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Zusammenfassung
Mit Hilfe von Molekulardynamiksimulationen im Nichtgleichgewicht untersuchen wir einen

nematischen Flüssigkristall, welcher um ein kolloidales Teilchen fließt. Die Diskrepanz

zwischen der globalen nematischen Vorzugsrichtung und der lokalen Orientierung der

Flüssigkristallmoleküle an der Kolloidoberfläche führt zu Defekttopologien im thermo-

dynamischen Gleichgewicht. Wir untersuchen die Modifikation der topologischen Defek-

te durch Fluss. Unsere Untersuchungen ergeben, in Übereinstimmung mit experimentel-

len Befunden [1], dass ein Saturnringdefekt in Flussrichtung verschoben wird. Zusätzlich

wird der Saturnring durch den Poiseuillefluss verformt. Die Verformung lässt sich an-

hand von geometrischen Parametern aus Anpassungen geeigneter Projektionen des Sa-

turnrings quantitativ analysieren. Unsere Simulationen zeigen, dass kleinere Saturnringe

stromabwärts verschoben werden und ihre Kreisform nahezu behalten. Größere Saturn-

ringdefekte hingegen weisen eine elastische Verformung auf, welche von der Kreisform

abweicht. Weiterhin zeigen wir, dass der Fluss einen Boojumdefekt in einen asymmetri-

schen größeren Defekt flussabwärts verformt. Januskolloide weisen eine Kombination aus

Boojum- und Saturnringdefekt auf. Unsere Untersuchung ergibt, dass der Boojumdefekt

flussaufwärts zerstört wird und der Saturnring flussabwärts verschoben wird.

Außerdem untersuchen wir ein vergleichbares System, in welchem der nematische

Flüssigkristall um eine zylindrische Säule fließt. Wir beobachten flussinduzierte Kavitation

in einer anisotropen Flüssigkeit. Kavitationsdomänen bilden sich auf Grund des Druck-

verlusts hinter der zylindrischen Säule. Sowohl die Entstehung als auch das Wachstum

der Kavität findet unter laminaren Flussbedingungen statt. Wir untersuchen im Detail

die physikalischen Ursachen, welche zum Phänomen der Kavitation in einem nematischen

Flüssigkristall führen. Weiterhin bestimmen wir den kritischen Wert der Reynoldszahl für

den Beginn der Kavität. Dieser kritische Wert skaliert invers mit dem charakteristischen

Ordnungsparameter für einen nematischen Flüssigkristall. Markanterweise kann die kriti-

sche Reynoldszahl bis zu 50% niedriger sein als der Kavitationsbeginn in einem isotropen

Flüssigkristall. Diese Befunde weisen darauf hin, dass die langreichweitige Ordnung poten-

tiell als Kontrollparameter verwendet werden kann um den Beginn von Kavitation in aniso-

tropen Flüssigkeiten zu beeinflussen. Zusätzlich erreichen wir sehr gute Übereinstimmung

mit mikrofluidischen Experimenten [2] für geringere Flussgeschwindigkeiten, bevor die Ka-

vitation einsetzt. Unsere Simulationen sind in der Lage die strukturellen Veränderungen

innerhalb des Mikrokanals für verschiedene Flussgeschwindigkeiten zu reproduzieren.
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Abstract
Liquid crystals are elongated molecules with a rich and surprising phase behavior. Nonequi-

librium conditions open a myriad possibilities of manipulating matter, and reach collective

states not accessible under equilibrium conditions. We perform nonequilibrium molecu-

lar dynamics simulations of a nematic liquid crystal flowing around a colloidal particle.

Because of a mismatch between the nematic far field alignment and the local orientation

of the liquid-crystal molecules at the surface of the colloid, defect topologies arise if the

host is in thermodynamic equilibrium. We study the flow-induced modifications of these

topological defects. We find that Saturn ring defects are convected downstream along the

flow direction, which is in agreement with experimental observations [1]. As Poiseuille flow

is initiated, the Saturn ring is deformed. The degree of deformation is analyzed quantita-

tively in terms of characteristic geometric parameters fitted to suitable projections of the

Saturn ring. Our results suggest that smaller Saturn rings are shifted downstream while

approximately maintaining their circular shape, whereas larger ones exhibit an elastic de-

formation in addition. Additionally, we show that flow distorts Boojum defects into an

asymmetrically larger downstream lobe. For a Janus colloid, exhibiting a Boojum defect

and a Saturn ring defect, we find that the Boojum defect facing the upstream direction is

destroyed and the Saturn ring is convected downstream.

Furthermore, we study a similar system of a nematic liquid crystal flowing around

a cylindrical pillar. We report flow-induced cavitation in an anisotropic fluid. Cavitation

domains nucleate due to a sudden drop in pressure upon flow past the cylindrical obsta-

cle. The inception and growth of cavitation domains ensue in the laminar flow regime.

We study the physical principles governing the cavitation phenomena in nematic liquid

crystals, and identify a critical value of the Reynolds number for cavitation inception

that scales inversely with the characteristic order parameter of the nematic liquid crystal.

Strikingly, the critical Reynolds number can be as low as about 50% of the cavitation

threshold in the isotropic liquid crystal. These findings suggest that long range ordering,

and its tunability, can be potentially applied as a novel control parameter to modulate

cavitation inception in anisotropic fluids. Additionally, we find very good agreement with

earlier microfluidic experiments [2] at smaller flow speeds before cavitation initiates. Our

simulations are able to reproduce the structural changes within the microfluidic channel

at different flow speeds.
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1 Introduction

1.1 History of liquid crystals

Liquid crystals were discovered in a series of experiments between 1850 and 1888. While

performing experiments with polarized light on biological specimens, Virchow [3] and Met-

tenheimer [4] independently noticed unusual effects. Liquids usually do not polarize light,

whereas solids do because of their regular crystalline structure. However, the biological

specimens were not solid and yet they exhibited unusual polarization effects. Unfortu-

nately, the structure of these biological specimens is complicated and therefore a more

detailed study was not possible at that time. Another contributing experiment before the

actual discovery of liquid crystals was performed by Lehmann [5]. He was investigating

how certain substances crystallize with the aid of a heating stage for his microscope. He

later added polarizers to his microscopes and was one of the first to use a polarized light

microscope. Lehmann observed an amorphous before the clear liquid crystallized but did

not realize at the time that he had found a new phase. He related the effects to anomalies

during the liquid-solid phase transition. Around the same time Planer [6], Löbisch [7]

and Raymann [8] noticed remarkable colors when cooling a compound synthesized from

cholesterol. However, they were unable to offer any explanation. In 1850 Heintz observed

that the organic substance stearin first melts into a cloudy liquid before turning clear at

an even higher temperature. He stated that there was a second melting point. About forty

years later Reinitzer [9] performed a very similar experiment with an organic substance

related to cholesterol and observed a second melting point, too. He also reported color

phenomena like earlier scientists working with similar substances. Today Reinitzer is given

credit for the discovery of liquid crystals. He was the first to connect earlier studies and

set the future path for the field. The term liquid crystal was first introduced by Lehmann

[10] and unlike many other designations survived until today.

After Reinitzer’s discovery Lehmann performed many other experiments that con-

tributed to the further exploration of liquid crystals. Among those were experiments

on the first synthesized nematic liquid crystal discovered by Gattermann and Ritschke

[11]. Their compound was also the first liquid crystal not based on a natural substance.

Lehmann noticed a difference in some liquid-crystal compounds, known today as nematic

and smectic. Furthermore, he observed that liquid crystals tend to orient in a certain

direction on solid substrates. The chemist Vorländer [12] was the first to observe a liquid

crystal with more than one liquid-crystal phase. He also suggested that molecules with a

linear shape are more likely to form liquid-crystal phases.

Influenced by Vorländer’s suggestions the physicist Bose attempted to construct a

complete molecular theory for liquid crystals [13–15]. Later Born [16] suggested that the

basic interaction between molecules leading to liquid-crystal phases is caused by a separa-
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Introduction

tion of charge in the linear molecules. In 1922 Friedel [17] proposed a classification scheme

of nematic, smectic and cholesteric using the concept of molecular ordering. He pointed

out that the lines seen while studying liquid crystals with a microscope correspond to

defect structures, that is drastic changes in molecular orientation on a microscopic length

scale. It was also very clear to him that liquid crystals could be oriented by an electric

field. Later Oseen [18] worked theoretically on the elastic properties of liquid crystals,

work that was concluded much later by Frank [19] at the continuum level. During the

period around World War II research on liquid crystals slowed down. However, it should

be pointed out that a quantification in the form of an order parameter was developed by

Tsvetkov in 1942 [20]. This order parameter has been utilized in countless subsequent

studies including both experiments and theory.

Research on liquid crystals resumed shortly before 1960. Brown and Shaw [21] pub-

lished an article reviewing the liquid-crystal state. Their review article can be viewed as a

catalyst for the renewed interest in liquid crystals. Maier and Saupe [22–24] formulated a

microscopic theory that was not based on the separation of charge in the linear molecules.

This was the first theory predicting liquid-crystal behavior starting from a realistic de-

scription of the individual molecules. Another milestone in liquid-crystal research was the

development of the liquid crystal display (LCD), first used in wristwatches and pocket cal-

culators and, later for computer displays and television. Consequently, during the 1970’s

and 1980’s research on liquid crystals literally exploded. This technological breakthrough

and the rapid scientific progress has made the field of liquid crystal research as broad and

fascinating as it is today. The field of colloidal dispersions in nematic liquid crystals [25]

is an adequate representation of the widespread research nowadays. For example, inves-

tigations on colloidal self-assembly [26] show the joined endeavor of experimentalists and

theoreticians in liquid crystal research. Today, the complexity of phenomena involving

liquid crystals must be tackled by a combined effort involving both chemistry and physics

[27, 28].

1.2 Physics and chemistry of liquid crystals

From the general discussion above it is clear that the term liquid crystal describes a state

between the crystalline solid and the amorphous liquid. Generally speaking a compound

in that state features strong anisotropic properties as well as a certain degree of fluidity.

There exist quite a number of organic compounds capable of forming liquid-crystal phases.

All of these compounds share one common property, namely that they are anisotropic in

shape. Hence, their shape is such that one molecular axis is different from the remaining

two. Therefore, interaction between these anisotropic molecules leads to orientational or

even positional order within a fluid phase. Figure 1 shows one representative organic

compound where one molecular axis is longer than the other two. Thus, the molecule is

2
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anisotropic in shape resembling a rod. These compounds are classified as calamitic liquid

crystals. It is important that the central part of the molecule is rather rigid in shape to

produce the necessary interactions which favor alignment. The rigid part of the molecule

is often called “mesogen”.

C N

H3C

Figure 1: Chemical structure of 4-Cyano-4’-pentylbiphenyl, a widely used nematic liquid
crystal which goes by the common name 5CB.

Molecules with one molecular axis shorter than the remaining two are of a disk-like

shape. Therefore, these compounds are called discotic liquid crystals. As one can imagine

their phase behavior is quite different from calamitic liquid crystals. Both types are called

thermotropic liquid crystals because the different liquid-crystal phase transitions are driven

by temperature changes. Two other types of liquid crystals are known. For lyotropic liquid

crystals the formation of the phase depends strongly on the solvent concentration. Also

polymers are capable of forming liquid-crystal phases if they consist of a rigid backbone.

However, in this work we are going to focus only on calamitic liquid crystals.

Liquid crystals are most know for their remarkable optical features as already em-

phasized above. For example, their various ordered phases can give rise to Bragg reflections

at specific optical wavelengths. Additionally, the wavelength of the reflected light exhibits

a temperature dependence. Hence, the color of such a liquid-crystal phase changes over

a small temperature range. Some liquid-crystal phases are birefringent and therefore ex-

hibit the phenomenon of double refraction. Liquid crystals also respond heavily to external

fields such as magnetic and electric fields. All of these properties are strongly linked to the

anisotropy of the molecules, namely the orientational or even positional structural order

of the corresponding liquid-crystal phase [28–30].

1.3 Phases of liquid crystals

Substances can exist in more than one state of aggregation. The most common states

are solid, liquid and gas. In a crystalline solid molecules only occupy certain positions.

Additionally, molecules are also constrained in the way they are oriented with respect to

each other. Hence, a crystal exhibits both long-range positional order and orientational

order. However, when a phase transition from solid to liquid occurs both types of order

are lost. Thus, in a common liquid phase molecules are randomly oriented and positioned.

3
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For liquid crystals this situation is entirely different. During the phase transition

from a solid into a liquid-crystal phase molecules maintain a certain degree of orientational

and sometimes even positional order. Thus, there exist a variety of different liquid-crystal

phases. Here we are going to focus on the nematic phase.

The nematic phase is characterized by long-range orientational order but only short-

range positional order. In fact a nematic phase still exhibits fluid motion. Figure 2 shows

a schematic representation of the nematic phase as an intermediate state between liquid

and solid. Molecules tend to be parallel to some common axis, described by a unit vector

n̂0, the so-called director. The nematic phase is rotationally invariant around n̂0. In the

absence of any surfaces or other external fields the direction of n̂0 is infinitely degenerate.

In other words, an infinite number of so-called “easy-axes” exist for n̂0 in the terminology

of Jerome [31]. Consequently, by using suitable external fields n̂0 can be made monostable,

that is a preferred single orientation of n̂0 can be imposed. Furthermore, due to the head-

tail symmetry of liquid crystals n̂0 and −n̂0 are indistinguishable. Only compounds

consisting of molecules which do not distinguish between up and down, meaning mirror

images of molecules are identical, are capable of forming a nematic phase. However, for

compounds with a left- and right-handed species (chirality) a mixture of equal parts is

capable of forming a nematic phase as well. It is immediately clear that orientational

order is a key quantity to characterize nematic liquid crystals [27, 30].

Figure 2: Schematic representation of the phase transitions for increasing temperature
from (a) solid to (b) nematic and (c) liquid. The gray shaded double-headed
arrow represents the director n̂0.
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1.4 Order parameters for nematic liquid crystals

To describe quantitatively the amount of orientational order in a nematic liquid crystal a

variety of options seems plausible. However, it is immediately clear that since molecules

are not fixed one needs to consider some sort of average to describe the order. The

simplest approach is to calculate the angle between each molecule and one common axis

(for instance the z-axis) from a snapshot of the system. Values between 90◦ and 0◦ are

obtained, where the latter represents perfect alignment with the z-axis. The average over

all molecules yields then a quantitative measure for the orientational order of the liquid-

crystal phase. However, in a three dimensional system only in the single case of perfect

alignment 0◦ is obtained. Whereas, innumerable orientations of a molecule yield values

close to 90◦. For a perfect aligned nematic phase, with n̂0 pointing along the z-axis, the

average angle is 0◦ as expected. However, it turns out that for a phase with absolutely

no orientational order the average angle is 57◦ and not 45◦ as one would suspect [27].

Therefore, the procedure is misleading because the angle 57◦ suggests a net orientation

for a phase with no orientational order.

To obtain correct values a different description is widely used nowadays. The magni-

tude of the orientational order is described by an average over the function (3 cos2 θ−1)/2

[20]. It is straightforward to see that this function is equal to 1 for perfect alignment and

equal to 0 when no orientational order is present. The average of the function over all

molecules is called the nematic order parameter [22–24, 27].

We define the nematic order parameter

S =
1

N

〈
N∑
i=1

3

2
cos2 θi −

1

2

〉
, (1.1)

where N is the number of molecules, θi is the angle between the orientation of a molecule

ûi and the nematic director n̂0 and 〈. . .〉 indicates the ensemble or time average. However,

n̂0 is not known a priori. Thus, the nematic order parameter has to be calculated in a

different fashion [32]. For a sufficiently large number of molecules one can actually compute

S =

〈
N∑
i=1

[
3

2
(n̂0 · ûi)2 − 1

2

]〉
(1.2)

=

N∑
i=1

〈[
n̂0 ·

(
3

2
(ûi ⊗ ûi −

1

2
1

)
· n̂0

]〉

=

N∑
i=1

〈[n̂0 ·Q · n̂0]〉 ,

where ⊗ is the dyadic product, 1 is the unit tensor. The so-called alignment tensor [30]
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is defined as

Q ≡ 1

2

N∑
i=1

〈[3ûi ⊗ ûi − 1]〉 . (1.3)

Therefore, Q is a real, symmetric, and traceless second rank tensor which can be repre-

sented by a 3× 3 matrix. To calculate the nematic order parameter one has to solve the

eigenvalue equation

Q · n̂n = λnn̂n (1.4)

where λn is the n-th eigenvalue and n̂n the associated eigenvector. The nematic order

parameter S is defined as the largest eigenvalue and the associated eigenvector as the

director n̂0. For perfect alignment S = 1, whereas S = 0 for no orientational order.

1.5 Landau-de Gennes theory

The nematic order parameter S can be used to quantitatively describe the phase transition

between a phase with no orientational order, the so-called isotropic phase, and a phase

with orientational order, the nematic phase in the context of this thesis. Landau developed

a general phenomenological theory for phase transitions [33]. Landau’s theory describes

a temperature-driven phase transition from an ordered state at low temperature to a

less ordered phase at higher temperature. Hence, the nematic order parameter is fit to

quantitatively describe the isotropic-nematic phase transition for liquid crystals, which was

used by De Gennes to develop a phenomenological description on the basis of the Landau

theory of phases transitions [30]. The resulting Landau-de Gennes theory is rather simple

but captures the most important aspects of the isotropic-nematic phase transition.

The Landau-de Gennes theory assumes that the nematic order parameter in the

nematic phase but close to the nematic-isotropic phase transition is small. Therefore, the

difference in free energy of the two phases can be expanded in terms of S. Up to the fourth

order, the free energy can be expanded as

F (S) = F0 +
3

4
A(T )S2 − 1

4
B(T )S3 +

9

16
C(T )S4, (1.5)

where A(T ), B(T ) and C(T ) are coefficients. There is no linear term in the expansion.

This is to ensure that the state of minimum of F is the state of S = 0, hence isotropic.

Additionally, the nematic-isotropic phase transition is known to be of “weakly first order”

[30]. Thus, the expression for the free energy includes a term of order S3 predicting a

discontinuous transition.

We have no knowledge about the coefficients A(T ), B(T ) and C(T ) a priori. There-

fore, in a agreement with molecular theories [30], we postulate A(T ) ' a(T − T ∗) and

higher order coefficients B(T ) and C(T ) are assumed to be independent of temperature.

Here T ∗ is the temperature of the spinodal. Below T ∗ the isotropic phase becomes com-
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pletely unstable. One can rationalize the term A(T ) ' a(T −T ∗) in the following manner:

For B = 0 the transition is continuous and A(T ) must vanish at the transition point T ∗.

This is due to the fact that the isotropic phase S = 0 corresponds only to a stable mini-

mum if A > 0, while in the nematic phase S 6= 0 corresponds only to a minimum if A < 0.

Because A(T ) is positive on one side of the transition and negative on the other it has to

vanish on the transition point itself.

Figure 3 shows the family of curves obtained from Eq. 1.5. For temperatures above

the isotropic-nematic phase transition T > TIN the global minimum corresponds to the

isotropic phase (S = 0). If T = TIN the isotropic and nematic phase coexist. Con-

sequently, for temperatures below the isotropic-nematic phase transition T < TIN the

global minimum of F corresponds to the nematic phase and is shifted to higher values of

S. Below the spinodal temperature T ∗ only the nematic phase exists [28–30].

 0 S

F

Figure 3: Free energy F as a function of the nematic order parameter S [see Eq. 1.5] for
different temperatures T . T > TIN ( ), T = TIN ( ), and T = T ∗ ( ).

1.6 Defect topologies

In the previous two chapters we have considered global variables characterizing the nematic

order and the free energy of the corresponding liquid-crystal phase. However, the nematic

order can be perturbed locally on the molecular scale leading to so-called defect topologies.

Topological defects are characterized by some core region, which can be in the shape of a

point or line, where the nematic order is destroyed. From a strictly theoretical approach

treating the liquid crystal as a continuum a defect is a singularity which cannot be remedied
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with an infinite amount of infinitesimal changes of the director field. Furthermore, the

nematic order parameter S is not defined in this singularity and approaches zero in its

vicinity. However, in computer simulations based on molecules or experiments such a

singularity cannot be observed and the defect core has a finite size in the order of the

molecular scale. We consider local changes in the nematic order in terms of the local

nematic director n̂(r) and the local nematic order parameter S(r). In Sec. 1.4 we have

already calculated the global nematic order parameter S and the global nematic director

n̂0 with the aid of the alignment tensor Q. The local quantities are obtained in the same

manner and the local alignment tensor is defined as

Q(r) ≡ 1

2ρ(r)

N∑
i=1

〈[3ûi ⊗ ûi − 1] δ(r − ri)〉 (1.6)

where ri is the center-of-mass position of molecule i, δ(r) is the Dirac delta distribution

and

ρ(r) =

〈
N∑
i=1

δ(r − ri)

〉
(1.7)

is the local number density. Again the local nematic order parameter S(r) is defined as

the largest eigenvalue and the associated eigenvector as the local director n̂(r).

In a liquid-crystal sample defects can emerge, caused for example by external influ-

ences such as confining surfaces, external fields or colloidal particles. The defect topologies

arising around a colloidal particle will be addressed in Sec. 2.8. However, also a bulk liquid

crystal sample is subject to defects and not all molecules point in the same direction along

the global director n̂0. In fact, the orientation of n̂0 varies in space over a very large

distance compared to the molecular scale. This leads to the well known Schlieren textures

[34]. Thus, within the nematic liquid crystal the local director n̂(r) can change abruptly

in the vicinity of a defect region. It is impossible to determine the exact orientation of

n̂(r) in this region. Hence, this area represents a defect in the order of the nematic liquid

crystal. The most common types of liquid-crystal defects are point and line defects.

Point defects are less common than line defects. They can occur for instance in

liquid-crystal droplets. The most simple example for a point defect would be a droplet

where molecules are constrained to align perpendicular to the surface. Therefore, in the

center of the droplet a point defect occurs. However, one can easily imagine multiple

scenarios creating a line defect. For example, a nematic liquid crystal in a capillary tube

where molecules are constraint to align perpendicular to the surface most likely exhibits

a line defect. Because line defects represent a discontinuity in the inclination of the

director they are referred to as disclinations. There exist a variety of different types of

disclinations. Figure 4 shows a two-dimensional representation of common disclinations.

To distinguish them the director configuration is examined in the plane perpendicular to

8
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the direction of the line defect. Each configuration is assigned a value for the strength s

of the disclination to classify them. Sometimes s is also referred to as the winding number

since it also represents the number of rotations by 360◦ of n̂(r) along one closed circuit

around the core of the defect [see Fig. 4]. The sign of s is positive for counter-clockwise

rotations, consistent with the mathematical definition of the direction of rotation [27, 35].

(a) (c)(b) (d)

Figure 4: Graphical two-dimensional representation of different types of disclinations in a
nematic liquid crystal, for strength (a) s = 1/2, (b) s = −1/2, (c) s = 1 and (d)
s = −1. Lines represent the local director n̂(r) and the defect topologies are
represented by a black dot. The red circle and the double headed arrow serve
as a visual aid in order to determine the strength of the defect.

1.7 Frank free energy

In the vicinity of a topological defect the local director n̂(r) can change abruptly. How-

ever, in the far field region of the defect n̂(r) changes slowly in space with respect to

n̂0. Additionally, external constraints such as electric or magnetic fields can cause local

perturbations of n̂0. Figure 5 shows the three most common deformations of the nematic

phase: splay, twist and bend. These deformations occur on a much larger length scale

than a typical molecular one. Hence, it is feasible to describe the deformation with the aid

of a continuum theory neglecting the structure at the molecular scale. The distorted state

may then be described entirely in terms of the local director n̂(r) which is assumed to vary

smoothly with r. One can then define a free energy density fd(r) due to the distortion of

n̂(r) which vanishes for the unperturbed nematic liquid crystal where ∇n̂(r) = 0.

Such a theory was initiated by Oseen [18] and Zöcher [36] and later revised by Frank

[19]. The free energy density is expanded up to quadratic order in the gradient of the local

director ∇n̂(r). If one accounts for the head-tail symmetry, as well as the axial symmetry

of nematic liquid crystals it turns out that all rotationally invariant linear terms in ∇n̂(r)

vanish. The resulting fundamental formula the so-called Frank free energy density, may
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be expressed as

fd(r) =
1

2
K1(∇ · n̂(r))2 +

1

2
K2[n̂(r) · (∇× n̂(r))]2 +

1

2
K3[n̂(r)× (∇× n̂(r))]2, (1.8)

where K1, K2 and K3 are elastic constants corresponding to the splay, twist and bend

deformations, respectively [see Fig. 5]. For most liquid-crystal compounds the bend defor-

mation is larger than the other two. This is due to the fact that a liquid crystal, composed

of elongated and stiff molecules, needs more energy to bend than to splay or even twist.

However, in most cases all three elastic constants are of the same order of magnitude.

Therefore it is useful to apply the one constant approximation K = K1 = K2 = K3.

Thus, because (∇ × n̂(r))2 ≡ [n̂(r) · (∇ × n̂(r))]2 + [n̂(r) × (∇ × n̂(r))]2, Eq. 1.8 takes

the form

fd(r) =
1

2
K[(∇ · n̂(r))2 + (∇× n̂(r))2]. (1.9)

The one-constant approximation is certainly a trade-off between simplicity and accuracy.

We will show in Sec. 5.2 that this approximation is quite valid for the model potential

studied in this work [30].

(a) (b) (c)

Figure 5: Graphical representation of the most common deformations of a nematic liquid
crystal: (a) splay, (b) twist and (c) bend.

1.8 Elastic constants

It is possible to generate pure splay, twist or bend deformations. The elastic constants

must be positive, otherwise an ideal unperturbed nematic phase would not correspond to

a minimum of the Frank free energy. The values of the elastic constants depend strongly

on temperature. In fact, for increasing temperature their values decrease, but their ratio

remains approximately the same. Here we are going to focus on how to obtain the elastic

constants from a molecular dynamics simulation.

The elastic constants can be obtained by considering the fluctuations δn(r) of the
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Figure 6: Graphical representation of the two uncoupled modes δn1 and δn2. The director
n̂0 is perpendicular to the unit vectors ê1 and ê2. The wave vector k is chosen
in the 1-3 plane.

director. For small deviations from the equilibrium configuration n̂0 we can write

n̂(r) = n̂0 + δn(r), (1.10)

where n̂0 · δn(r) = 0 in order to guarantee that |n̂(r)|2 = 1. Thus, δn(r) has two

transverse components, δn1 and δn2, with respect to n̂0 [see Fig. 6]. Both components

represent combinations of the known deformations [see Sec. 1.7], where δn1 represents a

bend-splay deformation and δn2 corresponds to a bend-twist deformation. We will derive

in the following the connection between director fluctuations and the elastic constants

starting from the Frank free energy. Rewriting Eq. 1.8 for n̂(r) along the z-axis and

integrating over the volume V of the system one obtains the Frank free energy

F =
1

2

∫
V

[
K1

(
∂n1

∂x1
+
∂n2

∂x2

)2

+K2

(
∂n1

∂x2
− ∂n2

∂x1

)2

+K3

(
∂n1

∂x3
− ∂n2

∂x3

)2
]

d3r, (1.11)

where the indeces 1, 2, 3 refer to Cartesian components. It is convenient to work with

the Fourier transforms, but to determine the expression of F in Fourier space is rather

lengthy, albeit straightforward. Thus, we will derive the expression only for contributions

describing the splay deformation. The expressions in Fourier space for the twist and bend

11
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contributions can be derived in the same fashion. The free energy then takes the form

Fsplay =
1

2

∫
V

[
K1

(
∂n1

∂x1
+
∂n2

∂x2

)2
]

d3r. (1.12)

We introduce the Fourier transform of the director n̂(r)

ñα(k) =

∫
V
nα(r) exp[−ik · r]d3r, (1.13)

where α = 1, 2, 3 and k is the wave vector. The inverse transformation is

nα(r) =
1

(2π)3

∫
ñα(k) exp[ik · r]d3k. (1.14)

Substituting for nα(r) in Eq. 1.12 leads to

Fsplay =
K1

2

1

(2π)6

∫
V

∫ ∫ [
−ñ1(k)k1ñ1(k′)k′1 + 2ñ1(k)k1ñ2(k)k2 − ñ2(k)k2ñ2(k′)k′2

]
× exp[i(k + k′) · r]d3kd3k′d3r. (1.15)

Applying the known properties of the Dirac delta distribution δ(x)∫
V

exp[i(k + k′) · r]d3r = (2π)3δ(k + k′) (1.16)

and ∫
f(k′)δ(k + k′)d3k′ = f(−k) (1.17)

results in

Fsplay =
K1

2

1

(2π)3

∫ ∫ [
−ñ1(k)k1ñ1(k′)k′1 + 2ñ1(k)k1ñ2(k)k2 − ñ2(k)k2ñ2(k′)k′2

]
× δ(k + k′)d3kd3k′ (1.18)

=
K1

2

1

(2π)3

∫ [
ñ1(k)ñ1(−k)k2

1 + 2ñ1(k)k1ñ2(k)k2 + ñ2(k)ñ2(−k)k2
2

]
d3k. (1.19)

Because ñα(−k) = ñ∗α(k) and ñα(k)ñ∗α(k) = |ñα(k)|2 the final result may then be cast as

Fsplay =
K1

2

1

(2π)3

∫
(k1ñ1 + k2ñ2)2d3k (1.20)

using shorthand notation |ñα(k)| = ñα. Transforming the twist and bend contributions of

Eq. 1.11 into Fourier space as well leads to the complete Fourier transform of the Frank
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free energy which can be written as a discrete sum

F =
1

2

1

V

∑
k

K1(k1ñ1 + k2ñ2)2 +K2(k2ñ1 − k1ñ2)2 +K3k
2
3(ñ2

1 + ñ2
2). (1.21)

We can define a new coordinate system 1,2,3 where the global director is n̂0 = (0, 0, 1)T

and the wave vector k = (k1, 0, k3)T is chosen in the 1-3 plane [see Fig. 6], where the

transcript T denotes the transpose of the vector. Additionally, we choose the unit vectors

ê1 and ê2, with ê1 in the (k, n̂0) plane and ê2 normal to it. Hence, one obtains

k = k1ê1 + k3n̂0 (1.22)

and Eq. 1.21 can be rewritten as

F =
1

2

1

V

∑
k

2∑
α=1

[
|ñα(k)|2(K3k

2
3 +Kαk

2
1)
]
. (1.23)

Both degrees of freedom α = 1, 2 are completely decoupled. We have shown in Sec. 1.7

that the Frank free energy [see Eq. 1.8] describes the elastic deformation of n̂(r). From a

molecular point of view the deformation is achieved through the rotation of molecules [see

Fig. 5]. Here, ñ(k) is a measure of the local fluctuations of n̂(r) [see Eq. 1.10]. Again,

these deviations from n̂(r) are reflected by rotations of the molecules. Hence, ñ1(k) and

ñ2(k) represent orientational degrees of freedom and the energy equipartition theorem can

be applied. This leads to

〈
|ñ1(k)|2

〉
=

V kBT

K3k2
3 +K1k2

1

, (1.24)

〈
|ñ2(k)|2

〉
=

V kBT

K3k2
3 +K2k2

1

, (1.25)

where 〈. . .〉 is again the ensemble or time average and kB is the Boltzmann constant [37].

In order to obtain the elastic constants from molecular dynamics simulations it is

more convenient to consider fluctuations of the Fourier transform of the alignment tensor

Q(r) [see Eq. 1.3]. To rewrite Eqs. 1.24 and 1.25 in a tensorial form we use the relation

Qαβ =
1

2
S(3nαnβ − δαβ), (1.26)

where S is the nematic order parameter. With n̂0 pointing along the z-axis and δn̂ perpen-

dicular to it [see Fig. 6] the local director corresponds to n̂(r) = (δn1, δn2, 1)T . Inserting

n̂(r) into Eq. 1.26 results in Q13 = 3
2Sδn1 and Q23 = 3

2Sδn2. Therefore, considering

the Fourier transform of n̂(r), ñ(k) = (ñ1, ñ2, 1)T , one can rewrite Eqs. 1.24 and 1.25 as
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[38, 39] 〈∣∣∣Q̃13(k)
∣∣∣2〉 =

9
4S

2V kBT

K1k2
1 +K3k2

3,
(1.27)〈∣∣∣Q̃23(k)

∣∣∣2〉 =
9
4S

2V kBT

K2k2
1 +K3k2

3

, (1.28)

where Q̃(k) is the Fourier transform of the alignment tensor, defined as

Q̃(k) =

∫
V

Q(r) exp(ik · r)d3r. (1.29)

Equations 1.27 and 1.28 are valid and linear functions of k2
1 and k2

3 in the limit of low k

because the elastic constants are defined only for long-wavelength director fluctuations.

To extract the elastic constants from Eqs. 1.27 and 1.28 one may fit

E13(k2
1, k

2
3) ≡

9
4S

2V kBT〈∣∣∣Q̃13(k)
∣∣∣2〉 = K1k

2
1 +K3k

2
3, (1.30)

E23(k2
1, k

2
3) ≡

9
4S

2V kBT〈∣∣∣Q̃23(k)
∣∣∣2〉 = K2k

2
1 +K3k

2
3, (1.31)

to functions of k2
1 and k2

3. E13 and E23 vanish as V → ∞, hence values at the origin,

E13(0, 0) and E23(0, 0) should be set to zero and one should extrapolate to k → 0. Figure 15

in Sec. 5.2 shows plots used for the calculation of the Frank elastic constants K1, K2 and

K3. The elastic constants may then be applied to Eq. 1.8 [40–42].

1.9 Effects of flow on topological defects

The above discussion gives a general introduction into the field of liquid crystals. Addi-

tionally, we have introduced a selection of key concepts which are helpful to understand

the remainder of this work. Starting from these fundamentals we present the aims of this

work in the remaining two sections of this chapter.

Nematic liquid crystals are fluids characterized by a high degree of orientational

order along one common direction, the global director n̂0, and no long-range positional

order. One can imagine a colloidal particle dispersed in a nematic liquid-crystal host phase

has great effects on the physical properties of the host phase. This is due to the fact that

the colloid disturbs the orientational order of the nematic host phase. More specifically,

the alignment of liquid-crystal molecules on the colloidal surface is not everywhere in

agreement with the global orientational order along n̂0. These local discrepancies can be

measured by a local quantity such as the director field n̂(r). Due to the local distortions
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in the orientational order of the nematic liquid crystal defect topologies arise. To date, a

variety of defect topologies have been observed. The most common ones are the Boojum

defect, the Saturn ring defect and the hedgehog defect [43, 44]. However, the distortions

of the director field n̂(r) also cause long-range, anisotropic forces. These effective forces

can lead to interesting phenomena such as self-assembly of the colloids [45, 46] which can

be employed for photonic band-gap devices [47–49].

Modern microfluidic devices utilize flow to manipulate and control fluids and cargos

[50]. So far, the majority of microfluidic applications is based on isotropic liquids. A rel-

atively new and quickly emerging field is the investigation of anisotropic liquids, such as

nematic liquid crystals under microfluidic conditions. The field is at an early stage but has

promising future applications for instance in chemical synthesis, biological analysis, optics,

and information technology [51]. Because of their high tunability, nematic liquid crystals

have attracted considerable interest as a replacement for the isotropic liquid in microflu-

idics [52]. For instance, nematic liquid crystal flow can be driven by thermal expansion

[53] or by pressure [54]. Microflows of nematic liquid crystals can induce transitions in the

director field [55] or can even be utilized for guided transport of microscopic cargo such as

colloids [2]. Furthermore, flow of nematic liquid crystals can be manipulated with electric

fields [56] or mechanically with an optofluidic modulator [57].

We combine both fields and study in detail the effect of flow on defect topologies

arising around a colloidal particle dispersed in a nematic liquid crystal. So far scientific

attention on this matter has been rather scare and unsatisfactory from a theoretical per-

spective. The first step was undertaken by Billeter and Pelcovits [58]. They performed a

falling-ball experiment with the aid of molecular dynamics simulations. However, because

of the lack of powerful computers at the time, they were only able to show that high driv-

ing forces acting on a colloidal particle distort a Saturn ring defect topology. Stark and

Ventzki [59] showed with a comprehensive computational study that a hedgehog defect

moves upstream against the direction of flow. They also predicted that flow could turn

a hedgehog defect into a Saturn ring defect. Later Fukuda et al. [60] and Yoneya et al.

[61], with a related computational study, could not observe such a transition and found in

contrast that the hedgehog defect moves downstream along with the flow. Additionally,

Yoneya et al. [61] were able to show that a Saturn ring defect is pushed downstream,

escaping from the particle and finally shrinking to a hyperbolic hedgehog defect. Utilizing

again computational methods Araki and Tanaka [62] could reproduce the detachment of

the Saturn ring defect from the colloid along the direction of flow. Furthermore, they

reported a strong deformation of the Saturn ring defect when the flow direction is perpen-

dicular to the global director. With numerical simulations Zhou et al. [63] could show as

well that flow sweeps a hedgehog defect and a Saturn ring defect downstream. So far only

Khullar et al. [1] have performed experimental studies on the subject. They found that

defect structures around rising bubbles and droplets move downstream along the direction
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of flow. In addition, they also observed the transition from a Saturn ring defect into a

hedgehog defect due to flow. However, Gettelfinger et al. [64] recently reported molecu-

lar dynamics simulations showing that the Saturn ring defect around a solid nanoparticle

moves upstream, while the Saturn ring defect around a nanodroplet moves downstream.

Hence, there is still disagreement on the direction of motion of defect topologies around a

colloid with respect to the direction of flow.

In Chap. 5 we study with the aid of nonequilibrium molecular dynamics simulations

a nematic liquid crystal flowing around a colloidal particle. We pay particular attention

to the application of a suitable thermostat in a nonequilibrium state. It is of crucial im-

portance to remove viscous heat from the fluid without introducing artificial dynamical

states [65] in order to obtain reliable results. We employ a local Galilean-invariant ther-

mostat first proposed by Stoyanov and Groot [66] which uses a momentum-conserving

pairwise force to control the temperature. The thermostat is a flexible and robust method

for nonequilibrium molecular dynamics simulations of spatially inhomogeneous systems.

We find from our simulations that a Saturn defect around a homogeneous colloid is de-

formed and deflected downstream along with the direction of flow. Our results are in

agreement with experimental studies [1] and suggest that the earlier upstream shift of

this defect topology [64] might be an artifact caused by improperly thermostating the

nonequilibrium system. Additionally, we study colloids with a heterogeneous surface,

so-called Janus colloids, consisting of two different patches under flow conditions. Both

patches constrain the liquid-crystal molecules to different orientations with respect to the

colloidal surface. Experimental [67] and theoretical [68] studies report a variety of new

and interesting defect topologies for a Janus colloid dispersed in a nematic liquid crystal.

We present the first numerical study of these defect structures under flow conditions and

show that they can be modulated by flow as well.

Moreover, in Sec. 5.6 we present a more detailed take on ring shaped defects, such

as the Saturn ring defect, under hydrodynamic flow. The previously described quali-

tative observations are concluded by a detailed quantitative analysis. More specifically,

length, shape and flow-induced displacement of the defects are measured. To that end, we

demonstrate that a computation of these quantities is rather straightforward if suitable

projections of the defect loops with respect to the direction of flow are utilized. Previous

experimental [1] and theoretical [61] work observed the transition of a Saturn ring defect

into a hedgehog defect due to flow. From our nonequilibrium molecular dynamics simula-

tions we can estimate this transition quantitatively correlating the length of disclination

loops with dimensionless measures of flow. A particular important role in this regard plays

the range of the interaction potential between liquid-crystal molecules and colloid which

we study in detail in this work.
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1.10 Hydrodynamic cavitation of anisotropic fluids

Apart from the displacement and deformation of defect topologies cavitation is another

interesting flow-induced phenomenon. Cavitation is the nucleation of vapor gas bubbles

within a liquid. The phenomenon can be triggered by local heating above the boiling

temperature of the liquid or by physical processes that stretch the liquid abruptly below

its saturated vapor pressure [69]. Hence, the liquid is subject to tensile stresses. Above

a critical value, known as the breaking tension or cavitation threshold [70], cavitation

sets in. During the inception of cavitation the liquid is subject to negative pressure.

Consequently, this state is thermodynamically metastable [71] and a cavitation bubble

forms. The liquid can be driven out of thermodynamic equilibrium by acoustic waves

[72], hydrodynamic flows [54], laser induced heating [73] or simply pulling or stretching

the liquid under confinement [74]. The lifetime of the vapor bubble from the inception of

the cavitation to the implosion of the cavity depends on a range of parameters such as:

volume of dissolved gases in the liquid, presence of inclusions, roughness of solid surfaces

in contact with the liquid and the pre-existence of nucleation sites.

There exist numerous biomedical and biophysical processes where the inception of

a cavity plays a major role. The inception of cavitation is crucial for the performance of

mechanical heart valves [75] and necessary to understand how shrimp stun their prey [76],

to name a few examples. Furthermore, it is immediately clear from these two examples

that in some cases the physical and material parameters are tuned to avoid the inception

of cavitation, in others, reaching the cavitation threshold may be the desired goal.

In Sec. 5.9 we focus on the evolution of a cavitation bubble due to a large pressure

drop. This is referred to as “hydrodynamic cavitation” in the literature. Hydrodynamic

cavitation of de-ionized water in microchannels with a microorifice was extensively inves-

tigated by Mishra and Peles [77–79] for large Reynolds numbers. The authors focus on the

similarities and differences between cavitation at the macroscopic and microscopic scale.

Medrano et al. [80] investigated various microfluidic geometries with de-ionized water as

well as nanoparticles dispersed into the liquid. A cavitation bubble created through heat

in form of a laser pulse was studied by Zwaan et al. [81]. However, their main focus was

the dynamics of the bubble in a microfluidic system.

The phenomenon of cavitation has also been subject to a few computer simulation-

based studies. For instance, molecular dynamics simulations were employed to study

the nucleation of cavities in a homogeneous polymer under tensile strain [82] and within

polymers containing nanocomposites [83]. In a Lennard-Jones fluid, Baidakov et al. [84,

85] used molecular dynamics simulations to study the spontaneous inception of cavitation

under negative pressure. With the aid of Monte Carlo simulations Rasmussen et al. [86,

87] observed cavitation in homogeneous as well as heterogeneous pores with non-wetting

defects for a Lennard-Jones fluid. A non-wetting defect was introduced as a round spot
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on the pore wall which does not exert an attractive potential.

The research on cavitation in isotropic liquids is broad and comprehensive. However,

in the light of recent biological applications and discoveries, such as electrohydraulic [88]

and shock-wave lithotripsy [89], it is necessary to extend research efforts to anisotropic

liquids. We will focus on nematic liquid crystals, which constitute a special class of complex

non-Newtonian liquids. Studies on cavitation in liquid crystals are scare. Luckhurst [72]

studied the disruption of the orientational alignment at the onset of cavitation in a nematic

liquid crystal. However, in this study the cavitation was imposed by ultrasound. The only

other existing study on the matter focuses on phase transitions in liquid crystals under

negative pressure [90]. The cavity is induced by an isochoric cooling of small liquid crystal

droplets embedded in a glass forming material. However, any attempt to study flow-

induced cavitation in liquid crystals is still missing. This thesis is in part devoted to the

first-in-depth study of cavitation in a nematic liquid crystal.

In Sec. 5.9 we study with the aid of nonequilibrium molecular dynamics simulations

a nematic liquid crystal flowing around a cylindrical pillar. We are able to observe cav-

itation and establish its physical principles in anisotropic fluids such as a nematic liquid

crystal. Thus, we employ measurements of the local density, pressure and velocity to quan-

titatively capture the onset of cavitation. Moreover, we measure the size and evolution

of the cavitation bubble. Therefore, our nonequilibrium molecular dynamics simulations

quantitatively capture the transient and stationary dynamics, and thereby determine the

predictors of the phenomenon. On comparing the results with those in the corresponding

isotropic phase, we find that the flow speeds for cavitation inception of anisotropic fluids

can be less than half of that in isotropic fluids. Furthermore, the flow speed scales inversely

with the nematic order parameter.

Additionally, we study a wide range of flow speeds before the onset of cavitation.

Our nonequilibrium molecular dynamics simulations are able to reproduce the structural

changes within the microfluidic channel of earlier experimental studies [2] performed in a

similar geometry.
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2 Theoretical background

2.1 Flow of nematic liquid crystals

In the present work we focus on the flow of nematic liquid crystals. The flow regimes of a

nematic liquid crystal differ drastically from that of a conventional, isotropic fluid. There

is a mutual coupling between the flow direction, the director orientation and the viscosity.

In other words, the translation of the molecules is coupled with the orientational motion of

the molecules. Therefore, flow in a nematic liquid crystal can disturb the alignment of the

molecules along a common direction, the director n̂0. Furthermore, flow can be induced

in a nematic liquid crystal by reorienting the molecules with the aid of an external field.

However, it is possible to study most of the properties of a nematic liquid crystal treating it

as a continuous medium. We have already discussed continuum approaches for equilibrium

systems in Sec. 1.5 and 1.7. There exist also continuum theories to study liquid crystals

out of equilibrium. A complete continuum description for a nematic liquid crystal under

flow was given by Ericksen [91–95], Leslie [96, 97] and Parodi [98], which will be explained

further in the following section [30].

2.2 Ericksen-Leslie-Parodi theory

Hydrodynamic flow can be described by the Navier-Stokes equation. For a nematic liq-

uid crystal one has to take into account the coupling between the director field and the

hydrodynamic flow. This is achieved by the Ericksen-Leslie-Parodi theory, described by a

set of equations consisting of a generalization of the Navier-Stokes equations for the fluid

velocity v to uniaxial media and a dynamic equation for the director n̂. We will not derive

the Ericksen-Leslie equations, instead we will focus on the explanation of their meaning.

The Ericksen-Leslie equations, which have a basis in Frank elastic theory [see Sec. 1.7],

describe the nematodynamic problem via the equations

∇ · v = 0, (2.32)

ρ
∂v

∂t
+ ρ(v · ∇)v = −∇P +∇ · (σe + σv), (2.33)

0 = n̂× (he − hv), (2.34)

where Eq. 2.32 is the equation of continuity for an incompressible fluid. Equation 2.33

represents the generalized Navier-Stokes equation, where ρ is the density and P is the

hydrostatic pressure. The diffusive term can be formally written as a divergence of the

stress tensor η∇2v = ∇·σ. The stress tensor in Eq. 2.33 consists of an elastic and viscous
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term

σeij = − ∂fd
∂(∂ink)

∂jnk, (2.35)

σvij = α1ninjnknlAkl + α2njNi + α3niNj + α4Aij (2.36)

+ α5njnkAik + α6ninkAjk,

where fd denotes the Frank free energy density [see Eq. 1.8] and ni is a component of the

director. The elasticity of a nematic liquid crystal leads to an elastic contribution in the

stress tensor, represented by Eq. 2.35. If the director is perturbed elastic forces arise and

therefore hydrodynamic flow can be initiated by this perturbation. Equation 2.36 describes

the viscous part of the stress tensor where Aij = 1
2(∂ivj+∂jvi) is the symmetrized velocity

gradient and αi are the Leslie coefficients representing viscosities, which will be discussed

in more detail in the subsequent section. The Leslie coefficients are linked by Parodi’s

relation γ2 = α2 + α3 = α6 − α5. For a conventional isotropic fluid the stress tensor σ is

simply proportional to the symmetrized velocity gradientA. Hence, the conventional shear

viscosity equals to α4/2 in Eq. 2.36. The uniaxial symmetry in a nematic liquid crystal

leads to further terms proportional toA containing the director n̂. More specifically, terms

including α1, α5 and α6 contribute to the anisotropy of the viscosity. The remaining terms

in Eq. 2.36 including α2 and α3 include a second dynamic variable N depending on the

time derivative of n̂. These contributions represent flow due to the relative rotation of the

director field. Hence, both coefficients are coupled to the rotational viscosity γ1 = α3−α2

[see Sec. 2.3]. The vector

N =
dn̂

dt
− ω × n̂, (2.37)

describes the rate of change of the director n̂ relative to the fluid motion, where ω = 1
2∇×v

is the angular velocity.

Additional, approximation can be made to simplify Eq. 2.33. For Stokes flow, mean-

ing low Reynolds numbers R � 1 [see Sec. 2.5], advective inertial forces are small. Thus,

the convective term ρ(v ·∇)v can be neglected. Often another simplification, the so-called

adiabatic approximation, is applied. More specifically, the velocity field is taken to be sta-

tionary, that is ∂v/∂t = 0. This can be justified because the velocity field relaxes almost

instantaneously compared to the director field. Equation 2.33 may then be cast as

0 = −∇p+∇ · (σe + σv). (2.38)

Finally, Eq. 2.34 specifies that the total torque on the director, due to elastic distor-

tions and viscous processes, is zero. Because the director is a unit vector, that is n̂ · n̂ = 1,

only the normal component represents a thermodynamic force driving the director towards
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equilibrium. Elastic and and viscous forces may be expressed as

hei = ∂j
∂fd

∂(∂jni)
− ∂fd
∂ni

, (2.39)

hvi = γ1Ni + γ2Aijnj . (2.40)

Equation 2.39 describes the elastic force driving the director field towards equilibrium,

whereas Eq. 2.40 is an opposing force specifying the viscous contributions. The first term of

Eq. 2.40 defines a viscous force due to the rotation of neighboring molecules with different

angular velocities. The second term describes the torque performed on the director by a

shear flow. Since the reorientation of the director is a slow process on the molecular time

scale, an inertial term for the rotational motion of molecules is not included. In general,

the reorientation of the director can be viewed as a viscous process, where elastic energy

stored in the director field is dissipated [25, 30, 99].

2.3 Miȩsowicz viscosities

The anisotropy in the viscosity of a nematic liquid crystal can be described by three differ-

ent viscosity coefficients. Each coefficient describes one possible orientation of the director

n̂ with respect to the flow velocity v and the shear ∇v. Figure 7 shows a sketch of the

three fundamental geometries. The first experimental measurement of the three funda-

mental viscosities was performed by Miȩsowicz [100]. Thus, they are named Miȩsowicz

viscosities. In the experiment the director n̂ was fixed with a strong magnetic field and a

shear flow in the three different geometries was applied [see Fig. 7].

(a) (b) (c)

Figure 7: Graphical representation of the flow-director configurations corresponding to the
Miȩsowicz viscosities: (a) ηa (n̂ ⊥ v and n̂ ⊥ ∇v), (b) ηb (n̂ ‖ v and n̂ ⊥ ∇v),
(c) ηc (n̂ ⊥ v and n̂ ‖ ∇v).

In addition to the three Miȩsowicz viscosities nematic liquid crystals posses a fourth

viscosity, the rotational viscosity γ1. Whereas the three Miȩsowicz viscosities are defined in

the same fashion as a shear viscosity of an ordinary isotropic fluid, γ1 has no counterpart
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in isotropic fluids. The rotational viscosity γ1 describes the ratio between the viscous

torque on the director n̂ and the resulting angular velocity of the director rotation.

Within the framework of Ericksen-Leslie-Parodi theory we defined a viscous stress

tensor in the previous section [see Eq. 2.36]. The Leslie coefficients of the tensor describe

a general shear viscosity

η(ϑ, ϕ) = α1 sin2 ϑ cos2 ϑ cos2 ϕ+
1

2
(−α2 sin2 ϑ cos2 ϕ+ α3 cos2 ϑ (2.41)

+ α4 + α5 sin2 ϑ cos2 ϕ+ α6 cos2 ϑ),

where ϑ is the angle between n̂ and v, and ϕ is the angle between ∇v and the projection

of n̂ onto the plane perpendicular to v. By choosing the values of ϑ and ϕ in Eq. 2.41

according to the three different geometries [see Fig.7] one obtains the three Miȩsowicz

viscosities

ηa =
α4

2
, (2.42)

ηb =
α3 + α4 + α6

2
, (2.43)

ηc =
−α2 + α4 + α5

2
. (2.44)

As already stated above the rotational viscosity can be related to the Leslie coefficients

via γ1 = α3 − α2 [30, 52].

2.4 Effective viscosity

Apart from the viscosities according to Miȩsowicz, discussed in the previous Section, it

might be useful to find more general expressions in order to obtain an effective viscosity

directly from particle based simulations, like the molecular dynamics simulations studied

in this thesis. We consider a model system confined along the z-axis by two walls separated

by a distance sz. For a steady-state laminar flow the force along the direction of flow, here

the x-axis, may be written as [30]

− η∂P
∂x

= −∂
2vx(z)

∂z2
+

1

δ2
vx(z) = 0, (2.45)

where η is the effective viscosity, vx is the component of the velocity along the direction

of flow and δ has the dimensions of a length, characterizing the thickness of a boundary

layer near the confining walls. Apart from this boundary layer the fluid is assumed to flow

at a constant speed. The general solution of the differential equation 2.45 may be cast as

vx(z) = −δ
2

η

∂P

∂x
+ C1e

z/δ + C2e
−z/δ. (2.46)
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Applying the boundary conditions vx(z = ±sz) = 0 representing the two confining walls,

leads to a single constant C = C1 + C2. Where

C =
δ2

η

∂P

∂x

1

cosh(sz/2δ)
, (2.47)

and the complete solution of Eq. 2.45 is

vx(z) = −δ
2

η

∂P

∂x

(
1− cosh(z/δ)

cosh(sz/2δ)

)
. (2.48)

Equation 2.48 describes a plug flow. However, it can be shown that it also applies to

Poiseuille flow as a limiting case. In contrast to plug flow, Poiseuille flow is characterized

by a parabolic flow profile and does not posses a regime where the flow speed is constant.

Hence, δ diverges and δ � sz. Therefore, the linear term in Eq. 2.45 vanishes and the

complete solution of the differential equation, subject to the same boundary conditions,

may be cast as

vx(z) =
1

2η

∂P

∂x

[
z2 − s2

z

4

]
, (2.49)

exhibiting the typical parabolic profile. Eq. 2.49 clearly describes the variation of the

velocity component vx as a function of position z relative to the walls for Poiseuille flow.

The velocity at midpoint vx(0) is maximum and the velocities at the walls vx(±sz/2) = 0.

Note that by rewriting Eq. 2.48 as

vx(z) = −δ
2

η

∂P

∂x

1

cosh(sz/2δ)
[cosh(sz/2δ)− cosh(z/δ)], (2.50)

and expanding as Taylor series up to second order

vx(z) ' −δ
2

η

∂P

∂x

1

cosh(sz/2δ)︸ ︷︷ ︸
[
1 +

1

2!

s2
z

4δ2
− 1− 1

2!

z2

δ2
+O(

z4

δ4
)

]
. (2.51)

≈ 1

Eq. 2.51 can be easily transformed into Eq. 2.49 for δ � sz. Throughout this work we

only consider Poiseuille flow. Hence, we restrain ourselves to Eq. 2.49. Notice, Eq. 2.49

can also be obtained directly from the Navier-Stokes equation within the weak-flow limit.

Here we are interested in the flow of nematic liquid crystals. For this fluid a homoge-

neous density ρ̄ throughout the system can be assumed. Hence, Eq. 2.49 can be rewritten

in terms of the pressure gradient force Fe = −1
ρ̄
∂P
∂x as [101]

vx(z) = − ρ̄Fe
2η

[
z2 − s2

z

4

]
, (2.52)
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where Fe is the external driving force acting on the system. With a second-order symmetric

polynomial fit vx(z) = c2z
2 + c0 the effective viscosity can be computed from

η = − ρ̄Fe
2c2

, (2.53)

where c2 can be obtained from fits to the velocity profiles [see Fig. 16 in Sec. 5.2]. The

effective viscosity η, as well as the elastic constant K [see Sec. 1.8] are fundamental to

construct important dimensionless measures of flow.

2.5 Dimensionless measures of flow

In this Section we introduce common dimensionless quantities used throughout fluid dy-

namics. Dimensionless quantities are particularly useful in order to compare different

systems with each other. If two systems share the same description through a dimension-

less quantity they can be considered equivalent. We introduce the Reynolds number which

is widely used in fluid dynamics. Additionally, we discuss another common quantity in

fluid dynamics, the Euler number. Last, we consider the Ericksen number which is more

prevalent in the field of liquid crystals under flow.

Introduced by Stokes [102] and established by Reynolds [103] the Reynolds number

measures the ratio of inertial forces to viscous forces

R =
ρ̄v∞l

η
, (2.54)

where v∞ is the streaming velocity at steady state and l is the characteristic length of

the system. Some ambiguity exists as far as l is concerned. Throughout this work we

take l = sz, that is the distance between the substrates is the characteristic length scale

of the system. Here we are interested in a colloidal particle dispersed in a nematic liquid

crystal [see Sec. 3.4]. In general, one distinguishes between a particle-based and a flow-

based Reynolds number. The former takes l as the radius of the colloid whereas the latter

uses l as the distance between the substrates. The use throughout the literature is rather

inconsistent. However, we adopt the flow-based definition which is consisted with the

definition used in recent microfluidic experiments [54].

The Reynolds number characterizes different flow regimes. When inertial forces are

dominating the flowing fluid is subject to instabilities such as vortices. This regime is

referred to as turbulent flow and exhibits high Reynolds numbers R. The laminar flow

regime corresponding to low R is characterized by a smooth and constant flowing fluid.

A laminar flow is dominated by viscous forces. However, if the fluid exhibits very low

flow velocities and has a high viscosity the regime is referred to as creeping flow or Stokes

flow. For Stokes flow the Reynolds number R � 1. Liquid crystals, especially the nematic
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phase, are characterized by a high viscosity. Hence, the flows considered in this work

correspond to the laminar or even the Stokes flow regime.

In microfluidic experiments as well as in simulations another useful dimensionless

number is the so-called Euler number [104]

CE =
∆P

ρ̄v2
∞
, (2.55)

where ∆P is the pressure difference between the beginning and the end of the system.

The Euler number measures the ratio of force due to a local pressure gradient and the

kinetic energy per volume. The measured local pressure drop can be due to a restriction

in the simulation cell like a colloid or cylindrical pillar in this work. Therefore, the Euler

number measures the loss due to friction of the flow. For a perfect frictionless flow CE = 1.

Notice, that the Euler number is independent of the viscosity. Therefore, it is useful to

directly compare fluids with different viscosities. Additionally, the Euler number is closely

related to the cavitation number, which utilizes instead the difference between the pressure

within the simulation cell and the vapor pressure as ∆P . Thus, the Euler number can

characterize cavitating systems if the vapor pressure is not easily accessible.

Alignment effects due to flow [see Sec. 2.1] are in competition with alignment effects

from other sources, such as external fields or chemically prepared substrates [see Sec. 3.3].

This leads to a distortion of the director field if different alignments scenarios are imposed.

The Ericksen number is a useful measure of the deformation of the director field under

flow. We define the Ericksen number [105] as

E =
ηv∞l

K
. (2.56)

In the momentum balance of the Navier-Stokes equation E measures the ratio of viscous

forces (ηv∞/l
2) to elastic forces (K/l3). Thus, the deformation of the director field can

be either dominated by elastic forces (E � 1) or viscous forces (E � 1). In other words,

for small E the director field is not affected by the flow, whereas for large E the flow

determines the shape of the director field. Throughout this work we are mainly interested

in systems exhibiting high Ericksen numbers E . It is evident from Eqs. 2.54 and 2.56 that

the Reynolds number and Ericksen number a related via

R =
ρ̄K

η2
E . (2.57)

For liquid crystals one typically finds R ≈ 10−4E [52].
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2.6 Colloidal particles

The term “colloid” from the Greek “kollan” for glue, a protein rich colloidal dispersion,

was first used by Graham in 1861 [106]. Colloids play an central role in many natural

phenomena, such as shear thickening [107] and Brownian motion [108]. Thus, colloidal

dispersions have been the subject of research early on without considering them explicitly

in the framework of “colloidal science”. Ostwald established the term and along with

Buzagh and Hauser was one of the driving forces establishing colloidal science as an inde-

pendent research field [109, 110].

Generally speaking a colloidal dispersion is a phase that is microscopically dispersed

in a host phase. Particle sizes of colloidal dispersions can range from several nanometers

up to microns. Hence, many colloidal dispersions can be visualized by a simple optical

microscope. Therefore, colloidal science experienced its renaissance with the development

and availability of optical microscopes. Even today, in many cases research on colloidal dis-

persions does not necessarily require advanced and expensive setups. However, at smaller

length scales more sophisticated microscopy techniques are required and often they have

to be used simultaneously in order to guarantee reliable results [111]. Therefore, molecular

computer simulations operating at this length scale are an important and inexpensive tool

for researchers.

Colloidal dispersions are indispensable in our everyday life. We encounter them on

numerous occasions. They are present in many products, such as food, or in biological

systems, like in our body in the shape of blood. Colloidal dispersions can be distinguished

according to their host phase, which can be gaseous, liquid or solid. But also the colloidal

particle itself can differ in terms of its state of aggregation. In general, one differentiates

between foams, where gas bubbles are dispersed in a liquid host phase, emulsions, con-

taining liquid droplets in a liquid host phase, and sols, with solid particles dispersed in

the liquid host phase. Common examples are shaving cream (foam), milk (emulsion) and

blood (sol). Thus, the research field of colloidal dispersions is very broad and diverse.

Here, we are going to focus on a nematic liquid crystal as a host phase.

2.7 Physics and chemistry of colloidal particles

Colloids dispersed in a nematic liquid-crystal carrier fluid show a variety of periodic self-

assembled structures. These structures can be highly symmetric, like linear chains of

colloids [45]. This leads to novel photonic band-gap devices [112]. It is therefore important

to study the properties of such a dispersion not only experimentally but also from a

theoretical point of view. As explained in Sec. 1.3 a nematic liquid crystal is characterized

by an orientational order along the director n̂0. As one can imagine a dispersed colloidal

particle affects the director field drastically. The colloid distorts the nematic order leading
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to long-range anisotropic forces. This is caused by the alignment of the liquid-crystal

molecules on the curved surface of the colloid. More specifically, this leads to a deviation

between the far-field director n̂0 and the director field n̂(r) close to the colloidal surface.

Hence, interesting topological defects around the colloid arise.

Furthermore, the presence of a colloidal particle increases the elastic free energy

of the liquid-crystal host phase because of the perturbation of the director field n̂(r).

However, dispersing multiple colloids in a nematic liquid crystal can lead to interesting

behavior. The elastic distortion of the nematic host induces long-ranged interactions

between colloids. Therefore, colloids align for example as chains [45] in order to minimize

the elastic free energy of the nematic liquid crystal. The possibility of a liquid-crystal host

phase to arrange dispersed colloids into regular geometric patterns has also been applied

to arrange defect structures into an array [113].

2.8 Defect structures near a homogeneous colloid

Figure 8 shows a two-dimensional representation of the most common defect topologies

arising around a homogeneous colloidal particle dispersed in a nematic liquid crystal. One

can imagine the director field depends crucially on how in particular the elongated linear

liquid-crystal molecules align with the surface of the colloid. This leads to different de-

fect topologies. The two extreme cases would be either that all molecules align planar or

perpendicular with respect to the colloid’s surface. Here we refer to these two cases as

planar or perpendicular anchoring, respectively. Anchoring refers to an energetic discrim-

ination of one or more orientations of the molecule at the surface of the colloid and will

be explained in more detail in Sec. 3.4.

(a) (b) (c) (d)

Figure 8: Graphical two-dimensional representation of different types of defect topologies
that arise around a homogeneous colloid in a nematic liquid crystal: (a) Boojum
defect, (b) Saturn ring for weak anchoring, (c) Saturn ring for strong anchoring
and (d) hedgehog defect. Dashes represent the local director n̂(r) and the
defect topologies are represented by black dots (point defects) and black lines
(disclinations).
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For a homogeneous colloid exhibiting planar anchoring the director field is only

distorted on the north and south pole of the colloid with respect to the director n̂0. This

is referred to as the Boojum defect topology [see Fig. 8 (a)]. A homogeneous colloid with

perpendicular anchoring distorts the director field near the equator of the colloid. This

leads to the Saturn ring defect located around the equator of the colloid [see Fig. 8 (b) and

(c)]. However, the exact location of the ring defect depends on the anchoring strength.

For stronger anchoring the director field is perturbed in a much larger area. Hence, the

competition between anchoring and director field arises further away from the colloidal

particle. Therefore, stronger anchoring leads to a Saturn ring defect slightly away from

the colloidal surface [see Fig. 8 (c)]. For weaker anchoring the Saturn ring defect emerges

very close the surface of the colloid [see Fig. 8 (b)].

Figure 8 (d) shows the so-called hedgehog defect. This type of defect is commonly

observed in experimental studies for a homogeneous colloid with perpendicular anchoring.

However, the hedgehog defect topology is only energetically favored for larger colloidal

particles [25]. Therefore, in computer simulations, operating at the nanometer scale, it is

rather difficult to obtain this defect topology. So far, a hedgehog defect has been observed

in a computer simulation solely with ad hoc initial conditions [114]. Thus, this observed

hedgehog defect very likely corresponds to a metastable state of the system.

2.9 Janus colloids

A colloidal particle can also be heterogeneous in size, shape or chemical functionality.

One can imagine a large variety of these anisotropic particles. Here we are going to focus

on surface-heterogeneous particles exhibiting multiple surface functionalities. However,

often they possess an isotropic core. These particles are commonly referred to as patchy

particles [115]. They can exhibit multiple patches of different size and shape. Patches

can differ in electrical, chemical and/or physical properties. The most simple case would

be a colloidal particle consisting of only two different patches. In 1988 Casagrande and

Veyssié [116] synthesized particles with a hydrophilic and a hydrophobic patch. They

were named Janus colloids after the Roman god of beginnings and transitions. This is

due to the fact that their spherical symmetry is broken and the colloid is divided into

two hemispheres. Both patches are of chemically different nature and therefore their

physical properties are different as well. For example the patches can exhibit different

magnetic properties leading to interesting self-assembled structures [117]. Here we consider

patches with different anchoring of the liquid-crystal molecules. More specifically, one

patch enforces perpendicular anchoring whereas the other one constrains molecules to

anchor planar with respect to the surface of the colloid.

Nowadays, Janus colloids of different size and patchiness are accessible with so-

phisticated synthesis methods. It is even possible to manufacture Janus colloids on the
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nanometer length-scale with an interface width of just a few nanometers between the

different patches [118]. This is comparable to the length scale accessible to computer

simulations. Experimental as well as theoretical studies of a Janus colloid dispersed in a

nematic liquid crystal have led to a variety of new defect topologies [67, 68].

2.10 Defect structures near a Janus colloid

A Janus colloid with the equator perpendicular to the director field can create quite

interesting defect topologies. Specifically, we consider the case where the upper hemisphere

exhibits planar anchoring whereas the lower hemisphere is dominated by perpendicular

anchoring. Figure 9 shows a two-dimensional representation of common defect structures

for this configuration. The defect topologies arising around a Janus colloid dispersed in

a nematic liquid crystal strongly depend on the ratio between the two different patches

and thermodynamic variables such as temperature. One possible defect topology is a

Boojum ring, where the perturbation of the director field is largest on the upper hemisphere

[see Fig. 9 (a)]. Upon lowering the temperature the so-called crown topology arises [see

Fig. 9 (b)]. Here the Boojum defect widens to a ring looking like a crown. For both defect

topologies a second defect structure comparable to the surface ring is visible around the

equator of the colloid. Figure 9 (c) shows the so-called cap configuration. This defect

topology is observed for stronger planar anchoring on the upper hemisphere and a patch

ratio in favor of the lower hemisphere with perpendicular anchoring. The point defect on

the upper hemisphere coincides with the Saturn ring defect around the equator creating

a cap shaped defect topology. When lowering the temperature the defect changes to an

off-center Saturn ring [see Fig. 9 (d)]. The off-center position is due to the fact that the

surface area of the upper hemisphere is much smaller than the one of the lower hemisphere

[68].

(a) (b) (c) (d)

Figure 9: Graphical two dimensional representation of different types of defect topologies
that arise around a Janus colloid in a nematic liquid crystal: (a) Boojum ring, (b)
crown configuration, (c) cap configuration and (d) off-center Saturn ring. Dashes
represent the local director n̂(r) and the defect topologies are represented by
black dots (point defects) and black lines (disclinations).
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3.1 Potential models

Our model system consists of a liquid crystal composed of N molecules. The system is

confined by two atomically resolved substrates at which the liquid-crystal molecules are

anchored in a specific way. This ensures that the far-field nematic director n̂0 remains fixed

along a desired direction during the course of a simulation. The remaining two directions

are subject to the usual periodic boundary conditions. Thus, the system is treated like

it is surrounded by an infinite periodic lattice of identical systems. As molecules move in

the original system during the simulation, their periodic images move exactly the same

way. When molecules leave the original simulation box from one side one of their images

will enter the box through the opposite site. Additionally, the so-called minimum image

convention has to be applied to avoid that molecules interact with its own periodic image

[119].

This setup can be seen as a microfluidic channel similar to those used in experimental

studies, where the width of the channel is much larger than its depth [54]. Here we are

interested in two different, yet closely related systems. Firstly, we study a system where

a colloidal particle is dispersed in the nematic liquid crystal. Secondly, we are interested

in a system where a cylindrical pillar connects the two substrates. For both systems the

immersed object is fixed in space and treated via a soft potential including an excluded

volume. Thus the total configurational potential energy of our system can be split into

three contributions according to

Φ = Φff + Φfs + Φfc, (3.58)

where the indices refer to the fluid-fluid (ff) interactions of the liquid-crystal molecules, the

interaction between the fluid and the substrate (fs) and the fluid-colloid or fluid-cylinder

interactions (fc). These different energetic contributions will be discussed in the following

Sections.

3.2 Liquid crystal

To mimic the interaction between the liquid-crystal molecule we employ a potential model

first introduced by Hess and Su [120]. Its simplicity makes it well suited for computer sim-

ulations and it has been successfully used to study and characterize liquid-crystal phases

[121–126]. In contrast, the well established Gay-Berne potential [127] is computational

rather expensive because of the elongated shape of the molecules. For the Hess-Su model

the anisotropy of the molecules stems from the interaction rather then its elongated shape
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[see Fig. 10]. Assuming pairwise additive interactions in the liquid-crystal fluid

Φff =
N−1∑
i=1

N∑
j>i

ϕff (rij , ûi, ûj) , (3.59)

where the distance vector rij = ri − rj between the centers of mass of molecules i and j

located at ri and rj , respectively. The interaction potential ϕff is split into an isotropic

and an anisotropic contribution according to

ϕff (rij , ûi, ûj) = ϕiso (rij) + ϕanis (rij , ûi, ûj) . (3.60)

In Eqs. (3.59) and (3.60) rij = |rij |, ûi and ûj are versors (unit vectors) specifying

the orientations of molecules i and j in a space-fixed frame of reference. We take the

isotropic part of the fluid-fluid interaction potential to be given by the Lennard-Jones

potential function

ϕiso (rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (3.61)

where ε is the depth of the attractive well and σ is the van der Waals radius of a spherical

reference molecule. To derive an expression for the anisotropic contribution we follow

Giura and Schoen [128]. We write

ϕanis (rij , ûi, ûj) = −4ε

(
σ

rij

)6

Ψ (r̂ij , ûi, ûj) , (3.62)

where the anisotropy function is given by

Ψ (r̂ij , ûi, ûj) = 5ε1P2 (ûi · ûj) + 5ε2 [P2(ûi · r̂ij) + P2(ûj · r̂ij)] , (3.63)

and P2 (x) ≡ 1
2

(
3x2 − 1

)
is the second Legendre polynomial, r̂ij = rij/rij , and ε1 and ε2

are (dimensionless) anisotropy parameters. We take 2ε1 = −ε2 = 0.08 throughout this

work. The molecules can be described as ellipsoids of revolution with an aspect ratio of

1.26 [see Fig. 10].

The first summand on the right side of Eq. 3.63 corresponds to the well-known Maier-

Saupe term [23]; the other two are corrections describing the orientational dependence of

ϕanis with increased sophistication. Thus, neglecting the corrections one ends up with the

well known Maier-Saupe model [129]. As discussed by Giura and Schoen [128] the specific

form of the anisotropy function Ψ is obtained by expanding the anisotropic dispersion

attractions in the basis of rotational invariants. The authors assumed solely dispersion

interactions, invariance of ϕanis upon interchanging molecules i and j, and head-tail sym-

metry of the molecules, that is ûi = −ûi. With the aid of these symmetry considerations

it is relatively straightforward, but rather long, to derive Eq. 3.63 if one keeps only the
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four leading terms in the expansion.
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Figure 10: Equipotential energy contour plot for the Hess-Su potential. The plot is gen-
erated by moving a molecule, with a fixed orientation, in the x-y-plane around
another molecule which is fixed in space and orientation.

3.3 Atomically resolved substrate

The potential model described in the previous section is capable of forming a nematic phase

for a suitably chosen thermodynamic state. In the bulk, the far field nematic director n̂0

can point in any direction. Additionally, during the course of a simulation the direction of

n̂0 is subject to change. Hence, it is impossible to predict the direction of n̂0 beforehand.

Obviously, this situation is not desirable both experimentally and theoretically where one

would like to control n̂0. Furthermore, the flow of nematic liquid crystals is coupled to

the director orientation [see Sec. 2.1]. Therefore, fixing the alignment of the molecules

simplifies the task for most problems. One possible route to achieve control over n̂0 is the

use of specially prepared solid substrates. More specifically, liquid-crystal molecules anchor

in the desired way on the substrates imposing a preferred direction on n̂0. Experimentally,

this can be achieved either by mechanical means (e.g., rubbing or polishing), deposition

of chemical substances on the pristine substrate, or external fields such as, for example,

UV [130] or laser light [131] or by exposing the liquid crystal to flow [132].

A planar smooth substrate is perfectly capable of of controlling the global director

n̂0 and has been used throughout the literature. However, here we are interested in

nonequilibrium molecular dynamics simulations of liquid crystals. We apply a Poiseuille

flow [see Sec. 2.4] to drive the system out of equilibrium. In order to achieve this one

needs structured surfaces, such as atomically resolved substrates, to create the necessary

friction close to a substrate. However, atomically resolved substrates are not only needed

to create a parabolic Poiseuille flow. To obtain a steady state during the course of a
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simulation a certain amount of friction is needed to balance the force driving the system is

needed as well. Reaching a steady state is crucial for obtaining reasonable time averages

of the physical quantities of interest.

In our model we express the fluid-substrate interaction as

Φfs =
N∑
i=1

2N ′∑
j=1

ϕfs(r
′
ij , ûi), (3.64)

assuming that each solid substrate consists of a monolayer of N ′ atoms. The substrate

atoms are located at positions S = {s1, s2, . . . , s2N ′}, r′ij =| ri − sj |, and

ϕfs(r
′
ij , ûi) = 4ε

( σ

r′ij

)12

−

(
σ

r′ij

)6

gs(ûi)

 . (3.65)

The atoms in each substrate form a monolayer in registry with each other using the (100)

face of a face-centered cubic (fcc) lattice. The fcc (100) structure is characterized by a

lattice constant L/σ = 3
√

4 such that the areal density of the solid monolayers corresponds

to ρs = 2/L2. In Eq. 3.65, 0 ≤ gs(ûi) ≤ 1 is the so-called anchoring function, a math-

ematical device mimicking the specially prepared substrates from experimental systems.

More specifically, gs(ûi) distinguishes energetically between desirable and undesirable ori-

entations of a molecule relative to the substrate plane. In this work we consider planar

anchoring along the x-axis and homeotropic anchoring along the z-axis. First, if

gs(ûi) = gx(ûi) = [ûi · êx]2, (3.66)

where êx is the unit vector (versor) of the x-axis, one realizes that the attractive inter-

action between a molecule and a substrate atom is switched off if ûi ⊥ êx whereas it is

fully switched on if ûi ‖ êx. Hence, alignment of the molecules along the x-axis is favored.

Second, to realize alignment of the molecules along the z-axis we take

gs(ûi) = gz(ûi) = [ûi · êz]2, (3.67)

where êz is the unit vector (versor) of the z-axis, leading to homeotropic anchoring.

3.4 Colloidal particle

A great part of this work considers a system where a spherical colloid is immersed in the

host phase and placed at the center of the simulation cell, halfway between both solid

substrates. Its position coincides with the origin of a space-fixed Cartesian coordinate

system. Experimentally, one could use optical tweezers to fix the colloid in space even
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though the host phase will eventually flow past it [44, 133]. The distance between both

substrates is chosen wide enough so that only the fluid-colloid interactions have to be

accounted for. Hence,

Φfc =
N∑
i=1

ϕfc(ri, ûi; r0), (3.68)

where r0 is the hard-core radius of the colloidal particle. The fluid-colloid interaction

is expressed via an attractive Yukawa-like potential function and an inverse power law

repulsion

ϕfc(ri, ûi; r0) = ε

[
a1

(
σ

ri − r0

)10

− a2
exp[−λ(ri − r0)]

ri − r0
gc(r̂i, ûi)

]
, (3.69)

where ri = |ri| and r̂i = ri/ri. Because the colloid is fixed at the origin the term ri − r0

represents the distance of a molecule i from the colloidal surface. In Eq. 3.69 λ repre-

sents the inverse Debye screening length of the attractive fluid-colloid interactions. The

dimensionless parameters

a1 =
1 + λσ

9− λσ
, (3.70)

a2 =
10 exp(λσ)

9− λσ
(3.71)

have been introduced such that the depth of the attractive well remains constant at ε and

stays at a distance r0 + σ from the center of the colloid irrespective of the value of λ [see

Fig. 11]. However, some caution is advisable in choosing the value of λ. For one, it is

evident from Eqs. 3.70 and 3.71 that λσ < 9. In practice, it turns out that for λσ & 7

the potential function ϕfc develops a repulsive tail located at ri − r0 > σ. Additionally,

for λ = 0 the attractive tail corresponds to a Coulomb potential between unlike charges.

Hence, fluid-colloid interactions are very long ranged and one would have to apply Ewald

summation techniques to account for the interaction properly [119].

Molecules in the immediate vicinity of the colloid are also subject to a variety of

anchoring scenarios, again realized with an anchoring function gc(r̂i, ûi) [see Eq. 3.69].

First, we will consider colloids with a chemically homogeneous surface [see Sec. 2.7]. Here

we study three different kinds of anchoring: (i) nonspecific, gc(r̂i, ûi) = 1, (ii) planar,

that is, molecules are preferably planar to the colloids surface

gc(r̂i, ûi) = g‖(r̂i, ûi) = [1− |ûi · r̂i|]2, (3.72)

and (iii) perpendicular anchoring, where molecules anchor perpendicularly with respect

to the colloidal surface

gc(r̂i, ûi) = g⊥(r̂i, ûi) = [ûi · r̂i]2. (3.73)
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Figure 11: Plot of the fluid-colloid interaction potential ϕfc (in units of ε) as a function of
a molecule’s distance r (in units of σ) from the center of the colloidal particle
located at the origin of the coordinate system. For both plots r0 = 3σ and
λσ = 0.20 ( ) and λσ = 4.00 ( ). Both plots have been generated for
gc(r̂i, ûi) = 1.00 [see Eq. (3.69)]. For this special choice of gc depends only on
ri − r0.

For nonspecific anchoring a molecule is not energetically penalized for any given orienta-

tion, whereas for homeotropic and planar anchoring molecules receive an energy penalty

if they are oriented differently than the desired anchoring.

Second, a Janus colloid [see Sec. 2.9] can be modeled in a very similar fashion. We

introduce two different patches that anchor molecules either planar or perpendicularly to

the surface. In order to achieve this we modify the anchoring function in Eq. 3.69 such as

gc(r̂i, ûi) = ω‖g‖(r̂i, ûi) + αω⊥g⊥(r̂i, ûi), (3.74)

where the same functions for planar and perpendicular anchoring are used as in Eqs. 3.72

and 3.73 and the dimensionless parameter α is introduced to weaken the perpendicular

anchoring. This is due to the fact that perpendicular anchoring of linear molecules is en-

ergetically favored on surfaces even without a specified anchoring function. The anchoring

function in Eq. 3.74 is weighted according to

ω‖(r̂i) = 1− γ‖(1− r̂i · êx)δ, (3.75)

ω⊥(r̂i) = 1− γ⊥(1 + r̂i · êx)2, (3.76)
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where γ‖ ≤ 2−δ and γ⊥ ≤ 0.25 in order to get a meaningful weighting function. Both

parameters account for the smoothness of the transition between the patches and δ yields

the ratio of the patch sizes. The unit vector êx is perpendicular to the plane of the

equator of the colloid. Hence, r̂i · êx = +1(−1) defines the north (south) pole of the

colloid. The weighting function ω‖(r̂i) is maximal at the north pole of the colloid, whereas

ω⊥(r̂i) is opposite and has its largest value at the south pole of the colloid. Notice, that

upon changing the sign of the unit vector êx one is able to switch the different patches.

Figure 12 shows heat maps of the model potential used here to mimic a Janus colloid.

It shows nicely that a different anchoring is energetically favored on each patch of the

colloid. Hence, the potential is most attractive when the alignment of a molecule matches

the preferred anchoring of the particular patch. For misalignment the potential energy

between the colloid and the molecule is much weaker. Notice the rather smooth transition

between patches ensuring numerical stability [68].
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Figure 12: Equipotential energy contour plots for the fluid-colloid potential. Plots are
generated by moving a molecule, with a fixed orientation, in the x-y-plane
around the colloid which is fixed in space. The orientation was kept fixed (a)
perpendicular and (b) planar with respect to the surface of the colloid.

3.5 Cylindrical pillar

We are also interested in a system containing a cylindrical pillar with a chemically ho-

mogeneous surface. The long axis of the cylinder is placed perpendicular to the solid

substrates and the cylindrical pillar spans the entire distance between the two substrates

along the z-axis. Experimentally, this can be compared to a setup where the cylindrical

pillar is part of the cast prepared using soft lithography [2]. It is common practice in a

computer simulation to place the cylindrical pillar, like the colloid in the previous section,

at a fixed position at the center of the simulation box and apply periodic boundary condi-

tions. We investigate a cavity with a growing volume upon increasing flow. The cavity is

growing along the direction of flow, the x-axis [see Sec. 4.7]. Hence, the cylindrical pillar
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is positioned slightly upstream of the midpoint of the simulation cell with respect to the

x-axis. This assures that the cavity is not interfering with its nearest image. Additionally,

smaller system sizes become accessible demanding less computational power.

Again, we neglect interactions between the cylinder and the substrate. Thus, Eq. 3.68

is still valid. However, the fluid-cylinder interactions are treated slightly differently. We

adopt a modified Lennard-Jones potential function

ϕfc(ri, ûi; r0) = ε

[(
σ

ri − r0

)12

−
(

σ

ri − r0

)6

gc(r̂i, ûi)

]
. (3.77)

The term ri−r0 now represents the distance to the cylinder’s surface. Notice that because

of the cylindrical symmetry the fluid-cylinder distance can be simply calculated in the x-y-

plane. Molecules close to the cylindrical surface exhibit a preferential anchoring due to the

chemical nature of the cylindrical pillar. In Eq. 3.77 we use again the anchoring function

gc(r̂i, ûi) to control the alignment of the molecules with respect to the surface. In principle

one can use the same expressions as for the homogeneous colloid [see Eqs. 3.72 and 3.73].

However, in this part of the work we restrict ourselves to the case of homeotropic anchoring

represented by Eq. 3.73.
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4 Computational details

4.1 Molecular dynamics simulation

In this chapter we will describe the techniques employed in our molecular dynamics simula-

tions. The heart of every molecular dynamics simulation is solving the classical equations

of motion for a system containing N molecules interacting via a potential as in Eq. 3.59.

The temporal evolution of molecules is described by Hamilton’s equations [134]. For sim-

ple cases, such as classical molecular dynamics, Hamilton’s equations simplify to Newton’s

second law of motion

Fi = mir̈i, (4.78)

where Fi is the force acting on molecule i and mi its mass.

Along with the initial conditions, such as molecular positions and velocities, Eq. 4.78

can be solved numerically, with the aid of a computer, leading to a unique solution.

Differential equations such as Eq. 4.78 can be solved by discretizing them in time t. To

that end, we consider a Taylor expansion of the positions ri of molecule i at time t + δt

around t

ri(t+ δt) = ri(t) + δtvi(t) +
1

2
δt2ai(t) +O(δt3), (4.79)

where O(δt3) stands for cubic or higher order terms in δt [119].

A variety of numerical algorithms have been devised to solve this problem. One of

the most efficient and widely used approaches is the velocity Verlet algorithm, which we

will describe in full detail in the next section.

4.2 Velocity Verlet algorithm

The standard Verlet algorithm [135] is widely used to solve directly Newton’s equation.

The algorithm is based on the positions ri(t), the accelerations ai(t) and the positions

ri(t− δt) at the previous time step of molecule i leading to

ri(t+ δt) = 2ri(t)− ri(t− δt) + δt2ai(t). (4.80)

This equation describes the advancing positions of each molecule. The velocities have been

eliminated through the summation of the Taylor expansions for ri(t + δt) and ri(t − δt)
about ri(t)

ri(t+ δt) = ri(t) + δtvi(t) +
1

2
δt2ai(t) +O(δt3), (4.81)

ri(t− δt) = ri(t)− δtvi(t) +
1

2
δt2ai(t)−O(δt3).
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Although velocities are not needed to calculate the trajectories, we might need them to

calculate quantities such as the total energy, diffusion or viscosity of the system. The

velocities can be obtained from the following equation

vi(t) =
ri(t+ δt)− ri(t− δt)

2δt
. (4.82)

The main problem with the standard Verlet algorithm is that the velocities can only be

calculated once ri(t + δt) is known. Therefore, positions, velocities and accelerations are

not accessible at the same time t which makes this algorithm difficult to implement in

nonequilibrium molecular dynamics simulations. A modification of the Verlet algorithm

that is capable of handling positions, velocities and accelerations at the same time t is the

so called velocity Verlet algorithm.

The velocity Verlet algorithm is symplectic, meaning that it corresponds to a canon-

ical transformation of the equations of motion, and conserves phase space because of

Liouville’s theorem. The velocity Verlet algorithm takes the form

ri(t+ δt) = ri(t) + δtvi(t) +
1

2
δt2ai(t), (4.83)

vi(t+ δt) = vi(t) +
1

2
δt[ai(t) + ai(t+ δt)]. (4.84)

The standard Verlet algorithm may be recovered by eliminating the velocities. The velocity

Verlet algorithm evolves in two stages. First, the new positions at time t+δt are calculated

according to Eq. 4.83 and the velocities at mid-step are calculated via

vi(t+
1

2
δt) = vi(t) +

1

2
δtai(t). (4.85)

Second, the forces are computed at time t+ δt and the velocity move is completed

vi(t+ δt) = vi(t+
1

2
δt) +

1

2
δai(t+ δt). (4.86)

At this point kinetic and potential energy are available at t+ δt [119, 136].

4.3 Dynamics of linear molecules

Liquid crystals consist of non-spherical, anisometric molecules. Hence, it is important to

consider the rotational dynamics in the molecular dynamics simulations. Here we discuss

the formulation of the velocity Verlet algorithm proposed by Ilnystkyi and Wilson [137].

There exists variations [138] and other approaches, for example for polyatomic systems

one could consider the widely used SHAKE algorithm [139].

It is a common approach to divide molecular motion into a translational and rota-
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tional part. The translation of the molecules was covered by the previous section. The

equation governing rotational dynamics is

dLi
dt

= τi, (4.87)

where Li is the angular momentum of molecule i and τi is its torque given by

τi ≡ d× Fi, (4.88)

where d is the position vector relative to the center of rotation, namely the center of mass

of a molecule. The torque can be thought of as a measure of the turning force acting on

a molecule.

The equations of motion for the rotation of a molecule may be derived from Hamil-

ton’s equations

˙̂ui = ωi × ûi, (4.89)

ω̇i =
τi
I
, (4.90)

where ωi is the angular velocity of molecule i and I is the moment of inertia. For linear

molecule τi is always perpendicular to ûi, hence it is convenient to define a new vector gi

through the equation

τi = ûi × gi = ûi × g⊥i , (4.91)

where gi ≡ −∇ûi
U is the so-called “gorque”, and g⊥i = gi−(gi ·ûi)ûi. Because the angular

velocity must always be perpendicular to the molecular axis, ωi · ûi = 0, it is convenient to

replace the angular velocity ωi with the orientational velocity ei. The equations of motion

can be rewritten as two first-order differential equations

˙̂ui = ei, (4.92)

ėi =
g⊥i
I

+ λiûi, (4.93)

where λi is a Lagrange multiplier. Equations 4.92 and 4.93 can be solved numerically with

a velocity Verlet algorithm, introduced in the previous section. Again, the calculation

evolves in two steps. First, the orientational velocities at mid-step are calculated via

ei(t+
1

2
δt) = ei(t) +

1

2
δt[g⊥i (t) + λ′iûi(t)]. (4.94)

Second, the orientations

ûi(t+ δt) = ûi(t) + δtei(t+ δt) (4.95)

are calculated at time t + δt, the gorque g⊥i (t + δt) is evaluated and the orientational
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velocity move is completed

ei(t+ δt) = ei(t+
1

2
δt) +

1

2
δt[g⊥i (t+ δt)− λ′′i ûi(t+ δt)]. (4.96)

The Lagrange multipliers λ′i and λ′′i in Eqs. 4.94 and 4.96 are obtained solving the con-

straints [ûi(t+ δt)]2 = 1 and [ei(t+ δt) · ri(t+ δt)] = 0, respectively [119, 137].

4.4 Global Nosé-Hoover thermostat

Solving Newton’s equations leads to phase space trajectories corresponding to the mi-

crocanonical ensemble, where the number of molecules N , volume V and energy E are

conserved. To perform simulations under constant temperature T a thermostat must be

implemented. There are several different methods to achieve constant T in a molecular

dynamics simulation. A very popular approach was first proposed by Nosé [140, 141]. Here

the system is in contact with a thermal reservoir which is included through an additional

degree of freedom s. Energy is allowed to flow back and forth from the system to the

reservoir. The approach is based on an extended Lagrangian formalism, which contains

additional, fictitious coordinates and velocities. The Lagrangian of the system is

Ls = K +Ks − V − Vs (4.97)

=

n∑
i=1

mi

2
s2ṙ2

i +
Q

2
ṡ2 − V − (f + 1)kBT ln(s),

where K and V denote kinetic and potential energy, f is the number of degrees of freedom

(3N − 3 for fixed total momentum) and Q is the thermal inertia parameter or an effective

mass which controls the rate of temperature fluctuations. In other words, a friction force

is added to the system to control the temperature.

The equations of motion follow as

r̈ =
F

ms2
− 2ṡṙ

s
, (4.98)

Qs̈ =

N∑
i=1

mṙ2
i −

(f + 1)kBT

s
. (4.99)

The extended Hamiltonian Hs = K + Ks + V + Vk of the system is conserved. Hoover

[142] has extended the formalism of Nosé. The equations of motion are slightly modified

paying particular attention to controlling the temperature in a more subtle fashion.

ṙ = p/m, (4.100)

ṗ = F − ξp, (4.101)
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where p is the linear momentum, and ξ is the friction coefficient given by the first order

differential equation

ξ̇ =
f

Q
(kBT − kBT ), (4.102)

where T is the instantaneous value of the kinetic temperature. This method is widely

referred to as the Nosé-Hoover thermostat. Calculations are performed in a microcanon-

ical NV E′ ensemble with the modified Hamiltonian Hs. However, the thermodynamic

averages are equivalent to those in the canonical NV T ensemble with the original Hamil-

tonian H for a rescaled particle momentum. This thermostat is of global nature, because

the temperature is calculated by considering all particles in the system. Additionally, it is

not Galilean invariant, because all calculations are performed in a reference frame where

the system’s center of mass is at rest. Therefore, this thermostat does not conserve local

momentum [119, 136, 143].

4.5 Galilean-invariant thermostat

A global thermostat is not suitable when external forces are acting on the system which,

for example, may set a macroscopic fluid flow into motion. One plausible approach would

be a modification of the Nosé-Hoover thermostat to make it local and thus also conserve

local momentum. There have been such modifications [144] and the simplest is to separate

the system into slices and apply an isolated Nosé-Hoover thermostat to each slice.

Unfortunately, this simple modification is not satisfactory for our system. In a sys-

tem containing liquid-crystal molecules streaming around a colloid the sliced thermostated

system would lead to artifacts such as freezing or viscous heating. This is due to the fact

that the colloidal particle greatly affects the thermostating of the slices containing parts of

it. Figure 13 shows a representative sketch of a system thermostated with a sliced Nosé-

Hoover thermostat. A given molecule i close to the colloid has a very different energy

than molecule j that is streaming rather freely in the system. The molecule i is strongly

attracted by the colloid, whereas molecule j further away is almost not influenced by the

colloidal particle. However, both molecules can belong to the same slice. Thus, if the

Hamiltonian is only calculated for each slice and does not take more local effects into

account the system becomes somewhat artificial. Let’s assume that molecule i is slowed

down by the colloid and molecule j is not affected by the colloid. If the contribution of

molecule i to the Hamiltonian is too high, too little energy is taken away from molecule

j and the system undergoes viscous heating. Conversely, if molecule j is dominating the

Hamiltonian too much energy will be subtracted from molecule i and the system begins to

freeze. What becomes clear from those observations is that a system with a highly inho-

mogeneous spatial distribution of kinetic energy demands a more elaborate thermostating

to reach a constant global temperature. One has to apply a truly local thermostat.

42



Computational details

j

Figure 13: A schematic representation of the sliced Nosé-Hoover thermostat where the
gray circle at the center represents the colloid and molecules i and j are repre-
sentative liquid-crystal molecules.

In this work we use a novel thermostat that is based on pairwise interactions and was

first introduced by Stoyanov and Groot [66, 143]. This thermostat is local and Galilean

invariant and therefore conserves local momentum. In contrast to the Nosé-Hoover ther-

mostat it acts on pairs of molecules rather than on single molecules.

The Stoyanov-Groot thermostat considers a thermostating force acting on the molecules

i and j

Fij = λψ(rij/rc)

[
1− 1

2
(Ti + Tj)/T0

]
[(vi − vj) · r̂ij ]r̂ij/δt, (4.103)

where λ is a thermostat coupling parameter, ψ = 1 − rij/rc is a smearing function, rc a

cutoff radius, T0 is the desired temperature, and Ti is the local temperature of molecule i.

If the temperature Ti is lower than the desired temperature T0 the thermostating force is

putting energy back into the system, otherwise energy dissipates out of the system. Notice,

if the desired temperature T0 is reached the thermostating force vanishes. The Stoyanov-

Groot thermostat is completely deterministic, like the Nosé-Hoover thermostat. Thus,

it is very efficient in terms of computer time. The coupling parameter λ stays constant

during a simulation in contrast to the Nosé-Hoover thermostat. The local temperature Ti

in Eq. 4.103 for molecule i can be obtained from

kBTi =

∑
j ζ(rij/rc)Mij(vi − vj)2

3
∑

j ζ(rij/rc)
, (4.104)

where we choose the smearing function ζ = ψ and Mij = mimj/(mi +mj)) is the reduced

mass. In principle the smearing function ζ and the cutoff radius rc employed for local

temperature [see Eq. 4.104] can be different from the ones used for the thermostating
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force [see Eq. 4.103].

4.6 Hoover barostat

The simulations in this work are equilibrated under constant pressure P . Hence, if one

wants to work in an NPT ensemble a barostat has to be applied as well. It is convenient

to consider the volume V of the system as a dynamical variable which changes over time

during a simulation. The isobaric ensemble is once again realized by an extended ensemble

approach proposed by Hoover [142]. The Lagrangian of a system in contact with a barostat

may be written as

LV = K +KV − V − VV (4.105)

=

N∑
i=1

mi

2
v2
i +

B

2
V̇ 2 − V − PV,

where B is a mass parameter, r and v are written in terms of a scaling variable b

r = V 1/3b, (4.106)

v = V 1/3ḃ.

The equations of motions obtained from the Lagrangian are

b̈ =
F

mV 1/3
− 2ḃV̇

3V
, (4.107)

V̈ =
P − P
B

, (4.108)

where P is the instantaneous pressure. The Hamiltonian HV = K + KV + V + VV of the

system is conserved. With the aid of the virial expression [145] one obtains the pressure

tensor

P =
m

V

〈
N−1∑
i=1

(vi − v)⊗ (vi − v) +
N∑

j=i+1

rij ⊗ Fij

〉 , (4.109)

where v = v∞êx is the flow velocity. This leads directly to the instantaneous pressure

P = 1
3TrP [119].

4.7 Flow in molecular dynamics

The continuum theory by Ericksen, Leslie and Parodi [see Sec. 2.2] is very complex and

rather difficult to handle. For most cases the Ericksen-Leslie equations cannot be solved

analytically. One can refer to procedures such as finite difference, finite element, finite

volume methods, or Lattice-Boltzmann simulations to solve the nematodynamic equations.
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This is an entirely valid and feasible approach to study nematic liquid crystals under flow

from a theoretical angle. However, one major drawback of the Ericksen-Leslie-Parodi

theory is that it does not involve expressions for disinclination lines or point defects.

Topological defects may play a crucial role and their evolution due to flow is of particular

interest in this work. Thus, we approach the task from a different perspective. We avoid

the nematodynamic equations completely and use nonequilibrium molecular dynamics

simulations to tackle the problem [30].

Flow can be introduced quite simply in molecular dynamics. In a simulation box

filled with liquid-crystal molecules one needs to apply a constant body force Fe to each

molecule. It is convenient to choose a common direction, here along the x-axis, for Fe =

F · êx. Hence, all molecules are dragged along the x-direction which can be compared

to the effect gravity or an external field would have on the molecules. In other words,

this creates a flow of liquid-crystal molecules along the x-axis from −∞ to +∞. Here

we are interested in systems where either a colloid is dispersed in the host phase or a

cylindrical pillar is introduced in the simulation cell. Thus, the symmetry of the system

is broken in both cases. Applying a constant body force Fe to the molecules located in

the slipstream of the colloid would be somewhat artificial. Therefore, it is reasonable to

introduce an additional constraint on Fe. We restrict the application of the constant force

Fe to molecules in a three-dimensional slice of width 2σ perpendicular to the x-direction.

This slice is located at the beginning of the simulation box with respect to the direction

of flow. The remaining molecules are pushed by the accelerated ones thus inducing a flow

along the x-axis. However, this ensures that molecules are not artificially dragged out of

the slipstream of the colloid.

In conclusion, the flow of a nematic liquid crystal can be tackled with molecular

dynamics simulations in a more straightforward approach than solving the nematodynamic

equations. However, one has to consider that the effort here lies in the numerical details

and procedures of the molecular dynamics simulation. Firstly, it has to be ensured that a

reasonably fast computer algorithm is developed to treat large enough systems. Secondly,

additional methods, such as thermostats [see Sec. 4.5], tend to be more sophisticated under

nonequilibrium conditions, like flow.
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5.1 Simulation protocol

In this thesis all quantities of interest are given in the usual dimensionless (i.e., “reduced”)

units. Taking m, σ, and ε as basic units of mass, length, and energy, respectively, all other

properties can be expressed in terms of suitable combinations of these basic quantities. For

example, temperature is given in units of ε/kB, density in units of σ−3, pressure in units

of ε/σ3, viscosity in units of
√
mε/σ2, and the Frank elastic constant in units of ε/σ which

is also the unit in which force is cast. Finally, in the nonequilibrium molecular dynamics

simulations time is expressed in units of
√
m/σ2ε and velocity in units of

√
ε/m.

All simulations reported here have been carried out for a host phase containing

N = 24000 molecules in a volume V = sxsysz. To make sure that the host phase is

sufficiently deep in the nematic phase we choose T = 0.90 and, under isothermal-isobaric

conditions, a pressure P = 1.80. For this thermodynamic state point we obtain a mean

number density of ρ = N/ 〈V 〉 ' 0.85 in the bulk where V denotes the (instantaneous)

volume of the simulation box. We consider a system were molecules are confined between

two planar atomistic substrates in the z-direction exhibiting planar anchoring. A colloidal

particle is fixed in space at the center of the simulation cell. Figure 14 shows a sketch of

the simulation cell.

Figure 14: Sketch of the empty simulation cell with the discrete walls and a colloid. The
green shaded area marks where the driving force Fe is applied [see Sec. 4.7].
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Fluid-fluid interactions [see Eq. 3.60] have been cut off if the center-of-mass distance

between two molecules exceeds rc = 3.00. For computational efficiency, we employ a Verlet

neighborlist. Furthermore, we consider a much larger shell of neighbors then necessary

to avoid frequent updates of the neighborlist under high-flow conditions. A molecule is

considered a neighbor of a reference molecule if their centers of mass are separated by

rN ≤ 6.00.

In the nonequilibrium simulations the equations of motion are integrated with a time

step of δt = 10−3 employing the velocity Verlet algorithm already described in Secs. 4.2

and 4.3. A steady-state Poiseuille flow is induced along the x-axis by applying a body

force Fe = Feêx [see Sec. 4.7].

Because of the external body force the system needs to be thermostatted perma-

nently to achieve a stationary nonequilibrium state. As we explain in great detail in

Sec. 4.5 the choice of a particular thermostat is of vital importance here because of the

presence of the colloidal particle.

The molecular dynamics simulations are carried out according to the following pro-

tocol: (i) We generate a liquid-crystal fluid in equilibrium with the colloid and the solid

substrates in the absence of flow (Fe = 0), and in the isothermal-isobaric (NPT ) ensem-

ble. Typically, the evolution of the system is followed over 105 time steps. (ii) Starting

from the last configuration we perform a second equilibration in the canonical (NV T )

ensemble under flow conditions (Fe > 0). The goal of this simulation stage is to generate

a steady state nonequilibrium state. We monitor the kinetic and potential energies, and

the velocity profile. This part of the simulation is performed for 5.0 × 105 time steps.

(iii) Finally, the simulations are extended for another 1.5 × 106 time steps during which

quantities of interest are sampled. For the computation of local quantities we divide our

system by means of a grid with cubic cells of side length 0.2.

5.2 Measures of flow

Before discussing the main findings of this work it seems appropriate to characterize the

regime of flows studied. Therefore, we need to recall the dimensionless numbers introduced

in Sec. 2.5. In order to obtain the range of Ericksen E and Reynolds numbers R studied

we calculate the elastic constants and the effective viscosity for our system.

In Sec. 1.8 we derived how to calculate the elastic constants in molecular dynamics

simulations. To obtain E13 and E23 bulk simulations are performed in the NV T ensemble

with neither a colloid nor flow for different values of N and V , while keeping the number

density ρ̄ fixed.

In Fig. 15(a) and (b), we show the dependence of E13 and E23 on k2
1 and k2

3 [see

Eqs. 1.30 and 1.31]. As predicted from the theory, a linear fit can be applied for not

too large values of the wave vectors. We note that the slopes of the two fits are almost
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identical. In our calculations we find elastic constants K1 ≈ K2 ≈ K3 ≈ K ≈ 1.6. The fact

that the observed elastic constants of our system are equal, within statistical accuracy,

is due to the rather small asphericity of liquid-crystal molecules in the Hess-Su model.

Usually, the elastic constant K3 is higher than the elastic constants K1 and K2. But for

molecules of nearly spherical shape the bend configuration is energetically more or less

equal to the splay and twist configuration. This is obviously not the case for much more

elongated molecules that are truly anisotropic in shape, as is the case for the Gay-Berne

model of liquid crystals [40–42].
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Figure 15: Dependence of E13(k2
1, k

2
3) (black circles) and E23(k2

2, k
2
3) (red squares) on (a)

k2
1 for k2

3 = 0 as well as on (b) k2
3 for k2

1 = 0.

An important quantity to characterize the dynamic state is the effective viscosity.

In Sec. 2.4 we have derived an equation that captures the parabolic shape of the velocity

profile for Poiseuille flow [see Eq. 2.52]. To generate a streaming velocity profile NV T

simulations without a colloid for different external driving forces Fe were performed. The

simulation box is separated into slices of constant volume sxsy4z, where 4z = 0.2.
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Figure 16 shows the velocity profiles obtained with the recipe just described. A second-

order polynomial provides a reasonably good fit of vx(z). From the fit we find η ≈ 40.
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Figure 16: Streaming velocity profile for external driving forces Fe = 0.1 (circles), Fe = 0.2
(squares), Fe = 0.3 (diamonds), Fe = 0.4 (triangle up), Fe = 0.5 (triangle
down) and corresponding second-order polynomial fits (dashed lines). For the
sake of clarity we show every third data point.

With the aid of Eqs. 2.54 and 2.56 we can calculate the Reynolds number R and

the Ericksen number E , respectively. In Tab. 1 we list R and E for the flow regime

studied in this work. Streaming velocities v∞ are obtained from NV T simulations of the

confined liquid-crystal fluid in the presence of the colloid for different external driving

forces Fe. From Table 1 we see that over the range of streaming velocities considered,

R � 1. Therefore, all steady-state nonequilibrium states belong to the regime of laminar

flow. Additionally, viscous effects dominate over elastic ones as indicated by the inequality

E � R. However, we stress that the order of magnitude of both dimensionless numbers is

in good agreement with recent microfluidic experimental studies [52].

Fe v∞ R E
0.10 0.12 0.08 93
0.20 0.25 0.17 193
0.30 0.39 0.26 302
0.40 0.55 0.36 426
0.50 0.71 0.47 550

Table 1: Reynolds numbers R and Ericksen numbers E for different external driving forces
Fe and corresponding streaming velocities v∞ used in our simulations.

The applied flow exhibits the known velocity profile for Poiseuille flow [see Fig. 16].

To gain further insight into the flow conditions. We study the velocity field around a

colloidal particle dispersed in a nematic liquid crystal for different Ericksen numbers E . In
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Figure 17: Maps of the magnitude of the local velocity vp(rp) in the x-z plane located
at y = 0 [see attached color bar]. The long arrow above each plot gives the
direction of flow. Small arrows in the maps give the local direction of flow
represented by v̂p(rp) ≡ vp(rp)/vp(rp). (a) E = 93, (b) E = 302, and (c)
E = 550.

Fig. 17 we present maps of the average velocity field in a x-z cross section of the system

vp(rp) = vx(rp)êx + vz(rp)êz, (5.110)

where rp is a point in the x-z plane at y = 0 and vα(rp) = v(rp) · êα (α = x, y). One can

see that with increasing flow (i.e., with increasing E) the average local velocity increases

steadily. Whereas for the smallest E the distribution of velocities across the x-z plane

is relatively homogeneous [see Fig. 17(a)], as E increases this distribution becomes more

and more inhomogeneous in a region centered on the colloid’s equator (i.e., around z = 0)

[see Figs. 17(b) and (c)]. Two stagnation points emerge at the leading and trailing point

on the colloid’s surface with respect to the flow direction. In particular, from the plot

in Fig. 17(c) it is evident that the average magnitude of vp(rp) is more strongly reduced

on the upstream side of the colloid compared with the downstream side, matching one’s

physical intuition. As we will rationalize in the next section, it is this inhomogeneity of

the velocity field that is ultimately responsible for the elastic deformation of disclination

rings in sufficiently strong flow.

One also notices from the plot in Fig. 17(a) that at low E the velocity field exhibits

rather strong fluctuations locally whereas globally the flow is in the direction of Fe. As

E increases v̂ becomes more and more aligned with Fe. Because Fe is parallel to n̂0 we

observe an increasingly larger alignment of the flow field with the far-field director.
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5.3 Effects of flow on topological defects

We study the effects of flow on defect topologies around a colloid dispersed in a nematic

host phase under flow well within the laminar flow regime. First, we will focus on homoge-

neous colloids and analyze the change of the defect topologies qualitatively. In particular,

we focus on the direction of movement and the deformation of the defect topology due

to the flow. Second, we quantitatively examine the Saturn ring defect of a heterogeneous

colloid with perpendicular anchoring. Thus, we examine the length of the ring defect and

the degree of deformation for different flow speeds. We pay particular attention to the

influence of the anchoring strength on the size and position of the Saturn ring defect. Last,

we present the first study on heterogeneous colloids subject to flow. More specifically, we

investigate the defect topologies emerging around Janus colloids dispersed in a flowing

nematic liquid crystal.

5.4 Displacement and deformation of defects

Figures 18(a)-(c) show three-dimensional representations of the defect structures around

a homogeneous colloid with planar anchoring for different Ericksen numbers E . We mark

only locations with a local nematic order parameter S(r) ≤ 0.2, which we arbitrarily

choose to represent the defect structures. Figures 18(d)-(e) show cross-sectional maps

of the local nematic order parameter S(r) and of the local director n̂ (r) for the same

conditions as in Figs. 18(a)-(c). The cross-sections are taken along the x-z-plane that goes

through the center of the colloid and the defect topologies (y = 0).

Colloidal suspensions of a homogeneous colloid with planar local anchoring in a

nematic liquid crystal are known to form Boojum defects [43]. Fig. 18(a) shows that in

the system at rest (E = 0) a Boojum defect topology arises due to the strong planar

anchoring of the molecules on the colloid surface. This is indicated as well by the low

values of S(r) on the left (negative x-axis) and right (positive x-axis) side of the colloid

in Fig. 18(d). In these areas n̂ (r) is oriented planar to the colloidal surface, and therefore

perturbs the global director field n̂0. Notice that, sufficiently far away from the colloid,

n̂(r) = n̂0 ' êx, the director field matches approximately the far-field director n̂0. The

alignment of n̂0 with êx is a consequence of the anchoring of molecules at both solid

substrates [see Eq. 3.65].

For E > 0, the upstream lobe of the Boojum defect shrinks [see Figs. 18(b) and (c)]

because the molecules on the upstream side of the colloid are squeezed more tightly against

the colloid with increasing E which results in their enhanced ordering; at the same time

the lobe of the Boojum defect in slipstream of the colloid grows in size because molecules

are locally decompressed in the slipstream, resulting in a disordering effect. Figures 18(e)

and (f) show in detail the compression of the upstream Boojum lobe and the expansion
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Figure 18: (a)-(c) A three dimensional representation of the defect structures (S(r) ≤ 0.2)
around a homogeneous colloid (gray sphere). (d)-(f) Cross-section along the
x-z plane of the local nematic order parameter S(r), where the color indicates
the magnitude of S(r), as well as the local director n̂ (r) represented by a black
line. Plots are generated for different Ericksen numbers E for a colloid with
planar anchoring and the black arrow indicates the direction of the streaming
velocity v∞.

of the slipstream one.

Figure 19 is as Fig. 18 but for the case of perpendicular anchoring. When homoge-

neous colloids with perpendicular anchoring are dispersed in a nematic liquid crystal they

are known to form Saturn ring defect structures [44]. Thus, when no external driving force

is applied (E = 0) a Saturn ring defect topology arises around the colloid, because of the

strong perpendicular anchoring applied in our simulations [see Fig. 19(a)]. The Saturn

ring defect topology is also indicated by the low values of S(r) at the north (positive

z-axis) and south pole (negative z-axis) of the colloid [see Fig. 19(d)]. In these areas the

director field is strongly distorted because the anchoring opposes the far-field director.

Our molecular dynamics simulations show that for E > 0 the defect structures [see

Figs. 19(b) and 19(c)] are distorted and convected along with the flow in x-direction. This

is also indicated by the position of the area of low nematic order in Figs. 19(e) and 19(f).

This contradicts the results found by Gettelfinger et al. [64] but is in agreement with

earlier theoretical studies [61–63] as well as experimental work by Khullar et al. [1].

As E increases, the local nematic director n̂ (r) at the north and south pole of the
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Figure 19: As Fig. 18 but for a homogeneous colloid with perpendicular anchoring.

colloid becomes more and more parallel to the global director n̂0. For E > 0 the Saturn

ring defect deforms and moves downstream along the x-direction [see Fig. 19(c)]. The

deformation takes the shape of a mouth. Therefore, we refer to this deformation as stomal

defect. Fig. 20 shows the reason for this deformation. We calculate the x-component of the

velocity vx averaged over a plane perpendicular to the z-axis, and study its dependence on

z. We repeat the calculation for planes perpendicular to the y-axis to study the dependence

of vx on y as well. On the colloidal surface vx(z) > vx(y), that is, the molecule moving

between the north (south) pole and the top (bottom) wall move faster than the molecules

on the equator of the colloid.

An interaction of the Saturn ring and confining walls was observed in experiments

by Khullar et al. [1]. In their case the walls of the experimental cell have a pinning effect

on the defect, which, we deduce, drastically reduces the velocity of the liquid crystal fluid

between colloid and walls. Thus, the section of the Saturn ring closer to the walls moves

slower than the sections at 90◦ from them. Despite the much larger colloids used in the

experiments the structural changes illustrated in Fig. 19(c) are general and, at least from

a qualitative perspective, independent of the size of the colloid.
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Figure 20: Streaming velocity profile for a homogeneous colloid with perpendicular an-
choring for a Ericksen number E = 443.5 along the y- (squares) and z-direction
(circles) where blue lines represent the diameter of the colloid. For the sake of
clarity we show every second data point.

5.5 Influence of the anchoring strength

We have established the displacement and deformation of defect topologies because of

flow. Therefore, we focus on the Saturn ring defect in order to quantitatively explore

the perturbation of the Saturn ring defect from its equilibrium shape. However, even

in equilibrium the exact position of the Saturn ring defect with respect to the colloidal

surface can be modulated by the anchoring strength of the colloid [see Eq. 3.69]. Thus, it

seems instructive to give some information about the anchoring strength of liquid-crystal

molecules at the surface of the colloid. We estimate the anchoring strength at the colloidal

particle through the time average of the fluid-colloid potential energy per surface area of

the colloid W = −〈Φfc〉 /4πr2
0. The value of W depends somewhat on the inverse screening

length λ of ϕfc [see Eq. 3.69]. For example, W ' 1.8 × 10−2Jm−1 for λ = 2.0 (shortest-

range interaction considered here) whereas W ' 8.4×10−2Jm−1 for λ = 0.2 (longest-range

interaction) where we have assumed εk−1
B = 120K and σ = 3.4× 10−10 m for simplicity.

The values of W for our model correspond to strong anchoring conditions and agree

in magnitude with those used in a recent numerical study of colloidal particles dispersed

in a nematic liquid crystal exhibiting Saturn ring defect topologies [146]. Similar orders of

magnitude are common for liquid-crystal anchoring on different types of planar surfaces

[31].

Figure 21 shows S(r) and the associated director field n̂(r) for nonspecific anchoring

(i.e., for gc = 1) under various flow conditions. As one moves closer to the colloid one

observes locally homeotropic alignment of molecules near the colloid’s surface even though

gc = 1. This results from the competition between energetic and entropic effects.
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Figure 21: Maps of the local nematic order parameter S(rp) in the x-z plane at y = 0
[see attached color bar]. The circular area at the center represents the colloidal
particle and the arrow above each plot indicates the direction of flow. Small
dashes in the maps represent the director field. (a) E = 0 (equilibrium), (b)
E = 93, (c) E = 193, (d) E = 302, (e) E = 426, and (f) E = 550. Plots have
been generated for gc = 1.00 and λ = 0.50 [see Eq. 3.69].

If molecules align their long axes parallel to the local surface normal of the colloid

they lose some orientational entropy compared with a situation in which these axes are

orthogonal to the local surface normal. This is because for homeotropic alignment only a

single easy axis exists locally whereas for locally parallel alignment an infinite number of

these axes obtains. Hence, the orientational entropy would be larger in this latter case.

However, from an energetic perspective locally planar or homeotropic alignments

are nearly equivalent on account of the small aspect ratio of a molecule [see Sec. 3.2]. At

the same time, packing at the curved surface of the colloid is more efficient in the case of

locally homeotropic alignment. Consequently, the internal energy is lower for the locally

homeotropic alignment such that the reduced configurational energy outweighs the loss in

orientational entropy [68].

For gc = 1.00 we observe that defects always stay very close to the surface of the

colloid irrespective of λ. On the contrary, for gc as given by Equation 3.73, defects are

displaced to regions further away from the surface as plots in Figure 22 reveal.
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Figure 22: As Figure 21, but for gc as in Eq. 3.73.

5.6 Length and shape of disclination lines

Even though at thermodynamic equilibrium the quasi two-dimensional plots in Fig.s 21(a)

and 22(a) correspond to ringlike disclination lines [68, 114, 147, 148] one anticipates their

deformation under flow conditions, as is already evident from Figs. 19(a)-(c). Conse-

quently, one has to resort to full three-dimensional plots of disclination lines in cases of

non-zero E to capture these flow-induced deformations.

In molecule-based numerical approaches such as computer simulations defects man-

ifest themselves as regions of low nematic order. As a definition of disclination lines we

adopt

` =
{
r = (x, y, z)T

∣∣∣S (r) ≤ S0

}
, (5.111)

where the superscript T denotes the transpose of a vector and S0 is a threshold value for

S(r). Obviously, the choice of S0 is somewhat arbitrary. From an operational point of

view S0 = 0.20 provides an optimal visualization of `.

The plot in Fig. 23(a) illustrates the disclination line around a colloidal particle under

flow conditions. To analyze the defect structure illustrated in Fig. 23(a) quantitatively we

realize that for symmetry reasons its projection onto the y-z plane [see Fig. 23(b)] is an
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Figure 23: Disclination line near the surface of a spherical colloidal particle of hard-core
radius r0 = 3.00 and with an inverse screening length λ = 0.50. Data have
been obtained under steady-state nonequilibrium conditions of the host phase
characterized by Ericksen and Reynolds numbers E = 550 and R = 0.47,
respectively. (b) As (a), but projected onto the y-z plane. (c) As (a), but
for a projection onto the x-z plane. Red lines in parts (b) and (c) are fits of
Eqs. 5.112 and 5.113 to the discrete data points, respectively.

ellipse whose equation in parametric form can be cast as(
y

z

)
=

(
a cos t

b sin t

)
, 0 ≤ t ≤ 2π, (5.112)

where the ratio of principal axes e = a/b defines the eccentricity of the ellipse. Similarly,

a projection of the disclination line in Fig. 23(a) onto the x-z plane can be described by

a parabola [see Fig. 23(c)]

x = cz2 + c0 = cb2 sin2 t+ c0. (5.113)

Taking a, b, c, and c0 as fit constants we compute the length s of the disclination line via

s =

2π∫
0

dt
√
ẋ2 + ẏ2 + ż2 =

2π∫
0

dt
√
a2 sin2 t+ b2 cos2 t+ 4c2b4 sin2 t cos2 t, (5.114)

where the dot indicates a derivative with respect to the parameter t. However, on account

of the complexity of the integrand on the far right side of Eq. 5.114 we have been unable

to solve the expression for s analytically in all cases. For the special case of an undeformed

circular defect ring, for which a = b and c = 0 the solution is straightforward and gives

s = 2πa2 as one would have guessed immediately. In the general case, instead, we solve

Eq. 5.114 numerically using a simple trapezoidal rule and values for the constants a, b,

and c from the fitting procedure mentioned above.

Plots in Fig. 24 illustrate the impact of flow on the disclination lines. Figure 24(a)

reveals that in the absence of flow the colloid is encircled by perfect circular rings where
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the effective radius of the rings reff > r0 is larger the smaller λ is. The effective radius of

disclination lines will always exceed r0 because of repulsive fluid-colloid interactions [see

Eq. 3.69], the finite kinetic energy of the molecules, and the fact that the minimum of ϕfc

is always located at a distance r0 + σ from the center of the colloid. The circular shape of

defect lines remains basically unaltered at low E .
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Figure 24: Three-dimensional representation of disclination lines ` [see Eq. 5.114] for λ =
0.20 ( ), λ = 0.50 ( ), λ = 0.90 ( ), λ = 2.00 ( ) (from outside inwards).
In addition, data for λ = 0.50 and g⊥ = 1.00 ( ) are shown (innermost ring).
The arrow on top of the plots indicates the direction of flow. (a) E = 0, (b)
E = 302, and (c) E = 550.

At intermediate E , Fig. 24(b) indicates a change in the disclination lines. Whereas

they remain roughly circular in shape they are shifted downstream by an amount c0 [see

Eq. 5.113]. This shift is more pronounced for larger rings (i.e., for smaller λ). This can

be understood if one realizes that molecules located along the disclination lines are more

free to move the larger reff becomes.

Finally, at large E , Fig. 24(c) shows that besides moving the disclination line even

further downstream, the rings are now significantly distorted by flow from a circular shape.

The origin of this deformation is explained above and illustrated in Fig.20.

5.7 Perturbation of the Saturn ring defect

We now have derived the quantities necessary to further analyze the impact of the range

of fluid-colloid interactions. Figure 25(a) shows that the length s of the disclination line is

a linear function of the screening length 1/λ both in the equilibrium system (E = 0) and

under flow (E 6= 0). The curves are shifted with respect to one another such that under

flow conditions disclination rings for the same screening length are generally shorter than

in the equilibrium system.

To rationalize the apparent linear variation of s with 1/λ shown in Fig. 25(a) we

plot in Fig. 25(b) the perturbational free energy introduced in App. A [see Eq. A.127]. It
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Figure 25: (a) Length of disclination lines s as a function of the screening length 1/λ of the
fluid-colloid interaction potential [see Eq. 3.69] for E = 0 (◦) and E = 550 (�).
(b) As (a), but for the per molecule perturbational free energy F (1) (λ) [see
Eq. A.127] and E = 0 (∆). In both panels dashed lines are linear least-squares
fits to the calculated points obtained over the range where Eqs. 3.70 and 3.71
are valid [see also discussion in Section 3.4].

exhibits a similar linear dependence on 1/λ but with negative slope. These data have been

obtained for the case of nonspecific anchoring g⊥ = 1.00 in corresponding Monte Carlo

simulations [see App. B].

Nonspecific anchoring has been utilized here for reasons of computational conve-

nience. It leads to a local homeotropic alignment of molecules at the surface of the colloid

even in the reference system [see also Fig. 21]. We therefore conclude from Fig. 25 that

a shift of the disclination rings to a larger distance from the surface of the colloid makes

the system as a whole more stable as reflected by a similar decrease in free energy. This

makes sense because at larger 1/λ the net attraction of molecules by the colloid increases

[see Sec. 3.4 and Fig. 11] which results in a noticeable increase of local nematic order in

the neighborhood of the colloid [see also Figs. 21 and 22].

Because the curves plotted in Fig. 25(a) are only shifted horizontally with respect

to each other we expect a similar shift of the free energy in Fig. 25(b) due to the flow.

However, the computation of a similar steady-state free energy in molecular dynamics is

hampered by the hard-core background potential required by the perturbational approach

on which Eq. A.127 is based.

To further analyze the variation in disclination-line length, we compute the displace-

ment c0 [see Eq.5.113] from our simulation results by applying the fit procedure described

in Section 5.6. Results plotted in Fig. 26 for four values of λ indicate that c0 increases

approximately linearly with the strength of flow (i.e., with E). The linear increase of c0
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Figure 26: Displacement of disclination lines c0 in downstream direction as a function of
the Ericksen number E for λ = 0.20 (◦), λ = 0.50 (�), λ = 0.90 (∆), and
λ = 2.00 (∇). Dashed lines are fits to the discrete data points.

with E makes sense if one recollects that E is directly proportional to the flow velocity

[see Eq. 2.56]. The increase of c0 with E is stronger for smaller λ which is to be expected

because larger disclination rings are prone to respond more strongly to flow than smaller

ones for the same energetic reasons explained above.

One also notices from Fig. 24 that the circular shape of the disclination lines in the

absence of flow is approximately preserved under flow conditions if E is not too large. Let us

now assume these circular disclination lines maintain their distance from the surface of the

colloid as they are displaced downstream. Moreover, let us assume them to preserve their

circular shape upon displacement. Hence, the effective radius of the shifted disclination

lines can be expected to satisfy the inequality r′eff < reff where r′eff is the radius of a circular

disclination line displaced by flow.

Geometrically, the displaced disclination line forms the base of a spherical cap of

radius r′eff shifted by an amount c0 from the center of a sphere of radius reff where the

equator of the sphere marks the position of the disclination line in the absence of flow.

This situation is sketched in Fig. 27.

Because of this idealized geometry it is easy to establish a relation between the

length s′ of the displaced disclination line under flow, its radius at equilibrium reff , and

the displacement from the equilibrium position c0 in the downstream direction. Using

elementary geometrical arguments allows one to conclude that [see Fig. 27]

s′ = 2π

√
2reff (reff − c0)− (reff − c0)2. (5.115)
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Figure 27: Spherical cap of radius r′eff and height h. The lower bound of the cap corre-
sponds to a circular disclination line of radius r′eff . This shorter disclination
line is shifted by a distance c0 in the direction of flow indicated by the vertical
arrow. In the absence of flow the disclination line forms a circle of radius reff

around the equator of a colloidal particle of radius r0 < reff (not shown).

Notice that this expression does not contain any undetermined parameters. For example,

c0 is obtained from the fit procedure described in Section 5.6. Moreover, in the absence

of flow disclination lines are perfectly circular. This implies that a = b = reff > r0 in

Eq. 5.112 and c = 0 in Eq. 5.113 such that s = 2πreff follows trivially from Eq. 5.114

which allows us to compute reff using s from Eq. 5.114 directly from the simulation data

in the limit E = 0.

To test Eq. 5.115 we present plots of s and s′ as functions of c0 in Fig. 28(a). For

sufficiently small c0 all four plots reveal that the simulation data are represented quite

nicely by Eq. 5.115 as expected. However, the applicability of Eq. 5.115 is limited as

one might have guessed. For example, for the longest-range fluid-colloid interaction (i.e.,

the smallest λ), s′ underestimates s systematically for ring displacements c0 & 1.50. As

the rings move closer to the colloid’s surface (i.e., as λ increases) the range over which s

matches approximately s′ increases markedly.

We can take the analysis one step further and predict the values of R and E where

the flow induces a transition from a defect line to a hedgehog defect [149]. Based upon

the linear relation between s and E observed in Fig. 26, it is straightforward to show from

Eq. 5.115 that a similar relation holds, namely

s′ = 2π

√
2reff (reff − dE)− (reff − dE)2, (5.116)

where d is the slope of the straight lines through the origin shown in Fig. 26 and obtained

via a linear least-squares fit to the simulation data. Taking now as Ec the critical Ericksen

number for which s′ = 0 (i.e., for which c0 = reff) and employing Eqs. 2.54 and 2.56 we
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Figure 28: (a) Length s of disclination rings obtained from Eq. 5.114 as a function of
the downstream shift c0 obtained through the fitting procedure described in
Section 5.6 for λ = 0.20 (◦), λ = 0.50 (�), λ = 0.90 (∆), and λ = 2.00
(∇). Dashed lines are corresponding plots of s′ obtained via Eq. 5.115 where
reff = s/2π at E = 0.00. (b) As (a), but as a function of the Ericksen number
E . Curves are given by Eq. 5.116.

arrive at

Rc =
ρK

η2
Ec (5.117)

for the critical Reynolds number at which disclination lines are transformed into a hedge-

hog defect due to flow. Based upon data for λ = 2.00 we estimate Ec = 1250 which is

less than a factor of 2 away from the largest E in Fig. 28(b). Using the mean density

ρ, shear viscosity η, and the elastic constant K as given in Sec. 5.2 we estimate Rc as

being of the order of one indicating that defect rings are expected to vanish under laminar

flow conditions. Nevertheless, plots in Fig. 28(b) clearly show that the above analysis

presumably underestimates Ec even for the largest λ but may still be considered to give a

reliable lower limit for Ec.

The underestimation of Ec is a consequence of the fact that our analysis does not

take into account any elastic deformation of disclination rings resulting in a deviation of

their shape from that of a circle. That this deformation plays a crucial role in the response

of defect rings to flow can be cast quantitatively in terms of the eccentricity e and the

curvature c of the disclination rings in the various projections of ` [see Sec. 5.6]. In both

parts of Fig. 29 we see that for the largest disclination rings investigated a noticeable

deviation from a circular shape is obtained at rather small Ericksen numbers E & 100.

This is fully in line with plots in Figs. 28(a) and 28(b) for the same λ where we showed that

the assumption of circularity of disclination rings under flow conditions becomes invalid

at lower Ericksen numbers for larger disclination rings compared with smaller ones.
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Figure 29: (a) Eccentricity e of elliptic disclination rings as a function of the Ericksen
number E (◦). Ellipses are obtained from a projection of ` onto the y-z plane.
The horizontal line demarcates the circular limit of the projected `. (b) As (a)
but for the curvature c of parabolas obtained when ` is projected onto the x-z
plane [see Sec. 5.6]. Data are shown for λ = 0.20.

5.8 Janus colloid

In the previous sections we studied the effect of flow on well known defects of rather simple

shape arising around homogeneous colloids. However, when these defects are subject

to flow they are not only displaced in space but also deformed with respect to their

equilibrium shape. We have extensively studied the deformation of the Saturn ring from a

simple ring to a stomal shaped defect [see Fig. 23]. Thus, defect topologies are often more

complex under flow conditions. Yet, there exists also more complex equilibrium defect

topologies around heterogeneous colloids, such as Janus colloids [see Sec.2.10]. One can

imagine that the study of defect topologies around heterogeneous colloids under flow leads

to a vast variety of new defects. Here, we only show two different configurations as an

example.

We performed molecular dynamics simulations of a Janus colloid with a planar-

anchoring patch on the upstream side and a perpendicular-anchoring patch on the down-

stream side. The planar patch is smaller than the perpendicular one, although the tran-

sition between the different patches is rather smooth.

Figure 30(a) shows that for the system at rest (E = 0) a ring defect topology arises

around the equator. This is due to the fact that the patch with perpendicular anchoring

covers most of the colloid’s surface. However, at the smaller patch with planar anchoring a

Boojum defect topology comparable to the defect for the homogeneous colloid with planar

anchoring arises. Therefore, this defect topology corresponds to a Boojum ring [67]. This

is also indicated by the low values of S(r) at the north and south pole as well as on the
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Figure 30: (a)-(c) A three dimensional representation of the defect structures (S(r) ≤ 0.2)
around a Janus colloid. (d)-(f) Cross-section along the x-z plane of the local
nematic order parameter S(r), where the color indicates the magnitude of
S(r), as well as the local director n̂ (r) represented by a black line. Plots
are generated for different Ericksen numbers E for a colloid favoring planar
anchoring (dark gray) on the upstream side and perpendicular anchoring (gray)
on the downstream side and the black arrow indicates the direction of the
streaming velocity v∞.

upstream side of the colloid [see Fig. 30(d)]. On the north and south pole the global

director field is perturbed, which is indicated by the perpendicular orientation of n̂ (r)

with respect to the colloid’s surface. On the other hand, n̂ (r) is oriented planar with

respect to the colloid surface on the upstream side of the colloid and therefore the global

director field is perturbed here as well.

For increasing values of E one can see the ring defect structure moves downstream

[see Figs. 30(b) and (c)]. This is equivalent to the configuration described above for the

homogeneous colloid with perpendicular anchoring. Figures 30(e) and (f) confirm this

observation. The region of low nematic order is moving downstream. However, the defect

structure on the upstream side of the colloid is completely destroyed for high values of

E [see Fig. 30(c)]. This effect can also be observed in the rapid increase of S(r) [see

Figs. 30(e) and (f)]. The destruction of the point defect structure is due to the fact that

molecules are pushed out of the rather small patch favoring planar anchoring by the strong

flow applied to the system.
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Figure 31: As Fig. 12 but for a Janus colloid favoring perpendicular anchoring (gray) on
the upstream and planar anchoring (dark gray) on the downstream side.

We note that if the Janus colloid is reversed, and therefore exhibits the planar patch

in the downstream direction, the Boojum defect grows in size as E increases. At the same

time the Saturn ring deforms into a stomal defect and slowly merges with the growing

Boojum lobe [see Fig. 31].
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5.9 Hydrodynamic cavitation of anisotropic fluids

Hydrodynamic flow in a nematic liquid crystal has a strong impact on the defect topolo-

gies within the fluid. At even larger flow speeds (larger E) than the ones presented in

Tab. 1, another interesting flow-induced phenomenon can be observed: the inception and

growth of cavitation. Interestingly, cavitation in a nematic liquid crystal occurs still within

the laminar flow regime at rather low R compared to isotropic fluids such as water. In

the following we will present the first in depth study of hydrodynamic cavitation in an

anisotropic fluid with nonequilibrium molecular dynamics simulations. We follow the same

simulation protocol already introduced in Sec. 5.1. However, in order to make our results

comparable with recent microfluidic experiments [see App. C and Ref. [2]] we have re-

placed the colloidal particle with a cylindrical pillar and imposed homeotropic anchoring

at the discrete walls [see Eq. 3.3]. Figure 32 shows a sketch of the simulation cell.

Figure 32: Sketch of the empty simulation cell with the discrete walls and a cylindrical
pillar. The green shaded area marks where the driving force Fe is applied [see
Sec. 4.7].

The length scales accessible to molecular dynamics simulations of liquid crystals are

still too small to study the cavitation bubble at the micron scale, as in experiments [see

App. C], due to limitations in computer performance. The accessible molecular dynamics

length scales do, however, give us access to the early stages of the cavitation process and

to structural information not easily accessible with phenomenological theories of liquid

crystals.
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5.10 Local density

To characterize the onset and evolution of cavitation within the liquid crystal fluid we

present in Fig. 33(a)-(c) maps of the local density [see Eq. 1.6] in a x-y cross section of

the system. For the system at rest, that is, without flow, the density is homogeneous

throughout the system (not shown here). This is only disturbed by well-known layering

effects close to the cylindrical pillar. For moderate flow conditions the density remains

homogeneous across the system [see Fig. 33(a)]. However, when reaching very strong flow,

starting at E ' 897, the density across the system starts to change. More specifically, a

drop in density in the wake of the pillar is observed [see Fig. 33(b)]. This area exhibits

the density of a gas and therefore indicates the phenomenon of hydrodynamic cavitation.

The size of the cavitation increases further with higher Ericksen numbers.
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Figure 33: (a)-(c) Maps of the magnitude of local density in the x-y plane located at
z = 0 [see attached color bar]. The circle represents the cylindrical pillar and
the arrow above each column indicates the direction of flow. (a) E ' 65, (b)
E ' 897 and (c) E ' 1374.
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Figure 33(c) shows a well developed cavitation domain at E ' 1374. The cavitation

grows then at a slower pace than at low values of E , and at E ' 1586 reaches a maximum

in size and does not grow further.

5.11 Local pressure

To gain insight into the development of cavitation we investigate the local pressure through-

out the system. Figures 34(a)-(c) illustrate maps of the local pressure in a x-y cross section

of the system. The local pressure can be obtained rewriting Eq. 4.109 in a local form

P(r) =
m

V

〈N−1∑
i=1

(vi − v)⊗ (vi − v) +

N∑
j=i+1

rij ⊗ Fij

 δ(ri − r)

〉
. (5.118)
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Figure 34: same as Fig. 33 but for the local pressure.
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The system at rest exhibits a homogeneous local pressure, as one would expect (not

shown here). From the map in Fig. 34(a) it is clear that this applies as well for small

Ericksen numbers E ' 65. However, for E ' 897 at the onset of cavitation this situation

changes drastically [see Fig. 34(b)]. On the upstream side of the pillar the local pressure

exhibits very high values. This is due to the fact that the cylindrical pillar acts as an

obstacle and takes up space. Therefore, the same amount of fluid is forced through a much

smaller area compared to the rest of the system. Hence, locally the pressure builds up just

before the cylindrical pillar. This is accompanied by a pressure drop on the downstream

side behind the cylindrical pillar. After passing the constriction the fluid is now free to

move and thus the local pressure decreases. This effect becomes even more drastic if flow

is further increased as shown in Fig. 34(c). Notice that for a gas the contribution of the

internal forces in Eq. (5.11) becomes negligible. Therefore, the pressure within the cavity

is equivalent to the corresponding ideal gas pressure, P = NkBT/V .
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Figure 35: (a) Dependence of the local pressure at distance 0.7 behind the surface of the
cylindrical pillar in the direction of flow along the y-axis for E ' 65 ( ),
E ' 583 ( ), E ' 786 ( ), E ' 897 ( ). (b) Same as (a) for E ' 65 but
for 0.7 ( ), 1.3 ( ), 1.7 ( ), 2.7 ( ) behind the surface of the cylindrical
pillar in the direction. (c) Sketch of the section behind the cylindrical pillar to
illustrate the different positions of measuring the local pressure in (b).
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To further explain the cavitation process we study the local pressure on a cross

section in the y-z plane at distance 0.7 behind the cylindrical pillar in the direction of

flow. For reasons of symmetry and to improve statistics the values of the local pressure

have been averaged along the z-axis and are presented along the y-axis in Figs. 35(a) and

(b). To exclude confinement effects regions close to the planar substrates are excluded

from the calculation.

Figure 35(a) focuses on the specific region where the cavitation is observed for strong

flow, meaning high Ericksen numbers. For small flow velocities the local pressure behind

the cylindrical pillar is on average constant along the y-axis. If flow is increased one can see

from the plot in Fig. 35(a) that the local pressure starts decreasing behind the cylindrical

pillar. At the threshold value for cavitation, E ' 786, the local pressure attains negative

values. Hence, molecules in this area are pushed out. This occurs just before a cavitation

bubble develops. As soon as a cavitation bubble is visible (E ' 897) the local pressure in

that area is equal to the ideal gas pressure, for reasons explained above.

The oscillations visible in Fig. 35(a) for E ' 65 are due to the layering effects

[150, 151] of the molecules close to the pillar. This leads to changes in pressure in this

region located at the center of the y-axis. If the local pressure is measured further away

from the surface of the cylindrical pillar layering effects become less prominent and the

minimum in local pressure at y = 0 vanishes [see Fig. 35(b)]. From a molecular point

of view the local pressure oscillations close to the surface of the cylindrical pillar support

the nucleation of a cavitation bubble. This is consistent with the fact that hydrodynamic

cavitation requires a nucleation site such as a surface.

5.12 Local velocity

Figures 36(a)-(c) show maps of the local velocity in x-direction in a x-y cross section of the

system. For the system at rest there is no preferred direction of motion of the molecules

(not shown here). Hence, the local velocity is on average zero across the entire system.

At small flows, E ' 65, the local velocity is still rather low [see Fig. 36(a)]. This can

also be seen from the random orientations of the arrows representing the direction of flow

in Fig. 36(a). At the onset of cavitation, E ' 897, there is a clear net flow present [see

Fig. 36(b)]. Additionally, Fig. 36(b) reveals that the local velocity in front of and behind

the cylindrical pillar in the direction of flow is much lower than in the areas next to the

pillar. This becomes even more evident from Fig. 36(c) where E ' 1374 and the cavitation

is much more developed. The local convective velocity is set to zero in the cavitation area

due to the lack of reasonable statistics in the gaseous phase.
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Figure 36: (a)-(c) Maps of the magnitude of local velocity in the x-y plane located at
z = 0 [see attached color bar]. The circle represents the cylindrical pillar and
the arrow above each column indicates the direction of flow. (a) E ' 65, (b)
E ' 897 and (c) E ' 1374. The small arrows in the maps give the local direction
of flow.

5.13 Cavitation volume

To gain further insight into the evolution of the cavitation and to characterize the cav-

itation bubble we calculate its volume. From the density calculations in Fig. 33(a)-(c)

we can estimate the volume Vc by adding up the volume of all cubes for which the local

density ρl ≤ 0.15. In addition to the liquid crystal system described so far we have per-

formed additional molecular dynamics simulations for the same liquid crystal model in the

isotropic phase (T = 1.10). The geometry of the microfluidic setup remains unchanged.

The comparison of these two fluids will shed light on the influence of orientational ordering

in the cavitation process.

Figure 37 shows how the volume Vc of the cavitation bubble depends on the Reynolds
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Figure 37: Cavitation volume Vc against Reynolds number R for the nematic liquid crystal
at T = 0.88 (H), at T = 0.90 (•), and at T = 0.92 (�), and for an isotropic
liquid crystal (�). The inset shows the critical Reynolds number Rcr against
the average nematic order parameter S̄.

number R, where Rcr denotes the cavitation inception. The major difference between the

two systems is their viscosity η. The nematic liquid crystal (η ' 37) is more viscous

than the isotropic liquid crystal (η ' 21). From the definition of R then follows that the

nematic liquid crystal cavitates at lower critical Reynolds number Rcr than the isotropic

liquid crystal. That fluids with lower viscosity require a larger Rcr to cavitate is consistent

with microfluidic experimental observations [see App. C] that de-ionized water flowing at

the same R as the liquid crystal did not exhibit cavitation. Furthermore, microfluidic

experiments with de-ionized water by Mishra et al. [77–79] require a much larger Rcr to

cavitate.

For both nematic and isotropic liquid crystals we observe a steep growth of the

cavitation bubble after its formation followed by a saturation to a plateau. We have

verified that the height of the saturation plateau is due to the finite size of the simulation

box and therefore is system-size dependent. Notice also that the plateau value of the

cavitation bubble depends on the nature of the fluid. We ascribe this behavior to the

structural differences, e.g., ordering in the nematic liquid crystal, among the two fluids.

Figure 37 shows additionally the cavitation process for the nematic liquid crystal

at T = 0.88 and T = 0.92, which exhibit a higher (η ' 40) and lower (η ' 34) viscosity,

respectively, than what we considered above. One can see that the qualitative behavior

is retained but there are small quantitative differences in growth and saturation of the

cavitation bubble: the lower the temperature, and hence the higher the viscosity, the

larger is the volume of the bubble. However, also the nematic order is different from the
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nematic liquid crystal at T = 0.90. The inset of Fig. 37 shows the dependence of Rcr on

the average global nematic order parameter S̄. For values of S̄ in the nematic phase the

critical Reynolds number Rcr decreases linearly with S̄, that is, cavitation is enhanced by

stronger nematic alignment. This qualitative measurement could be a first step towards

understanding the influence of long range ordering in high speed microfluidic systems.
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Figure 38: Dependence of the cavitation volume Vc on the inverse Euler number C−1
E for

the nematic liquid crystal (•), and isotropic liquid crystal (�)).

It might be more suitable to use a dimensionless number which is independent of

the viscosity of the model system. Figure 38 shows the cavitation volume Vc in terms of

the inverse Euler number CE [see Sec. 2.5]. One can see very nicely that the ratio between

the pressure gradient and the kinetic energy per volume is decisive for the development

of a cavitation bubble. Independent of the model system cavitation occurs at the same

Euler number CE. Cavitation first occurs in the experiments [see App. C] for CE ≈ 0.5.

5.14 Local nematic order

Figure 39 shows maps of the magnitude of the local nematic order parameter for the

liquid crystal in the nematic phase. The homeotropic anchoring at the substrates and

the cylindrical pillar causes the director field to bend in regions close to the surface of

the cylindrical pillar. At the intersections of substrate and pillar defect topologies arise,

symmetrically placed at the top and bottom walls [see Fig. 39(a)]. The defects are due to

the conflict caused by the homeotropic anchoring at the pillar and the substrate. Thus,

two separate loops form around the pillar. This is comparable to the defect topology in

Fig. 4(a) of Ref. [2] obtained from microfluidic experiments.
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Figure 39: (a)-(c) Maps of the magnitude of local nematic order in the x-z plane located
at y = 0 (see attached color bar). The cylindrical gray area represents the
cylindrical pillar and the arrow above each plot indicates the direction of flow.
Small dashes in the maps represent the local director field. The length of a dash
represents its three-dimensional orientation: shorter dashes have an orientation
closer to the normal to the plane of the map. (a) E ' 130, (b) E ' 675 and (c)
E ' 786. (d)-(f) Same as (a)-(c) but in the x-y plane located at z = 0.

From Fig. 39(d) it is evident that at the x-y-mid-plane, located at z = 0, no defect is

visible. The director field remains stable for small Ericksen numbers. However, for E ≥ 675

a single loop around the pillar stabilizes in the x-y-mid-plane. The loop is deformed and

extended towards the downstream direction along with the flow [see Figs. 39 (b) and (e)].

Additionally, there is a growing region of flow alignment behind the cylindrical pillar in

the downstream direction. Again the director field is very similar to the experiments [see

Fig. 4(c) of Ref. [2]]. Upon increasing Ericksen number one can see from see Fig. 39 (c) that

the loop becomes more pronounced at the x-y-mid-plane in front of the pillar. Moreover,

the loop is stretched further towards the downstream direction. However, the overall shape

of the defect topology, especially behind the pillar in downstream direction, is increasingly

smeared and blurred [see Fig. 39 (f)]. One can argue that the loop becomes unstable like
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in the experiments [see Fig. 4(d) of Ref. [2]]. In our simulations it was not possible to

make further observations on this matter because for higher Ericksen numbers cavitation

occurs behind the pillar in the downstream direction.
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Figure 40: Same as Fig. 39 but for the isotropic phase (T = 1.10). (a) Fe = 1.80, (b)
Fe = 3.60 and (c) Fe = 4.80.

Figure 40 shows maps of the magnitude of the local nematic order parameter for

the liquid crystal in the isotropic phase (T = 1.10). For the isotropic phase it is not

straightforward to obtain E because the elastic constant K cannot be calculated in the

same fashion [see Sec. 1.8]. Therefore we refer to the driving force Fe in order to classify

the strength of the flow [see Tab. 1]. The system at rest exhibits low nematic order and

a disordered director field throughout the system, characteristic for the isotropic phase

(not shown here). This remains true even under flow for a wide range of the driving force

Fe. However, at Fe ≥ 1.80 the nematic order in front of the pillar increases and the local

directors align [see Figs. 40(a) and (d)]. As one can see in Figs. 40 (b) and (e) as well as (c)

and (f) at even higher Fe nematic order continues to rise and a nematic phase develops in a

horseshoe-shaped area around the cylindrical pillar. Prost and de Gennes [152] proposed

that flow can restore the anisotropy within a liquid crystal. Hence, a phase transition
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from an isotropic to a nematic phase occurs. Our simulations support this idea although

the phase transition seems mainly pressure driven. The location of the embedded nematic

phase is correlated with the strong increase in local pressure in this area. Interestingly, the

director field tends to be aligned more parallel to the velocity field rather than according

to the homeotropic anchoring at the substrates and at the cylindrical pillar [see Figs. 36(b)

and (c)]. Hence, the nematic region is somewhat flow-aligned [see Figs. 40 (e) and (f)].
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6 Conclusions and Outlook

6.1 Effects of flow on topological defects

We study the defect topologies that arise around a homogeneous colloid, with planar or

perpendicular anchoring, dispersed in a nematic liquid crystal. This leads to the well

known Boojum defect and Saturn ring defect. We focus on the effect of hydrodynamic

flow on these defect structures. The flow pertains to the laminar flow regime, meaning

low Reynolds numbers. However, the regime of Ericksen numbers is rather high. Thus,

the system of interest is dominated by viscous over elastic forces.

In our calculations we find that for our model system the elastic constants in the

Frank free energy are equal within statistical precision. This is because the anisotropy of

our liquid-crystal model stems from the interaction rather than the elongated shape of its

molecules. The liquid-crystal molecules have a rather small aspect ratio. Therefore, the

bend configuration is energetically roughly equal to the splay and twist configuration for

liquid-crystal molecules of nearly spherical shape.

We employ nonequilibrium molecular dynamics simulations to study the evolution

of topological defects under flow. In order to obtain meaningful results we employ a novel

Galilean-invariant thermostat [66]. The thermostat conserves momentum locally and is

completely deterministic which makes it well suited for computational studies.

The question of the direction of movement of defect topologies under flow condi-

tions is unsettled throughout the literature and has been tackled by various theoretical

approaches [59–64]. Our extensive nonequilibrium molecular dynamics simulation predict

a downstream movement of all defect topologies along with the direction of flow, which is

in agreement with the only available experimental study [1]. We find that the upstream

lobe of a Boojum defect is swept away downstream, while the downstream lobe grows in

size with increasing flow. The Saturn ring defect is convected downstream and deformed

into a stomal defect. Again, this agrees very nicely with experimental observations [1].

In more detail we focus on ring-like defect structures around a homogeneous colloid.

Hence, we study Saturn ring defects of different size under flow conditions quantitatively.

We pay particular attention to the interaction range between liquid-crystal molecules and

the colloidal particle. Generally speaking, the length of the ring-shaped disinclination line

increases with increasing interaction range. The length of the disinclination line can be

extracted from suitable projections of the simulation data.

The position of the ring defect depends strongly on the strength of the flow. If

the flow is turned on defects move downstream while maintaining their distance from

the colloid’s surface. Thus, the disclination rings shrink. Our simple geometric analysis

enables us to predict the transition from a Saturn ring defect to a hedgehog defect due
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to flow. We estimate Reynolds and Ericksen numbers for the transition. Although the

estimated Ericksen numbers might be in the scope of computer simulations our calculations

show that for small colloids a hedgehog defect is very difficult to obtain. One would need

to inject a lot more energy into to the system. Hence, for colloids on the nanometer scale

the Saturn ring defect is energetically very stable.

Furthermore, the curvature of the ring defect also depends on the strength of the

flow. In the immediate vicinity of the colloid the velocity field becomes rather inhomoge-

neous. This is due to the influence of the substrates. The difference in velocities leads to

a difference in the amount of deflection of the defect around the colloid. Thus, the ring

defect is deformed compared with its equilibrium shape. The deformation of the Saturn

ring defect due to flow is in very good agreement with experimental data [1].

Our simulations suggest that the elastic deformations of the ring-shaped defects de-

pend on the interaction range between liquid-crystal molecules and colloid as well. Smaller

ring defects are less deformed due to the fact that their curvature is already large and more

energy would be necessary to further bend the ring defect. Whereas bigger ring defects

are more likely to experience an elastic deformation of the ring shape. The deformation

can be referred to as elastic because its length scale is much bigger than the molecular

scale.

Additionally, we present the first study of defect topologies arising around a Janus

colloid under hydrodynamic flow. Our simulations show that a Boojum defect can be

destroyed when facing the upstream direction. Furthermore, the Saturn ring defect is de-

formed into a stomal defect comparable to the singly Saturn ring defect for a homogeneous

colloid.

The question of the direction of movement of the defect topologies under hydrody-

namic flow seems settled. Additionally, the change in shape of defect topologies due to

flow is well examined. However, further investigations quantifying the elastic response of

defect topologies to hydrodynamic flow could complete the physical picture. Our simu-

lations indicate elastic behavior of defect topologies and linking those findings to earlier

theoretical studies [147, 149, 153] might be of great value. Furthermore, the examination

of more complex defect structures under flow could be intriguing. Simulations could in-

volve either more colloidal particles or a more complicated host phase, such as a chiral

liquid crystal.
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6.2 Hydrodynamic cavitation of anisotropic fluids

Utilizing similar nonequilibrium molecular dynamics simulations, but exploring higher

Ericksen numbers, we study hydrodynamic cavitation of anisotropic fluids. However, sim-

ulations are still situated in the laminar flow regime, meaning low Reynolds numbers.

We investigate the physical foundations of cavitation inception and growth of a nematic

liquid crystal flowing past a cylindrical pillar. Additionally, we compare our results with

the corresponding isotropic liquid crystal. Our simulations are in agreement with recent

microfluidic experiments [see App. C].

Through measurements of the local density we are able to quantitatively capture the

inception and evolution of the cavitation bubble. We establish a critical Reynolds number

to measure the threshold for cavitation inception. Interestingly, the critical Reynolds

number for a nematic liquid crystal is up to 50% lower than in isotropic fluids.

Evidently, the cavitation inception of any fluid is strongly linked to its viscosity.

However, our study suggests that structural properties of ordered fluids play a role as

well. We find that the critical Reynolds number decreases approximately linear with the

global nematic order parameter demonstrating that long range ordering has a quantitative

effect on the cavitation inception. Measurements of the growth in cavitation volume reveal

that the qualitative behavior of isotropic liquid crystals is similar to the one of anisotropic

fluids, for example, the rate of growth. However, the size of the cavitation domain at large

Ericksen numbers is markedly different. This further adds credibility to the assumption

that structural differences, such as long range order, affect the growth of cavities due to

hydrodynamic flow.

Measuring the local pressure is ideal to clarify the physical basis of the cavitation

inception. In the simulation cell an area restriction, such as a cylindrical pillar, causes

a local drop in pressure. If the local pressure reaches negative values the fluid begins

to cavitate in this particular area. Furthermore, focusing on the designated position of

cavitation inception behind the cylindrical pillar reveals the molecular origin. Well-known

layering effects on the surface of the cylindrical pillar cause local pressure oscillations.

Hence, the formation of a cavitation bubble is favored, or even nucleated, through a

minimum in local pressure caused by these oscillations. Thus, hydrodynamic cavitation is

always favored in areas where the fluid is in contact with a surface.

Furthermore, we find very good agreement with earlier microfluidic experiments [2]

at smaller Ericksen numbers before cavitation initiates. Our nonequilibrium molecular

dynamics simulations are able to reproduce the structural changes in the nematic liquid

crystal at different Ericksen numbers.

Our study is a first step towards understanding cavitation in anisotropic fluids.

Further studies could follow up on these findings and explore long range order as a control

parameter for driving cavitation in detail. Furthermore, exploring different geometries
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could be insightful. In order to achieve this one could either vary the design of the

simulation cell or the shape of the restriction. In general, hydrodynamic flow in anisotropic

fluids at high Ericksen numbers is rather unexplored and opens a vast range of possibilities

for new research topics.
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A Free energy

In this appendix we derive the first order expression of the free energy in a perturba-

tive scheme, where the range of the fluid-colloid interaction is taken as the expansion

parameter. Thermodynamic stability of the system can be cast in terms of its free energy

F = −β−1 lnQ, (A.119)

where β ≡ 1/kBT (kB is Boltzmann’s constant and T the temperature), and Q is the

partition function of the canonical ensemble [134]. For our system, Q may be cast as [123]

Q =
1

2NN !

(
I
m

)N 1

Λ5N
Z. (A.120)

In Eq. A.120, the factor 1/
(
2NN !

)
takes account of the head-tail symmetry of the molecules

in the host phase [see Sec. 3.2] and their indistinguishability, I and m are their moment

of inertia and mass, respectively, Λ =
√
βh2/2πm is the thermal de Broglie wavelength

(h Planck’s constant) and Z the configurational integral

Z =

∫∫
dR dΩ exp [−βΦ (R,Ω)] , (A.121)

where we introduce shorthand notations R ≡ {r1, r2, . . . , rN} and Ω ≡ {ω1, ω2, . . . , ωN}.
To estimate βF we apply perturbation theory following ideas originally proposed

by Zwanzig more than half a century ago [134, 154]. We split Φ into two contributions

according to

Φ = Φ(0) + Φ(1) (λ) , (A.122)

where the separation is made such that the configurational potential energy of a reference

system Φ(0) is independent of the inverse Debye screening length λ of the fluid-substrate

interaction whereas a perturbational contribution Φ(1) is defined which depends on λ

explicitly.

A couple of comments apply at this stage. First, we remind ourselves that we

seek to investigate the dependence of the free energy on the range of the fluid-colloid

attraction. Second, to finally arrive at computationally tractable expressions the colloid

needs to be present in some form already in the reference system. Hence, we cannot take

Φ(0) = Φff + Φfs such that the entire fluid-colloid interaction is part of Φ(1).

We could split ϕfc in Eq. 3.69 into repulsive and attractive parts and let repulsive

interactions be included in Φ(0) whereas attractive ones are accounted for by Φ(1). How-
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ever, this naive approach has a major drawback. Because a1 in Eq. 3.70 depends on λ so

would Φ(0) which contradicts Eq. A.122 and therefore this choice is unsuitable.

Fortunately, one realizes from the plot of ϕfc [see Fig.11] that over the range of λ’s

relevant to our study, a variation of λ mainly affects the range of fluid-colloid attractions

whereas the steepness of the repulsive part of ϕfc depends only marginally on λ. Therefore,

we replace ϕfc in Eq. 3.69 by

ϕ′fc (ri, ωi; r0, λ) = ϕhs (ri; r0) + ϕfc (ri, ωi; r0, λ) , (A.123)

where

ϕhs (ri; r0) =

{
∞, ri < r0 + σ

0, ri ≥ r0 + σ
(A.124)

is a purely repulsive hard-sphere fluid-colloid background potential. This choice permits

us to introduce

Φ(0) = Φff + Φfs +

N∑
i=1

ϕhs (ri; r0) , (A.125)

whereas Φ(1) (λ) = Φfc [see also Eqs. 3.59, 3.64, and 3.68]. Hence, Φ(0) and Φ(1) (λ) now

comport with Eq. A.122. In Eq. A.124 we have chosen the effective hard-sphere radius

r0 +σ rather than the hard-core radius of the colloid because r0 +σ is the same irrespective

of λ on account of Eqs. 3.70 and 3.71.

Within the framework of Zwanzig’s perturbation theory [134, 154] it is then straight-

forward to show that

Z = Z(0)
〈

exp
[
−βΦ(1) (λ)

]〉
0
, (A.126)

where Z(0) is the configuration integral associated with the reference system and 〈. . .〉0
is an average taken in the canonical ensemble over microstates generated in the reference

system. By inserting this expression into Eq. A.121 it follows from Eqs. A.119-A.120 that

F (λ) = F (0) + F (1) (λ), where the two contributions on the right-hand side are the free

energies of the reference system and of the perturbation.

Expressing now F (1) as a power series in terms of β and expressing exp
[
−βΦ(1) (λ)

]
as a similar series in terms of βΦ(1) we obtain a successively more complex approximation

to F (1) by comparing in both expansions terms of equal power in β. Here we will consider

only the lowest order term proportional to β itself for which

F (1) (λ) = F (λ)−F (0) =
〈

Φ(1) (λ)
〉

0
, (A.127)

which can easily be computed in Monte Carlo simulations.
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B Monte Carlo simulations

To compute the perturbational free energy we employ Monte Carlo simulations. Monte

Carlo is the preferred simulation technique because hard-core repulsive interactions [see

Eq. A.123] are problematic in time-driven molecular dynamics simulations. Monte Carlo

simulations employ a conventional Metropolis algorithm and are carried out in the canoni-

cal ensemble using precisely the same system sizes and other thermodynamic conditions as

the ones employed in nonequilibrium molecular dynamics simulations [see Sec. 5.1]. The

generation of a Markov chain of configurations is governed by Φ(0). An estimate of F (1) is

then easily accessible by averaging Φ(1) over this Markov chain. Ensemble averages have

been taken over 5.0 × 104 Monte Carlo cycles. During a Monte Carlo cycle it is decided

with equal probability whether to randomly displace the center of mass of a sequentially

chosen molecule by a small amount or to rotate it by a small angle increment about a

randomly chosen axis. Both processes are realized through a Metropolis algorithm [119].
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C Microfluidic experiments on hydrodynamic cavitation

Here we present results from microfluidic experiments which are complementary to the

nonequilibrium molecular dynamics simulations on hydrodynamic cavitation in a nematic

liquid crystal [see Sec. 5.9]. We will compare the experimental findings to the molecular

dynamics simulations. Details regarding the materials and methods applied can be found

in Ref. [155].

Figure C.1: Microfluidic confinement. (a) Microchannel with micron-sized cylindrical pil-
lar fabricated using surface bonding of PDMS and glass components. The
orthographic projection shows a linear channel of a rectangular cross-section
with the integrated micropillar. x, y, and z coordinates denote the flow di-
rection of the nematic liquid crystal, the transverse direction of the channel
(width), and the channel depth respectively. The blue arrow heads show the
flow path. (b) Microchannel projection showing the cross-sectional view (y-z
plane) with r, w, and d being the pillar radius, channel width and depth,
respectively.

Microfluidic devices [see Fig. C.1], possessing homeotropic surface anchoring, were

initially filled with 5CB in the isotropic state, and allowed to equilibrate to nematic phase

at room temperature. Thereafter, the volume flow rate Q (0.01 µl/h < Q < 20 µl/h) was
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progressively increased to detect the first appearance of the microscopic cavitating domain.

For a typical channel with dimensions, w = 100 µm, and d = 15 µm, the corresponding

flow speed, v, within the microchannel varied between ≈ 2 µm/s and 4 mm/s. Thus, for

the nematic liquid crystal 5CB having bulk dynamic viscosity, η ≈ 50 mPas [155], the

characteristic Reynolds number R = ρvl/η ranged between 10−6 and 10−3, which, from

a hydrodynamic point of view, signifies the Stokes flow regime. Here, ρ ≈ 1025 kg/m3

is the material density, and l = 4wd/2(w + d) ≈ 26 µm is the hydraulic diameter of the

rectangular microchannel. The single elastic constant K = 5.5 pN for nematic 5CB. In

the experiments, the corresponding values of the Ericksen number E ranged from ≈ 0.5 to

850.

The first appearance of the microscopic cavitation domain, 5CB in vapor phase,

was detected at E ≈ 200. Note that, as the streamlines of the flowing 5CB divide upon

approaching the micropillar, both E and R first increase locally, reach maxima at the

point of minimum separation between the pillar surface and the channel wall, and finally

decrease back to their original values as the flows converge downstream of the pillar. The

local velocity at the constriction in Fig. C.2(a) (minimum distance of 10 µm between the

pillar surface and the channel wall) is calculated from the conservation of mass. With an

average flow speed of 800 µm/s (E = 200), the velocity reaches a maximum of 4000 µm/s

at the constriction, which corresponds to E = 945. This value is intriguingly close to

Er = 897 found in the simulations. Notice, that the local Reynolds number still remains

within the Stokes regime with a value of Reloc ≈ 0.1. These observations lead to the

conclusion that despite the different length scales in experiment and simulation both are

working under equivalent hydrodynamic conditions which is important because cavitation

depends on the hydrodynamic conditions.

As shown in Fig. C.2(a), the vapor phase localizes at the hydrodynamic stagnation

point downstream of the micron-sized pillar. Due to the high Ericksen number, the flowing

nematic bulk is readily filled with singular topological defects [156]. When disclination

lines are observed in white light, they scatter light and optically appear as dark lines. Here

such disclination lines were observed in the bulk of the nematic liquid crystal flowing past

the micron-scale obstacle using video microscopy. By means of image analysis technique

one captures the minimum intensity from each frame acquired from the video, and average

them over all the frames of the video. Thus, a time-averaged intensity map of the discli-

nation lines flowing past the obstacle is obtained. This information was used as a proxy

for the streamlines of the nematic flow, since disclinations - both singular and escaped

structures - are stretched due to the viscous drag, and in general, appear as straight lines

within the flow [157].

As an example, in Fig. C.2(c), the downstream hydrodynamic stagnation point is

located from such a minimum intensity projection of the light scattered due to the flowing

disclination lines, indicated by the red arrow head. Numerous, freely flowing disclinations
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Figure C.2: Cavitation in nematic liquid crystal, 5CB, flowing past a micron-sized pillar.
(a) Polarized optical microscopy and (b) white light micrograph show steady
state cavitation domain. Right panel: Magnified projection of the cavitating
domain. (c) Minimum intensity projection of the scattered light over time due
to flowing disclination lines. The disclinations were used to trace the stream-
lines of the liquid crystal flow past the micropillar. The cavitating domain
is locally stabilized at the hydrodynamic stagnation point (indicated by the
red arrow head) downstream of the micron-sized pillar. For the micrographs
shown here, the pillar diameter is 2r = 80 µm, placed within a 100 µm wide
and 15 µm deep microchannel. (d) Map of the local nematic order parame-
ter in proximity of the cavitation domain obtained from molecular dynamics
simulations (see attached color bar). The area of solid red color correspond-
ing to vanishing nematic order represents the cavitation. Small dashes in
the maps represent the local director field. The length of a dash represents its
three-dimensional orientation: shorter dashes have an orientation closer to the
normal to the plane of the map. (e) Magnified view of the cavitating domain
observed between crossed polarizers. The intensity of the transmitted light
(normalized by the maximum intensity) is measured along the dashed lines:
red, blue and green, and plotted in (f). For each line, the maximum value of
the normalized intensity (bright regions) is recorded outside the cavitation do-
main (bulk director is oriented at 45◦ relative to the polarizers). At the apex
of the cavitation domain and further downstream, the director is oriented par-
allel to the flow direction which appears dark between the crossed polarizers.
The gas filled cavitation domain also appears dark (minimum intensity) due
to the total extinction of transmitted light.
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- the director structure about each defect line corresponds to either ±1/2 or ±1 topological

charge - spontaneously emerge at high Ericksen numbers [156], and follow the streamlines

of the liquid crystal flow past the micropillar. The overall bulk director field is aligned due

to the imposed flow field (nematic 5CB is a flow aligning liquid crystal). Between crossed

polarizers [indicated by the double-headed crossed arrows in Fig. C.2], the cavitation

domain has a dark visual appearance due to complete extinction of the transmitted white

light as it passes first, through the polarizer, and then the analyzer. The interface between

the vapor and liquid phases of 5CB are distinctly identified by visualizing the domain in

white light [see Fig. C.2(b)]. No cavitation was observed due to flows with E < 200. The

flow-director interplay in this case agreed very well with those described previously by

Sengupta et al. [2].

Figure C.2(d) shows a map of the local nematic order parameter in proximity of

the cavitation domain obtained from molecular dynamics simulations. The molecular

dynamics simulations predict homeotropic alignment at the fluid-vapor interface.

Figure C.2(e) presents a magnified view of the cavitating domain observed between

crossed polarizers. When the intensity of the transmitted light (normalized by the max-

imum intensity) is plotted along three cross sections of the cavitation domain (red, blue

and green dashed lines in Figure C.2(f)), one observes that the maximum value of the

normalized intensity (bright regions) is located just outside the cavitation domain. These

regions of maximum intensity correspond to the bulk director orientation of 45◦ relative

to the polarizers. The director gradually bends along the flow direction, finally orients

parallel to the flow direction, as observed closed to the apex of the cavitation domain and

further downstream. This appears dark between crossed polarizers as the director is par-

allel to one of the polarizers. A minimum intensity is also observed within the cavitation

domain due to the total extinction of the white light passing through the gas phase between

crossed polarizers. The intermediate values of the normalized intensity at the cavitation

interface suggest that the molecules are weakly homeotropically aligned at the interface,

which is in agreement with the molecular dynamics simulations. Measurements on 5CB

confirm that the molecules align homeotropically to the fluid-vapor interface [1, 158, 159].

Furthermore, it is known that liquid crystal molecules with strong dielectric anisotropy,

such as 5CB, align homeotropically at the liquid crystal-air interface [160]. Therefore, the

molecular dynamics simulations correctly capture this behavior which lends confidence to

the predictions of the simulations about the underlying physics.

Flow of de-ionized water at the same Reynolds numbers did not result in cavitation,

which suggests that the complex anisotropic nature of the nematic 5CB could underline

the driving mechanism in the system.

Upon appearance, the volume of the cavitation domain increases over time, and

typically within few hours (4 h − 7 h) of uninterrupted steady state flow of the nematic

liquid crystal 5CB, saturates into a constant volume. Figures C.3(a) and (b) show POM
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Figure C.3: Cavitation domain growth. (a) Polarized optical micrographs represent the
growth of the cavitation volume over time. The total time elapsed is approx-
imately 4 h. The minimum intensity regions (dark appearance) are observed
either due to the extinction of the transmitted light as it passes through the
vapor phase (in the cavitation domain), or through the bulk nematic phase
aligned parallel to one of the polarizers. The two cases are distinguished using
a λ-plate. (b) Introduction of the λ-plate confirms the absence of the nematic
phase in the cavitation domain, and distinguishes it from the bulk nematic
aligned parallel to the polarizer. (c) Cavitating domains were observed upon
liquid crystal flow past different obstacle geometries: semi-circle (left) and
square (middle); and at different channel depths (right, d ≈ 10 µm). Shallow
channels require high E numbers for cavitation to be triggered.
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micrographs of a developing cavitating domain over time at E ≈ 210. The total elapsed

time, from the first detection to saturation volume, is approximately 5 h. The duration

to attain a steady state cavitation volume varied over multiple experiments, and, qualita-

tively, showed a dependence on the roughness of the pillar surface, and the vertical depth

of the microchannel. For a given Ericksen number, the time taken to attain saturated

domain volume was higher in shallow channels (d < 12 µm), compared to the deeper

channels. However, once formed, the cavitation domain in a shallow channel was observed

to be stable over longer times, possibly due to the pinning of the vapor-liquid interface

at the top and bottom surfaces of the microchannel. The POM micrographs with λ-plate

(Fig. C.3(b)) clearly show that the absence of the nematic phase within the cavitation

domain, and outlines the boundary between the gas and liquid phases in the system. The

emergence of the cavitating domain was reproducibly observed also at the downstream

stagnation points of different obstacle geometries: semi-circle and square [see Fig. C.3(c)].

At very high Ericksen numbers, E > 500, the domain volume shrinks, and is temporally

unstable. While high flow speed (high R) should favor the onset of cavitation, one can

speculate that the resulting high shear at the vapor-liquid interface establishes a trade-off

by disintegrating the saturated volume into minuscule bubbles, finally advecting them

downstream.
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[116] C. Casagrande and M. Veyssié. Janus beads-realization and 1st observation of in-

terfacial properties. C. R. Acad. Sci. Paris, Ser II, 306:1423, 1988.

[117] J. Yan, M. Bloom, S. C. Bae, E. Luijten, and S. Granick. Linking synchronization

to self-assembly using magnetic janus colloids. Nature, 491:578, 2012.

[118] J. Hu, S. Zhou, Y. Sun, X. Fang, and L. Wu. Fabrication, properties and applications

of janus particles. Chem. Soc. Rev., 41:4356, 2012.

[119] M. P. Allen and D. J. Tildesley. Comupter Simulations of Liquids. Oxford University

Press, Oxford, 1987.

[120] S. Hess and B. Su. Pressure and isotropic-nematic transition temperature of model

liquid crystals. Z. Naturforsch., 54a:559, 1999.

[121] H. Steuer, S. Hess, and M. Schoen. Pressure, alignment and phase behavior of a

simple model liquid crystal. a monte carlo simulation study. Physica A, 328:322,

2003.

97



References

[122] H. Steuer, S. Hess, and M. Schoen. Phase behavior of liquid crystals confined by

smooth walls. Phys. Rev. E, 69:031708, 2004.

[123] M. Greschek, M. Melle, and M. Schoen. Isotropic-nematic phase transitions in

confined mesogenic fluids. the role of substrate anchoring. Soft Matter, 6:1898, 2010.

[124] M. Greschek and M. Schoen. Frustration of nanoconfined liquid crystals due to

hybrid substrate anchoring. Soft Matter, 6:4931, 2010.

[125] M. Greschek and M. Schoen. Finite-size scaling analysis of isotropic-nematic phase

transitions in an anisometric lennard-jones fluid. Phys. Rev. E, 83:011704, 2011.

[126] M. Greschek and M. Schoen. Orientational prewetting of planar solid substrates by

a model liquid crystal. J. Chem. Phys., 135:204702, 2011.

[127] J. G. Gay and B. J. Berne. Modification of the overlap potential to mimic a linear

site-site potential. J. Chem. Phys., 74:3316, 1981.

[128] S. Giura and M. Schoen. Density-functional theory and monte carlo simulations of

the phase behavior of a simple model liquid crystal. Phys. Rev. E, 90:022507, 2014.

[129] P. I. C. Teixeira and M. M. Telo Da Gama. A model nematic liquid crystal revisited:

some new phase diagrams from density-functional theory. Mol. Phys., 86:1537, 1995.

[130] Y. Reznikov, O. Ostroverkhova, K. D Singer, J. H. Kim, S. Kumar, O. Lavrentovich,

B. Wang, and J. L. West. Photoalignment of liquid crystals by liquid crystals. Phys.

Rev. Lett., 84:1930, 2000.

[131] J. Shan, W. shi, L. Y. Liu, Y. R. Shen, and L. Xu. Optical control of surface

anchoring and reorientation of liquid crystals via a plasmon-enhanced local field.

Phys. Rev. Lett., 109:147801, 2012.

[132] A. A. Sonin. The surface physics of liquid crystals. Gordon and Breach, Amsterdam,

1995.

[133] H. F. Gleeson, T. A. Wood, and M. Dickinson. Laser manipulation in liquid crystals:

an approach to microfluidics and micromachines. Phil. Trans. R. Soc. A, 364:2789,

2006.

[134] D. A. McQuarrie. Statistical Mechanics. University Science Books, Sausalito, 2000.

[135] L. Verlet. Computer ”experiments” on classical fluids. i. thermodynamical properties

of lennard-jones molecules. Phys. Rev., 159:98, 1967.

[136] D. Frenkel and B. Smit. Understanding molecular simulation: from algorithms to

applications. Academic Press, San Diego, 2002.

98



References

[137] J. M. Ilnytskyi and M. R. Wilson. A domain decomposition molecular dynamics

program for the simulation of flexible molecules of spherically-symmetrical and non-

spherical sites. ii. extension to nvt and npt ensembles. Comput. Phys. Commun.,

148:43, 2002.

[138] K. Singer, A. Taylor, and J. V. L. Singer. Thermodynamic and structural properties

of liquids modelled by ’2-lennard-jones centres’ pair potentials. Mol. Phys., 33:1757,

1977.

[139] J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen. Numerical integration of the

cartesian equations of motion of a system with constraints: molecular dynamics of

n-alkanes. J. Comput. Phys., 23:327, 1977.
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