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Ground-based gravitational wave interferometers such as the Laser Interferometer Gravitational-
wave Observatory (LIGO) are susceptible to high-magnitude teleseismic events, which can interrupt
their operation in science mode and significantly reduce the duty cycle. It can take several hours
for a detector to stabilize enough to return to its nominal state for scientific observations. The
down time can be reduced if advance warning of impending shaking is received and the impact
is suppressed in the isolation system with the goal of maintaining stable operation even at the
expense of increased instrumental noise. Here we describe an early warning system for modern
gravitational-wave observatories. The system relies on near real-time earthquake alerts provided
by the U.S. Geological Survey (USGS) and the National Oceanic and Atmospheric Administration
(NOAA). Hypocenter and magnitude information is generally available in 5 to 20 minutes of a
significant earthquake depending on its magnitude and location. The alerts are used to estimate
arrival times and ground velocities at the gravitational-wave detectors. In general, 90% of the
predictions for ground-motion amplitude are within a factor of 5 of measured values. The error
in both arrival time and ground-motion prediction introduced by using preliminary, rather than
final, hypocenter and magnitude information is minimal. By using a machine learning algorithm,
we develop a prediction model that calculates the probability that a given earthquake will prevent a
detector from taking data. Our initial results indicate that by using detector control configuration
changes, we could prevent interruption of operation from 40-100 earthquake events in a 6-month
time-period.

INTRODUCTION

Earthquakes are a significant issue for gravitational-
wave detectors. In previous work [1], it is described
how large-scale astronomical experiments, such as meter
class telescopes and gravitational-wave interferometers,
are susceptible to earthquakes. In the case of telescopes,
the predominant concern is the potential for nearby, dev-
astating earthquakes, which will damage either the sur-
rounding structure or the mirrors that make up the tele-
scope, and it is argued that a regional early earthquake
warning (EEW) [2–11] system is important to minimize
potential damage to telescopes. Gravitational-wave de-
tectors, on the other hand, are susceptible to teleseismic
events from around the world [12]. The two detectors
of the Laser Interferometer Gravitational-wave Observa-
tory (LIGO) [13] that have made the first direct obser-
vations of gravitational waves [14, 15] form a global net-
work of gravitational-wave interferometers together with
the Virgo [16], and GEO600 [17] detectors. These de-
tectors can be destabilized by significant ground motion,
despite seismic isolation systems designed to minimize
such effects [18–20].

During the last LIGO science run, large amplitude

earthquakes from around the world would typically cause
the detectors to fall out of lock [1], which signifies a failure
of the control system to maintain optics at their nominal
positions and orientations with subsequent loss of laser
power in the system. Not only were the data around the
time of the earthquakes not useful for gravitational-wave
detection, but it would also take hours of dead time for
the detectors to return to the locked state. We showed
that there are potential gains to be made with an early
warning system assuming that the incurred downtime
could be reduced with sufficient advance notice of the
earthquakes’ arrivals. Detailed studies of earthquake re-
sponse during previous science runs showed that there is
about one teleseismic event each week producing ground
motion at the sites too strong for the control system to
be able to maintain lock. In most cases, it was then im-
possible to lock the interferometer for some hours. A
scheme that would suppress disturbances of earthquakes
early in the isolation system with the final goal to main-
tain lock during strong ground motion, even at the price
of increased instrumental noise, could potentially lead to
substantial increase of the duty cycle. This will likely be
of greater importance even in high-power configurations
of the advanced detectors, where thermalization of test
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masses during the locking procedure could potentially in-
crease the time it takes to reach maximal sensitivity.

For this reason, we have created an earthquake early
warning client named Seismon, which uses a real-time
event messaging system of the US Geological Survey
to mitigate the effects of teleseismic events on ground-
based gravitational-wave detectors. The messages con-
tain information about the fault rupture such as location,
depth, magnitude. They are received and processed in
real time to estimate arrival times of the various seismic
phases, and seismic amplitudes of the Rayleigh phase at
the detector sites. In section , we describe the algorithm.
In section , we describe the performance of the algorithm
on the most recent gravitational-wave detector data. In
section , we offer concluding remarks and suggest direc-
tions for future research.

ALGORITHM

Figure 1 shows the flowchart for the Seismon pipeline,
developed to mitigate the effects of teleseismic events on
ground-based interferometric gravitational wave detec-
tors. It uses event notices received from USGS and makes
time of arrival and amplitude predictions for earthquake
seismic phases at sites of current detectors. Using a com-
bination of earthquake magnitude, distance, and depth
information, a prediction of the likelihood of the earth-
quake causing data disruption at the sites is made.

Notices

Seismon relies on the most preliminary notices of
earthquakes currently available generated by worldwide
networks of seismometers. In general, the process of iden-
tification occurs when a primary or P-wave arrival is iden-
tified in a number of nearby seismometers. Preliminary
estimates of the location, including latitude, longitude,
and depth, are then derived by analyzing ground motion
of these first arrivals. Robust earthquake magnitude es-
timates come later depending on the earthquake magni-
tude. It is generally challenging to obtain quick estimates
of high-magnitude earthquakes, mostly because the fault
rupture can last for a minute or more and information
thereof resides in slowly evolving surface displacement.
Consequently, preliminary estimates often underestimate
the magnitude of strong earthquakes as shown in figure
2. This data is from all earthquakes from the last sci-
ence run, comparing the earliest magnitude estimates (as
would be used by Seismon to the final estimates com-
puted much later).

For distant epicenters, achievable warning times are
mostly determined by the comparison of P-wave travel
times relative to secondary or S-waves and surface waves.
P-waves travel at about twice the speed of S-waves, and

PDL GeoJSON

Parse
events

Calculate
travel
times

Produce
XML files

Summary
/ Plot

Site No-
tification

FIG. 1: A flow chart of the Seismon pipeline. The USGS’s
Product Distribution Layer (PDL) and public GeoJSON
earthquake files provide information used by Seismon to com-
pute estimated site arrival times and Rayleigh wave velocities.

surface waves are delayed further since they are bound
to travel along the surface. Surface and S-phases gen-
erally have a stronger effect on gravitational-wave de-
tectors due to their higher amplitudes. Furthermore,
P-waves produce predominantly vertical motion at the
detector sites, S-waves predominantly horizontal motion,
while surface Rayleigh waves cause vertical and horizon-
tal ground motion with similar amplitudes. It is likely
that these polarization-dependent effects also influence
the impact of a seismic phase on the detector.

The United States Geological Survey (USGS) provides
a number of channels for information about earthquakes,
on different time-scales. The earliest, which we will use in
the Seismon pipeline, are automated pipelines, which use
USGS-supported worldwide networks of seismometers to
make earthquake identifications. The earliest solutions
provide event source parameters, including both location
and magnitude estimates. At later times, moment ten-
sor solutions and finite fault models are calculated from
the array data. These solutions are distributed through
USGS’s Product Distribution Layer (PDL), which has
been configured to receive all notifications of earthquakes
worldwide. As all USGS-supported networks submit no-
tices through this service, the pipeline is ensured to re-
ceive all relevant notices. In particular, the notification
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FIG. 2: Comparison of initial versus final magnitude esti-
mates of earthquakes. Magnitudes of strong earthquakes are
typically underestimated in preliminary analyses since asso-
ciated fault ruptures can last up to minutes, and precise in-
formation is obtained from slow surface displacements. Esti-
mates of magnitudes for weak earthquakes are less biased in
this way when fault ruptures only last for a couple of seconds.

messages are in the form of either EQXML or QuakeML
Extensible Markup Language (XML) files, although the
distribution also provides image files and other related
content depending on the information. Each network
that detects an earthquake provides time-tagged versions
of their products, which will allow us to estimate the de-
lay induced by the process of earthquake identification
and product distribution. This is a cross-platform Java
based code that runs constantly on a dedicated machine.
After these solutions have been vetted, they are also re-
leased in public GeoJSON earthquake files available from
the USGS website.

Analysis

The second step of the process is to convert event no-
tifications to information about the time of arrival and
amplitudes at the sites. In summary, we use the loca-
tion and magnitude estimates of the PDL client for two
purposes. The first is the time of seismic wave arrivals
at the gravitational-wave detectors. The second is the
ground motion at the gravitational-wave detectors. Ac-
curate prediction of the ground velocity amplitude based
on earthquake magnitude and distance will be required to
limit the false alarms. This equation should account for
physical effects with variable parameters used to fit to the
seismic data currently available. P- and S-wave arrivals
can be accurately determined given latitude, longitude,

and depth information by calculating travel times using
the iaspei-tau package [21] wrapped by Obspy. We can
approximate surface waves as having a constant 3.5 km/s
speed value.

The second step is to make amplitude predictions
for each site. We estimate the peak amplitude of the
surface waves, Rfamp, at the sites using equation (1),
which we describe below. This was developed as a fit
to historical earthquakes at the gravitational-wave de-
tectors. We chose the peak amplitude as compared to
root-mean-squared ground-motion because a root-mean-
squared value depends on technical calculation choices,
which to be effective will depend on the event in ques-
tion. Eventually it would be appropriate to determine
what observational quantity is best suited to lock loss for
the detectors, but for now we adopt peak amplitude due
to its relative simplicity. Both the time-of-arrival and
amplitude are predicted as a function of distance. This
allows users of the algorithm to interpolate these metrics
for their locations of interest. In general, we generate the
predictions for all currently operating gravitational-wave
detectors.

We now examine the historical earthquake record and
predict the likely ground motion seen. We then use seis-
mic data from on-site observations to predict how ground
motion will affect the observatories. We have developed
an equation attempting to account for physical effects
with variable parameters used to fit to the data. Cou-
pling strength of a source at a certain depth to Rayleigh
waves, geometric amplitude evolution, and frequency-
dependent scaling of the magnitude into ground displace-
ment are taken into account. We estimate the amplitude
of the surface waves, Rfamp, at the sites using the equa-
tion

Rfamp = M
a

f bc

e−2πhfc/c

rd
(1)

where fc = 102.3−M/2 Hz is the corner frequency of the
earthquake, M is the magnitude of the earthquake, h
is the depth, and c is the speed of the surface-waves.
Another distance-dependent exponential damping term
was included initially, but it did not lead to any im-
provement in the amplitude prediction. The difference
between the prediction Rfamp and the set of historical
data is then minimized using the parameters a, b, c, d.
To do so, we use a Metropolis Hastings Multi-Chain,
Monte-Carlo algorithm implementing adaptive simulated
annealing, which statistically guarantees obtaining solu-
tions close to global minima [22, 23]. This algorithm was
recently used in the optimization of seismometer arrays
for gravity gradient noise cancellation in gravitational-
wave detectors and a thorough explanation can be found
in [24]. These are summarized for the gravitational-
wave detectors in this study in table I assuming that
all physical parameters are in SI units. The regression
is shown in figure 3 for both the LIGO Hanford (LHO)
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FIG. 3: Fit of peak velocities seen during S5-S6 at the interferometers (LHO and LLO) to equation 1. Fit parameters are
estimated from S5-S6 data using final event parameter estimates. The events have been ordered by their measured peak ground
velocity (in blue) and the green crosses correspond to the prediction from the equation. About 90% (LHO and LLO) of events
are within a factor of 5 of the predicted value.

Detector a b c d

LHO 0.16 1.31 4672.83 0.83

LLO 0.16 1.31 4672.83 0.81

VIRGO 1.60 0.89 4992.70 0.83

GEO 8.65 1.92 324.52 1.40

TABLE I: Best-fit parameters to the peak velocities seen at
the interferometers to equation 1.

and LIGO Livingston (LLO) gravitational-wave interfer-
ometers. For LHO and LLO, the data were taken from
November 2005 to October 2007 (Science Run 5 abbrevi-
ated as S5) and July 2009 to October 2010 (Science Run
6 abbreviated as S6). We will validate these fits against
the latest science run (Observation Run 1 abbreviated as
O1) in the next section. For Virgo, the data were taken
from June to September 2011 (Virgo Science Run 4 ab-
breviated as VSR4). For GEO 600, the data were taken
from July 2010 to June 2011 (GEO High Frequency ab-
breviated as GEOHF). Figure 4 shows the peak ground
velocity as a function of magnitude and distance for the
models. Based on the above equations, we expect that
earthquakes with magnitudes greater than 5 can exceed
ground velocities of 1µm/s.

Site Notification

The final step of the process is to use the site amplitude
and time-of-arrival predictions to create warnings (and
possibly detector state changes) for the detectors. The
algorithm analyzes the recent notifications and places a
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FIG. 4: The predicted peak ground velocity as a function of
magnitude and distance for LHO (LLO is similar).

threshold on the predictions. We provide a set of site
variables that contains the following information. The
first is the amplitude prediction for any earthquake ex-
pected to be present. The second is the probability of
lockloss, which is discussed in the next section. The third
is when this earthquake is expected to arrive at the site.
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PERFORMANCE

In this section, we provide a number of metrics by
which we analyze the performance of Seismon.

Notification latency

One of the most important qualities of an earthquake
monitor is the notification latency, or the amount of
warning time a detector has to respond to incoming seis-
mic waves. On the left of figure5, we show the time delay
between the earthquake and generation of the PDL client
notification. In general, notices are generated within
5 minutes of the earthquake. On the right of figure
5, we show the cumulative probability distribution of
time delays between the notification from the PDL client
and approximate arrival of surface waves, assuming sur-
face wave velocities of 3.5 km/s. In general, there is
more than 10 minutes available between notification and
surface-wave arrivals. This is more than sufficient time
for gravitational-wave detectors to respond by changing
control configurations.

Ground Velocity Prediction Performance

Another important quality for an earthquake monitor
is the accuracy of the ground-motion amplitude predic-
tion and the time-of-arrival. The ground-motion ampli-
tude performance is evaluated against the most recent
science run (Observing Run 1) from September 2015 to
January 2016, in figure 6. About 90% of events are within
a factor of 5, while those that are not are almost exclu-
sively events that are due to the overlap of many events.
This occurs often during aftershocks of large earthquakes.
As the largest event is the important one, these are unim-
portant for predictions.

As mentioned above, Seismon uses the earliest avail-
able notices for making time-of-arrival and amplitude
predictions. Because the earliest notices may only rely on
a few seismometers, as well as the fact that large earth-
quakes do not fault all at once, the estimates for both
magnitude, depth, location, and time can be off. In fig-
ure 6, we show the difference of arrival times and pre-
dicted peak velocities seen during O1 at the interferome-
ters (LHO and LLO) using the initial and final estimates.
This is a smaller error than from the regression.

In figure 7, we show the difference between the initial
and final estimates of the earthquake time. About 90%
of early estimates are within 3 s of the final time, which
is much smaller than the latency from the generation
of the notice itself. For these reasons, the use of the
early notices is not a major source of systematic error for
Seismon.

Gravitational-wave detector lockloss prediction
performance

An earthquake monitor will only be useful for
gravitational-wave detectors if it can be determined
which earthquakes cause the loss of data (and which will
not affect the detector in a significant way). We now
measure the amplitude of the seismic ground motion that
causes the detector to lose lock. To do so, we take all
known earthquakes above magnitude 5.0 and compute
their arrival times. We also determine the times that
the gravitational-wave detectors fell out of lock during
these times. We then compare these two figures of merit.
Fig. 8 shows these times, both for those times when lock
losses occurred, when they did not, and when the detec-
tor was not locked. The plot shows that while in general
ground velocities greater than about 5µm/s lead to lock
loss, the situation is complicated at lower ground veloci-
ties. This motivates using more than ground velocity to
predict lockloss, as for example the spectrum of ground
motion or the direction of propagation of seismic waves
with respect to the detector orientation.

It is of significant interest to determine the earthquake
parameters (and the ground velocities they create) that
cause the detectors to lose lock. Given that Seismon is
an early warning system, the only parameters available
for use are those returned by USGS in low latency, which
are magnitude, depth and location (and thus distance).
In addition, we can use the predicted ground velocity
derived from these parameters. The goal is to predict
the outcome of the interferometer lock status based on
these parameters.

In the following, we will use a machine learning al-
gorithm to develop a lockloss prediction model. Ma-
chine learning algorithms, which are useful for classifying
and predicting outcomes for various data analysis prob-
lems, have been used in the past with great success in
gravitational-wave data analysis [25, 26]. We first com-
pare the performance of different machine learning algo-
rithms aimed at modelling lockloss prediction from the
given input parameters. All three classifiers, Logistic Re-
gression [27], Naive Bayes [28], and Support Vector Ma-
chine [29], yield comparable performance with logistic
regression giving the best result as is evident from the
receiver operator characteristic curve shown in Figure 9.
The classifier with the maximal area under the curve is
usually chosen over the others.
Seismon makes lockless predictions using the threshold

value obtained from optimal operating point of the ROC
curve. The idea is that by setting the false-alarm rate
to a certain threshold, we can find an optimum point of
efficiency for predicting the outcome. In the analysis that
follows, we use 2/3 of the earthquakes for training and
1/3 of the earthquakes for the testing set. In general,
there is a trade-off between false-alarm probability and
efficiency standard probability. The more false alarms
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FIG. 5: On the left is the time delay between the initiation of fault rupture and generation of the PDL client notification. On
the right is the time delay between the earthquake notification from the PDL client and approximate arrival of surface waves
at the LIGO Hanford site for global earthquakes. A majority of the locations allow for more than 10 minutes of time between
notification and site arrival.
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FIG. 6: Performance of estimation of peak velocities seen
during O1 at the interferometers (LHO and LLO) using fit
parameters estimated from S5-S6 data. The solid lines use
the final earthquake parameter estimates while the dashed
lines use the preliminary earthquake estimates. About 90%
of events are within a factor of 5 of the predicted value. The
difference in fit parameters due to use of preliminary notices
is minimal.

one is willing to accept, the higher the rate of earthquakes
that will result in lockloss will be caught. For example,
if we adopt a false-alarm probability threshold of 0.5,
between 90 – 100% of earthquakes can be caught.
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FIG. 7: Difference between the initial and final estimates of
the earthquake time. About 90% of early estimates are within
4 s of the final time.

CONCLUSION

In this paper, we have discussed the problem of earth-
quakes for gravitational-wave detectors and a pipeline
designed to minimize their impact. We characterize this
pipeline in terms of the warning time for these exper-
iments. We have shown that the earthquake warning
system can both predict likely earthquake arrival times
and ground velocity amplitudes.

A code that performs these steps is available at
https://github.com/ligovirgo/seismon/ for public down-
load. Hopefully, this will allow other researchers to easily
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FIG. 9: Performance comparison of different machine learning classifiers. True positive rate is the ratio of sum of predicted
positive condition actually being true to the sum of all actually positive conditions. Positive condition here refers to a lockloss
prediction by the classifier which in general can be true or false. False positive rate is the ratio of sum of predicted positive
condition being false to the sum of all actually negative conditions. Classifier prediction about the detector being in lock forms
the negative condition. A threshold value on classifier output (usually a scaled number between 0 and 1 with value close to
unity indicative of lockloss) is varied to generate the receiver operator characteristic curve (ROC).

use the fits. Required inputs are the latitude and longi-
tude of the site and magnitude, latitude, longitude and
depth of the source.

In the future, this algorithm will be applied to the
next science run. It will require coordination between the
low-latency notification software and the detector control
systems to maximize the utility of the system. Further ef-
fort needs to be spent on investigating the effect of strong
ground motion on the detector control system. This will
include studies of the control configuration best for riding

out times of large ground motion.
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