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Summary  
The last decade has witnessed considerable improvements in the molecular 

characterization of cancer. This is beginning to catalyze a shift from non-specific cytotoxic 

drugs towards targeted therapies. One of the fundamental prerequisites of such targeted 

therapeutic approaches is the ability to determine which patients are most likely to benefit 

from a particular agent. However, in many cancer types it is still a challenge to 

distinguish molecularly distinct entities. Diagnosis and classification of most cancers is 

still based on histological analysis of stained tissue sections or cells. The advent of modern 

technologies that allow global molecular profiling of individual tumors has increased the 

power to sub-classify cancers. The most celebrated examples are the sub-classification of 

breast cancers and diffuse large B-cell lymphomas (DLBCLs) using gene expression 

profiling.  

Cancer is not a disease of single molecular aberrations, but involves dysregulation of 

multiple pathways governing hallmark processes such as cell death, proliferation, 

differentiation and migration. Mass spectrometry (MS)-based proteomics measures the 

functional players in a cell, the proteins. It provides a direct way to analyze signaling 

pathways and hallmark cancer processes. The focus of this thesis is to explore the 

possibility of using state-of-art proteomics to classify very closely related tumor subtypes. 

We selected a challenging system, the two histologically indistinguishable subtypes of 

diffuse large-B-cell lymphomas, the germinal center B-cell (GCB) and the activated B-cell 

(ABC) DLBCLs.  

In the first project, the aim was to investigate whether the depth and quantitative 

accuracy attained with our MS-based proteomics platform were capable of distinguishing 

the two DLBCL subtypes. I compared the global protein expression profiles of five 

patient-derived ABC-DLBCL and GC-DLBCL cell lines each. For quantification, I 

employed the super-SILAC approach that was developed to enable accurate 

quantification of human tissue proteomes. The samples were analyzed using either a 



 

fractionation approach (six fractions per proteome) and measured on a linear ion trap 

Orbitrap mass spectrometer or a single-run approach (no fractionation) with 

measurement on a quadrupole Orbitrap instrument. I achieved robust segregation of the 

two subtypes using both platforms. Drivers of the segregation included many proteins 

known to be differentially expressed between the subtypes and I identified differential 

NF-κB signaling which is one of the oncogenic hallmarks of ABC-DLBCL, indicating that 

the analysis captured the underlying biology. 

In the second project I aimed at investigating the possibility of targeting the cell surface 

proteome to segregate the two B-cell lymphoma subtypes. I took advantage of the recently 

developed N-glyco-enrichment approach to target plasma membrane proteins. Using the 

quantitative super-SILAC approach, I was again able to segregate the cell line system, 

showing for the first time that it is possible to differentiate tumors based on profiles of 

their post-translational modifications (PTMs). Reassuringly, cell surface proteins that had 

been identified as markers of segregation in the first study were re-identified here. 

Remarkably, this analysis even pinpointed differential signaling pathways between the 

subtypes based on differences in membrane proteins. 

The last project of the thesis evaluates our proteomics platform in the characterization of 

primary DLBCL patient material. Working with tissue samples is challenging because of 

their high complexity as well as the need to extract proteins from formalin fixed paraffin 

embedded (FFPE) material, in which most tumors are stored in bio banks. In this project, I 

reached a very good depth of more than 9,000 proteins from 20 FFPE DLBCL tissues, 

sufficient to segregate the subtypes and to highlight important biological differences. 

In summary, classification of cancer patients into molecularly distinct subtypes has not 

been a straight-forward task. There is a definite need for robust and reliable tools. Using 

state-of-the-art technology, I have demonstrated successful proof-of-principle applications 

of MS-based proteomics for the classification of the difficult-to-segregate subtypes of 

DLBCL based on their protein and PTMs expression profiles. 



 

Table of Contents 

1. INTRODUCTION ........................................................................................................................ 1 

1.1 Mass spectrometry (MS)-based clinical proteomics .......................................................... 1 

1.2 Challenges in MS-based clinical proteomics ...................................................................... 3 

1.2.1 The dynamic range challenge ....................................................................................... 3 

1.2.2 The throughput challenge ............................................................................................. 6 

1.3 Developments in MS-based quantitative proteomics ....................................................... 9 

1.3.1 Sample preparation ...................................................................................................... 12 

1.3.2 Mass spectrometry instrumentation .......................................................................... 18 

1.3.3 Quantification strategies .............................................................................................. 26 

1.4. Molecular cancer diagnostics ............................................................................................ 32 

1.4.1 Types of cancer biomarkers ......................................................................................... 33 

1.4.2 Cancer molecular profiling and biomarker discovery technologies ..................... 34 

1.4.3 A success story of gene expression profiling: subtyping of diffuse large B-cell 

lymphomas based on cell-of-origin ..................................................................................... 36 

1.4.4 MS-based proteomics: a promising tool for molecular cancer diagnostics .......... 44 

2. RESULTS ..................................................................................................................................... 47 

2.1 Super-SILAC allows classification of diffuse large B-cell lymphoma subtypes by 

their protein expression profiles .............................................................................................. 47 

2.1.1 Project aim and summary ............................................................................................ 47 

2.1.2 Contribution .................................................................................................................. 48 

2.1.3 Publication ..................................................................................................................... 48 



 

2.2 N-linked glycosylation enrichment for in-depth cell surface proteomics of diffuse 

large B-cell lymphoma subtypes ............................................................................................. 63 

2.2.1 Project aim and summary ............................................................................................ 63 

2.2.2 Contribution .................................................................................................................. 64 

2.2.3 Publication ..................................................................................................................... 64 

2.3 Machine Learning Based Classification of Diffuse Large B-cell Lymphoma Patients 

by their Protein Expression Profiles ........................................................................................ 77 

2.3.1 Project aim and summary ............................................................................................ 77 

2.3.2 Contribution .................................................................................................................. 78 

2.3.3 Manuscript ..................................................................................................................... 78 

3. OUTLOOK ................................................................................................................................ 119 

ABBREVIATIONS........................................................................................................................ 123 

REFERENCES ............................................................................................................................... 124 

ACKNOWLEDGEMENTS ......................................................................................................... 133 

 

 
 
 
 
 



1. INTRODUCTION 

1 

1. INTRODUCTION 

1.1 Mass spectrometry (MS)-based clinical proteomics 

Proteins are the functional units of a cell. All cellular states in the human body, 

whether normal or altered, are ultimately dependent on protein expression and 

regulation. Knowledge of protein expression and its dynamic alterations are therefore 

paramount to understanding the biology of health and disease. About twenty thousand 

human protein-coding genes have been cataloged [1]. However, splicing isoforms as well 

post-translational modifications expand the number of different protein products or 

“proteoforms” dramatically. “Proteomics” is the study of all proteins present in a cell, 

tissue or organism, as well as their changes under different conditions. Proteomics is 

thought to have great potential for clinical applications, provided the correct tools, both 

conceptual and technological, are available. 

In-depth profiling of complex protein mixtures such as human tissues or biofluids 

requires high specificity, sensitivity and throughput. Several technologies have been 

developed for proteome analyses of clinical samples such as two-dimensional (2D) gel 

electrophoresis [2, 3], protein- and antibody-based microarrays [4-6], and liquid 

chromatography-mass spectrometry (LC-MS). Since LC-MS allows very accurate mass 

measurements of molecules in a sample as well as sensitive detection of variations in their 

composition and abundance, it has become the ‘gold standard’ for proteome 

measurements [7]. MS-based proteomics platforms offer highly sensitive analytical 

capabilities, relatively large dynamic range and reasonable throughput that make them in 

principle amenable to clinical applications. Global shotgun proteomics studies using LC-

MS of human plasma/serum were published as early as 2002. [8]. Despite the difficulties 

imposed by the large complexity of biofluids, the less invasive nature of sample collection 

makes them an attractive option from a clinical perspective. The interest in identifying 
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disease related proteins is reflected in many publications that utilized LC-MS to study 

human biofluids (see for example refs. [9, 10]).   

Clinical applications of MS-based approaches cover a broad range of biomedical 

and biological questions. The versatility of such applications is emerging in recent studies 

such as single cell analysis of blood cells using so called CytoTOF technology [11] and the 

identification of gram-negative bacilli in various clinical samples [12, 13]. Functional 

proteomics studies that aim at deciphering protein-protein interactions or deregulated 

signaling pathways involved in disease pathogenesis play an important role in 

understanding the underlying biology. Clearly, clinical proteomics has the potential to 

provide a functional understanding of diseases at the molecular level which is the key for 

advancing translational studies especially those related to personalized medicine. 

Furthermore, MS-based proteomics exclusively provides tools to investigate large-scale 

variations at the level of post-translational modifications (PTMs) whose role in crucial 

disease pathogenesis processes has become more and more evident [14]. Investigations at 

the level of PTMs hold great promise to provide new understandings of disease 

pathology. Phosphoproteomics, for instance, contributed to examining how the epidermal 

growth factor receptor (EGFR) and downstream signaling networks are involved in rapid 

cell proliferation and diffused invasion in glioblastoma [15]. In another example, MS-

based quantitative phosphoproteomics was used to compare the activation of primary 

CD4+ T cells of type 1 diabetes-prone and -resistant mice, thereby mapping signaling 

differences that may underlie the autoreactive phenotype of T cells against beta-cells [16].  

However, biomarker development remains a primary aspiration for translational 

application of MS-based proteomics. Alterations in protein expression may be early 

indicators of disease or  therapeutic targets for intervention and drug development [17]. 

Biomarker identification for early disease diagnosis, prognosis and targeted therapies is a 

broad field that may improve disease management at a personalized level. Despite this 

great potential, success remains modest due to a plethora of challenges, which will be 

further discussed in the following chapter.   
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1.2 Challenges in MS-based clinical proteomics 

Despite being one of the most sensitive analytical methods, which can handle 

thousands of proteins simultaneously, MS-based proteomics has so far had a modest 

contribution in the clinical field especially in the area of protein biomarker discovery [18]. 

There are tremendous clinical benefits from the identification of biomarkers such 

as the early, non-invasive diagnosis of severe diseases like in the cases of C reactive 

protein [19] and troponin I [20] for myocardial infarction or prostate specific antigen for 

prostate cancer [21]. In a further step, biomarkers can classify patients with the same 

disease into molecular taxonomies that are clinically distinct. For instance, chronic 

myeloid leukemia patients with the BCR–ABL fusion gene respond to treatment with the 

tyrosine kinase inhibitor, Imatinib [22], whereas patients without that biomarker do not. 

Other applications of biomarkers include monitoring the activity of diseases as well as 

directing targeted therapies or assessing response to drugs. As the benefits and the 

importance of biomarkers are widely realized, there are large efforts both in academic and 

industrial settings for the identification of novel protein biomarkers. However, the 

outcomes of such efforts and investments have not been as successful as anticipated. In 

fact, few novel protein biomarkers are used in clinical practice and the average rate of 

introduction of new protein analytes approved by the US Food and Drug Administration 

has fallen to one per year since 1998 [18]. A variety reasons account for this slow rate, 

beginning with the long and difficult steps from candidate discovery to the establishment 

of a clinical assay.   

1.2.1 The dynamic range challenge 

The type of biological material used in biomarker studies represents the first 

challenge. As the single most informative tissue for assessing an individual’s health, 

blood has been the focus of many biomarker discovery projects. Blood has been described 

as a circulating representation of all body tissues and of all processes whether 

physiological or pathological due to its direct or indirect interaction with the entire cell 
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complement of the body [23]. Additionally, blood is easily accessible. Despite all these 

favorable factors, blood is one of the most difficult biological samples to characterize due 

to its huge complexity as well as vast differences in protein concentrations. The dynamic 

range of protein concentrations in human plasma, for instance, spans over 10 orders of 

magnitude [24] (Figure 1). In addition, protein biomarker candidates may be present at 

the lower end of the plasma protein concentration range, exacerbating the problem. Such 

cases include ischemic heart disease and cancer where biomarkers are thought to 

originate from leakage or secretion from the diseased tissues and are greatly diluted in 

circulating blood [18]. The analytical challenges imposed by the complexity of blood or 

plasma counterbalance its benefits of being a comprehensive diagnostic material.  

 

 

Figure 1. Protein dynamic range in blood plasma. The range of plasma protein 
abundances is illustrated using 34 proteins representing the most to least abundant. The 
dynamic range spans over 10 orders of magnitude. Adapted from [17].  
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For the aforementioned reasons, other options for biomarker discovery have 

gained attention. This included tissues as well as alternative biofluids such as 

cerebrospinal fluid [25], bronchoalveolar lavage fluid [26], saliva [27] and urine [28]. The 

proximity of some of these fluids to the source of disease may make them a more 

concentrated pool of potential biomarkers. 

Techniques such as immunoaffinity capture have already been shown to be 

effective methods for the detection and quantification of selected protein biomarker 

candidates at picogram/milliliter levels in blood. Many disease biomarkers are thought to 

be present at this concentration level. However, while single or lowly multiplexed protein 

assays such as enzyme linked immune assays (ELISA) are well established in the clinic, 

the comprehensiveness of antibody or other protein profiling arrays makes them as yet 

unsuitable for real de novo discovery efforts. Unbiased screening requires increasing the 

‘content’ for such arrays; a daunting task that needs intensive resources and efforts. The 

limitations of these affinity approaches leave MS as the principal technology for unbiased 

discovery of novel candidate biomarkers [18]. 

Several strategies compatible with MS have been developed to address the 

dynamic range challenge and to allow biomarker discovery from the plasma proteome 

[29]. For example, antibody-based depletion of abundant proteins somewhat reduces the 

dynamic range of plasma proteins ahead of MS analysis. However, there may be 

concomitant loss of low abundance proteins like cytokines [30]. Alternatively, extensive, 

multidimensional fractionation approaches may reduce sample complexity. Since a single 

blood sample expands to many more ‘samples’ each requiring hours of instrument 

analysis time this strategy severely limits sample throughput, which represents the 

second major challenge of clinical proteomics.   
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1.2.2 The throughput challenge 

The extent of human and disease variability is one of the most pressing challenges 

in clinical studies. The biomarker discovery pipeline (see Box for a summary on the 

biomarker pipeline), for instance, is a multi-phase approach that in the first two phases - 

discovery and qualification - requires samples in the order of 10s. However, the later 

phases of verification and validation often require large scale projects that may necessitate 

patient samples in the order of 100s and even 1000s [18]. These large cohorts are necessary 

to deal with normal human genetic heterogeneity as well as disease heterogeneity. 

Statistical significance is achieved only with high throughput measurements, especially if 

effects are small. The need for such large cohorts also adds the complication of 

establishing standardized protocols for the collection and storage of the samples [17]. The 

quality of the samples collected has turned out to be a crucial factor in determining the 

outcome of biomarker studies and should be addressed carefully.    

  In the discovery phase, MS is currently the main qualifying technology for 

unbiased comprehensive screening of differential protein abundance between different 

states. What qualifies a protein to be a candidate biomarker is its consistent differential 

expression profile (abundance) between two states which in this case would be health and 

disease. At the other end of the pipeline, where large cohorts of patient samples need to 

be analyzed, targeted approaches that allow the monitoring of a sufficient number of 

candidates have been recommended [18]. The development of high-quality protein 

antibody assays is tedious, expensive and far from being straightforward. Such limitations 

would seem to argue for targeted MS-based platforms. However, a global MS-based 

approach capable of reaching the depth required to monitor interesting candidates would 

be even more ideal. This is because there is much effort involved in the optimization for 

each candidate in the targeted approach and the fact that by its nature it ignores most of 

the information in the proteome.   
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As mentioned above, the outcome of discovering and validating biomarkers by 

MS-based methods has been disappointing. One contributing factor may have been 

premature application of the technology when it was not ready to answer challenging 

The biomarker identification pipeline 
is a multi-phased approach, summarized 
here based on the guidelines provided by 
Rifai et al. in 2006. It begins with a 
discovery phase that is usually an 
unbiased, semi-quantitative process by 
which the differentially expressed 
proteins are identified. In this phase, 
model systems such as cell lines, mouse 
models as well as a variety of human 
biological materials can be employed. 
The result is often a list of candidates 
with a high false discovery rate, 
especially when not employing state of 
the art technology. This is due to low 
sequencing frequency of low abundant 
proteins and the fact that the signal at the 
lower bounds of the dynamic range may 
randomly exceed detection limits, 
resulting in artificial differences. 

The second phase (qualification) aims 
at checking if the differential expression 
of the candidate biomarkers is 
observable using other methods like 
targeted approaches. It ideally also 
confirms their differential expression in 
blood plasma in case the discovery phase 
was performed using other model 
systems. These first two phases 
(discovery and qualification) are focused 
on confirming the candidate biomarker’s 
sensitivity, which is the likelihood that a 
disease sample will test positive. 

 The third phase which is the 
verification phase aims to capture all 
kinds of variations whether they are 
genetic, environmental, biological or 
stochastic. Large numbers of human 
plasma samples (100s) are analyzed. This     

 
 

The Biomarker Pipeline 

Figure 2. Phases of the biomarker identification 
pipeline. Biomarker identification requires at least 
four phases where the number of candidate 
analytes or proteins is reduced along the process. 
Adapted from [18]. 

phase is concerned with the specificity of the 
candidate, which is the likelihood that an 
unaffected sample will test negative. The few 
candidate biomarkers that pass the verification 
phase move to the validation phase for assay 
optimization. An immunoassay may have to be 
tested against thousands of samples that fully 
reflect the targeted population’s variations. 
Finally, the immunoassay is refined to meet the 
standards of clinical tests. 
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clinical questions. The last decade has witnessed exciting developments in the MS field at 

all levels, starting from sample preparation to instrumentation to data acquisition and 

analysis. The field has also witnessed some paradigm shifts regarding the approaches 

used in clinical proteomics after researchers realized the types of challenges that need to 

be met. In the discovery phase of biomarkers, for instance, it has been suggested to 

substitute plasma samples with proximal fluids, which are biofluids in close proximity to 

the site of the disease. Potential biomarkers are likely to be enriched in proximal fluids 

before they are diluted in the blood. In ovarian cancer, for example, it has been shown 

that marker concentration is higher in ovarian cyst fluid and ascites fluid compared to 

plasma [31]. Other disease model systems such as cell lines or genetically homogenous 

animals may provide an attractive alternative that dampens the noise from genetic and 

environmental variation in discovery phase projects [18]. In addition, the concept of 

identifying the single ‘magic’ marker is not the ultimate goal anymore. There is growing 

consensus that panels of markers will be required for most applications and they appear 

to have several advantages [32, 33]. Other attractive approaches, which are also gaining 

momentum, take advantage of the large biochemical diversity of the proteome and aim 

for enriching specific classes of proteins of diagnostic and therapeutic value for the 

disease in question. This includes enriching phosphoproteins to study disease-specific 

deregulated signaling pathways, or glycosylated proteins to explore disease-specific 

changes in the cell surface proteome. 

The largest developments in the proteomics field have been at the instrument 

level. Major performance enhancements in speed and accuracy of mass spectrometers 

now allow almost complete coverage of complex biological samples such as human cells 

[34]. Unprecedented depths of complex proteomes are even attained using single shot 

measurements where by definition no fractionation is required [35, 36]. Such leading-edge 

developments in the field of MS-based quantitative proteomics will be discussed 

systematically in the next chapter.  
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1.3 Developments in MS-based quantitative proteomics 

A mass spectrometer can be used to analyze proteins either in their intact form 

(top-down proteomics) or as digested peptides (bottom-up proteomics). A top-down 

approach can in principle fully sequence the protein of interest, theoretically allowing the 

characterization of all its corresponding isoforms as well as co-occurring post-

translational modifications (PTMs). However, this approach is not widespread due to 

several limitations. Intact proteins produce multiply charged ions which results in 

difficult to deconvolve, highly complex MS/MS spectra. In addition, the difficulty to 

handle intact proteins, especially insoluble ones, makes pre-MS separation techniques for 

reducing complexity challenging in top-down approaches. Peptides often have better 

ionization efficiencies, produce less complex MS spectra and easier to interpret 

fragmentation spectra. Therefore bottom-up approaches are much more popular in a wide 

range of applications encompassing both simple and complex samples. In case of complex 

mixtures, after enzymatic digestion, the sample is often first separated using 

chromatographic techniques such as reverse phase or ion exchange as well as other 

techniques such as isoelectric focusing. Identification of peptide sequences relies on the 

information in the fragmentation spectra that result from fragmenting the isolated peptide 

ions in the mass analyzer. The interpretation is usually not done manually but instead 

through an automatic search against a database containing theoretical fragmentation 

spectra. A step-wise representation of a bottom up workflow is represented in Figure 3. 

There are several advantages associated with a bottom-up approach like the possibility of 

coupling separation techniques ahead of the MS in an automated manner. In addition, a 

variety of quantification approaches and powerful software have been developed, making 

the approach applicable to a wide variety of biological questions. The main drawback of 

the bottom-up approach is the incomplete sequence coverage of the proteins identified. 

The fact that only a part of the protein is covered by the sequenced peptides makes it 

difficult to distinguish protein isoforms or PTMs in regions of the protein that are not 

covered.  
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One of the major developments that allowed MS to gain momentum in its 

application for biomolecules was the introduction of two soft ionization techniques: 

electrospray ionization (ESI) [37] and matrix assisted laser desorption ionization (MALDI) 

[38]. Previous methods were energetically damaging for peptides and other biomolecules 

which made it impossible to vaporize and ionize them in an intact form, in contrast to the 

gentle methods. John B Fenn and Koichi Tanaka were awarded a share of the noble prize 

in Chemistry in the year 2002 for their work on developing ionization methods for large 

biomolecules. Further developments in ESI were pursued by Matthias Wilm and Matthias 

Mann, who showed that the flow rate in ESI can be reduced to the nanoliter range without 

loss of signal (they reduced it from 2-10 ul/min to 20 nl/min) [39]. This resulted in 

improved measurement sensitivity (attomole range). Furthermore, since ESI ionizes 

peptides out of a solution, it can be coupled to liquid based chromatographic separation. 

For these reasons, ESI has become the method of choice for the analysis of complex 

protein mixtures. In contrast, MALDI generates mainly single charged ions which results 

in inefficient fragmentation and consequently insufficient peaks for peptide identification. 

Bottom-up MS-based proteomics workflows in which peptides are initially 

separated in an online mode using high performance liquid chromatography (HPLC) and 

then electrosprayed directly into the MS have become the mainstream workflow for 

highly complex biological samples (Figure 3). A plethora of sample preparation 

techniques, types of instruments and data analysis software are available today. Each step 

in the workflow is crucial in determining the quality of the outcome, which for clinical 

applications needs to be of a very high standard. 
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Figure 3. Example of a bottom-up proteomics workflow. Proteins extracted from 
biological samples such as tissues or cells are digested into peptides using sequence-
specific enzymes such as trypsin. Fractionation steps may be applied at the protein or 
peptide level to enhance the coverage and dynamic range. Enrichment for specific post-
translational modifications may also be performed using specialized approaches. The 
resulting peptides are separated by high-performance liquid chromatography (HPLC) 
and electrosprayed into the mass spectrometer. The peptides are measured in a data-
dependent acquisition mode: after a full scan, a preselected number of the most intense 
ions are selected for fragmentation and corresponding MS/MS spectra are generated. In 
the computational section of the workflow, a database search is performed for peptide 
identification and protein inference. Regulated proteins are determined using different 
quantitative strategies followed by statistical analysis. From [40].  
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1.3.1 Sample preparation 

There are two commonly used sample preparation approaches for the conversion 

of proteins extracted from biological material into peptides compatible with MS analysis. 

The first approach relies on solubilization of the proteins using denaturing detergents 

followed by their separation and subsequent digestion in a polyacrylamide gel (‘in-gel’ 

digestion) [41]. This approach is robust and results in high purity peptides. However, it is 

time-consuming and the recovery of the peptides from the gel can be poor. Today it is 

mainly used for the identification of gel-separated proteins visualized in single bands. The 

second approach dispenses with gel-separation, uses strong chaotropic reagents such as 

urea or thiourea to solubilize the proteins followed by ‘in-solution’ digestion. It is 

straight-forward and more amenable to automation but not all proteins may be 

solubilized and impurities present in solution may hinder the digestion. A more recently 

developed method by Wisniewski et al. [42] combines benefits of the two approaches. It 

takes advantage of the possibility to exchange buffers when using an ultrafiltration 

device, and was hence termed filter-aided sample preparation (FASP) [42]. Very strong 

detergents such as sodium dodecyl sulfate (SDS) are used, which allow total 

solubilization of cells and tissues. This is followed by exchanging the SDS-based buffer 

with an 8 M urea buffer after loading the sample onto the filter unit. The workflow is easy 

to handle and results in pure peptides in a short period of time. This method is 

particularly advantageous in cases where hydrophobic proteins are targeted such as in 

the case of N-glycosylated proteins, which are generally localized to the plasma 

membrane. 

Although the ideal sample preparation technique would involve minimum sample 

handling, the large diversity and complexity of the proteome make it indispensable to 

apply fractionation techniques to reach the depth required in some cases. The separation 

techniques are said to be “online” if they are directly coupled to the mass spectrometer. 

They can be performed at the protein or peptide level. In complex proteomes with large 

dynamic range, extensive fractionation approaches are often applied to achieve global and 
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in-depth coverage of the sample. In other applications, a particular class of proteins may 

be of interest. Enrichment strategies based on the proteins biological properties can then 

be applied, allowing in-depth coverage of this specific class. However, due to the 

enormous technological advancements specifically in MS instrumentation, the depth 

reached with single shot approaches is already sufficient to answer many critical 

biological questions (see below).  

1.3.1.1 Main proteomic separation and fractionation approaches 

The most widely used separation technique in MS-based proteomics is reversed 

phase high performance liquid chromatography (RP-HPLC). The online coupling of RP-

HPLC to MS, typically by an electrospray interface, is called LC-MS or LC-MS/MS. 

However, HPLC can also be used for fractionation in an offline mode, for example, when 

MALDI is applied for peptide ionization. 

At the protein level, common separation strategies are based on protein size, such 

as size exclusion chromatography (SEC) and sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE). In the latter, the charged, denatured proteins are separated 

in a polyacrylamide gel after applying an electric field. In the above mentioned ‘in gel’ 

digestion method the gel is cut into slices, the proteins are digested using an 

endoproteinase such as trypsin, followed by extraction of the peptides [43]. Adding a 

second dimension of separation based on the isoelectric point of the proteins is the 

principle of 2-dimensional (2-D) gel electrophoresis [3]. Although, it was originally 

thought to be a promising technique for proteomics, it has proven unsuitable to detect, 

identify, and quantify large numbers of proteins in a sample [44]. Furthermore it has 

several limitations including low resolution, low reproducibility, a narrow dynamic 

range, and bias against hydrophobic proteins. 

 At the peptide level, fractionation is commonly performed by isoelectric focusing, 

ion exchange chromatography or affinity chromatography. The principle of ion exchange 

chromatography is employed in so-called StageTips [45], which allow clean up and fast 
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and sensitive fractionation in a simple device. In this approach, peptides are separated on 

an anion (or cation) exchanger that is assembled following the StageTip principle by 

stacking six layers of anion (cation) exchange disks into a micropipette tip. The number of 

elution steps from the column determines the resolution of the separation. Fractionating 

FASP-eluted peptides with a six fractions elution protocol from a StageTip-based anion 

exchanger already allows in-depth characterization of a complex mammalian proteome 

[46, 47].  

1.3.1.2 Enrichment approaches 

 Many biological questions do not require global in-depth analysis of complete 

proteomes. In some cases, only a certain class of proteins with certain biological 

properties is of interest. Employing these biological properties often allows the 

development of enrichment protocols that target this particular protein class and, at the 

same time, reduces the complexity of the sample. An example is the enrichment of 

glycoproteins to explore the cell surface or of phosphopeptides to study signaling 

pathways. Such strategies could be based on antibodies, ionic interactions or affinity 

ligands (Figure 4). In addition to post-translational modifications, enrichment techniques 

can cover a range of biological properties such as cellular localization, specific protein-

protein interactions, DNA/RNA–protein interactions.  

It has become increasingly clear that cells extensively use PTMs as molecular 

switches for signal propagation, regulating diverse cellular aspects [48]. The global 

analysis of PTM sites is an exclusive domain of MS-based proteomics [14] and this 

requires the development of robust enrichment strategies for the PTM of interest. MS-

based workflows have mainly addressed the PTMs with the greatest biological interest 

such as phosphorylation and glycosylation. For phosphopeptides, metal affinity 

chromatography using titanium dioxide [49] and/or anti-phosphotyrosine antibodies [50] 

are frequently employed. A mixture of lectins is commonly used for the enrichment of 

glycopeptides [51] . The specificity and enrichment  obtained with these approaches are 

generally quite high [14]. This has allowed large scale studies on the role of PTMs in 
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important processes such as EGF signaling [52, 53] and the cell cycle [54]. The large 

interest in the biology of the phosphoproteome and the glycoproteome, as well as several 

other PTMs, has driven the development of their corresponding enrichment strategies. 

Over 300 different modifications have been reported to occur physiologically [55]. 

However, for most of these, enrichment strategies do not exist at all. The more powerful 

the enrichment strategies for such PTMs, the more we are able to understand the scope of 

their contribution to various biological processes. The ability to explore the ubiquitinome 

is a recent example: here the introduction of diglycine-specific antibodies now allows 

capture of the remnant modification following tryptic digestion of ubiquitinated proteins, 

making it possible to  specifically enrich and analyze tens of thousands of ubiquitination 

sites [56, 57]. 

 
Figure 4. Enrichment of PTMs. PTM-bearing peptides or proteins are enriched 

using different strategies (antibody-based, ionic, and affinity-based interactions). Adapted 
from [48].  

Compared to the proteome, the investigation of PTMs is more difficult both 

conceptually and technologically. When analyzing the whole proteome, the 

characterization of each protein is almost always based on several peptides. In contrast, 

when PTMs are analyzed, each peptide with the modification of interest stands on its 

own. Modified peptides are generally of low abundance and combined with their often 
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difficult to interpret fragmentation spectra, this makes identification more challenging. 

Localization of the modification with single amino acid resolution is another crucial piece 

of information to be extracted from the fragmentation spectra. Furthermore, modified 

peptides are normally present in lower amounts compared to their unmodified 

counterparts. Indeed, it is very beneficial to determine the sites’ stoichiometry or 

occupancy to shed light on the possible functionality of these modifications in cells in 

specific conditions. The determination of phosphorylation stoichiometry on a large scale 

has recently been reported [54, 58]. 

All these difficulties, in addition to the extra sample handling steps involved, 

make PTM analysis a challenging task, especially when working with clinical samples. In 

the long-run it is conceivable that highly improved MS performance could make 

enrichment steps superfluous [14]. In any case, similar to the proteome, further 

simplification of the workflow will result in a more robust, applicable technology with 

great potential for an impact in the clinic. 

1.3.1.3 Single-shot approaches 

Fractionation and enrichment are particularly necessary and informative in cases 

such as organellar proteomics or low abundant PTMs. In the context of whole-proteome 

measurements they are typically applied with the aim of solving the dynamic range 

problem. With modern spectrometers, such approaches have diminishing returns. Even 

upon extensive fractionation, the relative abundance of proteins is altered by only a factor 

of 10 to 100, because proteins fractionation is rarely perfect. Hence, when using modern 

mass spectrometers, the de-enriched proteins are still easily detected. The increased 

number of sub-samples to be analyzed increases the total measuring time and limits the 

overall sensitivity [36]. Instead, other aspects of the workflow have proven to be more 

amenable to improvements. Specifically, these are the online chromatography setup 

preceding peptide analysis in the mass spectrometer and the mass spectrometers 

themselves. The chromatography setup is being pushed to its limits by employing high-

pressure HPLC pumps, very small bead particles as column material, and relatively long 
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columns and gradients [59, 60]. These drastic measures have yielded high peptide-

separation capacity and greatly increased the number of eluting peptides that the mass 

spectrometer can isolate and fragment. Remarkably, the combined power of such LC 

systems along with the most modern spectrometers (discussed in the following section) 

have now made it possible to reach an almost complete coverage of the yeast proteome 

with no upfront protein or peptide separation (“single-shot analysis”) [35].   

Two recent studies have attempted to characterize the human cell line proteome 

comprehensively, using extensive fractionation strategies [34, 61]. Both studies showed 

that at least 10,000 different protein coding loci are expressed in a typical human cancer 

cell line. Judged against the coverage of macromolecular complexes and pathways 

achieved, these numbers  approach complete coverage, which may be attained at about 

12,000 proteins [34]. In a more recent study to assess the single-shot approach, 11 

mammalian cell lines were measured in single 4 h gradients. This resulted in the 

identification of around 8,000 proteins in each one of them, with a dynamic range 

exceeding 6 orders of magnitude [36]. Different protein abundance ranges showed 

enrichment for different biological functions. Clearly the single shot approach is capable 

of capturing a very large percentage of the mammalian proteome.   

In a clinical context, the two main biological sample types that are of general 

interest are plasma and formalin-fixed paraffin-embedded tissues (FFPE). So far, there are 

few in-depth studies of human tissues. In a recent colon cancer study, around 7,500 

proteins were identified across patient matched normal mucosa, primary carcinoma, and 

nodal metastases [62]. FFPE is the main form in which patient samples are stored in tissue 

banks. We have recently shown that proteins can readily be extracted from FEPE for both 

global proteomic and PTM studies [63]. This is crucial for clinical proteomics workflows 

when FFPE tissues are the material of interest and represents a clear advantage over other 

technologies that require RNA extraction from these samples, which is difficult and which 

may lead to low quality results.  
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Tissues have complex compositions, and answering clinical questions requires the 

analyses of many patient samples. Targeted approaches, in which the mass spectrometer 

is ‘fed’ a list of pre-defined peptides and its corresponding fragments, have so far been 

favored for post-discovery applications in biomarker discovery pipelines [18]. However, 

the approach is not suitable for discovery phase projects and requires reaching acceptable 

levels of specificity through extensive method optimization and process control. The 

single-shot approach combines advantages of targeted and shotgun approaches. Its 

sample and measuring time requirements are low but it still retrains the advantage of 

being an unbiased method. This may make it amenable to both discovery and validation 

steps of the biomarker pipeline. 

1.3.2 Mass spectrometry instrumentation 

There have been major developments in the hardware of mass spectrometers over 

the last decade and these have produced much faster, more accurate and more sensitive 

machines. The time to execute a basic measurement cycle, which typically consists of one 

survey mass spectrum followed by fragmentation spectra of the 10 most intense eluting 

peptides (known as “top 10” method), is currently around one second [64, 65]. The 

increased sensitivity of today’s instruments is evident in their higher dynamic range, the 

ability to detect low abundance species in the presence of highly abundant ones. They 

have a high resolving power, allowing co-eluting peptides of similar mass to be 

distinguished and are therefore a prerequisite of their accurate quantification. 

Furthermore, high resolution makes it possible to achieve mass accuracies in the ppm and 

even sub-ppm range [66]. This has important benefits on the certainty of peptide 

identifications.  

The three basic elements of a mass-spectrometer are the (1) source of ions, (2) mass 

analyzer, and (3) detector. The ion source ionizes the analytes and transfers them into the 

gas phase. This allows the generated ions to fly in the mass spectrometer, guided by a 

series of electric potential differences and radio-frequency (RF) fields until they reach the 

mass analyzer, where they are separated and analyzed. Different mass analyzers apply 
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different principles of separation and analysis but the basic concept of all of them is that 

the motion of an ion is dependent on its mass-to-charge ratio (m/z) under the effect of 

magnetic and/or electric fields. A detector then measures the signal and amplifies it. The 

acquired data is processed and eventually represented as a spectrum where the x-axis is 

the m/z of the ions and the y-axis corresponds to their relative intensity. In a simple view, 

the x-axis characterizes the peptide and the y-axis provides its abundance under the 

conditions being studied. 

1.3.2.1 Mass analyzers 

The mass analyzer is the core of a mass spectrometer. Its basic characteristics are 

mass range, mass accuracy, resolution and sensitivity. Further important aspects are its 

dynamic range, analysis speed, ion transmission and fragmentation capabilities. There is a 

variety of mass analyzers that apply different principles and that have different 

characteristics. Modern instrumentation combines the benefits of at least two mass 

analyzers in one platform - so-called hybrid instruments (here defined as the combination 

of two mass analyzers that could in principle be used independently). The most generally 

used analyzers are the linear ion trap, Orbitrap analyzer and TOF mass analyzers. Two 

common hybrid platforms are the quadrupole time-of-flight (TOF) and the linear ion trap 

or quadrupole – Orbitrap (LTQ-Orbitrap or Q Exactive) instruments. The latter were used 

exclusively in this thesis and, hence, will be discussed below. 

Linear ion trap – Previously, three dimensional ion traps were widespread in 

proteomics but today, so called linear or two-dimensional (2-D) quadrupole ion traps 

have now taken over, because of their much higher ion capacity. It is a highly versatile 

mass analyzer capable of isolating, storing and fragmenting ions. In common with most 

other ion traps it measures the mass-to-charge ratio based on the stability of ion trajectory 

in oscillating electric fields. It consists of four hyperbolic rods. Each of them is split into 

three axial sections, allowing spatially separated manipulation of ion populations. The 

rod sections are electrically isolated with a discrete DC level generating an axial trapping 

field. Opposing rods are paired and an anti-phasic radio frequency (RF) voltage is applied 
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to the rod pairs generating a radial trapping field. The combination of axial and radial 

trapping results in the ions arranging themselves in a linear string. By applying dynamic 

field to the trapped ion population particular m/z values can be isolated or activated for 

fragmentation. A supplemental AC voltage is applied across one of the rod pairs (marked 

by X in Figure 5) for ejection of ions [67]. These X rods have a slit for the ejection of the 

ions and their subsequent detection by electron multipliers (Figure 5).  

Applying these principles, in a full scan, all of the ions are collected and then 

ejected. In an MS/MS scan, isolation of a single ion is performed by resonance ion ejection, 

i.e. all ions with mass-to-charge ratios higher and lower than the ion of interest are ejected 

from the trap. To reduce the motion and dispersion of ions, helium is present at a low 

pressure in the trap as a dampening gas. When the axial AC voltage is applied, ion 

trajectories are amplified, leading to more frequent collisions with the helium molecules 

and to eventual fragmentation, a process called collision induced dissociation (CID). 

Linear ion traps are characterized by their high sensitivity and high sequencing speed. 

Compared to high resolution mass analyzers, however, their mass accuracy and mass 

resolution are relatively low. In hybrid platforms, linear ion traps are often used for 

fragmentation because of their fast cycle times and the smaller number of ions required 

for MS/MS in that device.  

                          
 

Figure 5. Basic design of a linear ion trap. A linear ion trap consists of four 
hyperbolic rods each divided into three axial sections. Adapted from [67].  
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Orbitrap - The Orbitrap is the most recently developed mass analyzer, and 

remarkably it uses an entirely new principle. It was presented in the year 2000 by 

Alexander Makarov [68] and has quickly become an indispensable tool in the proteomics 

field. Unlike the linear ion trap, which uses oscillating electric fields, it employs 

electrostatic fields to trap and measure ions. The Orbitrap cell consists of a central 

spindle-like electrode surrounded by an outer barrel-like electrode split into two halves 

isolated by an insulating ceramic ring (Figure 6). The electrostatic field that ions 

experience inside the Orbitrap forces them to move in stable trajectories, combining 

orbital movement around the central electrode with axial oscillations along the z-axis 

resulting in an intricate spiral.  

One of the major challenges in the development of Orbitrap instruments was the 

process of ion injection into the cell. A linear ion trap was first employed but this was later 

replaced by a more efficient curved RF-only quadrupole which is in the shape of the letter 

“C” (C-trap). The ions are injected from the C-trap as a focused package by high voltages 

and are then accelerated to high kinetic energies before entering the Orbitrap cell [69]. The 

ions are injected off-center to the outer electrode through a small aperture. The oscillation 

in radial direction is the result of the electrostatic attraction towards the central electrode 

which is counter-balanced by the centrifugal force that arises from the initial tangential 

velocity of the ions. The axial oscillation is controlled by the unique shape of the trap in 

the z-direction. Applying an electric field to each side generates an axial electrostatic field 

with purely harmonic potential. This axial field is zero at the equator plate and increases 

with the distance from the center. Importantly, the frequency of the harmonic axial 

oscillations is completely independent of the initial energy and spatial spread of ions. It is 

only dependent on the m/z ratio and thus, it is used to derive them. The axial frequencies 

are measured by the acquisition of the image current transients detected on the split outer 

electrodes. The generated time-domain signal (transients) can be converted into mass-to-

charge spectrum using a fast Fourier transform algorithm [70]. 
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The Orbitrap analyzer is characterized by its high resolution (up to at least 

150,000), high mass accuracy (routinely better than 2 to 5 ppm) and a large dynamic range 

(greater than 103) [70, 71]. The mass accuracy can even be improved to the sub-ppm range 

by using ambient air ions for real-time recalibration [72] or software-based recalibration 

[73]. The benefits of high mass accuracy are particularly prominent for the accurate 

quantification of low abundant proteins in complex biological samples such as tissues or 

plasma. Because the Orbitrap is not capable of ion fragmentation, it is coupled to ion 

selection and fragmentation devices. These platforms are having a tremendous impact in 

proteomics research. 

                

Figure 6. Design of the Orbitrap. A cross-sectional scheme of an Orbitrap cell 
shows blue arrows indicating radial (r) and axial (z) directions. The red arrow indicates 
ion movement. The cell consists of a spindle-shaped central electrode (a) surrounded by 
two halves of the outer electrode (b) which are electrically isolated by a ceramic ring (c). 
Adapted from [74]. 

1.3.2.2 The Orbitrap family of mass spectrometers 

Currently there are five different instruments types equipped with the Orbitrap 

cell. Three of them are hybrid configurations where high resolution Orbitraps analyzers 

are combined with low resolution linear traps. These are the LTQ Orbitrap, Orbitrap 

Velos and Orbitrap Elite. The remaining two instruments are the Exactive and the Q 

Exactive which are benchtop instruments where the Orbitrap cell is the sole mass 

analyzer. 
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The LTQ Orbitrap was the first instrument to incorporate the Orbitrap mass 

analyzer [69]. It is a hybrid instrument where the Orbitrap records survey or full scans 

across a broad mass range of precursor ions, and a linear ion trap rapidly acquires 

fragment or MS/MS spectra (Figure 7A). In a recording cycle, the ions are first guided 

through the ion optics and the linear ion trap to the C-trap where they are accumulated. A 

compacted package of ions is then transferred from the C-trap to the Orbitrap for the 

recording of the high resolution survey scan. In a data dependent acquisition mode, the N 

(usually five or ten) most abundant ions from the full scan are chosen for fragmentation 

from the survey scan (TopN methods). Selected peptide precursor ions are sequentially 

isolated and subjected to fragmentation by CID. Fragments can be measured in the linear 

trap, which occurs in parallel to the acquisition of the high-resolution full scan of 

precursor masses in the Orbitrap. Based on the difference in resolution between the full 

and fragmentation scans, this mode of operation is referred to as the high-low strategy. 

Alternatively, the fragments can be passed on to the Orbitrap analyzer. Since this results 

in high resolution for both precursors and fragments it is called high-high strategy. An 

upgrade of this instrument (Orbitrap XL) contains a dedicated collision cell at the far side 

of the C-trap. In this cell, ions are dissociated with higher energies compared to the ion 

trap and this mode is called higher energy C-trap fragmentation (HCD) [75]. 

The second instrument was the Orbitrap Velos [76], which has the same basic 

design as the LTQ Orbitrap. However, major modifications were introduced at the front 

end (Figure 7B). An S-lens now replaces the tube lens allowing up to ten-fold better 

transmission of ions into the instrument, thus enhancing sensitivity. There is a dual linear 

ion trap instead of a single one. They are placed consecutively where the first one operates 

at a higher pressure. This allows very efficient trapping, isolation and fragmentation of 

ions in the first trap. The second linear trap is operated at lower pressure allowing faster 

acquisition of mass spectra.  

Although the Orbitrap XL was already capable of performing HCD fragmentation, 

it was not until the introduction of the Orbitrap Velos that the high-high strategy actually 
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became feasible. In the Orbitrap XL, ion transfer to the HCD cell was inefficient and a 

large number of ions had to be accumulated. The drastically improved sensitivity and 

speed of the Orbitrap Velos have made HCD fragmentation and the high-high strategy 

feasible for standard proteomics workflows. The high resolution, high accuracy 

measurements of both full scan and fragmentation scans in the Orbitrap has great benefits 

in increased confidence in the matching of spectra, and thus peptide identifications. 

The third version of this hybrid instruments family is the Orbitrap Elite [77] whose 

major improvement has been in the Orbitrap analyzer itself. The inner diameter of the 

outer electrode was reduced from 30 to 20 mm. This compact, high field Orbitrap analyzer 

increases resolving power twofold. An enhanced Fourier transform algorithm further 

doubles the resolving power. Besides its obvious benefits to the bottom up approach this 

high resolution is important for resolving the different charge states of intact proteins in 

top-down approaches.                                                                         
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 Figure 7. Hybrid instruments in the Orbitrap family. A) The LTQ Orbitrap was 
the first hybrid instrument containing the Orbitrap mass analyzer. Adapted from [72]. B) 
The Orbitrap Velos was the second hybrid instrument with major improvements in the 
front end and linear ion trap. Adapted from [76]. 

 

The latest members of the Orbitrap family are the Exactive and the Q Exactive. The 

Exactive consists solely of an Orbitrap analyzer and therefore can only perform MS scans 

or non-mass selective fragmentation of the entire mass range (all ion fragmentation) [78]. 

It was developed for small molecule applications [79]. The Q Exactive adds an additional 

quadrupole to this basic design [65] (Figure 8). This enables ion selection and isolation to 

perform data dependent acquisition. The Orbitrap is the only mass analyzer and therefore 

both the full and MS/MS scans are measured with high resolution (similar to HCD 

experiments on an Orbitrap Velos). The shorter ion path, the lack of a linear ion trap, 

parallel fragmentation and read out of the fragments and further developments in 

software and electronics greatly improved the sensitivity and speed of the Q Exactive. 

Due its simple design the Q Exactive is a benchtop instrument; this is an important step 

towards making mass spectrometry a more readily available technology to answer clinical 

and biological questions.              

               
 

Figure 8. The Q Exactive mass spectrometer. The Q Exactive is a benchtop 
instrument that contains the Orbitrap cell as the sole mass analyzer. From [65].  
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1.3.3 Quantification strategies 

It has now become very clear that for answering almost any biological and clinical 

question, it is insufficient to determine the mere presence or absence of a protein. Instead, 

quantitative information about protein changes is necessary to study the effect of 

perturbations in a biological system. Because of different peptide properties, such as their 

ionizability, peptide concentrations cannot be inferred directly from the signal intensities 

of peptide ions as they are recorded by a mass spectrometer. This has led to the 

development of a plethora of strategies to complement MS giving rise to quantitative 

proteomics.  

Quantitative measurements can be either absolute or relative. Absolute 

quantification is the measurement of the absolute amount of a protein in a specific sample 

and is usually given as the concentration of the protein or its copy number per cell. 

Relative quantification is the measurement of the relative change in protein amount 

between states and is generally given as a fold change. Whether absolute or relative, 

quantification strategies can be divided into two major categories. The first one introduces 

stable isotopes to generate a mass difference between two samples (label-based 

quantification). The second strategy, label-free quantification, dispenses with this step and 

is therefore more straight-forward (Figure 9).  

Label-based quantification – The basic principle underlying stable isotope 

labeling is that, except for their mass, the physical and chemical properties of a labeled 

peptide remain the same as for the natural peptide. Therefore, they have the same 

behavior during chromatographic separation and during MS analysis. The differences in 

their masses are easily resolved in modern mass spectrometer. Consequently, relative or 

absolute quantification of a peptide or protein can be performed by comparing intensities 

between natural and labeled peptide forms in the same sample. Quantification can be 

performed at the MS and the MS/MS level. Commonly used heavy isotopes are those of 

carbon (13C), nitrogen (15N) and oxygen (18O). These labels are almost always introduced 

chemically or metabolically.  
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Figure 9. Quantitative proteomics strategies. In labeling strategies, peptides 
derived from different biological samples are labeled with isotopes. In metabolic labeling, 
samples can be pooled at a very early stage during sample preparation, unlike in chemical 
labeling where pooling is most commonly performed after proteolytic digestion. For 
label-free approaches, quantification is performed computationally between different 
experiments. From [80].  

Chemical labeling strategies target the reactive side chains or protein/peptide 

termini. They can be applied at the protein or peptide level, but because of its 

overwhelming preponderance, only the peptide level will be discussed further (Figure 9). 

One of the earliest labeling strategies is called ICAT (isotope-coded affinity tags) [81].  The 

ICAT reagent consists of a thiol-specific reactive group, a linker which contains the 

isotope label and a biotin affinity tag for enrichment. Therefore, it reacts with cysteine-

containing peptides that can be then enriched using the biotin tag for MS analysis. Not all 

proteins have cysteines and most peptides cannot be quantified, therefore ICAT is not in 

general use in proteomics.  In dimethyl labeling [82], all primary amines are converted to 

dimethylamines. This reaction adds two methyl groups to all lysine side chains and all 
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free N-termini, thus in principle labeling all peptides. For quantification at the MS/MS 

level, the most commonly used reagents are TMT (tandem mass tag) [83] and iTRAQ 

(isobaric tags for relative and absolute quantification) [84]. Both reagents use isobaric tags 

consisting of a reporter group, a mass balance group, and a peptide-reactive group (NHS 

ester). The overall nominal cumulative mass of reporter and balance components are kept 

constant using differential isotopic enrichment, hence the name isobaric. The labeled 

peptides generate a single ion cluster at the MS level. The different reporter ions are 

released upon fragmentation and are used for relative quantification. TMT and iTRAQ 

can easily be multiplexed and they can be applied to any sample type, making them 

popular choices in quantitative proteomics. One of the limitations of these methods is that 

mixing of samples occurs late in the workflow, which can introduce variability and 

systematic errors.  

Metabolic labeling approaches introduce the isotope labels at the cellular or 

organismal level (Figure 9). One of the most popular metabolic labeling methods is stable 

isotope labeling with amino acids in cell culture (SILAC) [85]. In this approach, cells are 

grown in isotopically labeled amino acids (typically arginine and lysine). After at least 

five doublings, the heavy amino acids are incorporated into almost the entire cellular 

proteome. Choosing arginine and/or lysine ensures that the peptides cleaved by trypsin or 

LysC incorporate at least one labeled amino acid. A classical SILAC experiment would 

usually involve the comparison of two cellular states one of which is labeled with the 

‘light’ or wild type amino acid and one with the ‘heavy’ form. Comparing the intensities 

of the isotope clusters of light and heavy peptides yields the relative amount of the 

peptide and thereby proteins between the two states in question. It is also possible to label 

and analyze three samples together (designated light, medium and heavy SILAC 

labeling). Expanding the experiment to four or five labels is prevented by the repertoire of 

available labeled amino acids. Deuterated (2H) peptides, for instance, can show retention 

time shifts that hinder accurate quantification. Metabolic labeling, in general, and SILAC, 

in particular, is considered to have the highest quantification precision and accuracy. 
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Samples can be pooled at the earliest step of the proteomic workflow, minimizing the 

systematic error that can arise from separate sample handling. 

Applications of the SILAC approach have lately expanded into many biological 

questions beyond simple expression differences between cultured cells. It can now be 

used to study protein turnover and translation rates (pulsed SILAC) [86, 87], protein-

protein interactions [88] as well as time-resolved analysis of signaling pathways [52]. 

Human biological samples cannot be SILAC-labeled, however, the recently developed 

super-SILAC approach sidesteps this limitation by using a mixture of SILAC labeled cell 

lines that is used as an internal standard for quantifying proteins in tissues [89]. The basic 

idea is that the mixture is to represent the complexity of the tissue proteome as closely as 

possible. Indeed, a mix of labeled cell lines achieved a higher quantification accuracy 

compared to using one cell line when studying breast cancer tissues. A super-SILAC mix 

of labeled breast cancer cell lines was generated by rationally selecting four breast cancer 

cell lines from different stages of the tumor and adding to this a mammary epithelial cell 

type. Equal amounts of the lysates from the five labeled cell lines were combined. This 

super-SILAC mix was then spiked in at a 1:1 weight/weight ratio into every sample to be 

analyzed. In principle, this approach allows the comparison of any number of breast 

cancer tissues. The first step is to quantify the endogenous tissue proteins against the 

spiked-in standard. Since the same quantity of standard is spiked into all samples, this 

allows the comparison of all samples against each other. Therefore, super-SILAC mixtures 

can be considered reference standards that when spiked in fixed ratios allow the 

comparison of any number of tissue samples (Figure 10). 

Label-based approaches can also be used for absolute quantification by spiking a 

known quantity of labeled standard into the sample. This can be done at the peptide level 

as in the case of AQUA (for absolute quantification) where labeled synthetic peptides are 

used [90]. Alternatively, labeled protein fragments or full length proteins can be spiked in 

before the digestion step [91-93], to control for the variability introduced during sample 

preparation, such as missed cleavages and protein adsorption. These approaches are by 
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their nature two-step processes, which require accurate quantification of the standard 

first.  

Label-free quantification – As the name indicates, label-free quantification 

includes all approaches used to quantify proteins which do not involve introducing stable 

isotopes. Compared to other techniques, label-free quantification is considered less 

accurate, especially when the overall experimental process is taken into account [80]. 

There is higher variability during each of the steps of sample preparation and 

measurements since they are performed separately for the samples. However, since the 

approach is inexpensive, technically straightforward, and allows studying any number of 

samples, it is inherently attractive. A very simple form of relative label-free quantification 

is spectral counting, in which the number of spectra identifying each protein serves as a 

proxy for its abundance. Proteins with few sequenced peptides cannot be quantified 

accurately, making this approach unreliable for low abundance proteins. Intensity-based 

label-free algorithms such as the ones in the MaxQuant platform [66], combined with high 

resolution data, can provide much more accurate results especially if they include 

advanced normalization steps which correct for experimental variability (Cox et al., in 

revision).  

Acknowledging the importance of developing such reliable data analysis tools, 

intensive normalization steps are now implemented, which allow the comparison of large 

numbers of samples such as those required for clinical studies. An even more advanced 

algorithm, which combines label-based and label-free calculations (hybrid algorithm), has 

also been implemented. In this strategy, quantification is done by SILAC pairs or by label 

free methods as appropriate. In this way, the accuracy of SILAC is retained while it is still 

possible to quantify proteins that are present in the sample but absent from the super-

SILAC mix. 
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Figure 10. Super-SILAC workflow to study cancer tissues. The super-SILAC 

approach allows the comparison of any number of healthy and patient tissues. In the 
example depicted in the workflow, five breast cancer cell lines, labeled with heavy 
arginine and lysine, were used to generate a breast cancer super-SILAC mix. The super-
SILAC mix was spiked in at a 1:1 ratio with the lysate of a human tissue.  A standard mix 
can be generated for any type of cancer. From [94].   

Label-free approaches that can estimate absolute amounts without labeled 

standards have also been developed. Intensity-based absolute quantification (iBAQ) [95], 

for instance, uses the summed intensities of the peptides identifying a protein as a proxy 

for its abundance and the number of theoretical peptides as a protein-specific correction 

factor. A spiked-in non-labeled standard of accurately quantified proteins from a different 
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organism, introduced before sample preparation, allows a linear extrapolation of the 

absolute amounts of all identified proteins. 

In short, the technology at all levels, and particularly at the bioinformatics level, 

has taken huge steps towards overcoming the depth and the high-throughput challenges. 

Thus, the technology has recently become more amenable to answer critical clinical 

questions such as classifying cancer patient into different disease entities. 

1.4. Molecular cancer diagnostics 

In addition to dramatic technological advances in the molecular characterization of 

cancers, it is very important to be able to reliably identify those patients who are most 

likely to benefit from a particular agent. This has led to the rise of companion diagnostics 

as an important component of targeted therapeutics. It has long been recognized by 

oncologists that every human cancer is comprised of biological subsets that differ in 

clinical behavior. Each patient is diverse in clinical presentation, prognosis and response 

to treatment. They also differ in their risk of recurrence, second malignancy and long-term 

complications of treatment [96]. Recent technological advances allow large-scale analyses 

of individual cancers at the level of the genome, transcriptome and proteome [97]. This 

allows scientists and clinicians to better understand the biological heterogeneity of human 

cancer at the molecular level. The potential benefits of improved molecular 

characterization of individual cancers are enormous [97]. In fact, it is the molecular 

understanding of cancer causation and progression that led to the discovery and 

development of molecularly  targeted drugs that enabled a personalized approach to 

cancer treatment [98]. The hope is that these developments will allow a shift from non-

specific cytotoxic drugs, which damage both tumor and normal cells, to more precise 

drugs. Clinical success in targeting molecularly defined subsets of several tumor types is 

already evident. Early experiences include the HER2 antibody trastuzumab in breast 

cancer [99], the BCR-ABL inhibitor imatinib in chronic myeloid leukemia [22], and the 

EGFR kinase inhibitors gefitinib and erlotinib in non-small-cell lung cancer (NSCLC) [100-
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102]. Remarkably, the successful development of all of these targeted drugs was highly 

dependent on patient selection using predictive biomarkers [103]. The ability to select 

patients benefits clinical trials in the evaluation process of the drugs as well as in clinical 

practice. In fact, the lack of an efficient strategy to evaluate targeted agents in patients is a 

key reason why there is only a modest number of similarly successful targeted therapies 

[97]. In short, the ability to categorize patients into subtypes with associated treatments is 

the most important step toward the goal of personalized medicine. The challenge lies in 

discovering cancer biomarkers or other stratification strategies for patient subtyping.  

1.4.1 Types of cancer biomarkers 

There are three types of biomarkers that are important for the rational 

development of anticancer drugs and the clinical management of patients, predictive, 

prognostic and pharmacodynamic biomarkers [97]. There has been a large focus on 

predictive markers, used to assess response; that is the probability that a patient will 

benefit from a particular treatment. As a prominent example, breast cancer patients with 

amplification in ERBB2 (also known as HER2 or NEU) benefit from treatment with 

trastuzumab (Herceptin) [99] and patients over-expressing the oestrogen receptor benefit 

from treatment with tamoxifen instead [104, 105]. Predictive chromosomal translocations 

as occurring in some leukemia patients can also be biomarkers. Patients with PML–RARA 

translocation respond to all-trans retinoic acid [106], whereas those with the Philadelphia 

chromosome (BCR–ABL fusion gene) respond to imatinib mesylate (Gleevec or Glivec) 

[22]. Often mutations in specific genetic regions have predictive power and genotype-

based analysis is required. Examples include mutations in the kinase domain of the 

epidermal growth-factor receptor (EGFR) that predict the sensitivity of lung tumors to 

erlotinib or gefitinib [100-102]. Conversely, distinct mutations in KRAS predict that 

patients with lung cancer will fail to respond to these inhibitors [107].  

The second type of biomarkers that can influence treatment choice are prognostic 

biomarkers. These allow the prediction of the natural course of individual cancers 

distinguishing ‘good outcome’ tumors from ‘poor outcome’ tumors. Such distinctions can 
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guide how aggressive the treatment should be [97]. The most prominent example is also 

in breast cancer but in this case it involves gene-expression signatures [108]. These 

signatures estimate the probability of the original breast cancer recurring after it has been 

resected [97]. They are marketed for clinical use as Oncotype DX (Genomic Health) [109] 

and Mamma Print (Agendia) [110]. This signature is used to decide which patients should 

receive systemic therapy after surgery with the aim to eliminate any remaining tumor 

cells and reduce the risk of relapse and which patients can be spared such invasive 

treatment. 

The third type of biomarkers are the pharmacodynamic biomarkers. These 

measure the treatment effect of a drug on the tumor or the host. This can help to assess 

the efficacy of the drug and to guide dose selection in the early stages of its clinical 

development.  

1.4.2 Cancer molecular profiling and biomarker discovery technologies 

The topic of cancer biomarkers is a broad one with a large associated literature. 

From the examples discussed above it is clear that the term “biomarker” encompasses a 

wide range of molecular forms. It can be a gene amplification, a translocation, a mutation, 

a protein overexpression or even a gene expression signature. This diversity is the result 

of the different and rapidly evolving technologies employed for the molecular 

characterization of tumors at all levels. These include technologies that measure changes 

in content or sequence of DNA (genome), expression of messenger RNA (transcriptome), 

and production of proteins (proteome).  

Technologies for analyzing the cancer genome - The human genome project, 

which was completed using first generation “Sanger” sequencing, generated demand for 

cheaper and faster sequencing methods. So called ‘next generation sequencing’ platforms 

are capable of performing massively parallel sequencing, i.e. the simultaneous sequencing 

of millions of DNA fragments [111].  In addition, for many types of alteration in the DNA, 

specialized detection methods have been developed, including those to study single 
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nucleotide variants, small insertions/deletions, chromosomal rearrangements, gene 

fusions, alternatively spliced transcripts, chromosomal copy number alterations, and 

detection of foreign DNA (such as from viruses) [112].  

Since most biomarkers previously discovered in cancer were either single genetic 

mutations that drove the cancer (‘driver mutation’), gene amplifications or translocations, 

efficient and affordable strategies were first developed for their detection. Strategies like 

whole-exome sequencing, which target protein-coding genes, or targeted sequencing, 

which focuses on hotspots for disease causing mutations, have been broadly applied. 

Currently, the costs of whole genome sequencing are plummeting [112], making the 

technology much more accessible. This has dramatically increased the amount of research 

involving large-scale sequencing. 

Technologies for analyzing the cancer transcriptome - Until recently, the most 

commonly used technology to analyze gene expression profiles were microarrays. The 

basic principle of microarrays is the hybridization of cellular RNA that has been 

converted to cDNA to fixed probes followed by its detection using fluorescence. 

However, the advent of next generation sequencing has provided a strong alternative to 

microarrays. In a single analysis, next generation sequencing of RNA (RNA-seq) can 

provide information on the entire transcriptome of a sample with much higher depth and 

quantitative accuracy than microarrays. 

Technologies for analyzing the cancer proteome - As discussed in Chapter 3, MS-

based quantitative proteomics has evolved to become the method of choice for global in-

depth profiling of proteomes of any biological system. Previously used methods such as 

2D gels had proven to have low accuracy and depth and protein arrays are far from 

providing comprehensive coverage. That said, early application of MS-based approaches 

to characterize tumors used immature technology, generally resulting in poor outcomes. 

Quantitative approaches have only recently reached the stage where almost complete and 

accurate measurements of complex proteomes are possible. Such in-depth accurate 
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measurements are a requirement for the global molecular profiling of individual tumors 

at the proteome level.  

To date, most biomarkers with clinical applications are single mutations, 

translocations, or genetic amplifications [113]. However, it has now become evident to 

cancer biologists that these single biomarkers are likely to be insufficient to select the 

optimal targeted therapies. In cancer, signaling pathways important for tumor growth 

and survival are deregulated by multiple cellular changes rather than a single 

modification. Alternative compensatory mechanisms that continue to promote cell 

proliferation and survival become activated by various targeted regimens, for instance in 

leukemia patients who develop resistance to Imatinib [114]. Therefore, biomarkers that 

better reflect the complex molecular aberrations of a given single tumor are needed. The 

recent development of technologies that allow measuring global molecular profiles of 

tumors allows researchers to screen the whole genome, proteome, transcriptome, and 

metabolome for new biomarkers. Global molecular screening can result in genetic, 

proteomic or metabolic profiles, or ‘signatures’ that may better classify the tumor and that 

can guide development of rationally designed combination therapies. Since somatic 

mutation profiles being are challenging to work with, most prior attempts to stratify 

tumors with molecular profiles have used mRNA expression data. 

1.4.3 A success story of gene expression profiling: subtyping of diffuse large B-

cell lymphomas based on cell-of-origin 

Multiple stages of normal B-cell development can give rise to malignant 

lymphomas, which exploit the regulatory biologic features of normal B-cells for their own 

advantage. When a mature naïve B-cell is stimulated with a T-cell dependent antigen, a 

germinal center reaction is initiated. A germinal center B-cell is at a quasi-stable stage 

characterized by two forms of genetic modifications that alter the B-cell receptor (BCR). 

These are ‘class-switch recombinations’, which changes the immunoglobulin heavy-chain 

class from IgM to IgG, IgA or IgE, and ‘somatic hypermutations’ which expand the 
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repertoire of BCRs through the induction of immunoglobulin-variable-region mutations. 

Both types of modifications involve DNA editing processes which require activation-

induced cytidine deaminase (AID) [115]. Within the dark zone of the germinal center, the 

B cells are rapidly dividing with a non-cleaved nucleus (centroblasts). These cells expand 

at a remarkable rate. Periodically, they travel to a sub-compartment of the germinal center 

(the light zone) where they develop into centrocytes (non-dividing B-cells with a cleaved 

nucleus). The light zone is rich in follicular dendritic cells and follicular helper T cells. As 

a result of stimulation by an antigen on dendritic cells and CD40 ligand on T cells, 

centrocytes may be rescued from cell death. They can revert to centroblasts and re-

proliferate, or they can differentiate into memory B-cells or plasma cells. A germinal 

center reaction where rapidly dividing cells are undergoing genetic rearrangements is 

essential for a normal and fast immune response. However, the germinal center reaction 

can also give rise to many types of lymphomas. The genetic modifications essential for a 

normal immune response are also a source of DNA damage, which can become 

pathologic in lymphomas (Figure 11) [116]. In fact, studies have shown that many types of 

lymphomas such as diffuse large B-cell lymphoma (DLBCL), follicular lymphoma and 

Burkitt’s lymphoma are derived from germinal center B-cells [117]. The malignant cells of 

these lymphomas carry the differentiation program of the normal B-cells they are derived 

from [118-120], but they also acquire oncogenic abnormalities that subvert the normal 

program. It is these oncogenic molecular differences that are refining the subgrouping of 

these lymphomas, which prior to the advent of molecular profiling technologies was 

based mainly on morphological and histological characteristics of the tumors.  One of the 

most prominent examples is the ability to molecularly classify three histologically 

indistinguishable subtypes of DLBCLs using microarrays [121]. This has great promise for 

targeted therapeutic regimens for each of the subtypes. 

Diffuse large-B cell lymphoma (DLBCL) comprises the largest percentage (30-35%) 

of B-cell non-Hodgkin lymphomas. It is biologically aggressive with a wide range of 

clinical presentations. The current treatment regimens can cure more than half of the cases 
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[122]. However, one-third of the patients have refractory disease or relapse after treatment 

and eventually succumb to the disease [123]. The salvage treatment for these patients is 

autologous stem cell transplantation (ASCT), which, at present, has poor success rates. 

There is an urgent need for more targeted approaches that take into account the 

underlying molecular heterogeneity responsible for the diverse clinical responses [121]. 

 
 

Figure 11. B-cell differentiation and the putative origins of various non-
Hodgkin’s lymphomas. Malignant lymphomas can arise at multiple stages of B-cell 
development. Based on gene expression studies, GC DLBCL is potentially derived from a 
germinal center B-cell and overexpresses genes characteristic of the germinal center 
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reaction. ABC DLBCL is likely derived from a post-germinal B-cell and is characterized by 
overexpression of genes that regulate the plasmacytic differentiation program. From [116].  

 

Despite differences in clinical courses of patients, DLBCL was for a long time 

considered to be a single disease. Attempts to subgroup DLBCL based on morphology 

had largely failed as the precision of morphological diagnosis, even when supplemented 

with immunochemistry for a few markers, was insufficient to robustly define diagnostic 

subgroups [118]. The underlying molecular heterogeneity within morphologically 

indistinguishable tumors of DLBCL was first revealed using microarray-based gene 

expression profiling (GEP). This technology allowed the identification of subtypes that 

originated from B-lymphocytes at different developmental stages [118]. These are the 

germinal center B-cell (GCB), activated B-cell (ABC) and primary mediastinal B-cell 

lymphoma (PMBL) (Figure 12). Each subtype possesses a set of overexpressed genes that 

corresponds to a B-cell differentiation stage from which the tumor has potentially arisen. 

The GCB subtype, for instance, expresses hundreds of genes characteristic of germinal 

center B-cells. In addition, the malignant GCB cells continue to undergo somatic 

hypermutation.  The ABC-DLBCL has the characteristics of a post-germinal B-cell and 

overexpresses genes that regulate plasmacytic differentiation. The third subtype, PMBL, is 

likely derived from a post-thymic B-cell and has a gene expression signature with more 

similarities to Hodgkin’s lymphomas than with other DLBCL subtypes. Importantly, the 

cell-of-origin classification correlated with subgroups that have different prognosis. The 

majority of PMBL patients can be cured with an effective chemotherapeutic regimen (DA-

EPOCH-R) [124]. When treated with R-CHOP, the most commonly used regimen for 

newly diagnosed DLBCL, the ABC and GCB subtypes show a 3-year overall survival rate 

of approximately 45% and 80%, respectively. Differences in prognosis as well as in their 

corresponding molecular profiles support the notion that ABC and GCB are distinct 

neoplasms that should be treated differently. Several studies focused on elucidating the 

different oncogenic mechanisms (genetic aberrations and oncogenic pathways) each 
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subtype is dependent on. This shows that such studies can play a major role in guiding 

targeted therapeutic strategies. 

 

    
 

Figure 12. Three distinct cell-of-origin subtypes of DLBCL discovered by gene 
expression profiling. The three subtypes of DLBCLs overexpress genes that are 
characteristic of the B-cell differentiation stage from which they are derived. From [121].  

 

Oncogenic mechanisms in lymphoma subtypes - In addition to a gene expression 

signature characteristic of germinal-center B cells, recent genomic studies have revealed 

some genetic lesions specific to GCB DLBCL. Examples include the t(14;18) translocation 

which is found in 34% of GCB DLBCL cases [125] and the deletion of the tumor 
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suppressor PTEN which is found in 11% of GCB DLBCL, but is never observed in ABC 

DLBCL or PMBL [126, 127]. In addition, a somatic point mutation in the EZH2 gene, 

which encodes histone-lysine N-methyl transferase, has been identified in the GCB 

subtype. This mutation was present in 18 out of the 83 GCB samples (22%) but in none of 

the 42 ABC samples [128].  The ABC subtype possesses a gene expression signature 

characteristic of normal B-cells that have been activated by BCR cross-linking. One of the 

pathogenic hallmarks of the ABC DLBCL subtype that was revealed using gene 

expression studies is the constitutive activation of the NF-κB pathway [129]. The NF-κB 

family of transcription factors control various cellular processes involved in tumor 

development such as cytokine secretion, cellular proliferation, angiogenesis, invasion and 

metastasis [130]. NF-κB signaling results in the upregulation of the transcription factor 

interferon regulatory factor 4 (IRF4), which drives plasmacytic differentiation. IRF4 

expression is directly regulated by NF-κB transcription factors, which can be induced by 

both BCR and Toll-like receptors (TLRs) signaling pathways [131]. A unique characteristic 

of B-cells is the expression of both types of receptors, which provides them with the 

ability to integrate responses to a variety of stimuli [132]. Several activating mutations 

influencing the NF-κB pathway have been identified in subsets of patients with ABC 

DLBCL. For instance, mutation in caspase recruitment domain-containing protein 11 

(CARD11) were found in 10% of ABC DLBCL cases [133]. B-cell lymphoma/leukemia 10 

(BCL-10) and mucosa-associated lymphoid tissue lymphoma translocation protein 

(MALT1) and CARD11 form a signaling complex, which is required for the BCR-

dependent activation of NF-κB signaling upon antigen stimulation [134]. In contrast, 

patients with wild type CARD11 activate NF-κB signaling through ‘chronic active’ BCR 

signaling [135]. In some cases, chronically active BCR signaling is associated with 

mutations in the B-cell co-receptor CD79B (21% of cases of ABC DLBCL) [135]. Mutations 

involving the TLR signaling pathway have also been identified.  A specific point mutation 

in MYD88, an adaptor protein of TLR signaling, has been observed in 30% of cases of 

DLBCL [136].  Other mutations such as the biallelic deletion of TNFAIP3 (A20), which is a 

negative regulator of the NF-κB pathway, occurs in 30% of the ABC cases and can co-exist 
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with mutation in both MYD88 and CD79B. This suggests that A20 inactivation can play a 

role in enhancing both BCR and TLR signaling [137].  

Genomic analysis of primary DLBCL tumors has revealed the tremendous 

molecular complexity of the disease. There are clear indications that devising targeted 

therapies requires more than just the identification of mutations that drive tumor 

development. Cooperating mutations as well as cross-talk in signaling pathways that 

confers drug resistance are all important factors to consider in devising targeted 

therapeutics.  In some cases of ABC DLBCL, for instance, there were no genetic alterations 

associated with chronic BCR signaling, which is an important driver of lymphomagenesis 

in this subtype. A global understanding of aberrant signaling pathways in such cases may 

provide valuable insights. 

Classification improvements - The cell-of-origin (COO) classification in DLBCL 

mentioned above did not fully reflect the differences in overall survival after 

chemotherapy among patients [118] . In an attempt to refine the classification, a follow up 

study was conducted by the same group where a molecular predictor of risk was 

constructed. It used genes with expression patterns that correlated with survival and 

identified four gene-expression signatures reflecting different biological attributes of the 

tumor. Genes mainly from the four signatures (germinal-center B-cell, proliferation, 

major-histocompatibility-complex class II (MHCII) and lymph node signatures) were 

included in the predictor. Representing the four signatures, the predictor was then 

minimized to seventeen genes and it was subsequently shown to have greater prognostic 

power than COO subgrouping of DLBCLs [138]. Following an independent change of the 

treatment regimens of DLBCL involving the addition of rituximab to combination 

chemotherapy, a further stratification study was conducted. This study showed that a 

multivariate model constructed from three gene-expression signatures (germinal-center B-

cell, stromal-1, and stromal-2) predicted survival both in patients who received CHOP, 

and patients who received R-CHOP. Stromal-1 signature reflected extracellular matrix 
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deposition, and stromal-2 signature, which had an unfavorable prognosis, reflected tumor 

blood vessel density [139].  

Since RNA extraction from FFPE samples is still difficult [140, 141], many 

immunohistochemistry-based algorithms have been developed in parallel to GEP studies. 

The basic principle of these algorithms is to simulate the results of GEP by classifying the 

patients into ABC-DLBCL and GCB-DLBCL subgroups [142]. They included 3 to 6 

antibodies already available for immunohistochemistry and would provide a cost-

effective replacement to GEP if proven successful [142]. The Hans algorithm, which was 

the first algorithm to be developed, uses antibodies against CD10, BCL6, and MUM1 and 

had 83% concordance with GEP [143]. Several algorithms aimed to improve the accuracy 

of the Hans algorithm [142]. However, a recent study that compared all IHC-based 

algorithms, concluded that GEP and not IHC-based algorithms accurately predict 

prognosis in DLBCL patients treated with immunochemotherapy [144]. The most recent 

prognostic model based on immunohistochemistry attempts to simulate the COO 

classification as well as the stromal signatures. It also includes the assessment of 

microvascular density as well as the International Prognostic Index (IPI) to stratify 

patients [141]. However, it has not yet to be proven in clinical settings. 

Therapeutic opportunities – The above mentioned addition of rituximab (R), a 

chimeric monoclonal antibody targeting CD20, to combination chemotherapy with 

cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) is the most recent 

breakthrough in the treatment of DLBCL patients. It has shown benefit for all DLBCL 

subtypes and is the most commonly used regimen in newly diagnosed cases [121]. 

Nevertheless, the tremendous improvements in understanding the molecular 

heterogeneity of DLBCL have opened the door for subtype-targeted therapeutic 

approaches. Several clinical trials are underway based on characteristic mutations and 

oncogenic pathways that are specifically activated in each subtype. As ABC DLBCL is the 

subtype with worst prognosis, improving therapeutic strategies by targeting its aberrant 

signaling pathways should be a high priority. 
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Targeted therapy in GCB DLBCL – The increased histone methyltransferase 

activity in DLBCL cell lines that harbor EZH2 mutations seem to be necessary for their 

proliferation. An oral inhibitor (E7438) which targets EZH2 is in early clinical testing for 

relapsed DLBCL of all subtypes [121]. In addition, targeting the PI3K/Akt/mTOR pathway 

is also under clinical investigation using several inhibitors [127]. A prominent target for 

GCB DLBCL is BCL-2. A second generation inhibitor of BCL-2 is in a phase II study 

including patients with relapsed B-cell lymphomas. This inhibitor lacks significant 

binding to Bcl-Xl, avoiding its co-inhibition that causes thrombocytopenia [121]. 

Targeted therapy in ABC DLBCL - Being the characteristic pathological hallmark 

of the ABC subtype, several clinical studies focus on the NF-κB pathway. Targeting this 

pathway via proteasome inhibition has shown selective efficacy in ABC DLBCL patients. 

This landmark study in patients with refractory or relapsed DLBCL revealed that 

bortezomib (a proteasome inhibitor) sensitized patients with the ABC subtype and not the 

GCB subtype to chemotherapy [145]. More selective and better tolerated proteasome 

inhibitors are under clinical investigations [121]. Lenalidomide is a new and promising 

drug that selectively kills ABC DLBCL cells through targeting IRF4 [146]. In a study of 

patients with relapsed or refractory DLBCL, lenalidomide demonstrated differential 

efficacy between non-GCB and GCB DLBCL, with the latter showing better outcome 

[147]. In addition, several drugs that target the NF-κB pathway at different stages are 

under investigation. Some target upstream regulators such as BTK, PKC-β and MALT1 

[121]. 

1.4.4 MS-based proteomics: a promising tool for molecular cancer diagnostics 

The successful use of genomic aberrations (BCR-ABL, ERBB2 and EGFR) as 

biomarkers influencing treatment decisions is a promising example of the translation of 

information from the cancer genome to clinical practice. However, many of these 

successes predate the current genome-wide, high-throughput technologies, and some of 

them instead resulted from decades of work on the molecular mechanisms involved. With 

the advent of more affordable and efficient next generation sequencing platforms, the 
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numbers of sequenced human tumors have exploded. The enormous amount of 

information generated has uncovered a hitherto unimagined level of complexity of the 

cancer genome. An emerging challenge is to interpret the information and to determine 

which molecular abnormalities contribute to cancer, and which are simply noise [148].  

As mentioned above, there are many indications that biomarkers based on a single 

mutation, translocation, or genetic amplification are insufficient to design targeted 

therapeutic strategies. Signaling pathways that the tumor exploits for its own growth and 

survival are under the control of multiple cellular changes. A global molecular 

understanding of the tumor subtypes can help design combinations of novel agents to 

target the oncogenic drivers of each subset of disease. Attempts to stratify patients based 

on the entire mutation profile have been challenging. Somatic mutation profiles are 

inherently sparse [149]. In addition, there is remarkable heterogeneity in mutation 

frequency and spectrum within cancer types [150]. As a result most attempts to stratify 

tumors with molecular profiles have used mRNA expression data. Gene expression 

studies discovered informative subtypes in diseases such as glioblastoma, breast cancer 

and DLBCLs. Conversely, defining clinically relevant subtypes of colorectal 

adenocarcinoma using expression profiles was not equally successful and the subtypes 

derived did not correlate with patient survival and response to chemotherapy or any 

clinical phenotype [151].  Issues such as RNA sample quality and lack of reproducibility 

between biological replicates may have contributed to these  results [152].  

 Integrating somatic tumor genomes with gene networks a recently developed 

network-based stratification (NBS) method classified cancers into informative subtypes by 

clustering together patients with mutations in similar network regions[149]. Such 

approaches are built on the insight that even if two tumors do not share common 

mutations, the affected networks may still be common. In fact, it has become more widely 

accepted that cancer is not a disease of individual mutations, nor of genes, but of gene 

combinations working in molecular networks [153, 154]. These networks correspond to 

cancer hallmarks such cell proliferation and apoptosis.  
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A more direct way to observe impacted biological networks and systems would be 

to explore the end product of the gene expression cascade, the proteins. Additionally, 

proteomics can in principle provide a detailed picture of the active and fully modified 

protein forms. There is mounting evidence that many quantitative measures of biological 

regulation cannot be predicted from transcript levels alone. For instance, the major factor 

controlling abundance of proteins appears to be the level of translation [95]. Proteomics 

measures regulation directly at the expression level of all proteins. It further allows 

characterization of such regulations at the level of protein-protein interactions and PTMs. 

These dimensions can in principle be explored either at the whole cell level or in 

individual subcellular compartments.  

The potential of clinical proteomics is therefore self-evident. The general aim of 

thesis is to develop contemporary MS-based proteomics into a platform for reaching one 

of the fundamental goals of personalized medicine, tumor stratification.  
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2. RESULTS 

2.1 Super-SILAC allows classification of diffuse large B-cell lymphoma 

subtypes by their protein expression profiles 

2.1.1 Project aim and summary 

Diffuse large B-cell lymphoma (DLBCL) is an aggressive malignancy of mature B 

lymphocytes. It is the most common subtype of non-Hodgkin’s lymphoma and it is 

clinically heterogeneous. Attempts to sub-classify DLBCL on the basis of morphology, 

even when supplemented with immunohistochemistry for a few markers, have largely 

failed. Two molecularly distinct subtypes of DLBCL have been identified by gene 

expression profiling using a specialized DNA microarray (Lymphochip). Each of the 

subtypes expressed a set of genes characteristic of a particular B-cell development stage. 

Germinal center B-cell DLBCL (GCB-DLBCL) is a subtype that expresses genes 

characteristic of germinal center B cells, while a second subtype, activated B-cell DLBCL 

(ABC-DLBCL), expresses genes characteristic of in vitro activated peripheral blood B cells. 

Importantly, the molecular subtypes identified patient groups that differed in overall 

survival after chemotherapy.  

Mass spectrometry-based proteomics offers unbiased methods to molecularly characterize 

tumors at the protein level, which is one step closer to the disease phenotype. Using and 

improving on recent developments in our MS-based proteomics platforms, we wanted to 

employ state-of-the-art technology to address tumor classification a challenging question 

of clinical relevance. We chose to work with DLBCL as a model system and to employ the 

super-SILAC approach for quantification. One of the important steps in this project was 

the empirical design of a general lymphoma super-SILAC mix that included cell lines 

with the most diverse protein expression profiles. The mix provided a spike-in standard 

that allowed the comparison of any number of lymphoma cell lines or tissues. We 

compared an extensive fractionation approach (where each sample was fractionated into 
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six sub-samples) with our recently developed single shot approach where no fractionation 

is performed. Interestingly, the in-depth profiling as well as the single shot measurements 

of the samples allowed clear segregation into their corresponding subtypes. Reassuringly, 

the study confirmed some of the known segregators as well as identified some novel ones. 

We discovered a signature of 55 proteins that was capable of strongly segregating the 

subtypes. It even highlighted the relative up-regulation of NF-κB target genes in the ABC-

DLBCL subtype whose constitutive NF-κB signaling is an oncogenic hallmark. 

2.1.2 Contribution 

This project was initiated by Matthias Mann, Marc Schmidt-Supprian, who also provided 

supervison, and myself. I performed and optimized all sample preparation techniques 

and MS analysis methods and acquired data and analyzed it. I designed all figures and 

tables for the publication. I wrote the manuscript with the help of Matthias Mann and 

Marc Schmidt-Supprian. 

2.1.3 Publication 

This project was published in 2012 as a research article in Molecular and Cellular 

Proteomics: 

Super-SILAC Allows Classification of Diffuse Large B-cell Lymphoma Subtypes by 

Their Protein Expression Profiles 

Sally J. Deeb, Rochelle C. J. D’Souza, Juergen Cox, Marc Schmidt-Supprian, and Matthias 

Mann 

Mol Cell Proteomics. 2012 May; 11(5) 

 

 

 

 

  



Super-SILAC Allows Classification of Diffuse
Large B-cell Lymphoma Subtypes by Their
Protein Expression Profiles*□S

Sally J. Deeb‡, Rochelle C. J. D’Souza‡, Jürgen Cox‡, Marc Schmidt-Supprian§¶,
and Matthias Mann‡�

Correct classification of cancer patients into subtypes is a
prerequisite for acute diagnosis and effective treatment.
Currently this classification relies mainly on histological as-
sessment, but gene expression analysis by microarrays has
shown great promise. Here we show that high accuracy,
quantitative proteomics can robustly segregate cancer
subtypes directly at the level of expressed proteins. We
investigated two histologically indistinguishable subtypes
of diffuse large B-cell lymphoma (DLBCL): activated B-
cell-like (ABC) and germinal-center B-cell-like (GCB) sub-
types, by first developing a general lymphoma stable iso-
tope labeling with amino acids in cell culture (SILAC) mix
from heavy stable isotope-labeled cell lines. This super-
SILAC mix was combined with cell lysates from five ABC-
DLBCL and five GCB-DLBCL cell lines. Shotgun pro-
teomic analysis on a linear ion trap Orbitrap mass
spectrometer with high mass accuracy at the MS and
MS/MS levels yielded a proteome of more than 7,500 iden-
tified proteins. High accuracy of quantification allowed ro-
bust separation of subtypes by principal component analy-
sis. The main contributors to the classification included
proteins known to be differentially expressed between the
subtypes such as the transcription factors IRF4 and SPI1/
PU.1, cell surface markers CD44 and CD27, as well as novel
candidates. We extracted a signature of 55 proteins that
segregated subtypes and contained proteins connected to
functional differences between the ABC and GCB-DLBCL
subtypes, including many NF-�B-regulated genes. Shorten-
ing the analysis time to single-shot analysis combined with
use of the new linear quadrupole Orbitrap analyzer (Q Ex-
active) also clearly differentiated between the subtypes.
These results show that high resolution shotgun proteom-
ics combined with super-SILAC-based quantification is a
promising new technology for tumor characterization and
classification. Molecular & Cellular Proteomics 11:
10.1074/mcp.M111.015362, 77–89, 2012.

Clinical heterogeneity in terms of patient survival rates and
response to therapy is a major challenge in cancer treatment.
This difficulty partly stems from grouping together molecularly
distinct tumor entities as one clinical type and treating them in
the same manner. Transcript-based profiling technology en-
ables the segregation of subtypes based on their gene ex-
pression signatures (1, 2). However, it is often difficult to
interpret such signatures with respect to the biology of the
disease (1). In addition, gene expression signatures do not
provide information if or to what extent the detected transcript
is translated into proteins, and it ignores the effects of post-
translational modifications. An in-depth, high accuracy quan-
titative proteomics approach capable of revealing common
and distinct functional features between tumor entities may
provide valuable insights into cancer subtypes of potential
clinical relevance.

MS-based proteomics has recently evolved into an impor-
tant tool in mining deregulated signaling pathways in cancer
because of its ability to move one step closer toward the
cancer phenotype and because of substantial progress in
technology and methodology (3, 4). These advances in MS
now allow the identification of thousands of proteins in a
single experiment as a result of enhanced sensitivity, accu-
racy, and speed of analysis (5–7). In addition, a variety of
quantitative proteomic approaches can monitor expression
changes of thousands of proteins and post-translational mod-
ifications in a reproducible manner (8, 9). Stable isotope la-
beling with amino acids in cell culture (SILAC)1 is a particularly
accurate method of quantitative proteomics (10, 11), but until
recently it was limited to cell lines or animals that could be
metabolically labeled with heavy amino acids. This limitation
of SILAC in studying patient tumor samples has been over-
come through the use of a mix of multiple SILAC-labeled cell
lines as an internal standard, a technique called super-SILAC
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(12). This mix achieved superior quantification accuracy com-
pared with a single SILAC-labeled cell line (13). In particular, a
narrow ratio distribution was obtained with 90% of proteins
contained within an easily quantifiable 4-fold range between
the tumor and the SILAC mix. We reasoned that this ability to
quantify several thousand proteins with high accuracy might
enable confident proteomic classification of tumors in differ-
ent subtypes.

The subclassification of diffuse large B-cell lymphoma
(DLBCL), the most common lymphoma in adults, by gene
expression profiling was a major breakthrough because it
resulted in the identification of two histologically indistinguish-
able subtypes that differ in their outcomes after multiagent
chemotherapy (14). The germinal-center B-cell-like (GCB)
subgroup has a gene expression signature characteristic of
normal germinal center B-cells, whereas the activated B-cell-
like (ABC) subgroup, being the one with worse prognosis, has
a gene expression signature characteristic of B-cells acti-
vated through their B-cell receptor. One of the key pathways
that are differentially activated between DLBCL subgroups is
signaling to NF-�B family transcription factors, which are
constitutively active in the ABC subgroup (15). In B-cells,
NF-�B controls the expression of genes necessary for both
proliferation and survival in response to stimulation, including
antigen recognition by the B-cell receptor (BCR). The IRF4
transcription factor, an NF-�B target, plays multiple roles in B
lymphocyte development and function and is critical for
plasma cell differentiation. Its high expression in ABC-DLBCL
reflects constitutive NF-�B activity and plasmacytic differen-
tiation. Recently, mutations leading to “chronically active”
BCR signaling have been described as a mechanism provid-
ing aberrant cellular survival signals in ABC-DLBCL (16). In
these cases, the constitutive NF-�B activation in ABC-DLBCL
depends on the multiprotein CARD11-BCL10-MALT1 (CBM)
complex (17–19). Such findings may open the door for new
therapeutic modalities that target components of BCR signal-
ing upstream of NF-�B. Furthermore, improvements in DNA
sequencing technologies have paved the way to the discovery
of novel aspects of DLBCL pathology, such as impairments in
chromatin methylation and evasion of T cell immune surveil-
lance (20). This shows that the deployment of novel method-
ologies continuously enhances our understanding of the com-
plex biology of lymphomas.

Despite the success of gene expression profiling in differ-
entiating between tumor subtypes, the extracted transcrip-
tional signatures do not always suffice to identify biological
drivers of tumor pathogenesis. Furthermore, their adoption in
the clinic, where protein-based assays are more commonly
used, has been slow. A long standing aim of the proteomics
community is to directly study human cancer at the protein
rather than the transcript level (3). Here, we use high resolu-
tion shotgun proteomics combined with a super-SILAC quan-
titative approach in an attempt to segregate DLBCL subtypes.
If applicable, the super-SILAC technology should be particu-

larly accurate, robust, and reproducible because it provides
an entire reference proteome consisting of thousands of
heavy labeled proteins for comparison of a large number of
tumor samples. We evaluate the super-SILAC spike-in ap-
proach for distinguishing cell lines derived from ABC- and
GCB-DLBCL patients. Choosing such closely related disease
entities sets a high bar for our quantitative proteomics tech-
nology. Furthermore, the fact that specific biological differ-
ences between ABC and GCB are already known allows us to
evaluate proteomics results in light of those differences.

EXPERIMENTAL PROCEDURES

Cell Culture Sample Preparation—ABC-DLBCL cell lines (HBL1,
OciLy3, RIVA, TMD8, and U2932) and GCB-DLBCL cell lines (BJAB,
DB, HT, SUDHL-4, and SUDHL-6) were grown in RPMI medium
(Invitrogen) supplemented with 20% fetal bovine serum. Cell lysis was
performed using a buffer consisting of 4% SDS, 0.1 M DTT, and 0.1 M

Tris-HCl pH 7.5 followed by incubation at 95 °C for 5 min. The lysates
were sonicated using a Branson type sonicator and then centrifuged
at 16,100 � g for 10 min.

Cell lines selected for inclusion in the super-SILAC mix were grown
in RPMI medium containing 13C6

15N2-lysine (Lys8) and 13C6
15N4-

arginine (Arg10) (Cambridge Isotope Laboratories) instead of the nat-
ural amino acids and supplemented with 20% dialyzed fetal bovine
serum. The cells were cultured for at least six passages until they
were fully labeled as assessed by quantitative mass spectrometry.
Less than 1% of tryptic peptides contained unlabeled arginine or
lysine in the nine labeled cell lines (Ramos, Mutu, BL-41, U2932,
OciLy3, BJAB, L1236, L428, and DB) and less than 0.3% of identified
peptides showed evidence of Arg to Pro conversion. Equal amounts
of the heavy lysates were mixed to generate the super-SILAC mix.

Protein Digestion and Fractionation—The super-SILAC mix (100
�g) was combined with an equal amount of the unlabeled cells and
further processed by the filter-aided sample preparation (FASP)
method (21). In short, the sample was loaded on Microcon filters with
a 30-kDa cutoff (Millipore, Billerica, MA), which allows the replace-
ment of SDS with a urea containing buffer. The proteins were then
alkylated with iodoacetamide followed by overnight trypsin digestion
at 37 °C in 50 mM ammonium bicarbonate. Peptides were collected
from the filter after centrifugation and elution with water (2�).

Using strong anion exchange chromatography, 40 �g of the pep-
tide mixture from each replicate was fractionated (22). In summary,
the strong anion exchange (SAX) was performed in tip columns pre-
pared from 200-�l micropipet tips stacked with six layers of a 3M
Empore anion exchange disk (1214-5012; Varian, Palo Alto, CA). We
used Britton & Robinson universal buffer composed of 20 mM acetic
acid, 20 mM phosphoric acid, and 20 mM boric acid and titrated with
NaOH to the desired pH for column equilibration and fraction elution.
After loading the peptides at pH 11 and collecting it, five additional
fractions were collected consecutively with buffers of pH 8, 6, 5, 4,
and 3. The eluted fractions were desalted on reversed phase C18

Empore disc StageTips (23). Peptide elution was performed twice
with 20 �l of buffer B containing 80% ACN in 0.5% acetic acid.
Organic solvents were removed by a SpeedVac concentrator to pre-
pare the samples for analysis by LC-MS/MS.

Liquid Chromatography and MS for Fractionation Experiments—
Eluted peptides were separated on an in-house-made 15-cm column
with a 75-�m inner diameter packed with ReproSil-Pur C18-AQ 3 �m
resin (Dr. Maisch GmbH, Ammerbuch-Entringen, Germany) using an
Easy nanoflow HPLC system (Proxeon Biosystems, now Thermo
Fisher Scientific). The HPLC was coupled via a nanoelectrospray ion
source (Proxeon Biosystems) to an LTQ-Orbitrap Velos mass spec-
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trometer (Thermo Fisher Scientific) (24). Approximately 2 �g of pep-
tides were loaded in buffer A (0.5% (v/v) acetic acid) with a flow rate
of 500 nl min�1 and eluted with a 200-min linear gradient at a flow rate
of 200 nl min�1. Four different gradients were applied for optimal
separation based on average peptide hydrophobicity. A gradient of
2–25% buffer B to separate the pH 11 fraction; 7–25% buffer B for the
pH 8 fraction; 7–30% buffer B for the pH 6 and 5 fractions; and
7–37% buffer B for the pH 4 and 3 fractions. After each gradient, the
column was washed, reaching 90% buffer B followed by re-equilibra-
tion with buffer A.

The mass spectra were acquired with an automatic switch between
a full scan and up to 10 data-dependent MS/MS scans. Target value
for the full scan MS spectra were 1,000,000 and resolution was
30,000 at m/z 400. Up to the 10 most intense ions (minimum signal
threshold of 5,000) were sequentially isolated and accumulated to a
target value of 40,000 with a maximum injection time of 150 ms and
were fragmented by higher energy collisional dissociation (25). For a
subset of measurements, MS/MS target values were set to 50,000.
The spectra of the fragmented ions were acquired in the Orbitrap
analyzer with resolution of 7,500 at m/z 400.

Liquid Chromatography and MS for Single-shot Experiments—The
peptides were separated on an in-house-made 50-cm column with a
75-�m inner diameter packed with 1.8 �m C18 resin (Dr. Maisch
GmbH, Ammerbuch-Entringen, Germany). The Thermo EASY-nLC
1000 system with a binary buffer system consisting of 0.5% formic
acid (buffer A) and 80% acetonitrile in 0.5% formic acid (buffer B) was
used for reverse phase chromatography. Peptides (�4 �g) were
eluted with a 220-min linear gradient of buffer B up to 30% at a flow
rate of 250 nl min�1. The column temperature was kept at 40 °C by an
in-house designed oven with a Peltier element (26). The LC was
coupled to a Q Exactive mass spectrometer (27) (Thermo Fisher
Scientific) via the nanoelectrospray source (Proxeon Biosystems, now
Thermo Fisher Scientific). Mass spectra were acquired on the Q
Exactive in a data-dependent mode with an automatic switch be-
tween a full scan and up to 10 data-dependent MS/MS scans. Target
value for the full scan MS spectra was 3,000,000 with a maximum
injection time of 20 ms and a resolution of 70,000 at m/z 400. The 10
most intense ions with charge two or more from the survey scan were
selected with an isolation window of 1.6 Th and fragmented by higher
energy collisional dissociation (25) with normalized collision energies
of 25. The ion target value for MS/MS was set to 1,000,000 with a
maximum injection time of 60 ms and a resolution of 17,500 at m/z
400. These settings lead to constant injection times of 60 ms, fully in
parallel with transient acquisition of the previous scan, ensuring fast
cycle times. Repeat sequencing of peptides was kept to a minimum
by dynamic exclusion of the sequenced peptides for 25 s.

Data Analysis—The acquired raw files were analyzed by MaxQuant
(28) (version 1.2.0.34). Andromeda, a probabilistic search engine in-
corporated into the MaxQuant framework (29), was used to search
the peak lists against the IPI human database version 3.68 which
contains 87,083 entries. Common contaminants were added to this
database. The search included cysteine carbamidomethylation as a
fixed modification and N-terminal acetylation and methionine oxida-
tion as variable modifications. The second peptide identification op-
tion in Andromeda was enabled (29). For statistical evaluation of the
data obtained, the posterior error probability and false discovery rate
were used. The false discovery rate was determined by searching a
reverse database. A false discovery rate of 0.01 for proteins and
peptides was required. Enzyme specificity was set to trypsin allowing
N-terminal cleavage to proline. Two miscleavages were allowed, and
a minimum of six amino acids per identified peptide were required.
Peptide identification was based on a search with an initial mass
deviation of the precursor ion of up to 6 ppm, and the allowed
fragment mass deviation was set to 20 ppm. The mass accuracy of

the precursor ions was improved by retention time-dependent mass
recalibration (28). To match identifications across different replicates
and adjacent fractions, the “match between runs” option in MaxQuant
was enabled within a time window of 2 min. Quantification of SILAC
pairs was performed by MaxQuant with standard settings using a
minimum ratio count of 2. Bioinformatics analysis was done with
Perseus tools available in the MaxQuant environment.

When needed for the analysis, the missing values were replaced
using data imputation. The idea of our algorithm for imputation of
missing values is that they should simulate signals of low abundant
proteins. To accomplish this, we first determine the mean and stand-
ard deviation of all valid values in the matrix. Then we draw numbers
for the missing entries from a suitable probability distribution in an
independently, identically distributed way. For that purpose, we use a
normal distribution with a mean and standard deviation adjusted in
such a way as to simulate signals of low abundant proteins. This is
necessary because the missing values are biased toward the detec-
tion limit of the LC-MS/MS measurement. Optimal values for the
down shift parameter were adjusted in a way that the distribution of
imputed values adjusts smoothly to the lower end of the distribution
of measured values. We iteratively adjusted the values to avoid too
large or too small down shifts. The former would result in a separation
of imputed and measured values (a bi-modal total distribution),
whereas the latter would introduce too much noise into the system
and would potentially destroy protein signatures. The two values for
downshifting and width adjustment are determined once but then
apply to all the cell lines. These optimal values were different for the
label-free and SILAC reference cases. For label-free data, we em-
ployed a width of 0.3 and a downshift of 1.8; in the super-SILAC data,
the width was 0.3, and the downshift was 0.5, each in units of the
standard deviation of the distribution of present values.

RESULTS AND DISCUSSION

Development of a Lymphoma Super-SILAC Mix—To accu-
rately quantify proteome differences between lymphoma sub-
types, we set out to generate a super-SILAC mix that would
be optimally suited as an internal standard for a broad range
of B-cell lymphomas. We considered commonly used cell
lines derived from patients with different types of the disease.
First we selected two lines, L428 and L1236, to represent
Hodgkin’s lymphoma. Of the non-Hodgkin’s lymphomas, we
selected three cell lines of patients with Burkitt’s lymphoma,
which is characterized by a c-Myc t(8;14) translocation. For
DLBCL, we started out with the five ABC type cell lines and
five GCB type cell lines that we wished to segregate by
proteomics. From these, we chose two ABC type cell lines
(Oci-Ly3 and U2932), as well as two GCB type cell lines (BJAB
and DB).

Next, we wished to select an optimal subset of these nine
representative cell lines (green in Fig. 1A). Instead of empiri-
cally testing different combinations, we reasoned that an in-
depth proteome of each of the nine cell lines should be
sufficient to mathematically determine the best combination.
For this purpose, we performed a six-fraction FASP-SAX-
based analysis, with 4-h gradients on an LTQ-Orbitrap Velos
and higher energy collisional dissociation-based fragmenta-
tion (Fig. 1A and “Experimental Procedures”). This involved a
single day of measurement time for each of the nine
proteomes.
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To compare the label-free proteomes of the cell lines to each
other, we performed principal component analysis (PCA). PCA
transforms large data sets into points in a data space of orthog-
onal components, such that the first component captures most
of the variability. Because PCA analysis requires a complete
data set (in this case label-free protein intensities for all identi-
fied proteins in all samples), we employed “data imputation” as
described in “Experimental Procedures.” We aimed to create a
mixture of cells that capture the largest diversity. Therefore, we
searched for those that were most distant from one another.

Mutu(�), one of the Burkitt-derived cell lines, was the furthest
outlier (Fig. 1B). L1236 and L428, the only Hodgkin’s lymphoma
cell lines, were also outliers. We therefore selected Mutu(�) and
one of the two Hodgkin’s lymphoma cell lines (L428). We then
performed a second round of PCA on the remaining seven
non-Hodgkin cell lines and selected the four outermost in the
resulting PCA space (U2932, DB, BL-41, and Ramos) (Fig. 1C).

To produce the super-SILAC mix from the selected six cell
lines, we grew them in heavy SILAC media and mixed them in
equal proportions. For a first evaluation, we spiked the mix

FIG. 1. Rational construction of lymphoma super-SILAC mix. A, label-free proteomics of nine B-cell lymphoma cell lines was performed
after FASP-SAX processing and analyzed using high resolution precursor and fragment measurements on an Orbitrap Velos. They included two
Hodgkin lymphoma cell lines (L428 and L1236) and seven non-Hodgkin lymphoma cell lines (Ramos, Mutu, BL-41, OciLy3, U2932, BJAB, and
DB). B, PCA of nine B-cell lymphoma cell lines based on their protein expression profiles. The red boxes indicate cell lines selected for the
super-SILAC mix. The gray dashed ellipse groups non-Hodgkin lymphoma cell lines to be further analyzed by a second PCA. C, PCA of the
six non-Hodgkin lymphoma cell lines encircled in B. The red boxes indicate cell lines selected for the super-SILAC mix.
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into lysate of an unlabeled ABC-DLBCL cell line (HBL-1) that
was not part of the original selection. The histogram of fold
changes between cell line proteins and super-SILAC proteins
was narrow, with 96% of the values within a 4-fold range. To
check the overall selection procedure, we also performed this
experiment with a mix of all nine initially selected cell lines.
The width of the distribution was essentially unchanged, in-
dicating that the six-cell line mix already adequately repre-
sented the proteome. Finally, a three-cell line mix of only the
largest outliers of the PCA analysis (Mutu, L428, and U2932;

Fig. 1B) also performed surprisingly well, attesting to the
usefulness of our selection procedure (supplemental Fig. 1).

In-depth Proteome Coverage Using the Lymphoma Super-
SILAC Mix—We spiked the super-SILAC mix into five unla-
beled ABC and five GCB cell lines and analyzed them as
described above for the label-free experiment, except that
each proteome was measured in triplicate (Fig. 2A). Joint
analysis of the resulting 180 LC MS/MS files (30 days meas-
uring time) in MaxQuant identified a total of 7,756 different
protein groups, by far the largest B-cell lymphoma proteome

FIG. 2. Proteomic workflow and overall results. A, the super-SILAC mix developed on the basis of label-free proteome comparison was
used as an internal standard for 10 different DLBCL cell lines. The samples were processed by FASP-SAX followed by triplicate 1-day proteome
analyses. B, heat map of Pearson correlation coefficients showing reproducibility between replicates.
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reported to date. Of these proteins, 6,263 were quantified in at
least two replicates of the same cell line (supplemental
Tables I and II).

At this depth of proteome coverage, we identified and
quantified a large number of known members of the B-cell
receptor-initiated signal transduction pathway (supplemen-
tal Fig. 2). Likewise, many transcription factors relevant to
B-cell biology were measured. Altogether, we identified 285
proteins annotated by Gene Ontology to have sequence-
specific DNA-binding transcription factor activity (supple-
mental Table II). This list included many transcription factors
playing important roles in B-cells, such as basic leucine zipper
transcription factor ATF-like (BATF), B-cell lymphoma 3 protein
(BCL3), B-cell lymphoma 6 protein (BCL6), immunoglobulin
transcription factors 1 and 2 (ITF1 and ITF2), Ets domain-con-
taining PU.1, and the B-lineage specifying transcription factor
PAX-5.

Next, we quantified all 30 proteome measurements against
each other based on the ratios to the super-SILAC mix and
calculated their Pearson correlation coefficients (r). Unsuper-
vised clustering of the rows and columns of the matrix of the
30 � 30 coefficients co-clustered the triplicates in each case
(Fig. 2B). Good reproducibility is further indicated by the high
average Pearson coefficients of the triplicates (r � 0.87).

Segregation between DLBCL Subtypes—To investigate
whether our proteomics measurements can segregate ABC
from GCB proteomes and to determine an optimal data anal-
ysis strategy, we started by performing unsupervised hierar-
chical clustering of all proteome measurements. We required
that proteins were present in at least 50% of the 30 measure-
ments and filled any missing values by “data imputation”
(“Experimental Procedures”). Again, replicate measurements
were always clustered together. Intriguingly, the two major
branches of the dendrogram precisely grouped all the ABC
and all the GCB subtypes together and apart from each other.
This indicates that these subtypes have quite different protein
expression patterns at a global level that are capable of de-
fining them as distinct entities.

The cluster indicated with arrow B in Fig. 3A, consists of 107
proteins, 70 of which are annotated as ribosomal, 12 of which
are components of the 20 S proteasome, and 14 of which are
components of the 26 S proteasome (CORUM annotation)
(15). As shown in Fig. 3B, their expression varies little across
the cell lines; thereby they serve as “loading controls” and
validate correct normalization and imputation of the proteome
samples by MaxQuant. This ensures that the variation of
protein expression values between ABC and GCB can directly
be attributed to biological differences between these cell
types rather than experimental artifacts. Fig. 3C shows the
differences in expression of two clusters in the upper part of
Fig. 3A (indicated with arrows C and D) with large differential
expression patterns between the two main branches of the
dendrogram. The first cluster consists of 16 proteins that are
up-regulated in the ABC subtype relative to GC. This cluster

includes proteins such as CD44, FOXP1, IL4I1, VAV2, and BID
(supplemental Table IV). The second cluster consists of 19
proteins that are up-regulated in the GCB subtype and in-
cludes proteins such as CD81, KIND3, WIP, INPP5B, PAG,
and BRDG1 (supplemental Table V).

Principal component analysis was performed to project the
SILAC-based proteome measurements into a two-dimen-
sional data space. We first applied PCA for the subgroup of
proteins that were quantified in each of the 30 proteome
measurements (100% valid values; 3,007 protein groups).
Component 1 of the PCA, which accounts for 20.5% of total
variability (horizontal axis in the two-dimensional plot of Fig.
4A), clearly separates GCB (group on the left side) from ABC
(group on the right side). Furthermore, Fig. 4A shows that the
distance between the replicates is much smaller than the
separation between the groups, supporting the robustness of
the segregation.

The proteins that are most responsible for separating the
proteomes in the PCA can be seen in the “loadings.” The
loadings of component 1, which capture the differences be-
tween the two groups, include the transcription factor IRF4,
mentioned above as one of the main drivers of the functional
differences between GCB and ABC lymphomas (Fig. 4B). In
fact, high expression of IRF4 in ABC-DLBCL is tied to the
constitutive activity of NF-�B that is required for survival of
this subtype of lymphoma cells (15). This transcription factor,
which was quantified in 30 of 30 proteomes, is the strongest
differentiator in this unbiased large scale analysis. PTP1B was
another one of the strongest loadings of component 1. PTP1B
is a key tyrosine phosphatase implicated in the regulation of
JAK/STAT signaling. The preferential expression of PTP1B in
ABC-DLBCL is already known, and its overexpression has
been suggested to contribute to the enhanced STAT6 de-
phosphorylation that is observed in these tumors upon IL-4
stimulation (30, 31).

The above analysis required quantification of the proteins in
every proteome measurement, which could exclude many
interesting proteins, such as those exclusively expressed in
only one subtype. We therefore employed imputation of miss-
ing values to make a larger subset of the proteome amenable
to PCA analysis. We first filtered for at least 50% valid values
(4,991 proteins) and imputed the missing values. Incorpora-
tion of the information from these additional proteins led to an
even stronger separation of the subtypes (Fig. 4C). The GCB
cell lines appear to cluster more tightly together, whereas the
ABC cell lines U2932 and RIVA are somewhat separated from
the other ABC cell lines. The loadings in Fig. 4D reveal addi-
tional known markers such as the cell surface markers CD44
for ABC-DLBCL (quantified exclusively in ABC) and CD27 for
GCB-DLBCL (Fig. 4D). The above analysis demonstrates that
requiring less than 100% valid values and imputing missing
values is a valid and robust strategy for segregation of sub-
type groups, as well as for finding individual differentiators by
proteomics.
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FIG. 3. Unsupervised hierarchical clustering. A, unsupervised clustering of protein expression profiles of 10 DLBCL cell lines after filtering
for 50% valid values and imputation of missing values. B, expression patterns for a cluster enriched for ribosomal and proteasomal proteins.
C, expression patterns for a cluster of proteins with higher expression levels in ABC relative to GCB. D, expression patterns for a cluster of
proteins with higher expression levels in GCB relative to ABC.
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FIG. 4. Principal component analy-
sis. A, the proteomes of 10 DLBCL cell
lines measured in triplicate segregated
into ABC-DLBCL and GCB-DLBCL sub-
types after filtering for 100% valid values
(3,007 proteins). B, loadings of A reveal
proteins that strongly drive the segrega-
tion in PCA component 1. C, the same
analysis as in A but after filtering for 50%
valid values (4,991 proteins) and filling
the missing values by data imputation
results in even stronger separation. D,
loadings of C uncover additional known
and unknown markers that segregate
the ABC and GCB subtypes.
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Category-based Analysis of Subtype Differences—The
above analyses were global and unbiased in that they con-
sidered the entire proteome. To determine whether specific
groups of proteins by themselves could differentiate the sub-
types, we extracted the proteins belonging to specific KEGG
categories from the quantified proteome. We then performed
PCA analysis on this subset as described above. Interestingly,
the category “pathways in cancer” (108 quantified proteins)
was able to clearly separate the groups, albeit to a lesser
degree than the full proteome (Fig. 5A). The strongest load-
ings preferential for GCB in this category were p53, STAT5,
STAT5B, and SPI1/PU.1 (Fig. 5B). SPI1 has a major role in
maintaining germinal center B-cells through repressing the
expression of plasma cell transcriptional regulators and thus
blocking plasma cell differentiation (32). The strongest load-
ings preferential for ABC included the anti-apoptotic protein
BCL2, overexpression of which is a known mechanism by
which NF-�B driven tumors evade apoptosis. Surprisingly, the
pro-apoptotic protein BID was also in this group. The loadings
preferential for ABC include STAT3. It has been shown that
NF-�B signaling in ABC induces the expression of IL-6 and

IL-10, which act through JAK kinases and STAT3 as autocrine
signals (33). The constitutive activity of STAT3 promotes pro-
liferation and cell survival in the ABC subtype (34). This ex-
plains the synergistic effect of blocking JAK signaling and
NF-�B signaling in killing ABC cells (33). PKCB is another
interesting driver of the ABC subtype because its overexpres-
sion is a strong marker for refractory or fatal DLBCL and a
recognized drug target (35). Our finding that it is preferentially
expressed in the aggressive ABC subtype compared with the
GCB subtype may therefore be of clinical interest. The obser-
vation that a small group of proteins can separate the sub-
types prompted us to search for such groups in the entire
quantified data set.

t Test Signature—To identify in a supervised manner a set
of proteins that significantly distinguishes the ABC from the
GCB subtype, we performed a t test between the cell lines
using a permutation-based false discovery rate (0.05). This
analysis resulted in a set of 55 proteins (Fig. 6A) that strongly
segregated the subtypes as seen after PCA analysis (sup-
plemental Fig. 3). Interestingly, cell lines of the GCB subtype
collapse into a single cluster, indicating that the proteins most

FIG. 5. Category-based analysis of subtype differences. A, PCA of 10 lymphoma cell lines after filtering for proteins annotated by KEGG
to be involved in cancer (KEGG category: pathways in cancer). B, loadings of PCA in A.
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strongly differentiating ABC and GCB subtypes do not distin-
guish different GCB cell lines from each other (variation be-
tween cell lines is equal to the variation between replicates). In
contrast, replicates of ABC cell lines remained distinguish-
able, which indicates a larger degree of heterogeneity in ABC-
type cell lines as we observed previously.

In the signature obtained by unbiased proteomic analysis,
there are at least six proteins whose gene expression levels
are already described to be different between the subtypes
(ABC-like: IRF4, CD44, and PTP1B; GCB-like: CD27, SPI1,
and WIP). Because the total number of signature proteins is
small, this already validates our proteomic signature and en-
couraged us to further investigate the new proteins in our
signature. These include the recently described GTPase
Speckled-like pattern in the germinal center (SLIP-GC), whose
expression is limited to germinal center B-cells and to lympho-
mas derived from the germinal center including diffuse large
B-cell lymphomas (36). This finding supports the potential use
of SLIP-GC as a potential marker that can be used to differ-
entiate the two subtypes from each other. Another member of
the signature set is the surface marker CD81, which has also
very recently been reported to be highly expressed in normal
germinal B-cells. Further assessment of the role of this cell
surface marker in the risk stratification of patients with
DLBCL has already been recommended (37). A further novel
protein that has a higher expression level in our GCB-
DLBCL signature is the signaling adaptor Cbp/PAG. In B-
cell non-Hodgkin lymphomas, PAG and Lyn kinase consti-
tute the core of an oncogenic signalosome that results in
proliferative and pro-survival signals. The Lyn and PAG
signalosome can interact with downstream kinases to me-
diate these signals in different lymphoma cell lines (38). Our
finding that PAG is up-regulated in GCB suggests investi-
gating the modality associated with PAG in this subtype in
particular. Ymer, a protein that we previously identified as
an effector of EGF signaling (10, 39), is relatively up-regu-
lated in the ABC subtype. Ymer is also known as CCDC50
or C3orf6, and although not studied in the context of
DLBCL, this protein has been shown to be required for cell
survival in chronic lymphocytic leukemia and mantle cell
lymphoma cells (40). It is involved in the control of NF-�B
signaling, which is a characteristic of the ABC subtype
where it is up-regulated (15). Therefore, in addition to vali-
dating differentiators known from gene expression profiling,
our proteomic signature reveals a novel set of proteins,

FIG. 6. t test signature. A, t test analysis of the proteins from the
two groups of cell lines resulted in a signature of 55 proteins that are
most significantly different. The panel depicts a heat map of the ratios
of these proteins after clustering. B, plot of the difference of mean
ratios versus the significance of signature proteins. The proteins on
the left are significantly up-regulated in the ABC relative to GCB
subtype. The protein names highlighted in red indicate NF-�B regu-
lated genes.

Super-SILAC Distinguishes Lymphoma Subtypes

58



some of which have been shown to be involved in lymphom-
agenesis and might be of clinical relevance.

In an attempt to identify annotated protein categories that
are significantly and exclusively up-regulated in one lym-
phoma subtype relative to the other, we plotted the difference
of mean ratios versus the statistical significance of our signa-
ture proteins. This revealed that all NF-�B-regulated proteins
in the signature are significantly up-regulated in ABC relative
to GCB subtype (Fig. 6B). They included IRF4, CD44, Ymer,
PTP1B, ICAM, and HLA-C. Thus, our proteomic findings,
similar to previous results of gene expression profiling, are
consistent with high NF-�B activity in ABC-DLBCL as a hall-
mark that distinguishes this subtype from GCB-DLBCL.

BCR signaling has been shown to play an important role in
lymphomagenesis where malignant B-cells exploit the normal
regulatory roles of this pathway for their own purposes (41).
We extracted proteins from our data set that are KEGG an-
notated to be involved in BCR signaling and found that we
covered all but eight proteins in this category (59 of 67;

supplemental Fig. 2). To better investigate small but repro-
ducible protein changes, we normalized their expression lev-
els by z-scoring across replicates and cell lines. Taking the
median values for every subtype revealed four large clusters.
The proteins highlighted in red in supplemental Fig. 4A consist
of the BCR signaling proteins that exhibit the largest expres-
sion differences between the two subtypes and that are
higher in the ABC subtype. Interestingly, this cluster included
NF-�B1, as well as the two upstream regulatory proteins
MALT1 and CARD11 (supplemental Fig. 4B). This is consist-
ent with the role of the multiprotein CARD11-BCL10-MALT1
(CBM) complex in driving the constitutive NF-�B activity in the
ABC subtype (17–19). Conversely, the proteins (highlighted in
green in supplemental Fig. 4A) are BCR signaling proteins that
are higher in GCB (supplemental Fig. 4C).

Rapid Lymphoma Classification in Single-shot Runs—
Above, we have demonstrated that quantitative proteomics
can readily segregate cell lines derived from patients in a
robust manner. However, sample amounts and measurement

FIG. 7. Single-shot proteome measurements to distinguish ABC from GCB. A, unfractionated, FASP-processed peptide mixtures were
directly loaded onto a relatively long column (50 cm) after StageTipping. The proteomes were analyzed in triplicates in 4-h runs by an UHPLC
(EASY nLC 1000) system coupled to a benchtop quadrupole Orbitrap mass spectrometer (Q Exactive). B, principal component analysis of the
single-shot measurements. C, loadings of PCA in B highlighting the proteins that strongly drive the segregation in PCA component 1.
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time of our workflow (Fig. 1) would still be an obstacle to
clinical application. We therefore wanted to investigate the
possibility of making the approach more practical by reducing
the measurement time and the amount of sample consumed.
Taking advantage of the higher speed and sensitivity of the
newly introduced quadrupole Orbitrap mass spectrometer (Q
Exactive) (27), we investigated whether we could reach the
depth required to segregate the cell lines in a single-shot
experiment, that is, without fractionation. The samples were
prepared as before, except that FASP-prepared peptides
were directly loaded on StageTips and eluted into the au-
tosampler device. Single 4-h gradient runs were performed in
triplicates for each of the 10 cell lines, and data files were
processed together in MaxQuant. This resulted in the identi-
fication of 6,340 proteins and the quantification of 4,611 in at
least two replicates of the same cell line (Fig. 7A) (sup-
plemental Tables VI and VII). Filtering for 50% valid values
resulted in 3,566 quantified proteins. Upon PCA analysis of
the single measurements, we obtained a similar segregation
of the two subtypes, and the loadings responsible for the PCA
segregation showed a very strong overlap with the previously
obtained loadings (Fig. 7B). Interestingly, the data obtained
from singlets was sufficient to segregate the two subtypes.
This shows that single-shot measurements can reach the
depth required for robust separation of lymophoma subtypes,
opening up for the analysis of several patient samples per day
with sample requirements in the low microgram range.

Conclusion and Outlook—Here we have shown that high
accuracy, quantitative proteomics based on a super-SILAC
approach can robustly segregate closely related cancer sub-
types directly at the level of expressed proteins. We devel-
oped and used a super-SILAC mix of labeled B-cell lym-
phoma cell lines as an internal standard to segregate
subtypes of DLBCL. We selected the cell lines with the most
distinct protein expression profiles to obtain the best cover-
age of different lymphoma-specific proteins. The mix was
spiked into five ABC-DLBCL and five GCB-DLBCL cell lines,
which allowed robust, unsupervised segregation of these two
histologically indistinguishable lymphomas based on their
protein expression profiles. We found that requiring protein
quantification values to be present in half of the samples
and replicates and imputing the remaining values led to the
most robust segregation. The data also revealed a protein
expression signature that differentiates the two subtypes.
This signature confirmed known markers previously discov-
ered by gene expression studies and highlighted novel
ones. Interestingly, our straightforward PCA analysis of the
proteome differences revealed proteins such as IRF4,
CD44, STAT3, PTP1B, and CD27 as the strongest differen-
tiators between subtypes. The fact that these and a number
of other proteins, which all have a strong biological rationale
to drive subtype differences, emerge as the top hits in an
unbiased analysis, is very intriguing. Furthermore, unbiased
and supervised segregation revealed a number of novel

proteins, which can now be studied for their involvement in
these lymphoma subtypes.

To our knowledge, this is the first high accuracy, quantita-
tive proteomics study that unequivocally classified tumor cell
lines on par with microarray-based methods. This ability of the
super-SILAC proteomic approach to readily segregate be-
tween tumor subtypes now opens up the possibility of em-
ploying proteomics in many situations that have previously
been studied with transcript-based approaches. Toward this
goal, we already combined the super-SILAC quantitative ap-
proach with single-shot measurements on a benchtop qua-
drupole Orbitrap instrument. These measurements attained
the depth and accuracy required to segregate the two sub-
types as exemplified by a number of representative cell lines.
Considering the significant reduction in measuring time and in
required sample amount, it is conceivable that this workflow
could be employed in routine settings to answer practical
clinical questions such as tumor classification or drug
efficacy.
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2.2 N-linked glycosylation enrichment for in-depth cell surface 

proteomics of diffuse large B-cell lymphoma subtypes 

2.2.1 Project aim and summary 

After segregating the two morphologically indistinguishable subtypes of diffuse large B-

cell lymphoma (DLBCL) based on their global protein expression profiles, we wanted to 

investigate whether the same could be done by targeting a specific class of functionally 

relevant proteins.  

The repertoire of cell surface proteins provides a unique molecular fingerprint to 

phenotype cells and cellular states. In particular, membrane proteins may specifically 

characterize cancer cells and aid in the development of targeted therapies because they 

are the upstream and unique members of signaling cascades. This is in contrast to 

downstream-activated signaling pathways whose members can be redundant. Therefore, 

we focused this study on membrane proteins, which are not only key players in cancer 

cell biology but are also located at the interface between a cancer cell and its environment.  

It is routine to classify different cell types using a few antibodies directed against known 

proteins. However, discovering differentiating proteins distinguishing closely related 

tumor-subtypes derived from the same cell type requires a global and unbiased approach. 

Since glycosylation is a hallmark of membrane proteins, we took advantage of the 

recently developed N-glyco-FASP enrichment approach to explore the cell surface in a 

global manner. For quantification, we used a variant of the super-SILAC approach. In this 

way, we characterized the membrane proteins of five ABC-DLBCL and five GCB-DLBCL 

patient-derived cell lines. The attained depth and quantification accuracy allowed the 

correct segregation of the subtypes. Our study also established that related tumor 

subtypes can be classified by MS-based proteomics on the basis of PTM-bearing peptides. 

Our results also constitute the largest B-cell lymphoma membrane proteome to date. 

Importantly, many glycosites, which were identified as strong segregators in this study, 

were localized on proteins that we had suggested to be markers in our previous proteome 
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study of the same system. This further validates the clinical potential of these candidate 

proteins. Interestingly, the differences in the expression levels of membrane glycoproteins 

reflected tumor associated hallmarks or characteristics of the stage of B-cell development 

from which these cells are derived. For instance, differential activity of NF-κB signaling 

between the subtypes was apparent at the level of the membrane proteome. 

2.2.2 Contribution 

This project was a continuation of the first project. Under the supervision of Matthias 

Mann and Marc Schmidt-Supprian, I performed and optimized all sample preparation 

techniques and MS analysis methods. Under the supervision of Juergen Cox, I performed 

both data acquisition and analysis. I designed all figures and tables for the publication. 

The manuscript was written by me with the help of Matthias Mann and Marc Schmidt-

Supprian. 

2.2.3 Publication 

This project was published in 2014 as a research article in Molecular and Cellular 

Proteomics: 

N-linked Glycosylation Enrichment for In-depth Cell Surface Proteomics of Diffuse 

Large B-cell Lymphoma Subtypes 

Sally J. Deeb, Juergen Cox, Marc Schmidt-Supprian, and Matthias Mann 

Mol Cell Proteomics. 2014 January; 13(1) 

 

  



N-linked Glycosylation Enrichment for In-depth
Cell Surface Proteomics of Diffuse Large B-cell
Lymphoma Subtypes*□S

Sally J. Deeb‡, Juergen Cox‡, Marc Schmidt-Supprian§, and Matthias Mann‡¶

Global analysis of lymphoma genome integrity and tran-
scriptomes tremendously advanced our understanding of
their biology. Technological advances in mass spectrom-
etry-based proteomics promise to complete the picture
by allowing the global quantification of proteins and their
post-translational modifications. Here we use N-glyco
FASP, a recently developed mass spectrometric approach
using lectin-enrichment, in conjunction with a super-
SILAC approach to quantify N-linked glycoproteins in lym-
phoma cells. From patient-derived diffuse large B-cell
lymphoma cell lines, we mapped 2383 glycosites on 1321
protein groups, which were highly enriched for cell mem-
brane proteins. This N-glyco subproteome alone allowed
the segregation of the ABC from the GCB subtypes of
diffuse large B-cell lymphoma, which before gene expres-
sion studies had been considered one disease entity. En-
couragingly, many of the glycopeptides driving the segre-
gation belong to proteins previously characterized as
segregators in a deep proteome study of these subtypes
(S. J. Deeb et al. MCP 2012 PMID 22442255). This conforms
to the high correlation that we observed between the ex-
pression level of the glycosites and their corresponding
proteins. Detailed examination of glycosites and glycopro-
tein expression levels uncovered, among other interesting
findings, enrichment of transcription factor binding motifs,
including known NF-kappa-B related ones. Thus, enrich-
ment of a class of post-translationally modified peptides
can classify cancer types as well as reveal cancer specific
mechanistic changes. Molecular & Cellular Proteomics
13: 10.1074/mcp.M113.033977, 240–251, 2014.

Correct classification of cancer subtypes is a long-standing
aim for any heterogeneous diagnostic category and is a nec-
essary basis for rational treatment. Diffuse large B-cell lym-

phoma (DLBCL)1 is the most frequent subtype of malignant
lymphomas and is clinically heterogeneous (1). The molecular
characterization of DLBCL based on gene expression profiling
led, for the first time, to the identification of distinct DLBCL
entities with significant differences in their pathogenesis, re-
sponse to conventional treatment and clinical outcomes (2). In
fact, gene expression signatures correlated these subtypes to
distinct stages of B-cell development. Germinal-center B-cell-
like DLBCL (GCB) possesses a gene expression signature
characteristic of germinal center B cells and has a favorable
outcome compared with activated B-cell-like DLBCL (ABC)
subtype which possesses a gene expression signature char-
acteristic of B cells activated through their B-cell receptor (2).
We have previously demonstrated the ability to segregate
these subtypes based on their in-depth protein expression
profiles in a cell line model derived from patients (3). Diagnosis
in this system is particularly challenging because the two
subtypes studied are histologically indistinguishable but could
be differentiated by gene expression profiling (2).

The cell surface proteome of B cells plays a very important
role in mediating interactions with the surrounding environ-
ment and is of particular importance in determining their fate.
The B-cell receptor, for instance, is the key functional player
on the surface of B cells, responsible for their development,
peripheral maintenance and antigen-specific functional re-
sponse. Other cell surface proteins such as ICAM-1 (CD54)
have important roles in mediating the binding of B cells to
other cell types. Furthermore, CD40 and CD80 bind to T-cell
proteins (CD40L and CD28, respectively) and mediate co-
stimulatory signals required for B-cell (and T-cell) activation.
The large repertoire of B-cell surface proteins and the
complexity of regulation of B-cell activation make the
B-cell surface an interesting niche to explore tumorigenic
differences.

In classic approaches like flow-cytometry, antibodies di-
rected against known proteins are commonly employed to
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phenotype cells of different origin. This technology requires
antibodies with high specificity and allows the multiplexing of
up to 18–36 different differentiation markers at a time (4).
However, classifying closely-related tumors derived from
the same cell type where it is not known which proteins are
expressed on the cell surface and to what levels is a more
complex problem that first requires an unbiased quantitative
in-depth approach to analyze membrane proteins. Taking into
consideration that glycosylation is a hallmark of membrane
proteins we wanted to investigate the possibility of enriching
for glycosylated peptides as a handle to explore the cell
surface proteome. In addition, we wanted to ask the question
if closely related tumor subtypes such as different DLBCLs
can be classified by mass spectrometry (MS)-based proteo-
mics on the basis of PTM-bearing peptides.

The cell surface proteome has been investigated by differ-
ent approaches. One early method was optimized for the
global analysis of both membrane and soluble proteins. It
used high pH, which favors the formation of membrane sheets
and proteinase K that cleaves the exposed hydrophilic do-
mains of membrane proteins nonspecifically (5). More recent
methods targeting the cell surface were based on capturing
and covalently labeling glycan moieties on cell surface pro-
teins. Based on such an approach a study on the immune
cells using the cell surface capture (CSC) technology which
covalently labels extracellular glycan moieties on live cells
resulted in the identification of 104 proteins in Jurkat T cells,
96 proteins in an experiment comparing Jurkat T cells and
Ramos B cells and 341 proteins in an experiment to detect
cell surface changes during differentiation of embryonic stem
cells (6). Using the same technology, the combined analysis of
19 B-cell precursor acute lymphoblastic leukemia (BCP-ALL)
cases resulted in the identification of 713 cell surface proteins
(7).

As glycosylation is increasingly being recognized as one of
the key post-translational modifications involved in tumori-
genesis with the potential for defining biomarkers, several
glycoproteomic studies were performed to study different
cancer entities (8). In some of these studies, the primary focus
was to specifically capture cell surface and membrane N-gly-
coproteins based on hydrazide chemistry or lectin affinity
approaches. Membrane N-glycoproteins were investigated in
colon carcinoma (9), thyroid cancer (10), and breast cancer
(11). A more recent study in breast cell lines allowed to dis-
tinguish between normal, benign and cancerous ones as well
as luminal from basal breast cancer cells based on their
glycoprotein profiles (12).

Our laboratory has previously described an extension of the
filter-aided sample preparation (FASP) method (13), in which
lectins are placed on top of a filter where they selectively
retain and enrich glycosylated peptides (14). This approach,
termed N-glyco FASP, allows the characterization of thou-
sands of glycosylation sites in complex biological samples
such as cell lines, tissues and body fluids in evolutionary

diverse species (15). For quantification, this method can also
be combined with SILAC (14). In particular, for comparing a
large number of unlabeled samples, the super-SILAC ap-
proach can be employed (16). It allows precise quantitative
comparison of many samples whether cell lines or tissues by
spiking in the same SILAC-labeled standard in each of them
(16, 17). The standard is generated in such a way that it
encompasses as many proteins as possible of the system in
question. For that purpose we had previously selected six
lymphoma cell lines for a lymphoma super-SILAC mix based
on their maximally distinct protein expression profiles (3). Here
we decided to take advantage of the depth of the N-glyco
FASP method and quantitative accuracy of super-SILAC ap-
proach to explore their applicability in the characterization
and classification of DLBCL patients. The segregation of
these lymphomas based on their quantified glycoproteomes
would effectively classify closely related cancer subtypes on
the basis of their pattern of post-translational modifications
(PTM), a long standing aim of clinical proteomics. Further-
more, differences between DLBCL subtypes in glycosylation
patterns or the expression levels of cell surface glycoproteins
may reflect tumor associated hallmarks or characteristics of
the stage of B-cell development from which these cells are
derived. Therefore, characterizing tumors at the protein and
PTM level has the potential to increase our understanding of
tumor biology. In particular, the segregating signatures of
closely related tumor subtypes could shed light on the corre-
sponding biology related to the developmental stage from
which the tumors are derived.

EXPERIMENTAL PROCEDURES

Cell Culture—DLBCL cell lines (HBL1, OciLy3, RIVA, TMD8, U2932,
BJAB, DB, HT, SUDHL-4, SUDHL-6) were grown in RPMI 1640 me-
dium (Invitrogen, Carlsbad, CA) supplemented with 20% bovine se-
rum and Penicillin/Streptomycin (1:1000). Four biological replicates
for each cell line were prepared. Cells were lysed in 4% SDS, 0.1 M

dithiotreitol, and 0.1 M Tris-HCL followed by incubation at 95 °C for 5
min. Lysates were sonicated using a Branson type sonicator and then
clarified by centrifugation at 16,100 � g for 10 min.

Cell lines from which we generated the super-SILAC mix were
labeled with heavy amino acids by growing them in RPMI medium
containing 13C6

15N2 - Lysine (Lys8) and 13C6
15N4 - Arginine (Arg10)

(Cambridge Isotope Laboratories, Andover, MA) instead of the natural
amino acids and supplemented with 20% dialyzed fetal bovine se-
rum. We used quantitative mass spectrometry to assess the level of
incorporation of the heavy amino acids after at least six passages.
Almost complete incorporation was achieved in the six cell lines from
which we generated the super-SILAC mix (Ramos, Mutu, BL-41,
U2932, L428, DB), as less than 1% of tryptic peptides contained
unlabeled arginine or lysine and less than 0.3% of identified peptides
showed evidence of Arg to Pro conversion (3). The super-SILAC mix
was generated by mixing equal amounts of the heavy lysates from the
six cell lines.

Protein Digestion and N-glyco Peptide Enrichment—Equal
amounts of the super-SILAC mix and the unlabeled cells (300 �g)
were mixed on a 30 KDa filter (Millipore, Billerica, MA) and further
processed by the filter-aided sample preparation (FASP) method (13).
Briefly, the SDS-containing lysis buffer was replaced with a urea
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buffer and this was followed by alkylation with iodoacetamide. The
samples were then digested overnight by trypsin at 37 °C in 50 mM

ammonium bicarbonate followed by elution with water (2�).
For N-glycosylation enrichment, tryptic peptides were transferred

to a new filtration unit. They were mixed with a mixture of lectins
(ConA, WGA, and RCA lectins) and incubated for 60 mins. Conca-
navalin A (Con A) binds to mannose; wheat germ agglutinin (WGA)
binds to sialic acid as well as N-acetylglucosamine; agglutinin
RCA120 binds to galactose modified at the 3–0 position as well as
terminal galactose. On washing the samples, with a buffer composed
of 20 mM Tris/HCl pH 7.6, 1 mM MnCl2, 1 mM CaCl2, 0.5 M NaCl, the
unbound peptides were eluted, whereas the captured glycopeptides
remained on the filter. The captured peptides were treated with PN-
Gase F in H2

18O, which leaves a characteristic mass shift on the
previously glycosylated site (18). This was followed by elution and
measurement of the deglycosylated peptides (14).

LC-MS/MS Analysis—Deglycosylated peptides were separated by
a nanoflow HPLC (Proxeon Biosystems, now Thermo Fisher Scien-
tific) coupled on-line to an LTQ Orbitrap Velos mass spectrometer
(Thermo Fisher Scientific) with a nanoelectrospray ion source
(Proxeon Biosystems). Peptides were loaded with a flow rate of 500
nl/min on a C18-reversed phase column (20 cm long, 75 �m inner
diameter). The column was packed in-house with ReproSil-Pur
C18-AQ 1.8 �m resin (Dr. Maisch GmbH, Ammerbuch-Entringen,
Germany) in buffer A (0.5% acetic acid). Peptides were eluted with a
linear gradient of 8–30% buffer B (80% acetonitrile and 0.5% acetic
acid) at a flow rate of 200 nl/min over 145 min. This was followed by
20 min from 30 to 60% buffer B. After each gradient, the column was
washed, reaching 90% buffer B followed by re-equilibration with
buffer A. Data was acquired using a data-dependent “top 10”
method, dynamically choosing the 10 most abundant precursor ions
from the survey scan (mass range 300–1800 Th) in order to isolate
them in the LTQ and fragment them by higher energy collisional
dissociation (HCD) (19). Full scan MS spectra were acquired at a
resolution of 30,000 at m/z 400 with a target value of 1,000,000 ions.
The ten most intense ions were sequentially isolated and accumu-
lated to a target value of 40,000 with a maximum injection time of 150
ms. The lower threshold for targeting a precursor ion in the MS scans
was 5000 counts. Fragmentation spectra were acquired in the
Orbitrap analyzer with a resolution of 7500 at m/z 400.

Data Analysis—MaxQuant software (version 1.2.6.20) was used to
analyze mass spectrometric raw data. We searched the MS/MS spec-
tra against the Uniprot database (81,213 entries, release 2012_07) by
the Andromeda search engine incorporated in the MaxQuant frame-
work (20, 21). Cysteine carbamidomethylation was set as a fixed
modification and N-terminal acetylation, methionine oxidation and
deamidation in H2

18O were set as variable modifications. A false
discovery rate (FDR) of 0.01 was required for proteins and peptides.
Enzyme specificity was set to trypsin allowing N-terminal cleavage to
proline. A minimum of seven amino acids per identified peptide were
required and two miscleavages were allowed. The initial allowed mass
deviation of the precursor ion was up to 6 ppm and for the fragment
masses it was up to 20 ppm. Mass accuracy of the precursor
ions was improved by time-dependent recalibration algorithms of
MaxQuant. The “match between runs” option was enabled to match
identifications across different replicates. Quantification of SILAC
pairs was performed by MaxQuant with standard settings with a
minimum ratio count of two. We analyzed the MaxQuant output data
with the Perseus tools, which are also available in the MaxQuant
environment.

RESULTS AND DISCUSSION

Defining the Quantitative N-glycoproteome of Diffuse Large
B-cell Lymphoma Cell Lines—We selected five ABC-DLBCL

(HBL1, OciLy3, RIVA, TMD8, U2932) and five GCB-DLBCL
(BJAB, DB, HT, SUDHL-4, SUDHL-6) cell lines derived from
lymphoma patients. Our previous study had shown that these
five ABC and five GCB cell lines can be segregated very
clearly by principal component analysis based on their global
protein expression profiles (3). We reached a depth of 7756
identified proteins, which allowed the extraction of a signature
of 55 proteins that strongly distinguishes between these can-
cer subtypes. This finding confirms that these cell lines are
good representatives of ABC and GCB lymphomas and there-
fore attractive models to investigate if closely related tumor
subtypes can be characterized by a quantitative PTM-based
approach.

Enriching for glycoproteins would provide a handle for cell
surface proteins, which may be especially informative for
classification and discovery of biomarkers. For the purpose of
an unbiased large-scale enrichment, we used the FASP-
based N-linked glycopeptide capture method (N-Glyco-
FASP) (Fig. 1 and “Experimental Procedures”). Briefly, the
FASP-eluted glycopeptides were retained on a 30 kDa filter
after mixing all peptides with a mixture of lectins, which aims
at capturing the three N-glycan classes (high mannose, com-
plex and hybrid). The large sizes of the glycopeptide-lectin
complexes ensure their retention after washing away the non-
glycosylated peptides. This method was shown to be efficient
and unbiased in mapping the N-glycoproteome of mouse
tissues and blood plasma (14) as well as in nonmammalian
systems (15). Consequently, deglycosylation of captured N-
glycopeptides was performed in 18O-water using PNGase F.
Deglycosylation in heavy water results in a mass shift of

10 DLBCL cell lines super-SILAC

1:1
Protein Mixture

FASP

Lectins

Wash

PNGaseF
in18O-water 

Deglycosylated Peptides

(quadruplicates)

FIG. 1. Workflow for lymphoma segregation. A lymphoma super-
SILAC mix was spiked in five ABC-DLBCL and five GCB-DLBCL cell
lines in quadruplicate. After the samples were processed according to
FASP-SAX protocol the eluted peptides were incubated with a mix-
ture of lectins (ConA, WGA, and RCA lectins) and incubated for 60
min. The samples were then washed to get rid of the unbound
peptides. The captured glycopeptides remain on the filter were they
were treated with PNGase F in H2

18O. The deglycosylated peptides
are finally eluted and measured.
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2.9890 Da and makes it easily distinguished from spontane-
ous deamidation which results in a mass shift of 0.9858 Da.
The resulting deglycosylated precursor peptides as well as
MS/MS fragments were analyzed with high resolution, high
mass-accuracy measurements on a linear ion trap Orbitrap
mass spectrometer.

For an accurate quantitative comparison of the expression
profiles of glycosites between ABC-DLBCL and GCB-DLBCL
subtypes, we used a heavy-labeled super-SILAC mix of six
lymphoma cell lines (3). The pooled lysates constituting the
super-SILAC mix were spiked into each of the samples (five
ABC-DLBCL and five GCB-DLBCL cell lines) in a 1:1 ratio
before the first step of the glyco-enrichment experiment (Fig.
1). The resulting 10 samples were measured in quadruplicates
with 165 min gradients. The total measuring time was less
than 6 days.

Analysis using stringent filtering criteria in the MaxQuant
software environment (20) resulted in the identification of
2383 glycosites, which mapped to 1321 protein groups (sup-
plemental Tables S1 and S2). The median Andromeda iden-
tification score of deglycosylated peptides was 127 and the
average localization probability of the glycosylation site to a
single amino acid was 93%. Next, we filtered for sites with
a localization probability greater than 0.75 (class I sites) and
a score difference greater than 5 to the next best matching
peptide in Andromeda. (Omitting the second filtering step
would result in only two additional glycosites, namely beta-

1,4-galactosyltransferase—score difference 4.7 and hy-
poxia up-regulated-protein 1—score difference 4.9.) Our
analysis resulted in 2064 very high confidence sites mapped
with single amino acid resolution to 1304 protein groups with
average localization probability of 99.4% and only these were
used in further analysis. Almost all of the high confidence sites
were also quantified with at least two valid ratios (1967 of
2064).

In each of the cell lines we identified and quantified 1374
sites on average (Fig. 2A). There was excellent overlap be-
tween the cell lines as 913 sites were quantified across all 10
cell lines (Fig. 2B). From the ratios of the individual samples to
the super-SILAC mix we calculated the Pearson correlation
coefficients between the measurements. Without exception,
quadruplicates co-clustered in a very tight manner (see color
code of correlation coefficients in Fig. 2C), demonstrating
reproducibility and precision of our quantitative strategy.

General Characteristics of the DLBCL-cell N-glycopro-
teome—Almost 96% (1973 sites) of the glycosites we identi-
fied match the canonical N-!P-[S/T] motif. The 91 sites that did
not match show enrichment for cysteine (p � 2.3E-11) in the
position of S/T, which confirms our previous observations (14)
(Fig. 3A). Matching our data set to the Uniprot database
shows that almost 82% (1687 sites) of the glycosites that we
identified are annotated to be glycosylated (release 2012_07).
However, for 1038 of these sites the annotation is based on
prediction or similarity and therefore our results validate these
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sites as newly experimentally confirmed N-glycosylation sites
(Fig. 3B). To our knowledge this dataset constitutes by far the
largest human B-cell lymphoma N-glycoproteome reported to
date and adds substantially to the human database of N-gly-
cosylation sites. Among the 1304 protein groups to which the
glycosites are mapped, 923 protein groups were identified
with a single glycosylation site. Very few protein groups (24
protein groups) were identified with more than seven sites
(Fig. 3C), and the maximum number of N-glycosylation sites
was measured on alpha-2-macroglobulin receptor with 19
sites. Insulin-like growth factor 2 receptor was identified with
13. Other proteins of regulatory interest turned out to be
heavily glycosylated as well; for instance lymphocyte antigen
75 (DEC205, CD205), receptor-type tyrosine-protein phos-
phatase eta (PTPRJ) and lysosome-associated membrane
glycoprotein 1 (CD107a, LAMP-1) each has more than seven
sites. The latter protein also highlights that in addition to the
cell surface proteome, our approach enriches intracellular
N-glycoproteins. For 1082 sites (52%) the annotated topolog-
ical domain was extracellular and for 225 sites (11%) it was
lumenal. Glycosylation on lumenal domains occurs on lyso-
somal or ER proteins, for instance (supplemental Fig. S1).

The Proteome Versus the N-glycoproteome—We next com-
pared our data set of N-glycosylated peptides and proteins to
our previously measured in-depth proteome of the same cell
lines (3). That proteome contained 7756 protein groups and
517 of these also occur in the 1304 protein groups in the
N-glycoproteome (matching the N-glcyoproteome to the pro-
teome) (Fig. 4A). Strikingly, 787 proteins were exclusively
identified by their N-glycosylated peptides, attesting to the
enrichment capacity of the workflow. In eukaryotes, N-linked
glycosylation occurs on secreted or membrane bound pro-
teins, which are often of low abundance, making them more
difficult to detect in highly complex samples such as total

cellular lysates. This is supported by the fact that the intensi-
ties of de-glycosylated peptides of proteins only identified in
the N-glyco experiment are shifted to low intensity values
compared with those where the corresponding protein was
identified in the in-depth proteome experiment (blue versus
red bars in Fig. 4B).

Having extracted a large set of glycoproteins at high sen-
sitivity, we explored which subsets of proteins are enriched in
the N-glycoproteome. To obtain a general overview of the
cellular localizations and molecular functions of the identified
glycoproteins, we analyzed the 1304 proteins groups using
Uniprot keywords. The keywords with the highest coverage
were “glycoprotein” (89.1%), “membrane” (75.8%), “polymor-
phism” (71.4%), and “trans membrane” (70.4%) (supplemen-
tal Table S3). Compared with the proteome the two keywords
with highest enrichment are glycoprotein and signal. Cell
membrane proteins and proteins associated with the lyso-
some, Golgi apparatus and endoplasmic reticulum (ER) were
also highly enriched in the glycoproteome compared with the
proteome (p � 1.5E-08). Interestingly, the extracellular matrix
(ECM), a category that was difficult to capture without N-
glyco-enrichment, is well represented in the N-glycoproteome
(p � 3.5E-07) (Fig. 4C). As these are suspension cells, the
ability to capture this set of proteins via the N-glyco-FASP
method comes from the fact that proteins destined for secre-
tion are glycosylated via the classical secretion pathways
after passing through the ER and Golgi system. ECM proteins
are highly enriched in proteins involved in cancer pathways
(FDR 3.5E-05, p � 2E-07) including pathways such as Wnt
signaling (FDR 0.00085, p � 1.5E-05) as well as Hedgehog
signaling (FDR 0.0022, p � 6.5E-05).

Extracellular matrix proteins are intensely studied in cancer
progression because of their role in cellular functions such as
adhesion, cell shape, migration, proliferation, polarity, differ-
entiation and apoptosis. The enrichment of this class of pro-
teins via the N-glycoproteome allows comparative analysis of
different modes by which cancer cells can manipulate their
environment. Molecular function categories which are over-
represented in the glycoproteome include receptors, secreted
proteins, cell adhesion proteins, glycosyl transferases and
metalloproteases (Fig. 4C). These functions are characteristic
for glycoproteins and correlate with their extracellular or lu-
menal location (supplemental Fig. S1).

To investigate how the abundance of glycosites compares
to that of proteins, we used the proteome dataset as a refer-
ence where no enrichment was performed and quantification
is based solely on unmodified peptides. The use of a common
super-SILAC mix in both proteome and glycoproteome mea-
surements allows for normalization of technical variance within
each experiment and for comparative analysis of proteome
versus N-glycoproteome measurements. We analyzed the
1203 glycosites belonging to the proteins that matched be-
tween both experiments after filtering for at least two valid
values in each set of proteome or glycoproteome measure-
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ments. The ratios of the glycosites against protein ratios cor-
relate well (Pearson r � 0.78 on average) (Fig. 4D). This is an
indication that in the DLBCL cell lines changes in N-glyco-
sylation of a protein are usually a reflection of the change of
protein abundance, as expected of a largely cotranslational
and stable modification such as N-glycosylation. This is not
necessarily true for all sites and indeed highlights the cases in
which glycosylation levels and protein expression levels are
differentially regulated. With the aim of revealing additional
biological differences between the subtypes and to simplify
the analysis, we considered the GCB cell lines and ABC cell
lines as one entity each and used the median expression level
of glycosites and proteins across them. We calculated the log
of glycosite to protein ratios and found that there were only
few outliers (supplemental Fig. S2). The two strongest ones
that are hyperglycosylated in the GCB subtype are glycosites
on HLA proteins (HLA-A and HLA-E). Glycosylation on MHC

class Ia, for instance, is required for recognition by allogeneic
cytotoxic T lymphocytes and to mediate cytolysis (22). Addi-
tional interesting hits that are hyperglycosylated in the ABC
subtype are three glycosites on ENTPD1 (CD39). CD39 was
first described as a B-lymphocyte activation marker (23). It is
a prototypic member of the ecto-nucleoside triphosphate
diphosphohydrolase (E-NTPDase) family that hydrolyzes ex-
tracellular nucleoside diphosphates and triphosphates. Bio-
logical actions of CD39 are a consequence of this activity on
extracellular nucleotides (24). It has been shown that N-linked
oligosaccharides affect the enzymatic activity of CD39 (25)
whose role in B lymphocytes is not yet clear but may contrib-
ute to the affinity maturation of antibody responses and to
facilitate post-germinal center terminal B cell differentiation
(24).

Segregation of DLBCL Subtypes Based on Glycopeptide
Signatures—Principal component analysis (PCA) converts a
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large number of data points, which in our case are the SILAC
ratios of the glycosites, to a small set of uncorrelated vari-
ables—the principal components. Applying this classical sta-
tistical test to the glycoproteome resulted in the correct seg-
regation of the cell lines into their corresponding subtypes
already based on component 1 (Fig. 5A), the one which ac-
counts for the largest variability in the system (18% in this
case). The deglycosylated peptides most strongly driving the
segregation (the “loadings”) belonged to CD44, IL4I1, CD205,
PLBD1, SIRPA, LTBP1, MILR1, MME, and CD27 (Fig. 5B).
Reassuringly, several of these proteins were among the
strongest drivers of segregation between ABC-DLBCL and
GCB-DLBCL in our previous global proteome. Such proteins
included CD27, which is more abundant in GCB-DLBCL and

CD44, CD205 and IL4I1, which are more abundant in ABC-
DLBCL. The fact that both our global proteome and glyco-
proteome studies resulted in these candidates increases their
likelihood to be true markers of segregation.

One of the most differentiating markers is CD44, which is
up-regulated in the ABC subtype relative to the GCB subtype.
CD44 is increasingly linked to the progression of different
cancer subtypes as well as to cancer-initiating cells (CICs)
also known as cancer stem cells. In fact, CD44 is the most
common marker of CICs (26). In the context of B cells, BCL-6
transcriptionally blocks the expression of a set of genes in-
cluding CD44 that are induced when B cells are activated (27).
The high abundance and important roles of BCL-6 in germinal
center B-cells (28) therefore explain the low relative expres-
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sion of CD44 in the GCB subtype, which is derived from
germinal center B cells.

The second strongest driver of segregation is interleukin
4-induced protein 1 (IL4I1 or FIG1). The two deglycosylated
peptides of this protein were both very strong segregators.
Apart from providing additional positive control for our work-
flow, this finding indicates that the protein itself is highly
up-regulated in the ABC subtype, which is indeed what we
found in our previous proteome study, where IL4I1 was also a
strong differentiator between subtypes. IL4I1 is normally ac-
tivated by the IL4 receptor via STAT6. The expression of IL4I1
is regulated by NF-�B signaling through the activation of
B-cells through the CD40 pathway (29). Accordingly, we find
the glycosites of CD40 as well as CD80, the two receptors
required for T-cell dependent activation, also up-regulated in
the ABC subtype.

Consistent with our findings, differential IL-4 induced gene
expression and intracellular signaling in the two subtypes
have already been reported (30). IL4I1 has an immunomodu-
latory role as it has been identified as a secreted L-phenylal-
anine oxidase that is capable of inhibiting T cell proliferation
through producing H2O2. It mediates an immunosuppressive
effect in vivo through blocking the CD8� antitumor T-cell
response (31). Expression of IL4I1 has also been reported to
be a characteristic of primary mediastinal lymphoma, the third
subtype of diffuse large B-cell lymphoma (32).

On the opposite side (higher expression in GCB), two of the
strongest drivers are MME (CD10) and CD27, which is also
consistent with the results of our proteome study. High MME
expression is prognostic for GCB (2) (33). Down-regulation of
MME is mediated through an NF-�B dependent mechanism,
which explains the relatively lower level of expression of this
protein in the ABC subtype which is characterized by activa-
tion of this pathway (34). CD27 is likewise suggested to be a
marker with powerful prognostic value for DLBCL and has
been included in several prediction algorithms. The serum
level of CD27 is reported to be correlated with outcome of
patients subjected to standard B-cell lymphoma (R-CHOP)
treatment (35).

In contrast to the above mentioned drivers, allergin-1
(MILR1) and LTBP1 have not yet been associated with lym-
phoma classification. Allergin-1 is studied in the context of
allergic responses where it has been shown to suppress
IgE-mediated, mast cell-dependent anaphylaxis in mice. In
this same study, it has been shown that allergin-1 was ex-
pressed on macrophages, neutrophils and dendritic cells as
well as mast cells and/or basophils in both humans and mice
(36). Interestingly, allergin-1 was also found to be expressed
on human B cells (36). This broad expression pattern corre-
sponds to the expression pattern of other immunoglobulin-
like inhibitory receptors such as Fc�RIIB, PIR-B, gp49B1,
MAIR-I and SIRP-�. SIRP-�, which we also classified as a
strong segregator of the two subtypes, is expressed on
macrophages and dendritic cells and plays an important role

in blocking phagocytosis through its interaction with CD47
(37), although its role on B cells is unknown. The activation of
specific epitopes on the variable domain of CD47 resulted in
a rapid induction of apoptosis in T cells (38). Thus, our data
indicate that allergin-1 and SIRP-� might have important roles
in nonallergic immune responses, possibly with relevance to
the biology of lymphomas. LTBP1 belongs to the family of
latent transforming growth factor beta (TGF-�) binding pro-
teins, which are master regulators of TGF-� bioavailability. In
addition, LTBPs are integral components of the fibronectin
and microfibrillar extracellular matrix (ECM). In the context of
breast cancer, elevated LTBP1 levels appear in two gene
signatures predictive of enhanced metastatic behavior. The
role of LTBP1 in metastasis is unclear but it has been sug-
gested that LTBPs may provide a bridge between structural
and signaling components of the epithelial to mesenchymal
transition (EMT) (39).

Next, we wished to perform a global analysis of these
proteins to discover pathways or protein classes that have a
major contribution to the segregation. We annotated the pro-
teins based on the gene set enrichment analysis (GSEA) da-
tabase (40, 41), which consists a priori defined gene sets
curated from publications or derived computationally as well
as their promoter motifs. The two sets of genes up-regulated
in the ABC subtype with highest enrichment were V$NFKB_
Q6_01 and V$NFKAPPAB_01. The first gene set corre-
sponds to genes with promoter regions [-2kb, 2kb] around
transcription start site containing the computationally derived
motif NNNNKGGRAANTCCCN, which does not match any
known transcription factor. However, the second motif—also
highly enriched—is GGGAMTTYCC, which matches NF-�B
RELA. The proteins responsible for this enrichment included
known NF-�B regulated proteins such as ATP1B, CPD,
ICAM1, PFN1, CD83, LTB, IL4I1, WNT10A, and SLC12A2. In
fact, the ABC subtype is characterized by constitutive activity
of the NF-�B pathway. More specifically, it has been shown
that NF-�B signaling in ABC leads to nuclear translocation of
p50/RELA heterodimers and to a lesser extent p50/c-REL
heterodimers (42). Hence, despite the relatively small size of
the N-glycoproteome it can reveal biologically relevant differ-
ences between the subtypes.

Unsupervised Hierarchical Clustering and t Test Signature—
When performing unsupervised hierarchical clustering of the
deglycosylated peptides, we again obtained perfect segrega-
tion of ABC and GCB into the two major branches in the
dendrogram (Fig. 6A). To extract a glycopeptides signature
that significantly segregates the two subtypes we performed
a t test with a false discovery rate of 0.05 and S0 of 0.1, which
resulted in a signature of 38 glycosites (Fig. 6B). Many of
these glycosites occurred in proteins that were members of
the proteomic signature previously found to segregate the
subtypes (3), reflecting the high correlation in the level of
expression between the glycosites and the corresponding
proteins noted above. Specifically, the previous proteomic
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signature contained 10 glycoproteins (Uniprot keyword anno-
tation), which are CD27, ICAM1, RCN, CD205 (LY75), IL4I1
(FIG1), CD44, SYPL1, HLA-C, ATPIB, and EVDB. With the
exception of EVDB, all of these were identified in the glyco-
proteome study. In our glycosites signature, glycosites be-
longing to seven of these nine glycoproteins were shown to
be significantly different between the two subtypes. This is
quite remarkable and reassuring especially taking into con-
sideration the small size of the glycosites signature, which is
composed of 20 glycoproteins. This large overlap, prompted
us to evaluate how much information the N-glycoproteome
alone would add to the characterization of the system. To this
end we subtracted the glycosites on markers already identi-
fied in our global proteome study or in mRNA profiling studies.
This left 20 glycosites on 12 proteins exclusive to the glyco-

signature. Remarkably, the PCA analysis segregated the two
subtypes solely based on these exclusive glycosites (supple-
mental Figs. S3A and S3B).

Often in the glycosites signature, several deglycosylated
peptides which belong to the same protein are significantly
differentially expressed between the subtypes. This was most
prominent in the case of CD205 (LY75) (5 peptides) and
ICAM1 (4 peptides). CD205 belongs to the family of C-type
lectin receptors (CLRs) which function as pattern recognition
receptors recognizing carbohydrate ligands from infected mi-
croorganisms (43). CD205 was mainly studied in the context
of dendritic cells where it is used as a docking site to deliver
specific antigens (44). In the context of B cells it has been
shown that CD205 modulates their phenotype causing up-
regulation of co-stimulatory molecules on the cell surface (45).

A 0- 3 3
Ratio [Log 2]

0- 3 3
Ratio [Log 2]B

O
ciLy3(3)

O
ciLy3(2)

O
ciLy3(1)

O
ciLy3(4)

H
B

L1(4)
H

B
L1(3)

H
B

L1(2)
H

B
L1(1)

TM
D

8(1)
TM

D
8(3)

TM
D

8(2)
TM

D
8(4)

R
IV

A
(4)

R
IV

A
(3)

R
IV

A
(2)

R
IV

A
(1)

U
2932(2)

U
2932(1)

U
2932(3)

U
2932(4)

S
U

D
H

L4(1)
S

U
D

H
L4(2)

S
U

D
H

L4(4)
S

U
D

H
L4(3)

S
U

D
H

L6(3)
S

U
D

H
L6(4)

S
U

D
H

L6(2)
S

U
D

H
L6(1)

D
B

(4)
D

B
(3)

D
B

(2)
D

B
(1)

H
T(3)

H
T(4)

H
T(2)

H
T(1)

B
JA

B
(3)

B
JA

B
(4)

B
JA

B
(2)

B
JA

B
(1)

MILR1
MILR1
MILR1
CD27
PCDHGC3
SYPL1
SYPL1
MME
STS
STS
MME
IL4I1
CD44
CD83
SLC2A13
ICAM1
ICAM1
ICAM1
ICAM1
CD151
LY75
LY75
LY75
LY75
LY75
IGF1R
UGT8
PVRL1
PVRL1
PVRL1
PLBD1
SIRPA
SIRPA
SIRPA
PLBD1
IL4I1
CD274
ATP1B1

TM
D

8(4)
TM

D
8(1)

TM
D

8(2)
TM

D
8(3)

O
ciLy3(4)

O
ciLy3(3)

O
ciLy3(2)

O
ciLy3(1)

U
2932(1)

H
B

L1(4)
H

B
L1(3)

H
B

L1(2)
H

B
L1(1)

R
IV

A
(1)

U
2932(3)

U
2932(2)

U
2932(4)

R
IV

A
(4)

R
IV

A
(3)

R
IV

A
(2)

S
U

D
H

L6(1)
S

U
D

H
L6(4)

S
U

D
H

L6(2)
S

U
D

H
L6(3)

S
U

D
H

L4(1)
S

U
D

H
L4(3)

S
U

D
H

L4(2)
S

U
D

H
L4(4)

D
B

(4)
D

B
(3)

D
B

(2)
D

B
(1)

H
T(3)

H
T(2)

H
T(4)

H
T(1)

B
JA

B
(4)

B
JA

B
(3)

B
JA

B
(2)

B
JA

B
(1)

FIG. 6. Unsupervised Hierarchical clustering and t test signature. A, Unsupervised clustering (Euclidian distance) of 10 DLBCL cell lines
based on their corresponding N-glycosites expression profile. B, Heat map of the 53 glycosites that were picked as most significantly different
after performing t test analysis for the two subtypes.

N-glycoproteome Distinguishes Lymphoma Subtypes

73

http://www.mcponline.org/cgi/content/full/M113.033977/DC1
http://www.mcponline.org/cgi/content/full/M113.033977/DC1


It has also been shown that CD205 may have a role in pro-
moting cell adhesion where blocking CD205 was suggested
as a potential clinical strategy to interfere with early ovarian
cancer metastasis (46). ICAM1 is an NF-�B regulated cell-
surface receptor from the immunoglobulin superfamily whose
serum levels correlate with a higher tumor burden and dis-
semination in DLBCL (47). ICAM1 has a role in cell adhesion,
a costimulatory role to ensure a proper T cell response as well
as a role in lymphoid trafficking and extravasation (47).

Performing a Fisher’s exact test (p � 0.01; enrichment
factor � 5) on our signature glycoproteins after adding GSEA
annotations reveals an enrichment of interesting gene sets
(supplemental Table S4). The one with the highest signifi-
cance is in fact V$NFKAPPAB_01 and the second set corre-
sponds to genes up-regulated on an inflammatory response in
macrophages. With the aim of obtaining a broader view of
such enrichments, we performed a less stringent t test with an
FDR of 0.1 and S0 of 0.01 which resulted in 57 differentially
expressed sites. The Fisher’s exact test on this signature—
requiring the same fivefold enrichment factor as before -
added some new and interesting categories (supplemental
Table S5). Two gene sets that correspond to IL6 regulated
genes from two independent studies were enriched (DASU_
IL6_SIGNALING_SCAR_UP and BROCKE_APOPTOSIS_
REVERSED_BY_IL6). The role of IL6 in lymphomagenesis is
interesting because upon transformation, B-cell lymphomas
use IL6 paracrine signaling as a survival signal (48). In
ABC-DLBCL in particular, NF-�B signaling was shown to
induce the expression of IL6, which leads to activation of
STAT3 in an autocrine manner. In fact, combination treat-
ments that block both NF-�B signaling and STAT3 signaling
are especially toxic to ABC-DLBCL as they work synergis-
tically (49).

The evident biological relevance of the t test signature as
well as the enrichment analysis highlight the potential of a
PTM-based approach where in this case probing for mem-
brane proteins revealed differential intracellular signaling.

CONCLUSION AND OUTLOOK

We have shown that the protein expression patterns of cell
lines derived from ABC-DLBCL and GCB-DLBCL subtypes
can unambiguously differentiate them (3). Taking proteomic
approaches one step further, we wanted to investigate
whether a specific set of functionally relevant proteins can
also address this question. We focused this study on mem-
brane proteins, which are key players in cancer cell biology
and are located at the interface between a cancer cell and its
environment. Taking into consideration the redundancy in the
activated downstream signaling pathways, studying mem-
brane proteins can be a more specific way of characterizing
cancer cells which can help in classifying them and develop-
ing targeted therapies. We used the N-glyco-FASP protocol
(14) as a tool to efficiently enrich for this class of proteins. The
N-glyco-enrichment protocol does not use any chemical de-

rivatization steps but does involve the extra steps of lectin
enrichments and deglycosylation with PNGase F (14). As this
could introduce additional variability, we performed this study
in quadruplicates and used a lymphoma super-SILAC mix as
an internal standard, which successfully minimized the effects
of technical variations. High quantitative precision is neces-
sary to differentiate the two subtypes especially in this case
where quantification of N-glycosylation sites usually involves
a single peptide (17).

Applying the N-glyco-FASP method on 10 lymphoma pa-
tient-derived cell lines resulted in a subset of the proteome
highly enriched for membrane and secreted proteins. To our
knowledge this is the largest membrane B-cell lymphoma
proteome. This then enabled us to segregate the two closely
related subtypes of DLBCL based on their N-glycoproteome
expression profiles. Importantly, the loadings of component 1
which segregates the two subtypes in the principal compo-
nent analysis include glycosites on proteins which we had
suggested to be markers in our previous proteome study. This
overlap further validates these easily accessible cell surface
proteins as clinically interesting candidates. By implication,
our novel candidates such as allergin-1 (MILR1), LTBP1 and
SIRP-� should be very interesting targets for investigation
as biological drivers of segregation. In addition to investi-
gating these proteins on an individual basis, we tested
bioinformatically for enrichments in the loadings of compo-
nent 1. This revealed that one of the gene sets up-regulated
in the ABC subtype corresponds to genes with promoter
regions around transcription start site containing the motif
for NF-�B RELA. Therefore our unbiased approach links the
differences in N-glycoproteomes to differential transcrip-
tional regulation between the subtypes. Differential activity
of NF-�B signaling is considered to be one of the major
pathways accounting for molecular differences between
ABC and GCB subtypes of DLBCL. Hence, our approach
can link differences in the glycoproteome to intrinsic bio-
logical differences between the subtypes using this small
subset of proteins that was obtained in a straightforward
and rapid manner.

Our study demonstrates that the enrichment of a single
PTM can be used to differentiate between closely related
tumor subtypes. This highlights the potential of targeting a
particular set of proteins—in this case membrane proteins—
that could be of very high clinical relevance in cancer classi-
fication and provision of targeted therapies.

In conclusion, the continuous development of mass spec-
trometry-based technologies generates more and more ex-
citing tools to describe the biology of cancer cells and
thereby unlock their secrets. This is especially true for post-
translational modifications, which cannot be identified by
genomics approaches. As a first step in this direction, we
have here established that MS-based quantification of en-
riched glycosylated membrane proteins can distinguish be-
tween related lymphoma subtypes and to identify disease
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segregating, novel cell surface targets on B-cell lymphoma
cells. This approach might provide the basis for the future
diagnosis of subtypes of B-cell lymphomas or any closely
related tumor subtypes and even of normal cells where an
unbiased global screening of the cell surface is required.
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17. Boersema, P. J., Geiger, T., Wiśniewski, J. R., and Mann, M. (2013) Quan-
tification of the N-glycosylated Secretome by Super-SILAC During
Breast Cancer Progression and in Human Blood Samples. Mol. Cell.
Proteomics 12, 158–171
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2.3 Machine Learning Based Classification of Diffuse Large B-cell 

Lymphoma Patients by their Protein Expression Profiles 

2.3.1 Project aim and summary 

Previously, we have robustly segregated ABC-DLBCL and GCB-DLBCL cell lines based 

on their global protein and PTM-based expression profiles. In this study, we built on the 

cell line work to investigate the applicability of our high-resolution MS-based platform to 

subtype DLBCL patients on the basis of their tumor proteome.  

Human tumors are usually preserved as formalin-fixed paraffin-embedded (FFPE) 

material. This makes them challenging to analyze because tissue proteomes are inherently 

complex and because proteins need to be efficiently extracted from FFPE. To deal with 

these challenges, we applied state-of-the-art technological advances in sample 

preparation, measurement and data analysis. The FFPE filter-aided sample preparation 

(FFPE-FASP) method for protein extraction and digestion in combination with a 

quadrupole Orbitrap mass spectrometer allowed us to reach an unprecedented depth of 

9,000 proteins in DLBCL patient proteomes. We employed the lymphoma super-SILAC 

mix previously developed as a general spike-in standard. This resulted in accurate 

quantification that allowed the segregation of the subtypes either by the55 protein 

signature previously derived from cell lines as well as by the global protein expression 

profiles of the patient samples. Almost all the drivers of segregation in the global analysis 

correlated to known biology of the subtypes. To extract a signature of proteins with the 

highest segregating power, we developed a novel combination of statistical feature 

selection and machine learning. This analysis resulted in a signature of 20 proteins that 

perfectly segregated the subtypes providing a solid proof-of-principle for future 

applications in large patient cohorts. 
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2.3.2 Contribution 

This project, a continuation of the first two projects, was also supervised by Matthias 

Mann and Marc Schmidt-Supprian. I performed and optimized all sample preparation 

techniques and MS analysis methods as well as data acquisition and analysis. Stefka 

Tyanova implemented the support vector machine algorithm. I designed all figures and 

tables for the publication. The manuscript was written by me with the help of Matthias 

Mann and Marc Schmidt-Supprian. 

2.3.3 Manuscript 

The included manuscript is currently in preparation. 
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Summary 

Characterization of tumors at the molecular level has improved our knowledge of cancer 

causation and progression. Proteomic analysis of their signaling pathways promises to 

enhance our understanding of cancer aberrations at the functional level, but this requires 

accurate and robust tools. Here, we develop a state of the art quantitative mass 

spectrometric pipeline to characterize formalin-fixed paraffin-embedded (FFPE) tissues of 

patients with closely related subtypes of diffuse large B-cell lymphoma (DLBCL). We 

combined a super-SILAC approach with label-free quantification (hybrid LFQ), to address 

situations where the protein is absent in the super-SILAC standard yet present in the patient 

samples. Shotgun proteomic analysis on a quadrupole Orbitrap quantified almost 9000 tumor 

proteins in 20 patients. The quantitative accuracy of our approach allowed the segregation of 

DLBCL patients according to their cell-of-origin, using both their global protein expression 

patterns and the 55-protein signature obtained previously from patient-derived cell lines 

(Deeb et al. MCP 2012 PMID 22442255). Expression levels of individual segregation-driving 

proteins as well as categories such as extracellular matrix proteins behaved consistent with 

known trends between the subtypes. We employed machine learning (support vector 

machines) to extract candidate proteins with the highest segregating power. A panel of four 

proteins (PALD1, MME, TNFAIP8 and TBC1D4) classified the patients with very low error 

rates. Highly ranked proteins from the support vector analysis revealed differential 

expression of core signaling molecules between the subtypes, elucidating aspects of their 

pathobiology.  

80



 
 

Clinical differences between human cancer subtypes have long been recognized by oncologists. 

However, comprehensive analyses of the underlying molecular differences have only become 

possible with the recent advent of powerful oligonucleotide-based technologies that allow 

global profiling of individual tumors (1). The potential benefits of improved molecular 

characterization are enormous (2). In fact, the molecular understanding of tumorigenesis and 

cancer progression is promising to enable a shift from non-specific cytotoxic drugs to drugs that 

are much more targeted towards cancer cells. An important step to achieve targeted therapies 

is to reliably identify the group of patients that are likely to benefit from a specific drug or 

treatment strategy. This ability to group cancer patients into clinically meaningful subtypes is a 

challenging task that requires well-designed and robust approaches.  

More than a decade ago, gene expression profiling discovered two subtypes of diffuse large B-

cell lymphoma (DLBCL), which are morphologically indistinguishable (3). The subtyping was 

based on gene expression signatures that correspond to stages of B-cell development from 

which the tumor is derived. The germinal center B-cell-like DLBCL (GCB-DLBCL) transcriptome 

was dominated by genes characteristic of germinal center B-cells, whereas the transcriptome of 

activated B-cell-like DLBCL (ABC-DLBCL) more closely resembled activated B-cells in vitro (3). 

Importantly, the discovered subtypes defined prognostic categories (3, 4), opening up the 

possibility of differential treatment (5). Nonetheless, this cell-of-origin (COO) classification did 

not fully reflect the differences in overall survival after chemotherapy among patients. Follow- 

up studies - also using gene expression profiling - showed that a multivariate model constructed 

from three gene-expression signatures (germinal-center B-cell, stromal-1, and stromal-2) was a 
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better predictor of survival (6). Stromal-1 reflected extracellular matrix deposition and stromal-

2, which had an unfavorable prognosis, reflected tumor blood vessel density. 

In addition to DLBCLs, gene expression profiling also successfully sub-classified several other 

cancer types such as breast cancer (7). However, in colorectal adenocarcinoma there was no 

correlation between the subtypes derived from GEP and clinical phenotypes like patient 

survival or response to treatment (8). As RNA is a fragile molecule, one of the challenges of 

mRNA-based global expression studies is the required quality of the RNA sample (9). The 

problem is exacerbated when working with formalin-fixed paraffin-embedded (FFPE) tissues, 

which are frequently the only biopsy material available. The extraction of RNA from FFPE 

tissues is still a daunting task and snap-frozen tissues are preferred for microarray-based 

genome-wide GEP (10). For that reason and because proteins are standard marker molecules in 

pathology, in the last decade many approaches were developed to classify DLBCL patients on 

the basis of immunohistochemistry (IHC) of FFPE tissues. They attempted to simulate gene 

expression profiling in predicting the COO of tumors. However, gene expression profiling rather 

than IHC-based algorithms still best predicted prognosis in DLBCL patients treated with 

immunochemotherapy (11). Most recently, a targeted RNA (NanoString)–based test of 20 genes 

accurately assigned COO subtypes to DLBCL patients in FFPE (12) and has now been adopted as 

a diagnostic tool in a clinical trial to support the development of lenalidomide (Revlimid) as 

treatment for patients with DLBCL. 

Proteins are the molecules that actually carry out biological function in a cell. Thus, proteomics 

has the potential to directly assess deregulated cellular processes and signaling pathways. In 
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the last decade, MS-based proteomics has developed tremendously in terms of sample 

preparation techniques, mass spectrometric instrumentation and data analysis. Enhanced 

sensitivity, accuracy and peptide sequencing speed of contemporary mass spectrometers allow 

the identification of thousands of proteins in a single experiment. This has already resulted in 

almost the complete coverage of complex biological samples such as human cancer cells (13, 

14). We have shown that very large depth of complex proteomes can even be attained without 

pre-fractionation (single shot measurements) (15, 16). In addition, proteins and their post-

translational modifications can be efficiently extracted from FFPE tissues (17). There have been 

complementary, enormous advances in data analysis and data management tools, facilitating 

the wide adoption of MS-based proteomics. In particular, these developments mean that 

characterizing small cohorts of human cancer patients in a reasonable amount of time is finally 

becoming feasible. 

Previously, we have successfully subtyped DLBCL cell lines on the basis of their total protein 

expression patterns (18) and on their N-glycosylated peptide patterns (19). In this study, we 

decided to explore the applicability of our high-resolution MS-based platform to the problem of 

cancer subtyping from macro-dissected slices of FFPE tissue from patient samples. For 

quantification, we took advantage of the high accuracy of the super-SILAC approach (20) and 

combined it with label-free quantification of the proteins not present in the spiked-in standard. 

In addition to segregating cancer subtypes by our previously derived 55-protein signature and 

by the total protein expression patterns, we derived a novel combination of statistical feature 

selection and machine learning to define a small signature of differentiating proteins with the 
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highest segregating power. This analysis also allowed us to dissect important molecular 

differences between the subtypes. 

EXPERIMENTAL PROCEDURES 

 Generation of the lymphoma super-SILAC mix – The super-SILAC mix was generated by 

combining equal amounts of heavy lysates from six lymphoma cell lines (Ramos, Mutu, BL-41, 

U2932, L428, and DB) as described (18). Stocks of this mix were prepared and used as standards 

that were spiked in each of the cell lines we previously studied and the 20 patient samples we 

analyzed in this study. 

FFPE human tissues – FFPE samples of DLBCL were obtained from the Institute of Pathology, 

Charité - Universitätsmedizin Berlin. Analysis of the samples followed an informed consent 

approved by the local ethics committee. 

Protein extraction from FFPE DLBCL tissues – For each patient sample, two FFPE slices of macro-

dissected tissue were collected (13 μm thickness). They were processed for mass-spectrometry-

based proteome analysis by extraction and digestion according to the Filter Aided Sample 

Preparation (FASP) protocol (FFPE-FASP) (17, 21). In short, FFPE tissue slices were incubated in 

1 ml xylene (2x) with gentle agitation for 5 min at room temperature. After removing the 

paraffin, the samples were dried by incubating them in 1 ml absolute ethanol (2x). The dried 

samples were then lysed in a buffer consisting of 0.1 M Tris - HCl (pH 8.0), 0.1 M DTT and 4% 

SDS. After homogenization using a disperser, they were boiled at 99 °C using a heating block 

with agitation (600 rpm) for 60 min. The samples were then cleared by centrifugation. 
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Protein digestion and peptide fractionation – On a 30 KDa filter (Millipore, Billerica, MA, USA), 

100 µg of each of the patient samples and the super-SILAC mix were mixed. The samples were 

further processed  by the FASP method in which the SDS buffer is exchanged with a urea buffer 

(21). This was followed by alkylation with iodoacetamide and overnight digestion by trypsin at 

37°C in 50 mM ammonium bicarbonate. The tryptic peptides were collected by centrifugation 

and elution with water (2x). 

Strong anion exchange (SAX) chromatography was used to fractionate 40 µg of peptides from 

each patient sample (22). It was performed in tip-based columns from 200 µl micropipette tips 

stacked with 6 layers of a 3M Empore anion exchange disk (1214-5012; Varian, Palo Alto, CA). 

For the fractionation, a Britton & Robinson universal buffer (20 mM acetic acid, 20 mM 

phosphoric acid, and 20 mM boric acid) was used and titrated using NaOH to six buffers with 

the desired pHs (pH 11, 8, 6, 5, 4, and 3). Subsequently, six fractions from each sample were 

collected, followed by desalting the eluted fractions on reversed phase C18 Empore disc 

StageTips (23). The peptides were eluted from the StageTips using 20 µl of buffer B composed 

of 80% ACN in 0.5% acetic acid (2x). A SpeedVac concentrator prepared the samples for MS 

analysis by removing the organic solvents.  

LC-MS/MS analysis – Peptides were separated by nanoflow HPLC (Thermo Fisher Scientific) 

coupled on-line to a quadrupole Orbitrap mass spectrometer (Q Exactive, Thermo Fisher 

Scientific) with a nanoelectrospray ion source. The peptides were eluted at a flow rate of 200 nl 

min−1 on an in-house made C18-reversed phase column that was 50 cm long, 75 μm inner 

diameter and packed with ReproSil-Pur C18-AQ 1.8 μm resin (Dr. Maisch GmbH, Ammerbuch-
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Entringen, Germany) in buffer A (0.5% acetic acid). For optimal separation based on average 

peptide hydrophobicity, four different linear gradients over a period of 205 min were applied. 

For pH 11 fraction, a gradient of 2–25% buffer B; for pH 8 fraction, a gradient of 7–25% buffer 

B; for pH 6 and 5 fractions, a gradient of 7–30% buffer B; for pH 4 and 3 fractions, a gradient of 

7–37% buffer B. Each gradient was followed by column washing reaching 95% B and then re-

equilibration with buffer A. 

A data dependent ‘top 10’ method, in which the 10 most abundant precursor ions were 

selected for fragmentation, was used to acquire the data. For survey scans (mass range 300 – 

1750 Th), the target value was 3,000,000 with a maximum injection time of 20 ms and a 

resolution of 70,000 at m/z 400. An isolation window of 1.6 Th was used for higher energy 

collisional dissociation with normalized collision energies of 25. For MS/MS scans, the target ion 

value was set to 1,000,000 with a maximum injection time of 60 ms and a resolution of 17,500 

at m/z 400 and dynamic exclusion of 25s. This led to a constant injection time of 60 ms, which is 

fully in parallel with transient acquisition of the previous scan, ensuring fast cycle times.  

The patient samples were received in two batches of 10 each, which were acquired with the 

same MS methods. For MS/MS, the 2nd batch a data dependent ‘top 5’ method was used where 

the 5 most intense ions from the survey scan were selected with an isolation window of 2.2 Th 

and dynamic exclusion of 45 s. The target ion value was set to 100,000 with a maximum 

injection time of 120 ms and a resolution of 17,500 at m/z 400.  

 Data analysis – We used the MaxQuant software environment (version 1.2.6.20) to analyze MS 

raw data. The MS/MS spectra were searched against the Uniprot database using the 
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Andromeda search engine incorporated in the MaxQuant framework (24, 25). Cysteine 

carbamidomethylation was set as a fixed modification and N-terminal acetylation and 

methionine oxidation as variable modifications. The maximum false discovery rate for both 

peptide and protein identifications was set to 0.01. Strict specificity for trypsin cleavage was 

required allowing cleavage N-terminal to proline. The minimum required peptide length was 

seven amino acids with a maximum of two miscleavages allowed. The initial precursor mass 

tolerance was 6 ppm and for the fragment masses it was up to 20 ppm. Time-dependent 

recalibration algorithm of MaxQuant was used to improve the precursor mass ions mass 

accuracy. The “match between runs” option was enabled, allowing the matching of 

identifications across measurements.  Relative quantification of the peptides against their 

SILAC-labeled counterparts was performed with MaxQuant using a minimum ratio count of 1. 

We combine SILAC with label-free analysis (‘hybrid algorithm’) employing a minimum count of 1 

(see RESULTS AND DISCUSSION). Perseus, which is a module of the MaxQuant software 

package, was used for the further statistical and bioinformatic analysis of the MaxQuant output 

data. Missing values were supplied by ‘data imputation’ to simulate signals of low abundant 

proteins under the assumption that they are biased toward the detection limit of the MS 

measurement (18). 

RESULTS AND DISCUSSION 

Workflow for quantitative proteome measurements of DLBCL FFPE patient samples – One of the 

most commonly used methods for tissue preservation involves fixing the sample in formalin 

followed by embedding it in paraffin, formalin-fixed paraffin-embedded (FFPE) tissues. It is 
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routinely used in tissue banks due to its compatibility with immunohistochemistry assays and 

its long-term preservation benefits in an economical format. However, FFPE cohorts have been 

challenging to use in gene expression studies due to the difficulty to isolate nucleic acids (26). 

Despite attempts to improve the quality of extracted RNA samples from FFPE tissues and to 

provide standardized protocols, currently snap-frozen tissues are greatly preferred in that 

workflow (10, 26). In clinical practice, tissue banks of frozen specimens are used for initial 

discovery studies but by far the largest sample numbers and almost all tumor specimens, are 

fixed in formalin. Taking advantage of the stability and ease-of-handling of proteins, we and 

others have recently shown that protein extraction from FFPE material is possible in a robust 

manner (17, 27). We did not observe quantitative or qualitative differences between FFPE and 

frozen tissues at the level of proteins or post-translational modifications (PTMs) (17). Our 

approach combined boiling in sodium dodecyl sulfate (SDS) with the filter aided sample 

preparation (FASP) method (21). The boiling step presumably reverses the cross-links induced 

upon fixation whereas the FASP method allows MS analysis of proteomic samples solubilized in 

high concentrations of SDS, which is advantageous for FFPE samples (27).  

Here we macro-dissected two slices from each of 20 FFPE tumor samples from DLBCL patients 

(Fig. 1A). Peptides resulting from FASP preparation were subjected to six-step fractionation 

using a strong anion exchange chromatography (SAX) protocol followed by LC-MS analysis of 

each fraction (see EXPERIMENTAL PROCEDURES).  

 Accurate quantification is a requirement for the comparison of the protein expression profiles 

of the patient samples. For the 20 patient samples we used the same heavy-labeled super-
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SILAC mix of six lymphoma cell lines that we had previously constructed to represent the 

lymphoma proteome as closely as possible and to cover as many of ‘lymphoma-related’ 

proteins as possible (18). Heavy lysates from each of the six cell lines were pooled together and 

spiked in a 1:1 ratio to each of the patient samples. To also quantify SILAC singlets for which the 

peptide is not found in the reference proteome but is seen in the samples, we introduce a new 

quantification algorithm in MaxQuant. This so called hybrid quantification algorithm is a 

generalization of the MaxLFQ algorithm for the accurate relative quantification of label-free 

data (28). The essence of the relative quantification step in MaxLFQ is that for each protein and 

for each sample pair the ratio is calculated for those peptide features that were determined in 

both samples. In the hybrid quantification algorithm one distinguishes the case in which a SILAC 

ratio to the reference is calculated in both samples for a given peptide feature from the case in 

which one or both ratios cannot be calculated. If both ratios are available, the ratio of ratios is 

used as input for the MaxLFQ quantification algorithm. In the other case and given that 

intensities are calculated in both samples for the light SILAC state, the ratio of these light 

intensities is taken. In the case that one or both light intensities are not present, the peptide 

feature does not take part in the quantification. All other steps of the MaxLFQ algorithm are 

applied in exactly the same way in the hybrid LFQ algorithm as well. The result of the hybrid 

algorithm is an intensity profile for each protein group over all samples, similar to the output of 

the conventional MaxLFQ algorithm. The whole intensity profile for a protein group can be 

multiplied with an arbitrary factor since only the relative intensity information is defined by the 

algorithm.  
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Combined analysis of the raw MS data by MaxQuant resulted in the identification of 9,012 

protein groups across the 20 patient samples. We obtained quantitative results for 8,701 

protein groups after employing the hybrid LFQ algorithm with an average of 6,278 protein 

groups in each of the 20 DLBCL patient samples. The average gain from the hybrid LFQ is 353 

quantifications per sample compared to using SILAC ratios alone (supplemental Fig. 1). This 

relatively small percentage indicates that the vast majority of proteins were adequately 

quantifiable against the super SILAC standard already. 

General characteristics of the proteome of 20 DLBCL FFPE patient samples – The achieved depth 

of the proteome resulted in good quantitative coverage of many signaling pathways and 

cellular processes that play a role in the development and progression of various cancers (Fig. 

1B). These include processes such as DNA replication (94% coverage of annotated members) 

and apoptosis (77%). Importantly, there is almost complete coverage (91%) of the B-cell 

receptor signaling pathway, which can play a major role in lymphomagenesis, and high 

coverage of other blood cancer-associated proteins such as acute myeloid leukemia (83%) and 

chronic myeloid leukemia (83%). 

Pairwise comparisons of all the samples against each other resulted in high Pearson coefficients 

between the samples (average r= 0.92) indicating both high quantitative accuracy between 

tumor measurements and high similarity in the global proteomes (see Fig. 2A for an example). 

The dynamic range of MS signals for proteins from the patient samples proteomes spanned 

seven orders of magnitude with 94% of the proteins concentrated in four orders of magnitude 

(Fig. 2B). Overlaying 172 proteins that are annotated in the KEGG database as belonging to 

90



 
 

pathways in cancer showed that cancer-related proteins spanned the entire dynamic range. 

This suggests that both highly and low abundant proteins can be important players in cancer 

cell biology (Fig. 2B). 

Compared to the cell line system we previously analyzed, we here found 2,031 additional 

protein groups (Fig. 3A). We attribute this to technical factors, mainly the very fast and 

sensitive quadrupole-Orbitrap used in this study (29), in combination with the larger complexity 

of the patient samples. This interpretation is supported by the abundance distribution of the 

extra 2,031 protein groups, which was at the lower end of the total distribution (Fig. 3B). 

Furthermore, a Fisher exact test showed a high enrichment of extracellular proteins in this set 

of proteins. This is especially interesting as stromal signatures have already been shown to be 

important in lymphoma classification (6).  

The 55-protein cell line-derived signature correctly classifies patients – We have previously 

derived a signature of 55 proteins that robustly segregated ABC-DLBCL and GCB-DLBCL in a cell 

line system (18). In addition to proteins that correlated to underlying known biological 

differences between the subtypes, the cell line signature also included new interesting 

candidates. To explore the potential of applying this signature to patients, we used the COO 

subtypes previously established by gene expression profiles on these samples (30). Matching 

the signature to the patient proteomes after filtering for 75% valid values resulted in 

quantitative values of 49 proteins in all of the patients. Remarkably, a principal component 

analysis (PCA) of these matches clearly segregated the two subtypes (Fig. 3C). Thus, our 

previous proteomic signature can directly be translated to patient samples and classify them 
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correctly, which is remarkable because it was derived entirely from a cell line based system. The 

loadings of component 1, which accounts for 25.7 % of the variability in this small subset of 

proteins, drive the correct segregation. However, this does not necessarily mean that the cell 

line signature is optimal to segregate the subtypes with the best possible accuracy. With the 

increased depth and faithfulness of the patient samples, a signature extracted from the patient 

proteomes themselves is worth investigating and evaluating, as addressed below.  

Unsupervised segregation of patient samples based on their global protein expression profiles – 

To explore whether the global protein expression profiles of the patient samples would reveal 

intrinsic biological differences between the subtypes such as their different COO, we performed 

a principal component analysis based on the entire protein expression profile of each patient. 

As previously, we filtered for 75% valid values resulting in 5,480 protein groups quantified 

across the 20 patients. Components 1 versus 4 in the PCA provided a diagonal segregation of 

the patient samples according to their COO classification (Fig. 4A). The ‘loadings’ of such a PCA 

reveal the drivers causing the segregation (Fig. 4B). Among the proteins that are relatively 

upregulated in ABC-DLBCL are PTPN1 (PTP1B), IRF4, CCDC50 (Ymer), MNDA, SP140, IL16, 

RAB7L1, HCK, TNFAIP8, TNFAIP2, and HELLS. Reassuringly, many of these candidates reflect 

known biological differences between the subtypes. Strong drivers of segregation such as 

PTPN1, IRF4, CCDC50 as well as metabolic enzymes such as ARHGAP17 and CYB5R2 were 

already present in our previously derived cell line signature. This explains the applicability of 

the cell line-derived signature to segregate patient tissue proteomes and independently 

confirms the importance of these markers because they were picked up in two independent 

studies of this cancer system. For instance, IRF4, one of the strong drivers that we previously 
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highlighted, is a transcription factor that drives plasmacytic differentiation and its expression is 

directly regulated by NF-κB signaling, a pathogenic hallmark of ABC-DLBCL (31). A new drug 

(lenalidomide), which inhibits IRF4, selectively kills ABC-DLBCL cells and is currently in clinical 

trials (32).  

The strongest drivers also include some interesting new candidates. One of the strong drivers 

that are upregulated in ABC-DLBCL is SP140, an interferon-inducible, nuclear lymphocyte-

specific protein of unknown function. It is expressed in all human mature B cells and plasma cell 

lines, as well as in some T cells (33, 34). It possesses several chromatin related modules, which 

suggests a role of SP140 in chromatin-mediated regulation of gene expression (35). A genome-

wide association study of single-nucleotide polymorphisms (SNPs) for chronic lymphocytic 

leukemia (CLL) showed that SP140 is a CLL risk locus. That study also identified IRF4 as another 

risk locus out of six loci in total (36), a remarkable overlap with our results. The myeloid cell 

nuclear differentiation antigen (MNDA) is another strong driver that emerged from the patient 

data. As the name indicates, MNDA is expressed constitutively in cells of the myeloid lineage, 

but it can also be expressed by normal and neoplastic B lymphocytes (37, 38). In a recent study 

that identified MNDA as a marker for nodal marginal zone lymphoma, the authors also analyzed 

the expression of MNDA in a cohort of 75 DLBCL cases. Interestingly, out of 34 cases in which it 

was highly expressed, 25 were of the ABC subtype (39). A highly interesting and novel 

segregator is IL16, a cytokine that is typically characterized as a chemoattractant of CD4+ cells 

to sites of inflammation. However, recent studies have suggested an important role of both the 

pro-molecule and the secreted form of IL-16 in the regulation of lymphocytic cancer cell 

proliferation (40). In fact, targeting IL-16 may be a novel therapeutic approach for T cell cancers 
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(cutaneous T cell lymphoma) and B cell cancers (multiple myeloma). In multiple myeloma, 

inhibition of IL16 production by siRNA or IL-16 bioactivity by neutralizing antibodies reduces cell 

proliferation by more than 80% (40).  

On the other side of the diagonal segregation are drivers with higher protein levels in the GCB-

DLBCL subtype. These include ABCC4, TBC1D4, LCK, CAV1, C3orf37 (HMCES), IGF2BP1 and TP53. 

TBC1D4 is a Rab GTPase-activating protein that promotes insulin-induced glucose transporter 

GLUT4 translocation to the plasma membrane, thus increasing glucose uptake (41). TBC1D4 has 

not yet been associated with lymphoma classification, but may be related to increased glucose 

uptake as observed in many cancer types and may indicate a difference between the cancer 

types in this respect (42). LCK is a lymphocyte cell-specific protein-tyrosine kinase studied 

extensively in the context of T-cells where it plays an important role in signal transduction after 

antigen binding. Dysregulation of LCK expression or LCK kinase activity has been implicated in T 

cell leukemia from mice to humans (43). LCK expression has also been reported in normal B-1 

cells and in chronic lymphocytic leukemia B cells (44). It plays an important role in B-cell 

receptor signaling in CLL and specific LCK inhibitors have been suggested in the treatment of 

progressive CLL (45). Reassuringly, LCK has been shown to be present at high levels in normal 

germinal center cells (46). In addition, it was shown to be expressed in most lymphomas of 

germinal center origin (e.g. follicular lymphoma) and also many mantle cell lymphomas, chronic 

lymphocytic leukemia (CLL) and most T-cell neoplasms (46).  

The diagonal segregation of the subtypes suggested that other biological factors compromised 

a more clear-cut COO segregation of the patients in the PCA. Enrichment analysis of protein 
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categories showed that extracellular matrix region part is one of the strongest cellular 

component categories (GOCC) significantly enriched in component 1 of the PCA (FDR=1.89E-

33). Cancer module (CM) categories (GSEA) correspond to gene sets which are significantly 

changed in a variety of cancer conditions after mining a large compendium of cancer related 

microarray data (47). The most significantly enriched CM module in component 1 was 

MODULE_47 (FDR=6.55E-20) (Fig. 4C). This category included proteins such as ACTN1, BGN, 

COL1A1, COL1A2, COL6A1, COL6A2, COL6A3, COL6A4, FN1, LUM, POSTN and SERPINH1 (Fig. 

4C). There is a large overlap between these drivers and the reported prognostically favorable 

stromal-1 signature, reflecting extracellular matrix deposition (6). In fact, the stromal signatures 

study showed that a multivariate model created from three gene-expression signatures - 

germinal-center B-cell (COO), stromal-1 (extracellular matrix deposition), and stromal-2 (tumor 

blood-vessel density) - was a better predictor of survival than the COO classification alone. 

Hence, survival of DLBCL patients after treatment is influenced by several biological attributes 

including the COO and the tumor microenvironment (6). In addition, expression levels of the 

ECM signature proteins we depicted in component 1 are on average higher in the GCB subtype. 

These findings confirm what has been previously reported (48) and show that our proteomic 

analysis captured the COO classification as well as other intrinsic biological differences between 

the subtypes.  

Supervised characterization of ABC-DLBCL versus GC-DLBCL subtypes – After assigning a subtype 

to each patient sample based on GEP classification, we treated the samples as biological 

replicates of the same disease entity. We grouped patients belonging to the same subtype 

together and calculated the median expression value for each protein group. The proteomes of 
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GCB-DLBCL versus ABC-DLBCL had very high correlation (Pearson r = 0.98). Against this 

background of very high overall similarity, investigation of outliers from this tight cloud 

revealed markers that our unsupervised PCA analysis had already indicated as well as novel 

candidate markers which are connected to the known biology of the disease (Fig. 5A). This 

included TCL1A, FOXP1 and TLR9, which are upregulated in the ABC subtype. For instance, both 

TCL1A and FOXP1 are immunohistochemical markers of adverse outcome in DLBCL (49, 50). 

FOXP1 was also reported to occur in a subgroup of non-GC DLBCLs (51) and TCL1A has been 

suggested as tumor-associated antigen for immunotherapeutic strategies in common B-cell 

lymphomas (52).  

Next we performed a 2D annotation enrichment analysis (53) using cancer modules (CM) for 

deriving differential cancer associated gene sets between these two closely related entities of 

DLBCL. As expected from the high proteome correlation, the subtypes are very similar in almost 

every cancer module annotated such as RNA splicing, protein biosynthesis and mitosis. 

However, MODULE_456 which corresponds to ‘B lymphoma expression clusters’ and MODULE_ 

210 which corresponds to ‘metallopeptidase activity’ are different between the subtypes. 

MODULE_456 consists of 115 genes and is annotated to be significantly induced in B-cell 

lymphomas (p=2.7e-05) and specifically in GC-DLBCL (p=3.0e-05). This confirms what we 

observed in our analysis (Fig. 5B). The metallopeptidase and metalloendopeptidase gene sets 

comprising MODULE_210 consists of 28 genes and were significantly induced in microarrays of 

DLBCL (p=1.5e-06) and GC-DLBCL (p=5.1e-05) specifically (47). The proteins that we found in 

this gene set are particularly interesting given the role of MMPs in mediating tumor invasion.  
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The candidate differentially expressed proteins and categories clearly reflected relevant 

biological differences between ABC-DLBCL and GCB-DLBCL. However, these candidates can not 

necessarily be used as markers of classification. More sophisticated statistical tools are required 

to achieve a panel of candidate proteins that can be used for diagnostic purposes as discussed 

in the next section. 

Support Vector Machines Feature Selection – In clinical studies, tumor and host variability 

combined with the large feature space of the data set (thousands of proteins compared to a 

relatively small number of patients) make it difficult to identify disease-relevant proteins. We 

addressed these challenges with a supervised learning method – Support Vector Machines 

(SVMs) - in combination with a test statistics based feature selection strategy. SVMs are a well-

established machine learning technique that trains a predictor that best distinguishes between 

the known classes of the samples (in our case GC and ABC lymphoma subtypes). The principle 

of an SVM predictor is the definition of a so-called separation hyperplane that segregates the 

subtypes as clearly as possible in a training data set, which can be a subset of the measured 

samples. Using this ‘machine learned’ hyperplane, new samples of unknown subtype can be 

classified as GC or ABC depending on the side of the separation hyperplane on which each of 

these samples falls. The strength of SVMs lies in their ability to perform well in high dimensional 

data and in particular to efficiently find and assess sets of features with high predictive power.  

We combined the SVM-based prediction with feature selection to optimize the performance of 

the classifier and to identify strongly discriminative features. The feature selection method 

employed p-values from standard ANOVA tests. As disease-relevant features that show large 
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quantitative differences between the two subtypes are more easily detectable and thus are 

clinically more relevant, we performed the ranking of the proteins such that it depended not 

only on the statistical significance of their differential expression between the different 

subtypes, but also on the actual size of this difference. The advantage of this method is that 

proteins with low p-values and high fold change receive higher ranks than those with low p-

values and small fold change. 

Feature selection was embedded in a cross-validation procedure to avoid the problem of over-

fitting and wrong estimation of the classifier’s performance. In each iteration (total 1000) of a 

random sampling cross validation, we used 90% of the data for training and feature ranking and 

the rest for testing and optimization of the number of features. The analysis resulted in a set of 

four ranked features that perform almost perfectly in the classification of the subtypes (1.4% 

error rate) (Fig. 6A). These top four candidates are: TBC1D4, PALD1, TNFAIP8 and MME (CD10). 

MME is part of previous immunohistochemistry-based classification algorithms (11). TBC1D4 

plays a role in glucose uptake, TNFAIP8 is NF-κB regulated and involved in blocking apoptosis, 

and PALD1 is newly studied protein that may play a role in tumor invasiveness and metastasis.  

Next, we were interested in comparing ranked features with the digital gene expression 

(NanoString)–based test of 20 genes that has been recently published and put into use in a 

clinical trial (12).  The model is composed of 8 genes (TNFRSF13B, LIMD1, IRF4, CREB3L2, PIM2, 

CYB5R2, RAB7L1 and CCDC50) overexpressed in ABC-DLBCL, 5 housekeeping genes, and 7 genes 

(MME, SERPINA9, ASB13, MAML3, ITPKB, MYBL1 and SIPR2) overexpressed in GC-DLBCL.  

Gratifyingly, there is a 30% overlap in the differentially expressed genes in our data set.  
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For a broader selection of differential features, we used as an error rate cutoff, the point 

beyond which the correct unsupervised hierarchical clustering of the subtypes was lost. This 

resulted in 343 features (Fig. 6B). Interestingly, upon filtering for ECM, nuclear and plasma 

membrane proteins from these top 343 features, the last two categories maintained correct 

segregation on their own reflecting the cell-of-origin classification (Fig. 6C).  

The set of 343 protein groups included 33 transcription factors, 14 protein kinases, and 12 

oncogenes (supplemental Table I). Upon dividing the 343 protein groups into their two main 

clusters: one relatively upregulated in ABC-DLBCL and the second relatively upregulated in GCB-

DLBCL we performed network analysis to investigate possible connections between them. 

Genes upregulated in the ABC-DLBCL subtype highlighted the CARD11-PKCB signaling core 

(supplemental Fig. 2A) that drives NF-κB signaling upon BCR signaling (54). The GCB-DLBCL 

subtype showed an LCK-PAG-P2K signaling module (supplemental Fig. 2B)  which has been 

shown to be oncogenic in other lymphomas (55). In addition to an ECM core that we previously 

depicted to be upregulated on average in the GCB subtype, we also observe an MHCII network 

that has been previously reported to be on average higher in GCB (48).  

CONCLUSIONS AND OUTLOOK 

Previously, we had shown unambiguous segregation of patient-derived DLBCL cell lines into 

their COO subtypes based on their global protein expression profiles as well as an enriched set 

of membrane proteins (18, 19). In this study, we have analyzed 20 FFPE DLBCL patient samples, 

attaining a quantitative depth of more than 9000 proteins, which to our knowledge, is the 

largest lymphoma proteome available. Correct segregation of the subtypes based on their 
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protein expression profiles was possible after applying a cell line-derived signature from our 

previous studies or by using the whole set of proteins quantified in at least 75% of the samples. 

When global protein expression profiles were employed, the COO classification was not as clear 

cut as in the cell lines. This is most likely due to increased complexity of this system in which 

several important biological signatures (extracellular matrix and MHC II) also influence 

segregation. In fact, these signatures are known to be very valuable in the overall prediction of 

survival in DLBCL patients (48). Our results clearly show that global expression proteomics can 

segregate cancer types based on tumor samples from patients. Importantly for practical 

applications, our measurements only require small amounts of FFPE material, which are readily 

available in tissue banks or informal sample collections. 

The high number of biologically relevant potential markers retrieved here argues well for future 

applications of proteomics to clinical questions such as tumor segregation. Our analysis 

highlighted both the COO signature and the ECM signature in line with the ‘gold standard’ 

predictor of survival which includes the COO classification as well as stromal signatures (6, 30). 

Nuclear and membrane proteins reflect the COO but ECM signature is more likely to reflect 

mechanisms the tumor develops to interact with its environment. Hence, they are at least 

partly independent signatures and patient survival depends on both. 

In a classical view of biomarker development, global MS-based proteomics play a role primarily 

in the discovery phase (56). In post-discovery studies, MS-based or ELISA-based targeted 

approaches would then be employed on specific signature proteins. However, it is interesting to 

speculate that an untargeted approach could also be used in this phase. Recent technological 
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advances, especially at the peptide preparation, separation and MS-instrument levels, have led 

to powerful single-shot approaches that are positioned between in-depth shotgun proteomics 

employing fractionation and targeted approaches (15, 16).  An appealing application of such 

single-shot systems would be the analysis of patient samples where measuring a large cohort is 

necessary for statistical analysis and validation. Considering the rate of MS developments, 

measuring a proteome of complex biological samples such as patient tissues comprehensive 

enough for tumor classification in about an hour should be achievable in the near future. 

Furthermore, simpler and robust sample preparation methods will allow easier sample handling 

and higher reproducibility (57). In conclusion, continuous MS-based technological advances 

hold great promise for future characterization and diagnosis of subtypes not only of B-cell 

lymphomas but any closely related tumor subtypes.  
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Figure legends 

FIG. 1. Proteomic workflow and coverage of 20 FFPE DLBCL patient samples. A, Two slices of 

macro-dissected patient FFPE tissues were processed according to the FASP-FFPE protocol. The 

super-SILAC approach was employed for quantitative measurements using a quadrupole 

Orbitrap mass spectrometer (Q Exactive). Quantification was based on SILAC ratios combined 

with label free quantifications in cases where no SILAC pairs where detected. The data was 

analyzed using the MaxQuant software resulting in the identification of more than 9000 

proteins. B, Percentage coverage of signaling pathways and cellular processes in the quantified 

patients proteome. 

FIG. 2. Quantified FFPE DLBCL patient proteomes. A, Pearson’s correlation coefficient (r) of 

two representative patient samples (TRR003 and TRR013). B, Dynamic range of patients’ 

proteomes highlighting KEGG annotated proteins to be involved in ‘pathways in cancer’. 

FIG. 3. DLBCL patient samples’ proteome versus the DLBCL cell lines’ proteome.  A, Overlap in 

the protein groups between the patient proteomes and the cell line proteomes. B, The 

distribution of proteins exclusively quantified in the patient samples (red) in comparison to the 

total distribution (blue). C, Principal component analysis of patient samples using the 55-

protein segregating signature derived from cell lines. 

FIG. 4.  Principal component analysis of patient samples using their global protein expression 

profiles. A, The global proteomes of 20 DLBCL patient samples segregated diagonally into ABC-

DLBCL (13 samples) and GCB-DLBCL subtypes (7 samples) based on component 1 which 
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accounts for 11.9% of variability versus component 4 which accounts for 7.4% of the variability. 

B, Loadings of A highlighted in red reveal the main proteins driving the COO diagonal 

segregation. C, Cancer module 47 which is composed of extracellular proteins and collagens is 

highly enriched in component 1. 

FIG. 5. ABC-DLBCL versus GCB-DLBCL. A, Pearson correlation of ABC-DLBCL versus GCB-DLBCL 

after taking median expression values of protein groups across patients in each subtype. B, 2D 

annotation enrichment of ABC-DLBCL against GCB-DLBCL using cancer modules annotated in 

GSEA.  

FIG. 6. Support vector machine analysis for optimal feature selection. A, Support vector 

machine feature selection employing p-values of standard ANOVA tests resulted in a set of 

4features with 1.4 percent error. B, Unsupervised hierarchical clustering of top 343 protein 

candidates or features determined by support vector machine analysis. C, Unsupervised 

hierarchical clustering of extracellular matrix, plasma membrane and nuclear proteins in 343 

top protein candidates.  
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Supplementary figure 1
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Supplementary figure 2
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Supplementary table I

cytokines and 
growth factors

transcription 
factors

cell 
differentiation 

markers

protein kinases translocated 
cancer genes

oncogenes tumor 
suppressors

tumor suppressors 0 3 0 0 0 0 5
oncogenes 0 4 0 2 10 12

translocated cancer genes 0 3 0 2 10
protein kinases 0 0 0 14

cell differentiation markers 0 0 11
transcription factors 0 33

cytokines and growth factors 3
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3. OUTLOOK 

One of the most celebrated success stories of personalized medicine is the 

treatment of Philadelphia–positive chronic myelogenous leukemia (CML) patients with 

Imatinib. The success rate of Imatinib in the treatment of CML was extraordinary. In one 

of the first clinical studies, complete hematologic response (white blood cell count returns 

to within normal range) was observed in 53 of 54 CML patients within the first four weeks 

of therapy [22]. Equally impressive results were obtained in a five-year follow-up study. 

After 60 months of treatment, the estimated overall survival of patients who received 

Imatinib as initial therapy was 89% [155]. 

The background to this success was the discovery of the atypical small 

chromosome in CML cells which was later named the “Philadelphia chromosome”, after 

the city in which it was discovered. Importantly, nearly all leukemic cells from patients 

with CML carried the Philadelphia chromosome [156]. Following the discovery, decades 

of research revealed the molecular biology of this aberrant chromosome. In 1973, it was 

discovered that it was a translocated chromosome [157]. New staining techniques, at that 

time, revealed what may be a translocation between the long arms of chromosomes 22 

and 9. It took another 10 years until the actual genes involved in the Philadelphia 

chromosome were determined. In 1983, the human c-abl oncogene was located to the 

translocated region of chromosome 9 that becomes part of the Philadelphia chromosome 

[158]. A year later, the same group was able to identify the breakpoint cluster region (bcr), 

the region in which all the chromosome 22 breakpoints seemed to occur in CML patients 

[159]. It was not until the 1990 that the function of BCR-ABL was identified. The BCR-ABL 

fusion results in the production of an abnormal tyrosine kinase protein that is not 

properly regulated [160]. This kinase is highly active causing the cells to proliferate at an 

abnormally high rate resulting in the accumulation of immature white blood cells. 

Eventually, the knowledge resulting from 30 years of basic scientific research had set the 

stage for the development of a drug against CML. In collaboration with industry, 

compounds, which might fit the ATP-binding site of BCR-ABL based on computer 
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models, were screened. This resulted in the discovery of Imatinib (Gleevec), which  

showed the remarkable results in vitro [161] and later on in clinical trials that were 

described above. 

Imatinib has even been called a miracle drug and it has raised hope for more 

similarly effective drugs based on personalized medicine approaches. However, it has 

now become clear that Imatinib was an exceptional case. CML is caused by a single 

aberrant protein related to a consistent chromosomal translocation. In fact, the bcr−abl 

oncogene is present in 95% of patients with CML [161]. It has been implicated as the cause 

of this disease and therefore, all efforts could be focused on targeting this oncogenic 

driver. Unfortunately, this does not seem the case for most other cancers. Nevertheless, 

the story remains an excellent example of how basic knowledge of oncogenic aberrations 

can be translated into successful targeted therapeutics. 

In contrast to CML, analysis of primary tumor samples using whole-genome and 

exome sequencing has revealed tremendous molecular complexity and genetic 

heterogeneity for DLBCL, which is the focus of this thesis [121, 162]. Substantial variation 

of mutated genes was observed from patient to patient and also between published 

studies [162]. In the time of molecular definition of diseases, a major breakthrough would 

be the identification of combinations of novel agents to target the oncogenic drivers of 

each subset of disease [121]. This would likely be based on a principled understanding of 

how to manage the subgroups differently. Hence, translational molecular investigations 

will be essential to achieve the goal of precision medicine and expand the number of 

curable DLBCL patients. 

With the increased speed and accessibility of sequencing technologies, massive 

resources have been devoted to genome sequencing of DLBCL and other human tumors. 

One of the largest initiatives is The Cancer Genome Atlas (TCGA), aimed at sequencing 

the genomes of common human cancers. In the last couple of years, these studies have 

produced massive datasets for the cancer biology community; however, the amount of 

new biology revealed by such studies has been disappointing so far [163]. The majority of 
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mutated genes and altered pathways were already known [162]. In glioblastoma, for 

instance, eight genes were significantly amplified or mutated. These genes included the 

epidermal growth factor receptor (EGFR), phosphatidylinositol 3-kinase (PI3K), and the 

cell cycle regulator retinoblastoma (Rb). In fact, all eight genes were previously known to 

play an important role in cancer [164]. Furthermore, this study showed that mutations in 

the tumor-suppressor p53 were particularly common [164], a finding which is hardly 

surprising. Extensive genomic sequencing of ovarian cancer [165] and colorectal cancer 

[151] obtained nearly the same gene and pathway information. Despite revealing little 

new biology regarding cancer treatment, sequencing data provides valuable information 

on real human cancers confirming studies that relied on cancer models. In addition, an 

unbiased catalog of the different types of mutations can reveal important insights into 

tumor evolution [166, 167] as well as combinations of mutations that occur in specific 

tumor types. Furthermore, recent sequencing studies have revealed genetic heterogeneity 

between cells of the same tumor, further complicating attempts to translate genetic data 

into therapy [168]. One of the key messages of these studies is that alterations in signaling 

pathways are central to the molecular biology of cancers [163]. 

A cancer cell has many hundreds of pathways and networks at its disposal to 

exploit in various ways and to develop resistance to targeted or untargeted therapies. 

They can divert and diversify when faced with a roadblock i.e. a targeted drug [169]. The 

community now recognizes even more that cancer is not a disease of single mutations or 

genes and that it instead involves the dysregulation of multiple signaling pathways and 

networks which correspond to cellular processes such as proliferation, apoptosis, 

differentiation and migration [153]. Biological processes compromised by the tumor to 

ensure its survival include sustaining proliferative signaling, evading growth 

suppressors, resisting cell death, achieving replicative immortality, inducing 

angiogenesis, and activating invasion and metastasis. Two additional hallmarks of 

potential generality are reprogramming of energy metabolism and evading immune 

destruction  [154]. A recently developed network-based stratification (NBS) method, 
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already discussed above, allowed the identification of clinically meaningful patient 

subsets integrating somatic mutations profiles with gene networks. Patients with 

mutations in similar network regions are clustered together resulting in stratification of 

ovarian, uterine and lung cancer cohorts from TCGA into clinically informative subtypes. 

This shows that although tumors appear different at the level of genes, groupings appear 

at the level of impacted biological networks and systems [149]. 

Finally, it is clearly the signaling proteins that are responsible for a tumor’s 

phenotype. Robust and reliable tools for analyzing the status of tumor signaling networks 

and the state of tumor proteome are therefore needed. Only MS-based proteomics 

provides a direct way to study compromised signaling pathways and cancer hallmark 

processes. This thesis has provided early applications of modern MS-based technology to 

characterize tumors at the cell line and patient levels. While the three projects presented 

here provide promising proof-of-principle, larger patient cohorts will be required to 

validate MS-based proteomics as an indispensable tool to enhance the molecular 

understanding of tumors. However, it is already clear that it is the only technology with 

the potential to characterize tumors at the level of PTMs. With even more technological 

advancements in the horizon, such a reality does not seem to be so far-fetched. 

 

 

 

 

 

 

 

 



ABBREVIATIONS 

123 

ABBREVIATIONS 

ABC-DLBCL Activated B-cell–like diffuse large B-cell lymphoma 
AQUA Absolute quantitation 
BCR B-cell receptor 
CID 
CLL 

Collision induced dissociation 
Chronic lymphocytic leukemia 

COO Cell-of-origin 
DLBCL Diffuse large B-cell lymphoma 
ELISA Enzyme linked immune assays 
ESI Electrospray ionization 
FASP Filter-aided sample preparation 
FDR False discovery rate 
FFPE Formalin-fixed paraffin-embedded 
GCB-DLBCL Germinal-center B-cell–like DLBCL 
GEP Gene expression profiling 
HCD Higher energy collision dissociation 
HPLC High performance liquid chromatography 
LC Liquid chromatography 
LTQ Linear trap quadrupole 
m/z Mass-to-charge ratio 
MS Mass spectrometry 
MS/MS 
NBS 

Tandem mass spectrometry 
Network-based stratification 

PCA Principal component analysis 
PTM Post-translational modification 
RF Radio-frequency  
SAX 
SDS 

Strong anion exchange chromatography 
Sodium dodecyl sulfate 

SDS-PAGE Sodium dodecyl sulfate-polyacrylamide gel electrophoresis 
SILAC Stable isotope labeling  with amino acids in cell culture 
SVM Support vector machine 
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