 4 we demonstrate that the explicit results for the graviton and the dilaton can be
expressed equally as a soft theorem, where the soft part is provided by the action of an
operator acting on the lower point amplitude involving only the n external hard states.
We furthermore explicitly show how the supersymmetric part of the amplitude cancels
the purely bosonic string corrections to the amplitude at the subsubleading order, found
in Ref. [2]. In Sec. 5, using gauge invariance, we compute the string corrections in the
heterotic string and we show that they do not contribute to the dilaton soft behavior.
Finally, Sec. 6 offers our conclusions and remarks. An appendix is additionally provided
for the details of the calculation in Sec. 4.
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2 Amplitude of one soft and n massless closed superstrings

In this section, we review the closed superstring amplitude and rewrite it in a convenient
form, when one particle is soft, which allows us to directly express the results using the
calculations already done in the bosonic string in Ref. [1, 2].

The massless closed superstring vertex, in the (−1,−1) and (0, 0) pictures, is given
by the compact expression:

V (−p,−p) =
κD
2π

∫
dθ θp V (p)(z, θ; k)

∫
dθ̄ θ̄p V̄ (p)(z̄, θ̄; k) , (2.1)

with

V (p)(z, θ; k) = e−pφ(z) εµ DX
µ ei

√
α′
2
k·X(z, θ) , (2.2)

where θ and θ̄ are Grassmannian variables, εµε̄ν = εµν is the polarization of the massless
state, and the superfield notation is given by

Xµ(z, θ) ≡ xµ(z) + θψµ(z) , D ≡ ∂

∂θ
+ θ

∂

∂z
. (2.3)

The relevant expectation values for massless amplitudes are:

〈Xµ(z1, θ1)Xν(z2, θ2)〉 = −ηµν log(z1 − z2 − θ1θ2) ,

〈e−φ(z1) e−φ(z2)〉 =
1

z1 − z2

.
(2.4)

The amplitude of n+ 1 massless states in closed superstring can be written as:

Mn+1 =
8π

α′

(κD
2π

)n−1
∫
d2z
∏n

i=1 d
2zidθdθ̄

dVabc|z1 − z2|2

[ 2∏
i=1

dθiθi

n∏
i=3

dθi

][ 2∏
i=1

dθ̄iθ̄i

n∏
i=3

dθ̄i

]

× 〈0|
∫
dϕ e

i

(
ϕεDX(z,θ)+

√
α′
2
qX(z,θ)

)
n∏
i=1

(∫
dϕi e

i(ϕiεiDiX(zi,θi)+KiX(zi,θi))

)
|0〉

× 〈0|
∫
dϕ̄ e

i

(
ϕ̄ε̄D̄X(z̄,θ̄)+

√
α′
2
qX(z̄,θ̄)

)
n∏
i=1

(∫
dϕ̄i e

i(ϕ̄iε̄iD̄iX(z̄i,θ̄i)+KiX(z̄i,θ̄i))
)
|0〉 ,

(2.5)

where new Grassmanian variables (ϕ, ϕi, ϕ̄, ϕ̄i) are introduced, and dVabc is the volume of
the Möbius group. The states with the indices 1 and 2 are in the (−1,−1) picture, while
the others are in the (0, 0) picture. This effectively means that, in the expressions for the
integrands that follow, terms involving θ1, θ2, θ̄1, θ̄2 can be equated to zero because of the
overall integration measures

∫
dθiθi and

∫
dθ̄iθ̄i for i = 1, 2. Since this choice could have
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been made for any two of the n states, we will not explicitly impose these zero conditions
in the expressions that follow.

The n + 1 point amplitude, with the help of the correlation functions written in
Eq. (2.4) and after having integrated over the variables θ and θ̄, reduces to an expression
which can be factorized at the integrand level as follows:

Mn+1 = Mn ∗ S , (2.6)

where by ∗ a convolution integral is understood, and the two parts Mn and S can be
conveniently expressed in terms of the superkinematical quantities:

Aµi = ϕiε
µ
i +

√
α′

2
θik

µ
i ; Cµ

i = ϕiθiε
µ
i , (2.7)

such that

Mn =
8π

α′

(κD
2π

)n−2
∫ ∏n

i=1 d
2zi

dVabc|z1 − z2|2
2∏
i=1

dθiθi

2∏
i=1

dθ̄iθ̄i

n∏
i=3

dθi

n∏
i=1

dϕi

n∏
i=3

dθ̄i

n∏
i=1

dϕ̄i

∏
i<j

|zi − zj|α
′kikj exp

[
1

2

∑
i 6=j

Ci · Cj
(zi − zj)2

+

√
α′

2

∑
i 6=j

Ci · kj
zi − zj

− 1

2

∑
i 6=j

Ai · Aj
zi − zj

]

× exp

[
1

2

∑
i 6=j

C̄i · C̄j
(z̄i − z̄j)2

+

√
α′

2

∑
i 6=j

C̄i · kj
z̄i − z̄j

− 1

2

∑
i 6=j

Āi · Āj
z̄i − z̄j

]
,

(2.8)

while for convenience we express S as a sum of three terms

S ≡ Sb + Ss + S̄s , (2.9)

where Sb is the purely bosonic part, which is simply equal to the similar expression in the
bosonic string after identifying θiεi → εi (whereby εi becomes a Grassmann variable) and
is given by: 2

Sb =
κD
2π

∫
d2z

n∏
l=1

|z − zl|α
′qkl

n∏
l=1

exp

[
−
√
α′

2

q · Cl
z − zl

−
√
α′

2

q · C̄l
z̄ − z̄l

]

×

(
n∑
i=1

ε · Ci
(z − zi)2

+
n∑
i=1

√
α′

2

ε · ki
z − zi

)(
n∑
j=1

ε̄ · C̄j
(z̄ − z̄j)2

+
n∑
j=1

√
α′

2

ε̄ · kj
z̄ − z̄j

)
,

(2.10)

and Ss and S̄s are the complex conjugates of each other and they provide the contributions

2For comparison with the expressions in Ref. [1, 2] we notice that the variables here denoted by ϕi

are equivalent to the variables denoted by θi in those papers.
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from the additional supersymmetric states. They are given by

S̄s =
κD
2π

∫
d2z

n∏
l=1

|z − zl|α
′qkl

n∏
l=1

exp

[
−
√
α′

2

q · Cl
z − zl

−
√
α′

2

q · C̄l
z̄ − z̄l

]

×

[
1

2

n∑
i=1

√
α′

2

q · Ai
z − zi

n∑
j=1

ε · Aj
z − zj

n∑
l=1

√
α′

2

q · Āl
z̄ − z̄l

n∑
m=1

ε̄ · Ām
z̄ − z̄m

+

(
n∑
i=1

ε · Ci
(z − zi)2

+
n∑
i=1

√
α′

2

ε · ki
z − zi

)
n∑
j=1

√
α′

2

q · Āj
z̄ − z̄j

n∑
l=1

ε̄ · Āl
z̄ − z̄l

]
,

(2.11)

and Ss is given by the complex conjugate of this expression, where complex conjugation
sends zi → z̄i, ε

µ
i → ε̄µi , θi → θ̄i, and ϕi → ϕ̄i, while the momenta ki are left invariant.

The superkinematical quantities Aµi and Cµ
i are respectively anticommuting and commut-

ing kinematic factors. Furthermore, since ϕ2
i = θ2

i = 0, they obey the following useful
identities:

Aµi A
ν
i =

√
α′

2
C

[µ,
i k

ν]
i , Cµ

i C
ν
i = Aµi C

ν
i = 0 , (2.12)

where we have used the notation C
[µ,
i k

ν]
i ≡ Cµ

i k
ν
i −Cν

i k
µ
i . This antisymmetrizing notation

will be used throughout this paper. Furthermore an equivalent notation will be used with
curly brackets for denoting symmetrization.

Let us remark that Mn can be decomposed in a bosonic and a supersymmetric part
as well, as follows:

Mn = M b
n ∗M s

n , (2.13)

where the first part yields the complete bosonic case and is given by

M b
n =

8π

α′

(κD
2π

)n−2
∫ ∏n

i=1 d
2zi

dVabc|z1 − z2|2
2∏
i=1

dθiθi

n∏
i=3

dθi

n∏
i=1

dϕi

2∏
i=1

dθ̄iθ̄i

n∏
i=3

dθ̄i

n∏
i=1

dϕ̄i

∏
i<j

|zi − zj|α
′kikj exp

[
1

2

∑
i 6=j

Ci · Cj
(zi − zj)2

+

√
α′

2

∑
i 6=j

Ci · kj
zi − zj

+ c.c.

]
,

(2.14)

and the second part gives the supplement of the additional superstring states and reads

M s
n = exp

[
−1

2

∑
i 6=j

Ai · Aj
zi − zj

+ c.c.

]
. (2.15)
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3 Soft expansion through subsubleading order

The integral Sb has been computed through subsubleading order in q, that is through
O(q), in Refs. [1, 2]. Thus for this work we only need to consider the other parts of S, i.e.
Ss and S̄s, where the latter can be conveniently written in the following compact form:

S̄s =

√
α′

2
κDεµε̄ν

{
qρ
∑
i,j,l=1

Āρj Ā
ν
l

(
Cµ
i I

jl
ii +

√
α′

2
kµi I

jl
i

)

+

√
α′

2
qρqσ

∑
i,j,l,m=1

Āσl Ā
ν
m

[(
1

2
AρiA

µ
j −

√
α′

2
Cρ
i k

µ
j

)
I lmij

− Cρ
i C

µ
j I

lm
ijj − C

µ
i C̄

ρ
j I

jlm
ii −

√
α′

2
kµi C̄

ρ
j I

jlm
i

]}
, (3.1)

where all the integrals involved in the calculus of the amplitude are represented as:

Ij1j2...i1i2...
=

∫
d2z

2π

∏n
l=1 |z − zl|α

′qkl

(z − zi1)(z − zi2) · · · (z̄ − z̄j1)(z̄ − z̄j2) · · ·
. (3.2)

Notice that according to Eq. (2.12) the term involving Cρ
i C

µ
j vanishes for i = j, and that

the terms involving C̄ρ
j vanish for j = l,m. It turns out that all integrals involved in the

calculation have already been computed in Ref. [2], and they are all obtained from two
master integrals, I ii and Iji , through an iteratively use of the identities:

Ijii =
1

1− α′

2
(qki)

∂ziI
j
i (3.3)

valid even for i = j and

Ij1j2...i1i2...
=
Ij1j2...i1...

− Ij1j2...i2...

zi1 − zi2
=
Ij1...i1...
− Ij2...i1...

− Ij1...i2...
+ Ij2...i2...

(zi1 − zi2)(z̄j1 − z̄j2)
= . . . (3.4)

The explicit expressions of the master integrals are [1, 2]:

I ii =
2

α′(kiq)

(
1 + α′

∑
j 6=i

(kjq) log |zi − zj|+
(α′)2

2

∑
j 6=i

∑
k 6=i

(kjq)(kkq) log |zi − zj| log |zi − zk|

)
+ (α′)2

∑
j 6=i

(kjq) log2 |zi − zj|+ log Λ2 +O(q2) , (3.5)

Iji =
∑
m 6=i,j

α′(qkm)

2

(
Li2

(
z̄i − z̄m
z̄i − z̄j

)
− Li2

(
zi − zm
zi − zj

)
− 2 log

z̄m − z̄j
z̄i − z̄j

log
|zi − zj|
|zi − zm|

)
− log |zi − zj|2 + log Λ2 +O(q2) , (3.6)
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with Λ a cut off that cancels in the final expression of the amplitude. The notation of two
momenta in a round bracket is hereafter used to denote (kjq) ≡ kj · q. It is worthwhile to
notice that only I ii shows a pole in the soft momentum and therefore the integrals Ij1j2...i1i2...

can yield a term of O(q−1) only if one of its lower indices is equal to one of the upper
ones.

To derive S̄s through subsubleading order, let us first notice that with the integrand
explicitly containing a factor of q, the leading part can only be of O(q0), and therefore
the entire O(q−1) terms are produced by the bosonic part only. Next, to obtain the terms
of order q0 and q, we notice by inspection of Eq. (3.1) that the integrals Ijlii and Ijli must
be equated through the O(q0), while for all other integrals only the leading q−1 order is
relevant. The integral Ijlmii , only relevant at O(q−1), does not contribute, since by having
two lower indices equal it cannot be divergent in the soft momentum. For the same reason,
all the other integrals which are only relevant at O(q−1) contribute only when one of the
indices l or m is equal to i or j.

The complete expression through O(q) of S̄s can be explicitly given in the following
form, where each integral is now unique and we discard integrals that do not give any
relevant contribution:

S̄s =

√
α′

2
κDεµε̄νqρ

{
α′

2

∑
i=1

C̄
[ρ
i k

ν]
i

(
kµi I

ii
i +

∑
j 6=i

kµj I
ii
j

)
+
∑
i 6=j

Āρ{iĀ
ν
j}

(
Cµ
i I

ji
ii +

√
α′

2
kµi I

ij
i

)

+
∑
i 6=j 6=l

Āρj Ā
ν
l

(
Cµ
i I

jl
ii +

√
α′

2
kµi I

jl
i

)
+

√
α′

2
qσ

[∑
i 6=j

∑
i 6=l

1

2
Āσ{iĀ

ν
l}A

ρ
{iA

µ
j}I

li
ij −

√
α′

2

∑
i 6=j

Āσ{iĀ
ν
j}C

ρ
j k

µ
i I

ij
ij

−
√
α′

2

∑
i 6=j 6=l

Āσ{iĀ
ν
l}C

ρ
{ik

µ
j}I

il
ij −

∑
i 6=j

Āσ{iĀ
ν
j}C

ρ
jC

µ
i I

ij
jii −

∑
i 6=j 6=l

Cρ
jC

µ
i

(
Āσ{iĀ

ν
l}I

il
jii + Āσ{jĀ

ν
l}I

jl
jii

)

−α
′

2

∑
i 6=j

C̄
[σ
i k

ν]
i k

µ
i C̄

ρ
j I

iij
i −

α′

2

∑
i 6=j

C̄
[σ
j k

ν]
j k

µ
i C̄

ρ
i I

jji
i −

√
α′

2

∑
i 6=j 6=l

kµi

(
Āσ{iĀ

ν
l}C̄

ρ
j I

jli
i + Āσl Ā

ν
j C̄

ρ
i I

lji
i

)]}
+O(q2) (3.7)

where we made explicit use of Eq. (2.12) and particularly of the identity Āρi Ā
ν
i =√

α′

2
C

[ρ,
i k

ν]
i . We recall for convenience the notations:

C
[ρ,
i k

ν]
i ≡ Cρ

i k
ν
i − Cν

i k
ρ
i

Aµ{iA
ν
j} ≡ Aµi A

ν
j + AµjA

ν
i = A

[µ
i A

ν]
j

(3.8)

where the latter equality is due to the Grassmannian nature of the Ai.

The O(q0) part of S̄s is obtained from the term involving Ijli only, since Ijlii does not
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have a O(q−1) term, and the only nonzero part reads:

S̄s = κDεµε̄ν
α′

2
qρ
∑
i 6=j

(
Āρj Ā

ν
i + Āρi Ā

ν
j

)
kµi I

ij
i +O(q)

= κDεµε̄ν
∑
i 6=j

qρĀ
[ρ
i Ā

ν]
j k

µ
i

(ki · q)(z̄i − z̄j)
+O(q) . (3.9)

It is worth noticing that this expression does not involve any overall α′-factor.

Finally we express explicitly the terms of O(q), which after some simplifications read:

S̄s

∣∣∣
O(q)

= κDεµε̄ν
∑
i 6=j

{
qρ

(
α′

2

) 3
2 qkjC̄

[ρ,
i k

ν]
i

z̄i − z̄j

(
kµi
qki
−
kµj
qkj

)

+ qρ

√
α′

2

Āρ{i,Ā
ν
j}

z̄i − z̄j

∑
l 6=i

[
qkl
qki

(
Cµ
i

zi − zl
+

√
α′

2
kµi log |zi − zl|2

)
+

(
Cµ
l

zi − zl
−
√
α′

2
kµl log |zi − zl|2

)]

+ qρqσ

[(
1

2
Aσ{i,A

µ
j} −

√
α′

2
Cσ
{i,k

µ
j}

)∑
l 6=i

Āρ{i,Ā
ν
l}

qki(zi − zj)(z̄i − z̄l)
− α′

2

C̄
[σ,
i k

ν]
i C̄

ρ
j

(z̄i − z̄j)2

(
kµj
qkj
− kµi
qki

)

−
√
α′

2

∑
l 6=i,j

kµi

(
C̄σ
j Ā

ρ
{i,Ā

ν
l} + 1

2
C̄σ
i Ā

ρ
{j,Ā

ν
l}

)
qki(z̄i − z̄j)(z̄i − z̄l)

−
∑
l 6=i

Cσ
[i,C

µ
j]Ā

ρ
{i,Ā

ν
l}

qki(zi − zj)2(z̄i − z̄l)

]}
. (3.10)

4 Soft action on the lower-point amplitude

In Sec. 3 we have seen that the n-point string amplitudes with all massless external legs
can be written as the convolution integral of M b

n with M s
n. The dependence of M b

n on
the momenta and polarizations is the same as for the amplitude of n massless particles
in the bosonic string, which is in turn already known to obey a soft theorem through
subsubleading order when the soft particle is a graviton or dilaton [1, 2], i.e.

M b
n+1 = Mn ∗ Sb =

(
Ŝ

(−1)
bos + Ŝ

(0)
bos + Ŝ

(1)
bos

)
M b

n +O(q2) , (4.1)
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where

Ŝ
(−1)
bos =κD ε

S
µν

∑
i=1

kµi k
ν
i

ki · q
, (4.2a)

Ŝ
(0)
bos =− iκDεSµν

n∑
i=1

qρk
ν
i J

µρ
i

ki · q
, (4.2b)

Ŝ
(1)
bos =− κD

εSµν
2

n∑
i=1

[
qρJ

µρ
i qσJ

νσ
i

ki · q
+
qµηνρqσ + qµηνσqρ − ηµνqσqρ

qki
Aiρσ

−α′
(
qσkνi η

ρµ + qρkµi η
σν − ηρµησν(ki · q)− qρqσ

kµi k
ν
i

ki · q

)
Πiρσ

]
, (4.2c)

where the different quantities and operators were defined in the introduction, Eq. (1.11)-
(1.12).

In this section we will establish a soft theorem for gravitons and dilatons in superstring
amplitudes. By using the above results for M b

n, we will do this by showing that also M s
n

satisfies similar soft identities. In this way we will crucially see how the supersymmetric
part cancels the α′-terms in the soft theorem of the bosonic string, Eq. (4.2c), leaving a
superstring soft theorem free of any α′-correction through subsubleading order. Let us
first notice the trivial leading order result,

Mn+1 = Mn ∗ (Sb + Ss + S̄s) = Mn ∗ Sb +O(q0) = (M b
n ∗M s

n) ∗ Sb +O(q0)

= M b
n+1 ∗M s

n +O(q0) = Ŝ
(−1)
bos Mn +O(q0) (4.3)

thus at leading order we can trivially identify Ŝ(−1) = Ŝ
(−1)
bos .

In order to identify the superstring soft operator at subleading order, it is useful, in
analogy with the bosonic calculation [1], to make the holomorphic and antiholomorphic
sectors completely independent. This is achieved by replacing, in the antiholomorphic
sector, the momentum k of the hard particles with a spurious quantity k̄. By doing this,
the integrand of a closed string amplitude completely factorizes, at the cost of Mn ≡
Mn(ki, εi, k̄i, ε̄i) only becoming a physical amplitude after identifying k̄ with k. This,
however, leads us to introduce holomorphic angular momentum operators,

Lµρi = i

(
kµi

∂

∂kiρ
− kρi

∂

∂kiµ

)
, Sµρi = i

(
εµi

∂

∂εiρ
− ερi

∂

∂εiµ

)
, (4.4)

with similar expressions for the antiholomorphic quantities. The action of these operators
on the superkinematical variables, defined in Eq. (2.7), gives:

(Li + Si)
µρAσj = iδij (ησρAµi − ησµA

ρ
i ) , (L̄i + S̄i)

µρ
i Ā

σ
j = iδij

(
ησρĀµi − ησµĀ

ρ
i

)
,

(Li + Si)
µρCσ

j = iδij (ησρCµ
i − ησµC

ρ
i ) , (L̄i + S̄i)

µρC̄σ
j = iδij

(
ησρC̄µ

i − ησµC̄
ρ
i

)
.

(4.5)
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From these identities it is straightforward to show a pseudo-soft theorem at subleading
order for any soft state (graviton, dilaton, Kalb-Ramond) in the following form:

Mn+1 = −iκDεµε̄ν
n∑
i=1

[
qρk

ν
i (Li + Si)

µρ

qki
+
qρk

µ
i (L̄i + S̄i)

νρ

qki

]
Mn(ki, εi; k̄i, ε̄i)

∣∣∣∣∣
k=k̄

+O(q)

(4.6)

This is easiest to see by noting that in the bosonic string the same expression holds for
the O(q0) part, as shown in Ref. [1], and therefore also for M b

n as defined in this work,
and since the operator above is linear on Mn = M b

n ∗M s
n, it needs only to be checked that

the operation above on M s
n reproduces Ss + S̄s at O(q0), given explicitly in Eq. (3.9).

By taking the symmetric, respectively antisymmetric combinations of the above ex-
pression in the polarization of the soft state, it is possible to turn the above pseudo-soft
theorem into a physical soft theorem. We postpone the full antisymmetric analysis to a
future work, and here focus on the symmetric part, which reads:

(Mn+1)S = −iκDεSµν
n∑
i=1

qρk
ν
i

qki

(
Li + L̄i + Si + S̄i

)µρ
Mn(ki, εi; k̄i, ε̄i)

∣∣∣
k=k̄

+O(q) (4.7)

where the sub/superscript S is for symmetric and where εSµν = 1
2
(εµε̄ν + εν ε̄µ). Now using

the equivalence (Li + L̄i)
µρMn(ki; k̄i)|k=k̄ ≡ Lµρi M

s
n(ki), we can readily set k̄ = k and thus

get:

(Mn+1)S = −iκDεSµν
n∑
i=1

qρk
ν
i

qki

(
Li + Si + S̄i

)µρ
Mn(ki, εi, ε̄i) +O(q)

= −iκDεSµν
n∑
i=1

qρk
ν
i J

µρ
i

qki
Mn(ki, εi, ε̄i) +O(q)

≡ Ŝ(0)Mn(ki, εi, ε̄i) +O(q) (4.8)

where we identified the total angular momentum operator Jµρi = Lµρi + Sµρi + S̄µρi , and
in the last line we defined the subleading operator Ŝ(0). This result is the well-known
subleading soft theorem for the graviton. Here we have shown, however, that it also
applies to the dilaton, by taking its proper polarization tensor, and furthermore that in
superstring theory there are no string corrections to the soft operator through this order.
It follows that to the subleading order, the soft theorem for the graviton and dilaton in
superstring theory is exactly the same as in bosonic string theory. Since Ŝ(0) = Ŝ

(0)
bos, we

could equally well have shown this from the computation:

Ŝ(0)Mn = Ŝ(0)(M b
n ∗M s

n) = (Ŝ(0)M b
n) ∗M s

n +M b
n ∗ (Ŝ(0)M s

n)

=
[
Mn ∗ Sb +Mn ∗ (Ss + S̄s)

]
O(q0)

(4.9)

and checking that Ŝ(0)M s
n reproduces Ss + S̄s at O(q0).
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At the subsubleading order we proceed by considering the recently established soft
theorem in the bosonic string Eq. (4.2c). Let us also recall that the α′-terms in Eq. (4.2c)
arise as a consequence of gauge invariance together with the fact that the three-point
amplitude in the bosonic string has terms with higher powers in α′. In superstring these
latter terms are missing in the three-point amplitude of massless closed states. We thus
do not expect that the subsubleading soft operator for the superstring contains the part
proportional to α′. We therefore would like to check, as an ansatz, whether the action

−κD
εSµν
2

n∑
i=1

[
qρJ

µρ
i qσJ

νσ
i

qki
+
qµηνρqσ + qµηνσqρ − ηµνqσqρ

qki
Aiρσ

]
Mn ≡ Ŝ(1)Mn , (4.10)

reproduces the explicit results derived in the previous section. Let us first notice that the
term involving Jµρi Jνσi is a nonlinear operator. Therefore the above action, decomposed
on the M b

n and M s
n parts, gives:

Ŝ(1)Mn = Ŝ(1)(M b
n ∗M s

n)

= (Ŝ(1)M b
n) ∗M s

n +M b
n ∗ (Ŝ(1)M s

n)− κD εSµν qρqσ
n∑
i=1

(Jµρi M b
n) ∗ (Jνσi M s

n)

qki
, (4.11)

and we would like to check whether this reproduces the explicit expressions given for
Mn ∗ (Sb + Ss + S̄s). Since Ŝ(1)M b

n does not reproduce fully the complete subsubleading
soft behavior of M b

n ∗Sb, it is useful to know explicitly the remaining part, which is simply
derived from the action of the α′-terms in Eq. (4.2c), reading:

(M b
n ∗ Sb)

∣∣∣
O(q)
− (Ŝ(1)M b

n)

= κDε
S
µν

α′

2

n∑
i=1

(
qσkνi η

ρµ + qρkµi η
σν − ηρµησν(ki · q)− qρqσ

kµi k
ν
i

qki

)
ΠiρσM

b
n

= M b
n ∗

[
κDε

S
µν

α′

2

n∑
i=1

∑
j 6=i

qρqσ
qki

C
[µ
i k

ρ]
i

(
C

[σ
j k

ν]
i

(zi − zj)2
+

√
α′

2

k
[σ
j k

ν]
i

zi − zj

)
+ c.c

]
. (4.12)

We will explicitly show that this part of Sb is exactly cancelled by the additional super-
symmetric contributions coming from Ss + S̄s. Having the above expression at hand and
the result from Ref. [1, 2], we will not need to compute the first term in Eq. (4.11) involv-
ing Ŝ(1)M b

n. We need only to consider the action of the last two operators of Eq. (4.11).
The derivation is straightforward but tedious, and we therefore leave it in the appendix.
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The result is:

M b
n ∗(Ŝ(1)M s

n)− κD εSµν qρqσ
n∑
i=1

(Jµρi M b
n) ∗ (Jνσi M s

n)

qki

= (M b
n ∗M s

n) ∗ κDεSµν

√
α′

2

{

qρ

[ ∑
i 6=j 6=l

Āρi Ā
ν
j

(
Cµ
l I

(q0)ij

ll +

√
α′

2
kµl I

(q0)ij

l

)
+
∑
i 6=j

Āρ{iĀ
ν
j}

(
Cµ
j I

(q0)ij

jj +

√
α′

2
kµi I

(q0)ij

i

)]

+

√
α′

2
qρqσ

[∑
i 6=j

∑
l 6=i

1

2
Āσ{lĀ

ν
i}A

ρ
{jA

µ
i}I

(q−1)il

ij −
√
α′

2

∑
i 6=j 6=l

Āρ{iĀ
ν
j}k

µ
{iC

σ
l}I

(q−1)ij

il

−
√
α′

2

∑
i 6=j

Āρ{iĀ
ν
j}k

µ
i C

σ
j I

(q−1)ij

ij −
∑
i 6=j

Āρ{iĀ
ν
j}C

µ
i C

σ
j I

(q−1)ij

iij

−
∑
i 6=j 6=l

Cµ
i C

σ
l Ā

ρ
{iĀ

ν
j}I

(q−1)ij

iil −
∑
i 6=j 6=l

Cµ
i C

σ
l Ā

ρ
{lĀ

ν
j}I

(q−1)lj

iil −
√
α′

2

∑
i 6=j 6=l

Āρ{jĀ
ν
i}k

µ
i C̄

σ
l I

(q−1)ilj

i

−
√
α′

2

∑
i 6=l 6=j

Āρj Ā
ν
l k

µ
i C̄

σ
i I

(q−1)ijl

i +
∑
i 6=j

C
[ρ
j k

ν]
j C

[µ
i k

σ]
i

qki(zi − zj)2

)]}
+ c.c. (4.13)

The derivation in the Appendix involves first computing the action of the operators and
then rewriting everything in terms of the expressions for the integrals Ij1j2...i1i2...

, up to the
relevant order. Therefore we have introduced the superscripts (qa), a = −1, 0, on the
Ij1j2...i1i2...

, denoting the relevant order in q to which the integrals Ij1j2...i1i2...
have been identified.

In this way we can directly compare this expression with the explicit expression in Eq. (3.7)
for Ss through O(q). The last term, which has not been expressed in terms of Ij1j2...i1i2...

, is
the ‘left-over’ term from this identification procedure. All the other terms can be matched
one-by-one with similar terms in Eq. (3.7). In Eq. (3.7) only the terms not involving Ai’s
remain unmatched. Specifically we have:[

Ŝ(1)Mn − (Ŝ(1)M b
n) ∗M s

n

]
−
[
Mn ∗ (Ss + S̄s)

]
S

∣∣∣
O(q)

= κDε
S
µν

[
α′

2
qρqσ

∑
i 6=j

C
[ρ
j k

ν]
j C

[µ
i k

σ]
i

qki(zi − zj)2
−
(
α′

2

)3/2

qρ
∑
i=1

C
[ρ
i k

ν]
i

(
kµi I

i
ii +

∑
j 6=i

kµj I
j
ii

)
+

(
α′

2

)2

qρqσ
∑
i 6=j

C
[σ
i k

ν]
i k

µ
i C

ρ
j I

i
iij +

(
α′

2

)2

qρqσ
∑
i 6=j

C
[σ
j k

ν]
j k

µ
i C

ρ
i I

i
jji

]
+ c.c.

= κDε
S
µν

[
α′

2
qρqσ

∑
i 6=j

C
[µ
i k

ρ]
i C

[σ
j k

ν]
i

qki(zi − zj)2
−
(
α′

2

) 3
2

n∑
i=1

∑
j 6=i

qρqσ
C

[ρ
i k

ν]
i k

[µ
i k

σ]
j

qki(zi − zj)

]
+ c.c , (4.14)
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where the first part of the left-hand side was identified with Eq. (4.13) using Eq. (4.11).
To arrive to the final equality we made use of:

I iii =
∑
j 6=i

qkj
qki(zi − zj)

+O(q) ; Ijii = − 1

zi − zj
+O(q) (4.15)

I iiij = − 2

α′qki(zi − zj)2
+O(q0) ; Ijiij =

2

α′qkj(zi − zj)2
+O(q0) (4.16)

The right-hand side of Eq. (4.14) is exactly equal to the α′-correction in the bosonic string,
given in Eq. (4.12). Since the soft-behavior of the bosonic part M b

n is given by Eq. (4.1),
which is exactly Ŝ(1) plus the above α′ corrections, we arrive at the conclusion that:

Ŝ(1)Mn = Mn ∗ (Sb + Ss + S̄s)S
∣∣
O(q)

= (Mn+1)S
∣∣
O(q)

(4.17)

This is a subsubleading soft theorem for the graviton and dilaton in the supersymmetric
string, with Ŝ(1) defined in Eq. (4.10), and it is simply equal to the field theory result
derived in Refs. [7, 9], without further string corrections. To be specific, what we have just
observed is that the α′ corrections appearing in Sb are exactly cancelled by the additional
supersymmetry parts Ss + S̄s.

5 String corrections in heterotic string from gauge invariance

Both in Ref. [2] for the bosonic string and in this paper for the superstring we have
computed the soft behavior through subsubleading order by explicitly performing the
string integrals. On the other hand, in Ref. [2] we have also determined the soft behavior,
including the string corrections, by imposing gauge invariance and the fact that the three-
point amplitude involving massless particles already has string corrections. In this section,
we extend this second procedure to the heterotic string fixing also in this case the string
corrections at subsubleading order for a soft graviton or dilaton. It turns out that, as in
the bosonic string, the soft graviton behavior includes string corrections that are, however,
absent for a soft dilaton. This implies that the soft behavior of the dilaton is uniquely
encoded in an operator universally applicable to all string theories and field theory.

The basic ingredient is the three-point amplitude involving gravitons, dilatons and
Kalb-Ramond fields that in the heterotic string is equal to

2κD
[
ηµµiqαi − ηµαiqµi + ηµiαkµi −

α′

2
kµi q

µiqαi
][
ηννiqβi − ηνβiqνi + ηνiβikνi

]
, (5.1)

where the three particles have the following momenta and polarizations: (q, µ, ν), (ki, µi, νi)
and ((−q − ki), αi, βi). In writing the previous equation we have used momentum con-
servation and we have eliminated terms that are zero when we saturate it with the three
polarization vectors.

16



The leading term of the scattering amplitude of (n + 1) massless particles, when one
of them becomes soft, is given by the diagram where the soft particle is attached to the
other hard external particles. Since we are only interested in the term corresponding to
string corrections and of order q in the momentum of the soft particle, this pole term is
given by,

Mµν
n+1(k1 . . . kn, q) ∼ −α′κD

n∑
i=1

εiµi ε̄
i
νi
kµi k

ν
i q

µiqαiηνiβi
ηαiriηβisi

2kiq
M risi

n (ki + q) . (5.2)

In order to get a gauge invariant expression we have to add also a term that is regular in
the soft limit (q ∼ 0):

Mµν
n+1(k1 . . . kn, q) |α′= −α′κD

n∑
i=1

kµi k
ν
i

2kiq
qρqσTi ρσ Mn(ki + q) +Nµν(q, ki) , (5.3)

where we also used

Ti ρσ = εi ρ
∂

∂εσi
; Mn(ki + q) ≡ εrii ε̄

si
i M

risi(ki + q) , (5.4)

and we have omitted to strip off the polarization vectors for the other, j 6= i, n − 1
states. Since the pole term is symmetric under the exchange of the indices µ and ν, gauge
invariance can only determine the symmetric part of Nµν . This is consistent with the fact
that gauge invariance does not fix the term of order q in the soft limit of the Kalb-Ramond
field.

Gauge invariance implies:

qµM
µν
n+1 |α′= −

α′κD
2

n∑
i=1

kνi q
ρqσTi ρσMn(ki + q) + qµN

µν(q, ki) = 0 . (5.5)

Expanding for small q we get Nµν(q = 0; ki) = 0 and

∂

∂qρ
Nµν +

∂

∂qµ
Nρν =

α′κD
2

n∑
i=1

kνi (T µρi + T ρµi )Mn(ki) . (5.6)

Inserting it in Eq. (5.3) we get

Mµν
n+1 |α′= −α

′κD
2

n∑
i=1

kνi k
µ
i

kiq
qρqσTi ρσMn(ki)

+
α′κD

8

n∑
i=1

qρ [kνi (T µρi + T ρµi ) + kµi (T νρi + T ρνi )]Mn

+
1

4
qρ

[
∂

∂qρ
Nµν − ∂

∂qµ
Nρν +

∂

∂qρ
N νµ − ∂

∂qν
Nρµ

]
, (5.7)
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where we have symmetrized under the exchange of ν and µ because, as already observed,
the amplitude has such a symmetry. Imposing gauge invariance on the index ν; i.e.
qνM

µν
n+1 = 0, we get the following condition:

qνqρ

[
∂

∂qρ
Nµν − ∂

∂qµ
Nρν

]
= α′κDqνqρ

n∑
i=1

[
kµi T

νρ
i −

1

2
kνi (T µρi + T ρµi )

]
Mn(ki) (5.8)

that implies

1

2

[(
∂

∂qρ
Nµν − ∂

∂qµ
Nρν

)
+

(
∂

∂qν
Nµρ − ∂

∂qµ
Nνρ

)]
= α′κD

n∑
i=1

[
1

2
kµi (T νρi + T ρνi )− 1

4
kνi (T µρi + T ρµi )− 1

4
kρi (T

µν
i + T νµi )

]
Mn(ki) . (5.9)

From the previous relation we can extract the part that is symmetric under the exchange
of µ and ν obtaining

1

4

[(
∂

∂qρ
Nµν − ∂

∂qµ
Nρν

)
+

(
∂

∂qρ
Nµν − ∂

∂qν
Nµρ

)]
= α′κD

n∑
i=1

[
1

8
kµi (T νρi + T ρνi ) +

1

8
kνi (T µρi + T ρµi )− 1

4
kρi (T

µν
i + T νµi )

]
Mn(ki) , (5.10)

which fixes the last part of Eq. (5.7). An alternative way of deriving the previous expres-
sion is by noticing that Eq. (5.6), together with the symmetric and antisymmetric parts
of Eq. (5.9), under the exchange of µ and ν, actually allow to determine the derivative of
Nµν :

∂

∂qρ
Nµν =

α′κD
4

n∑
i=1

[kµi (T νρ + T νρ) + kνi (T µρ + T µρ)− kρi (T µν + T νµ)]Mn(ki) . (5.11)

One can then use this to fix the last part of Eq. (5.7), equivalent to Eq. (5.10).

Inserting Eq. (5.10) in Eq. (5.7) we finally get the completely fixed string corrections
in the case of the heterotic string:

Mµν
n+1 |α′=−

α′κD
4

n∑
i=1

[
kµi k

ν
i

kiq
qρqσ − qρkνi ηµσ − qρk

µ
i η

νσ + (kiq)η
µσηνρ

]
(T ρσi + T σρi )Mn(ki) ,

(5.12)

By saturating it with the dilaton polarization ε
(D)
µν = ηµν − qµq̄ν − qν q̄µ we get

ε(D)
µν M

µν
n+1 |α′= −

α′κD
2

n∑
i=1

[−2qρkσi + (kiq)η
ρσ]

1

2
(T ρσi + T σρi )Mn(ki) = 0 , (5.13)

which vanishes because of transversality, (kiεi) = 0, gauge invariance, kσi
∂
∂εσi
Mn = 0, and

momentum conservation,
∑n

i=1 ki = −q.

In conclusion, as in the bosonic string and in superstring, also in the heterotic string
the soft theorem of the dilaton has no α′ corrections.
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6 Conclusions and remarks

In this paper we have computed superstring amplitudes with an arbitrary number of
massless external states in the kinematic region where one of the massless states carries
low momentum, be it a graviton, dilaton or a Kalb-Ramond field. The soft behaviour
of the amplitude has been determined through the subsubleading order. When the soft
external state is a graviton or a dilaton we have further been able to identify soft operators
that, when acting on the amplitude involving only the hard states, reproduce our results,
thus demonstrating a soft theorem for these states.

The calculation is an extension of the one done in Ref. [2] for the bosonic string and
despite the much more complicate expressions of the amplitudes it requires exactly the
same ingredients and techniques developed for the bosonic theory.

In the case of the graviton, we have found that the soft operators coincide up to
subsubleading order with the ones already identified in the literature without any string
correction. More specifically, we have shown that the string corrections appearing in the
bosonic string are exactly cancelled by the additional supersymmetric contributions to
the amplitude. This result confirms the validity of the procedures developed in Ref. [7, 2]
where the soft behaviour is determined via gauge invariance from the interaction vertices
with three massless closed string states. The absence of string corrections in the soft
theorem is a consequence of the absence of such corrections in the three-point amplitude
of massless states in superstring theory.

In the case of the dilaton we have found a universal soft behavior; i.e. it is the same in
superstring, as well as in heterotic and bosonic string. The universality is a consequence
of the vanishing of the string corrections to the soft theorem in all models. It thus also
coincide with the field theory result. The dilaton soft operator contains the generators
of scale transformations at subleading order, and the special conformal transformations
at subsubleading order, as shown in Refs. [9, 2]. Curiously this property is similar to the
soft theorem, derived recently also in Ref. [9], of another scalar known as a dilaton; i.e.
the Nambu-Goldstone boson of spontaneously broken conformal symmetry. Both dilatons
couple to the trace of the energy momentum tensor, but they obey slightly different soft
theorems through the subsubleading order. Understanding this difference, as well as
understanding the physical origin of the string dilaton soft behavior, are indeed problems
that deserve further studies.
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A Explicit action of the subsubleading soft operator

In this appendix we compute the action of the subsubleading soft operator given in
Eq. (4.10) on the n-point amplitude with only hard particles. We denote this opera-
tor by Ŝ(1), i.e.:

Ŝ(1) = −κD
εSµν
2

n∑
i=1

[
qρJ

µρ
i qσJ

νσ
i

qki
+
qµηνρqσ + qµηνσqρ − ηµνqσqρ

qki
Aiρσ

]
, (A.1)

with Ji the total angular momentum operator and Ai given in Eq. (1.12).

We observed in Sec. 2 that the superstring amplitudes with generically n-massless
states can be decomposed at the integrand level into two parts; i.e. Mn = M b

n ∗ M s
n,

where one part is related to to the bosonic string, and the other part is a pure superstring
contribution. We can therefore write the action of Ŝ(1) on Mn as follows:

Ŝ(1)Mn = Ŝ(1)(M b
n ∗M s

n)

= (Ŝ(1)M b
n) ∗M s

n +M b
n ∗ (Ŝ(1)M s

n)− κD εSµν qρqσ
n∑
i=1

(Jµρi M b
n) ∗ (Jνσi M s

n)

qki
(A.2)

The first term, where the soft operator acts on the bosonic string amplitude M b
n, has

already been determined in Ref. [2], and given in Eq. (4.1), for α′ = 0. Here we analyze
the remaining action of Ŝ(1) on the full superstring amplitude.

The action of the angular momentum operator on M b
n and M s

n, given respectively in
Eq. (2.14) and (2.15), is easily computed and reads:

Jµρi M b
n = iM b

n ∗
n∑

j 6=i=1

[
α′

2
k

[µ
i k

ρ]
j log |zi − zj|2 +

(√
α′

2

Cµ
{i,k

ρ
j} − C

ρ
{i,k

µ
j}

zi − zj
+

C
[µ,
i C

ρ]
j

(zi − zj)2
+ c.c

)]
(A.3)

and

Jµρi M s
n = iM s

n ∗
n∑

j 6=i=1

[
Aρ{iA

µ
j}

zi − zj
+ c.c.

]
(A.4)

where the antisymmetric and symmetric combinations of the indices are denoted with
k

[µ
i k

ν]
j = kµi k

ν
j − kνi k

µ
j and k

{µ
i k

ν}
j = kµi k

ν
j + kνi k

µ
j .

Let us consider in Eq. (A.2) the ‘mixing’ part, which by the above formulas can be
written as

−
n∑
i=1

qρqσ
qki

(Jµρi M b
n) ∗ (Jνσi M s

n) = Mn ∗
n∑
i=1

qρqσ
qki

∑
j 6=i

Āρ{i,Ā
ν
j}

z̄i − z̄j

∑
l 6=i

[
α′

2
k

[µ,
i k

σ]
l log |zi − zl|2

+

√
α′

2

Cµ
{i,k

σ
l}

zi − zl
−
√
α′

2

Cσ
{i,k

µ
l}

zi − zl
+

C
[µ,
i C

σ]
l

(zi − zl)2
+

√
α′

2

C̄
[µ
l k

σ]
i

z̄i − z̄l
+

]
+ c.c. , (A.5)
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where we made use of the Grassmannian identity Āαi C̄
β
i = 0, cf. Eq. (2.12), to cancel

some terms.

The idea is now to rewrite every term in terms of the integrals Ij1j2...i1i2...
to be able to

directly compare with the expression in Eq. (3.7). All the identities involving the integrals
that we give in this appendix, are obtained starting from Eqs. (3.3), (3.4) and the explicit
expression of the master integrals.

Let us consider the terms one by one:

• The terms containing the logarithm can be equivalently written as:∑
i 6=j

∑
l 6=i

α′

2
qρ

(
qkl
qki

kµi − k
µ
l

)(
Aρ{iA

ν
j}

zi − zj
+ c.c

)
log |zi − zl|2

=−
∑
i 6=j 6=l

α′

2
kµl qρ

Aρ{iA
ν
j}

zi − zj
log |zi − zl|2

+
∑
i 6=j

α′

2
kµi qρ

Aρ{iA
ν
j}

zi − zj

(
log |zi − zj|2 +

∑
i 6=l

qkl
qki

log |zi − zl|2
)

+ c.c

=
∑
i 6=l 6=j

α′

2
kµl qρA

ρ
iA

ν
j I

(q0)l

ij +
∑
i 6=j

α′

2
kµi qρA

ρ
{iA

ν
j}I

(q0)i

ij + c.c (A.6)

where we have used Eqs. (3.4), (3.5) and (3.6) to identify:

I(q0)l

ij =
log

|zj−zl|2
|zi−zl|2

zi − zj
; I(q0)i

ij =
log |zi − zj|2

zi − zj
+
∑
i 6=l

qkl
qki

log |zi − zl|2

zi − zj
(A.7)

Here I(q0) denotes soft expansion of the integral I through O(q0).

• The term involving Cµ
{ik

σ
l} in Eq. (A.5) can be written as:

n∑
i=1

√
α′

2

qρqσ
qki

∑
l;j 6=i

Āρ{i,Ā
ν
j}

z̄i − z̄j

Cµ
{ik

σ
l}

zi − zl

=
∑
i 6=j 6=l

√
α′

2
qρC

µ
l Ā

ρ
i Ā

ν
j I

ji
ll +

∑
i 6=j

√
α′

2
qρC

µ
i Ā

ρ
{jĀ

ν
i}I

ij
ii +O(q2) (A.8)

where we have used Eqs. (3.3), (3.4) and the master integrals to get:

I(q0)ji

ll =
1

z̄i − z̄j

(
1

zi − zl
− 1

zj − zl

)
; I(q0)ij

ii =
1

z̄i − z̄j

(∑
l 6=i

qkl
qki(zi − zl)

+
1

zi − zj

)
(A.9)
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• In the same way the term in Eq. (A.5) involving Cσ
{ik

µ
l} becomes:

−
n∑
i=1

√
α′

2

qρqσ
qki

∑
l;j 6=i

Āρ{i,Ā
ν
j}

z̄i − z̄j

Cσ
{ik

µ
l}

zi − zl
(A.10)

= −
(
α′

2

) 3
2

qσqρ

(∑
i 6=j 6=l

kµi C
σ
l

(
Āρ{iĀ

ν
j}I

ij
il + Āρ{lĀ

ν
j}I

lj
il

)
+
∑
i 6=j

kµi C
σ
j Ā

ρ
{iĀ

ν
j}I

ij
ij

)
+O(q2)

where

I ijil =
2

α′qki(z̄i − z̄j)(zi − zl)
+O(q0) ; I ljil = − 2

α′qkl(z̄l − z̄j)(zi − zl)
+O(q0) (A.11)

• The term in Eq. (A.5) involving C
[µ
i C

σ]
l is rewritten in the form:

n∑
i=1

qρqσ
qki

∑
l;j 6=i

Āρ{i,Ā
ν
j}

z̄i − z̄j
C

[µ
i C

σ]
l

(zi − zl)2
(A.12)

= −α
′

2
qσqρ

(∑
i 6=i 6=l

Cµ
i C

σ
l Ā

ρ
{iĀ

ν
j}I

ij
iil +

∑
i 6=i 6=l

Cµ
i C

σ
l Ā

ρ
{lĀ

ν
j}I

lj
iil +

∑
i 6=j

Āρ{iĀ
ν
j}C

µ
i C

σ
j I

ij
iij

)
+O(q2)

where we have used the identities:

I ijiil = − 2

α′qki(zi − zl)2(z̄i − z̄j)
+O(q0) ; I ljiil =

2

α′qkl(zi − zl)2(z̄l − z̄j)
+O(q0)

I ijiij = − 2

α′(z̄i − z̄j)(zi − zj)2

(
1

qki
+

1

qkj

)
+O(q0) (A.13)

• Finally, the term in Eq. (A.5) involving C̄
[µ
l k

σ]
i can be written as:

n∑
i=1

√
α′

2

qρqσ
qki

∑
l;j 6=i

Āρ{i,Ā
ν
j}

z̄i − z̄j
C̄

[µ
l k

σ]
i

z̄i − z̄l
(A.14)

= −
∑
i 6=j 6=l

√
α′

2
qρ

C̄µ
i Ā

ρ
j Ā

ν
l

(z̄i − z̄l)(z̄i − z̄j)
−
∑
i 6=j 6=l

(
α′

2

) 3
2

qρqσk
µ
i C̄

σ
l Ā

ρ
{jĀ

ν
i}I

ilj
i +O(q2)

where the following identity was used:

I ilji =
2

α′qki(z̄i − z̄l)(z̄i − z̄j)
+O(q0) . (A.15)
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Next we consider the ‘pure’ supersymmetric part of Eq. (A.2) and analyze the term:

−
n∑
i=1

qρqσ
2qki

M b
n ∗ (Jµρi Jνσi M s

n)

= −
n∑
i=1

qρqσ
2qki

M b
n ∗ J

µρ
i

[
i

(∑
j 6=i

Aσ{i,A
ν
j}

zi − zj
+ c.c

)
M s

n

]

=
n∑
i=1

qρqσ
2qki

M b
n ∗

[(∑
j 6=i

Aµi A
ν
j η

σρ + AρiA
σ
j η

µν − ηνρAµi Aσj − ησµA
ρ
iA

ν
j

zi − zj
+ c.c

)

+
∑
j,l 6=i

(
(Aρ{i,A

µ
j})(A

σ
{i,A

ν
l})

(zi − zj)(zi − zl)
+

(Aρ{i,A
µ
j})(Ā

σ
{i,Ā

ν
l})

(zi − zj)(z̄i − z̄l)
+ c.c.

)]
M s

n (A.16)

The first term after the second equality involving ησρ vanishes since q2 = 0, while all
the other terms under the same parenthesis can be rewritten in terms of the following
differential operator acting on the M s

n:

n∑
i=1

qρqσ
2qki

M b
n ∗
∑
j 6=i

(
AρiA

σ
j η

µν − ηνρAµi Aσj − ησµA
ρ
iA

ν
j

zi − zj
+ c.c

)
M s

n

= −M b
n ∗

n∑
i=1

(
qσqρηνµ − qρqµηνσ − qσqµηρµ

2kiq

)
Ai ρσM

s
n (A.17)

This is nothing but the second part of Ŝ(1) with opposite sign, as given in Eq. (A.1). Thus
the two cancel.

The term in Eq. (A.16) involving four unbarred Ai’s gives:

n∑
i=1

qρqσ
2qki

M b
n ∗
∑
j;l 6=i

(
AρiA

µ
jA

σ
i A

ν
l + AρiA

µ
jA

σ
l A

ν
i + AρjA

µ
i A

σ
i A

ν
l + AρjA

µ
i A

σ
l A

ν
i

(zi − zj)(zi − zl)
+ c.c.

)
M s

n

= Mn ∗
√
α′

2
qρqσ

(∑
i 6=l 6=j

AρjA
ν
l C

[µ
i k

σ]
i

2qki(zi − zj)(zi − zl)
+

√
α′

2

∑
i 6=j

C
[ρ
j k

ν]
j C

[µ
i k

σ]
i

2qki(zi − zj)2
+ [µ↔ ν]

)
+ c.c.

= Mn ∗
√
α′

2
qρ

(∑
i 6=l 6=j

AρjA
ν
l C

µ
i

2(zi − zj)(zi − zl)
− α′

4
qσA

ρ
jA

ν
l k

µ
i C

σ
i I

i
ijl

+

√
α′

2
qσ
∑
i 6=j

C
[ρ
j k

ν]
j C

[µ
i k

σ]
i

2qki(zi − zj)2
+ [µ↔ ν]

)
+ c.c. +O(q2) (A.18)
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where we have used Eq. (2.12) and the identities:

I iijl =
2

α′kiq(zi − zj)(zi − zl)
+O(q0) ; qρqσA

ρ
iA

σ
i = 0 ;

∑
i 6=j 6=l

Aµi A
ν
i (qAj)(qAl)

qki(zi − zl)(zi − zj)
= 0

(A.19)

The last identity comes out due to the different parity of the numerator and denominator
in the exchange of the indices l and j. We observe that the term involving AρjA

ν
l C

µ
i in

Eq. (A.18) will cancel the similar term coming from Eq. (A.14).

The last term in Eq. (A.16) can be equivalently written in the form:

qρqσ
∑
i 6=j

∑
i 6=l

Aµ{iA
ρ
j}Ā

ν
{iĀ

σ
l}

2qki(zi − zj)(z̄i − z̄l)
=
α′

2
qρqσ

∑
i 6=j

∑
i 6=l

1

2
Aµ{iA

ρ
j}Ā

ν
{iĀ

σ
l}I

il
ij +O(q2) (A.20)

where we have used the identities

I ilij =
2

α′kiq(zi − zj)(z̄i − z̄l)
+O(q0) ; I ijij =

2

α′|zi − zj|2

[
1

kiq
+

1

kjq

]
+O(q0)

which follow from Eqs. (3.4) and (3.5).

We can now summarize the result of Eq. (A.2). We are only interested in the second
and third part in that expression, since we know already the result of Ŝ(1)M b

n from Ref. [1,
2]. In other words, cf. Eq. (A.2), we have found that

Ŝ(1) (M b
n ∗M s

n)− (Ŝ(1)M b
n) ∗M s

n = (M b
n ∗M s

n) ∗ εSµν

√
α′

2

{

qρ

[ ∑
i 6=j 6=l
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ν
j}I

(q−1)ij

iil −
∑
i 6=j 6=l

Cµ
i C

σ
l Ā
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