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Abstract Trade-wind cumuli constitute the cloud type with the highest frequency of
occurrence on Earth, and it has been shown that their sensitivity to changing environmental
conditions will critically influence the magnitude and pace of future global warming.
Research over the last decade has pointed out the importance of the interplay between
clouds, convection and circulation in controling this sensitivity. Numerical models rep-
resent this interplay in diverse ways, which translates into different responses of trade-
cumuli to climate perturbations. Climate models predict that the area covered by shallow
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cumuli at cloud base is very sensitive to changes in environmental conditions, while
process models suggest the opposite. To understand and resolve this contradiction, we
propose to organize a field campaign aimed at quantifying the physical properties of trade-
cumuli (e.g., cloud fraction and water content) as a function of the large-scale environment.
Beyond a better understanding of clouds-circulation coupling processes, the campaign will
provide a reference data set that may be used as a benchmark for advancing the modelling
and the satellite remote sensing of clouds and circulation. It will also be an opportunity for
complementary investigations such as evaluating model convective parameterizations or
studying the role of ocean mesoscale eddies in air—sea interactions and convective
organization.

Keywords Trade-wind cumulus - Shallow convection - Cloud feedback - Atmospheric
circulation - Field campaign

1 Introduction

Of all the clouds that populate the Earth’s atmosphere, trade-cumuli count among the most
fascinating expressions of the interplay between clouds and circulations. These broken
shallow clouds form within the lowest kilometres of the atmosphere, influenced at their
base by small-scale turbulent motions of the warm, moist surface layer, and at their top by
the large-scale sinking motions of the warm and dry overlying free troposphere. If many of
these clouds do not rise by more than a few hundred metres above their base, some reach
higher levels (e.g Nuijens et al. 2014), detrain and help sustain (evaporatively and radia-
tively) the trade-wind temperature-inversion layer higher up. Trade-cumuli warm the layer
in which they form through condensation, but cool the subcloud layer and the trade
inversion through the evaporation of falling raindrops and detrained droplets. In addition,
the emission of infrared radiation to space produces an efficient cooling of the lower
atmosphere in which clouds form. This radiative cooling contributes to generate shallow
mesoscale circulations (Naumann et al. 2017) which, depending on local conditions and
remote convective activity, can organize either randomly or into streets, arcs or circles of
cloud clusters. In certain conditions, these mesoscale circulations can also trigger remotely
the aggregation of deep convection (Muller and Held 2012).

This coupling between shallow clouds and circulation greatly matters for climate sen-
sitivity. Trade-cumuli are so ubiquitous over tropical oceans that their radiative properties
substantially influence the Earth’s radiation budget. Their response to global warming is
thus critical for global-mean cloud feedbacks, and actually it is their differing response to
warming that explains most of the spread of climate sensitivity across climate models
(Bony et al. 2004; Bony and Dufresne 2005; Webb et al. 2006; Medeiros et al. 2008; Vial
et al. 2013; Boucher et al. 2013; Medeiros et al. 2015). Model diversity in the strength of
the vertical mixing of water vapour within the first few kilometres above the ocean surface
(in association with both convective and large-scale circulations) is thought to explain half
of the variance in climate sensitivity estimates across models (Sherwood et al. 2014): the

Delft University of Technology and Royal Netherlands Meteorological Institute, De Bilt,
Netherlands

17" Laboratoire de Météorologie Physique, UMR6016, CNRS, Aubiere, France
University of Leipzig, Stephanstr. 3, 04103 Leipzig, Germany

@ Springer



Surv Geophys

lower-tropospheric mixing dehydrates the cloud layer near its base at an increasing rate as
the climate warms and this rate scales with the mixing strength in the current climate
(Sherwood et al. (2014); Gettelman et al. (2012); Tomassini et al. (2015); Brient et al.
(2016); Stevens et al. (2016); Vial et al. (2016), Fig. 1). There is increasing evidence that
the diversity of the modelled response to warming reflects model diversity in how this
coupling between convective mixing, surface turbulent fluxes, and low-cloud radiative
effects is represented in regimes of large-scale subsidence, and that it can be partly related
to the numerical representation (or parameterization) of convection (Webb et al. 2015;
Vial et al. 2016). However, so far it has not been possible to constrain this coupling
observationally due to a lack of appropriate measurements.

On the contrary, in large-eddy simulations (LES) and in observations the cloud-base
fraction of trade-wind cumuli appears to be much more resilient to changes in environ-
mental conditions than in climate models, both in the current (Nuijens et al. 2014, 2015a)
and projected warmer climate (Rieck et al. 2012; Bretherton 2015). Interpreting these
results remains difficult. For the observations, in the past it has not been possible to link
cloud amount to the large-scale circulation in which the clouds form. The cloud amount
predicted by LES, though often resilient to changes in thermodynamic conditions, is
known to be sensitive to various aspects of the simulation such as resolution, microphysics,
numerics or domain size (Vial et al. 2017, and references therein). Theoretically, the
apparent resilience of cloud-base cloud fraction has been interpreted as the consequence of
a “cumulus-valve mechanism” whereby clouds act as a valve which helps maintain the top
of the subcloud layer close to the lifting condensation level and thus regulate the area
covered by cumulus updrafts at cloud base (Albrecht et al. 1979; Neggers et al. 2006;
Stevens 2006; Nuijens et al. 2015a). However, this idea has not been tested observation-
ally. Moreover, recent studies running large-eddy simulations over large domains question
this idea of cloud-base resilience, as they show that changes in the mesoscale organization
of shallow cumuli can significantly influence the cloud fraction (Seifert and Heus 2013;
Vogel et al. 2016; Vial et al. 2017). It is thus paramount to assess the ability of LES to
predict the cloud cover and its dependence on the organization of convection and on
environmental conditions.

The discussion above illustrates how the science has matured to the point where it is
now possible to identify a few key hypotheses or questions that, if tested or answered,
would enable a step improvement in understanding of the interplay between clouds,
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Fig. 1 Vertical profiles of the low-cloud fraction, and of its response to global warming, predicted by two
general circulation models (MPI and IPSL) in the trade-wind cumulus regime. For each model, results are
shown for two versions differing only by their representation of lower-tropospheric mixing (after Stevens
et al. 2016; Vial et al. 2016)
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convection and circulation, and their role in climate change: How strong is the convective
mixing in regimes of shallow cumulus and how much does it couple to surface turbulent
fluxes, radiative effects and water vapour? Is the cloud-base fraction of trade-wind cumuli
insensitive to variations in convective mixing and large-scale circulations? Does the
cumulus mass flux act as a valve to restrict the turbulent boundary layer from growing
appreciably beyond its lifting condensation level? Do the statistics of shallow convection
depend on the form of spatial organization?

Improved observations are also necessary to help advance space-based remote sensing.
The trade-wind regions are often characterized by a strongly layered vertical structure, and
by warm, small, and thin broken clouds. Current satellite observations are inadequate to
detect sharp vertical gradients of water vapour (Chazette et al. 2014; Asrar et al. 2015,
Stevens et al. this volume), and the detection of shallow clouds from space remains
difficult. Biases in cloud detection leads to significant discrepancies among the various
satellite estimates of the trade-wind cloud fraction (Stubenrauch et al. 2013) and are
detrimental to the quality of other satellite retrievals such as those of the cloud water path
(Horvath and Gentemann 2007), precipitation and cloud microphysical properties. In these
conditions, in situ observations are not only critical to investigate the physics of trade-wind
clouds, but also to test—and eventually improve—the instruments and algorithms of
remote sensing that are used to observe the Earth’s atmosphere and surface from space.

Past field campaigns in regions of shallow cumulus such as the Atlantic Expedition in
September to October 1965 (Augstein et al. 1973), the Atlantic Tradewind EXperiment in
February 1969 (ATEX, Augstein et al. 1974), the Barbados Oceanographic and Meteo-
rological Experiment from May to July 1969 (BOMEX, Holland 1970) or the Puerto-Rico
Experiment in December 1972 (LeMone and Pennell 1976), did focus on the environment
of clouds, on vertical transports of water, heat and momentum in the trade-wind boundary
layer, and also included attempts to measure the large-scale vertical motion in the atmo-
sphere. However, the microphysical and macrophysical properties of the shallow cumuli
were not characterized. Because these campaigns took place at the dawn of the satellite era,
no observations from space could help fill the gap. In June 1992, the Atlantic Stratocu-
mulus Transition Experiment (ASTEX, Albrecht et al. 1995) was conducted off North
Africa, in the area of Azores and Madeira Islands, to address issues related to the stra-
tocumulus to trade-cumulus transition and cloud-mode selection. Satellites and upper-level
aircraft provided a description of large-scale cloud features, and instrumented aircraft
flying in the boundary layer and surface-based remote sensing systems described the mean,
turbulence, and mesoscale variability in microphysical properties of boundary-layer
clouds. Attempts were also made to infer large-scale divergence in the boundary layer
using lagrangian balloons and an array of three rawinsonde stations (Ciesielski et al. 1999).
In 2005, the Rain in shallow cumulus over the ocean (RICO, Rauber et al. 2007) campaign
which took place off the Caribbean islands of Antigua and Barbuda did focus on cloud
microphysical properties and pointed out the importance and diversity of mesoscale
organizations, but the large-scale dynamical environment and the interplay between cloud
macrophysical properties (e.g., the low-level cloud fraction) and their environment were
not characterized.

The establishment of the Barbados Cloud Observatory (BCO) in 2010, and the two
Next-Generation Aircraft Remote Sensing for Validation Studies airborne field campaigns
(NARVAL and NARVAL2) held in December 2013 and August 2016 have since created
an observational foothold to better understand the coupling between clouds and their
environment (Stevens et al. 2016). The BCO provides long-term context for intensive
observations, and when combined with the NARVAL measurements, helps advance and
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test new approaches for bridging the gap between measurements of cloud macro-structure
and the large-scale environment.

A new field campaign, EUREC*A (Elucidating the role of clouds-circulation coupling
in climate), has been designed to take advantage of and extend these advances. Anchored at
the BCO, it will measure clouds in the winter trades of the North Atlantic, windward of
Barbados, in early 2020. EUREC*A will have two primary objectives:

e To quantify macrophysical properties of trade-wind cumuli as a function of the large-
scale environment, and

e To provide a reference data set that may be used as a benchmark for the modelling and
the satellite observation of shallow clouds and circulation.

To address these objectives EUREC*A will provide, for the first time, simultaneous
measurement of cloud macrophysical properties (cloud fraction, vertical extent and cloud-
size distributions), cloud radiative properties (large-scale albedo, broadband solar and
terrestrial net fluxes and derived quantities such as radiative divergence and heat-
ing/cooling rates), convective activity (cloud-base mass flux, mesoscale organization), and
the large-scale environment in which clouds and convection are embedded (large-scale
vertical motion, thermodynamic stratification, surface properties, turbulent and radiative
sources or sinks of energy).

In Sect. 2, we present an overview of the experimental strategy for the EUREC*A field
campaign. In Sect. 3, we discuss the premises which are at the basis of this strategy,
namely the possibility to measure cloud profiles (especially cloud amount at cloud base),
convective mass flux and large-scale vertical velocity, as only this can connect the
macrophysical properties of clouds to the environment. Then, we discuss how the results
from the campaign could be used to build a reference data set for evaluating process and
climate models, and for assessing retrievals from space-borne observations (Sect. 4).
Beyond the study of clouds-circulation interactions, EUREC*A will be an opportunity for
complementary scientific investigations. We describe some of these possibilities as of
EUREC*A™™ in Sect. 5. A brief conclusion is presented in Sect. 6.

2 Overview of the EUREC*A Experimental Strategy

The core objective of the EUREC*A field campaign is to elucidate how the macrophysical
properties of trade-cumuli depend on the dynamic and thermodynamic properties of the
environment in which the clouds form. More specifically, EUREC*A aims to answer the
following questions:

e What controls the convective mass flux, mesoscale organization, and depth of shallow
clouds?

e How does the cumulus cloud amount in the trade-wind boundary layer vary with
turbulence, convective mixing and large-scale circulations, and what impact does this
variation have on the atmospheric radiation field?

The EUREC*A field campaign will take place in the lower Atlantic trades, over the
ocean east of Barbados (13°N,59°W) from 20 January to 20 February 2020. Several
reasons motivate the choice of this specific location. First, shallow cumuli are prominent in
this area, especially during winter (Norris 1998; Nuijens et al. 2014). Second, the
cloudiness in the vicinity of Barbados is representative of clouds across the whole trade-
wind regions of the tropical ocean, both in models and in observations (Medeiros and
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Nuijens 2016). Finally, it anchors the measurements to the extensively instrumented
Barbados Cloud Observatory which has been monitoring clouds continuously since 2010,
and allows it to benefit from the legacy of the NARVAL series of flight campaigns
organized in the area in the last few years (Stevens et al. 2016).

2.1 Aircraft Measurements

The primary motivation for EUREC*A is the need to characterize simultaneously the trade-
cumulus field and the dynamic and thermodynamic environment in which it forms. For this
purpose, the core of the EUREC”A field campaign will be the deployment of two research
aircraft (Fig. 2): The French ATR-42 operated by the Service des Avions Frangais
Instrumentés pour la Recherche en Environnement (SAFIRE), which will fly in the lower-
troposphere with a payload of up to two tons and will be equipped with both remote
sensing instrumentation and a suite of in situ sensors (Table 1), and the German HALO
(High Altitude and Long Range Research Aircraft) operated by the Deutsches Zentrum fiir
Luft- and Raumfahrt (DLR), which has a payload of up to three tons, a range of up to
8000 km, and a ceiling of up to 15 km, an advanced instrumentation (Table 2) and the
ability to launch dropsondes (see for instance Wendisch et al. 2016). In addition to these
aircraft, we will use the Barbados Cloud Observatory (BCO), buoys, drifters plus several
research vessels deployed in the area and equipped with radiosondes and additional remote
sensing instruments to complement surface, atmospheric and ocean measurements
(Sect. 2.2).

HALO will fly large circle patterns (45-50 min, corresponding to a circumference of
about 500 km) at 9 km altitude (flight level 300, FL300), and will densely distribute
dropsondes around the circles. The dropsondes will characterize the vertical thermody-
namic structure of the trade-wind atmosphere and will make it possible to infer the vertical
profile of large-scale divergence over the area (Sect. 3.1). The advanced remote sensing
instrumentation on HALO will characterize the cloud field and its environment (water
vapour, hydrometeors, cloud particle phase, cloud vertical structure, cloud albedo, etc).

Simultaneously, the ATR-42 will characterize the shallow cumulus field and boundary-
layer properties within the area through a series of low-level legs, flown primarily near the
cloud-base level (~ 1km), with additional legs near the trade inversion level (~ 2km),
and (by flying at the lowest safe flight level) near the sea surface. Sideways-looking lidar
and radar instruments will measure the cloud fraction at the flight level (Sect. 3.2).
Upward-pointing high-spectral-resolution (HSR) backscatter lidar plus a vertically point-
ing Doppler radar will be used to assess the boundary-layer depth and measure the vertical
velocity in the aerosol-laden lower troposphere above the aircraft. Other instruments on
board the aircraft will characterize cloud microphysical properties, the tri-dimensional
wind field along the trajectory of the aircraft, and turbulence statistics (Table 1, Appendix
D).

The instrumentation on board both aircraft will provide a detailed characterization of
the vertical distribution of water vapour, clouds and aerosol particles, and of vertical
velocities within clouds (Appendix 1). Measurements of radiative fluxes at different alti-
tudes, as well as radiative transfer calculations using observed atmospheric and cloud
properties, will help infer vertical profiles of radiative solar heating and terrestrial cooling
rates above, within and below the observed clouds.

The characterization of surface (Sect. 2.2) and subcloud layer properties, and of the
difference between the subcloud layer and the air just above it, combined with estimates of
surface turbulent fluxes, radiative cooling and large-scale mass divergence, should enable
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Fig. 2 Envisioned flight strategy for the EUREC*A core measurements

closure of the mass and moist static energy budgets of the subcloud layer. The analysis of
the mass budget will make it possible to estimate the cumulus mass flux at cloud base
(Sect. 3.3). The moist static energy and water budgets will be used to verify the consis-
tency among the different measurements and provide insight into the factors influencing
shallow convective development. The moist static energy budget should also make it
possible to test the boundary-layer quasi-equilibrium hypothesis (Raymond 1995), which
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Table 1 Synopsis of ATR-42 instrumentation

Instrument Brief description
Thermodynamics and In situ water vapour, temperature, pressure and 3D wind; momentum and heat
turbulence fluxes

Cloud particles

In situ liquid and total water contents; droplet size distribution (0.5-6000 pm);
2D particle imaging (25-6000 pm)

BASTA cloud radar Bistatic 95 GHz Doppler cloud radar to be deployed in sidewards looking mode

(Delanog et al. 2016)

ALiAS Lidar Lightweight backscatter lidar (355 nm) to be deployed in sidewards looking
mode (Chazette 2016)

RASTA cloud radar Upward- and downward-looking 95 GHz Doppler cloud radar with six antenna
configuration for wind-vector retrievals (Delanog et al. 2013)

LNG lidar Three-wavelength (1064, 532 and 355 nm) high-spectral-resolution polarized
backscatter lidar (upwards, downwards or 35° pointing) (Bruneau et al. 2015)

CLIMAT-AV Three-channel downward-staring measurements of infrared irradiance at 8.7,
10.8, and 12.0 pm (Brogniez et al. 2003)

Pyrgeometer Hemispheric broadband upwelling and downwelling thermal infrared radiative
fluxes (Kipp and Zonen CGR4)

Pyranometer Hemispheric broadband upwelling and downwelling solar radiative fluxes (Kipp

and Zonen CMP22)

Table 2 Synopsis of HALO instrumentation

Instrument Brief description
BAHAMAS In situ water vapour, temperature, gust probe winds and aircraft state vector. Up- and
downward shortwave and longwave broadband irradiances (in development)
HAMP cloud Downward-staring polarized Doppler 36 GHz cloud radar (Mech et al. 2014)
radar
HAMP Downward-staring microwave radiometers with 26 channels between 22 and 183 GHz
radiometer (Mech et al. 2014)
WALES Downward-staring water vapour DIAL and backscatter HSRL lidar (Wirth et al. 2009)
SMART Up- and downward-looking spectral (300-2200 nm) radiance and irradiance
measurements (Wendisch et al. 2001; Ehrlich et al. 2008)
SpecMACS Downward-looking hyper-spectral (400-2500 nm) line imager (Ewald et al. 2016)

Thermal imager

Dropsondes

Downward-looking (10.8 and 12 pum) two channel line imager (in development)

AVAPs system with four-channel receiver supporting Vaisala RD94 Sondes (ten channel
receiver in development)

holds that the cumulus enthalpy flux out of the subcloud layer balances surface fluxes and
large-scale ascent at the top of the subcloud layer.

To maximize the chance of sampling a large diversity of environmental conditions and
mesoscale organizations, the campaign will consist of about 90 h of research flights (for
each aircraft) over four weeks for operations out of Grantley Adams International Airport
on Barbados. Ten HALO research flights from Barbados are envisioned, each with a
duration of 9 h bracketing two 4-h flights of the ATR-42 (with a refuelling in between).
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The zone of operations will not change much from day to day, but owing to daily mete-
orological variability one may hope to sample different types of cloud conditions and
organizations. On any given research flight the same cloud and environmental conditions
will be observed for many hours by both aircraft, making it possible to characterize these
conditions in a statistically consistent and representative way.

2.2 Surface and Ship-Based Observations

In addition to the aircraft missions that will characterize clouds and their surrounding
environment up to scales of O(100 km), surface and ship-based observations will be dis-
tributed over the area of and around flight operations augmenting measurements from the
BCO so as to better characterize the surface and atmospheric environment of clouds on a
scale of O(1000 km) and over a longer, uninterrupted time period, as well as strengthen the
fidelity of the large-scale analyses.

The large-scale array of observations will be comprised of three to five stations (Fig. 3):
the Barbados Cloud Observatory (BCO, Stevens et al. 2016) and a network of research
vessels (RVs). Applications for ship measurement time from Germany (Meteor and Maria
S. Merian), France (Atalante), The Netherlands (Pelagia), the USA and Spain are pending.
The research vessels will serve as advanced surface remote sensing platforms, atmosphere
and ocean sounding stations, bases for fleets of autonomous vehicles, and means of laying
down an array of drifters/floats or buoys.

Radiosondes will be launched from each station to collect simultaneous measurements
of profiles of air humidity, temperature, pressure and horizontal winds (derived from GPS
measurements) from the surface through the lower stratosphere. The sounding data will be
assimilated by weather centres, which will improve the quality of meteorological analyses
for the period of the campaign and will help diagnose large-scale divergence and vertical
motion over a range of scales larger than the zone of aircraft operations.

Measurements from research vessels are intended to be operated over a period of 3 to 5
weeks overlapping with the planned airborne observations. This will establish context for
the aircraft missions relative to the seasonal march of the ITCZ and the evolving strength
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of overturning within the Hadley cell. Soundings will be launched with a minimum fre-
quency of 6 per day to adequately sample the diurnal and semi-diurnal cycles, along with
other subdaily variability. It will also make it possible to get thermodynamic data and
large-scale divergence estimates up to the top of the atmosphere instead of up to 9 km (the
flight level of HALO during EUREC*A).

Besides radiosondes, in situ and remote sensing instrumentation will be installed at
BCO and on-board the ships. Instruments such as lidar, radar, radiometers or ceilometers
will provide additional observations of clouds, aerosols, surface turbulence and air—sea
fluxes of heat and moisture, and surface and boundary-layer properties. A scanning,
S-band, radar operated by the Barbados Meteorological Service can be used for research
purposes in the absence of severe weather. It will help characterize the mesoscale orga-
nization of convection, and the vertical structure of the shallow cloud cover (Nuijens et al.
2009; Oue et al. 2016). The deployment of a second C-Band radar, the POLDIRAD of the
Institut fiir Physik der Atmosphére at the Deutschen Zentrum fiir Luft- und Raumfahrt, is
also being considered. Shipboard deployment of drones and a HeliKite, capable of sus-
pending an instrument of up to 100 kg at different heights in the lower 3 km of the
atmosphere, can be used to characterize aerosol and cloud microphysical properties. Laser-
based spectrometers could measure the isotopic composition of water and provide an
additional characterization of the balance between convective drying and turbulent
moistening in the boundary layer, and simple instruments such as ceilometers will aid the
characterization of the vertical distribution of clouds in the observational domain.

The ships will also provide an opportunity to characterize the state of the upper ocean
and more specifically the mesoscale ocean eddies which are particularly frequent east of
Barbados (Sect. 5.6). Beyond their importance for the ocean transport, mesoscale ocean
eddies are increasingly recognized as influencing air—sea fluxes and clouds (Chelton et al.
2004; Ferreira and Frankignoul 2008; Frenger et al. 2013; Byrne et al. 2015). This raises
the question as to whether they might play a role in the organization of shallow cumuli.
Oceanographic measurements of the vertical profiles of temperature, salinity, pressure,
oxygen and other biogeochemical properties of the upper ocean through in situ sensors or
profiling instruments, combined with the deployment of Argo profiling floats and auton-
omous observing platforms such as gliders or wave-gliders, would provide an unprece-
dented characterization of tropical mesoscale ocean eddies under a well-observed
atmosphere and would thereby foster studies of their impact on air—sea interaction
(Sect. 5.6).

2.3 Satellite Observations

To complement the airborne measurements, we will coordinate field operations with
overpasses of several satellites: the Advanced Spaceborne Thermal Emission and
Reflection Radiometer (ASTER), an imaging instrument with 15 m spatial resolution on-
board Terra, plus a number of satellites from flagship space missions that we expect to be
in orbit by the time of the campaign: ADM-Aeolus (whose launch is planned by the
beginning of 2018) will provide the first space-borne vertically resolved radial (mostly
zonal) wind measurements; EarthCare (Illingworth et al. 2015, whose launch is scheduled
in 2019), includes a Doppler cloud radar and a HSR lidar which will provide a thorough
characterization of clouds and aerosols from space-based products comparable to those
issued from the radar and the HSR lidar on-board the ATR-42 at the same frequency and
wavelength; and Megha-Tropiques (Roca et al. 2015, launched in 2011, the mission has
been extended until 2021) measures radiative fluxes at the top of the atmosphere, the
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vertical distribution of relative humidity through the troposphere, and precipitation as part
of the GPM (Global Precipitation Measurement) mission.

Existing satellite imagery suggests that shallow cumuli exhibit a large range of
mesoscale organizations from seemingly randomly distributed cloud clusters to wind-
parallel street lines or arcs (Rauber et al. 2007). An example of one form of organization,
mesoscale cloud flowers, observed over the proposed EUREC*A study area on 9 February
2017 is shown in Fig. 4. Space observations of the atmosphere at high spatial resolution
such as derived from ASTER or other instruments such as the Geostationary Operational
Environmental Satellite (GOES), Multi-angle Imaging SpectroRadiometer (MISR) or
Moderate Resolution Imaging Spectroradiometer (MODIS) imagers, potentially comple-
mented by radar observations from the surface network (Sect. 2.2), will characterize the
spatial organization of clouds within the area sampled by the aircraft missions. EUREC*A
will be the first field study to investigate whether this organization matters for the statistical
properties of the shallow cumulus field.

3 The Premises

The experimental strategy of the EUREC*A campaign rests on three main premises:

e The large-scale vertical motion on scales O(100 km) can be measured using
dropsondes,

e The distribution of clouds in the trade-wind boundary layer can be inferred from lidar-
radar measurements, especially the cloud fraction near cloud base,

e The convective mass flux at cloud base can be inferred from the subcloud layer mass
budget.

In this section, we present arguments and results from ongoing analyses that show that the first
of these premises appears sound, and we discuss how the other two are currently being tested,
and how the experimental strategy might be adapted based on the outcome of these tests.

3.1 Using Dropsondes to Measure the Large-Scale Vertical Motion

A main component of the large-scale mass, heat and moisture budgets is the large-scale
vertical velocity o (Yanai et al. 1973). From the equation of mass continuity, o can be

Fig. 4 Shallow cloud organization observed from MODIS on 9 February 2017 (Barbados, which is about
20 km wide, is highlighted in green). The top of cloud clusters does not exceed 3—4 km
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derived from the divergence, D of the horizontal wind Vg as w(P) = — f(f D(p) dp where
D =V - Vg and P is the atmospheric pressure. D and w are known to strongly influence
the properties of the trade-cumulus boundary layer and low-level cloudiness (e.g., Albrecht
et al. 1979). Our ability to measure these two quantities during EUREC*A will thus
critically determine the success of the campaign.

Measurements of the large-scale vertical motion on the time and space scale of indi-
vidual airborne observations have long been recognized as being essential to understand
how cloudiness develops and to calculate the heat and moisture budgets of the lower
troposphere, but so far generally thought to be impossible. During ATEX, BOMEX, ACE-I
and DYCOMS-II campaigns, attempts were made to estimate the large-scale divergence
from rawinsonde sounding networks and/or aircraft data at a particular level using the “line
integral” method (Holland and Rasmusson 1973; Nitta and Esbensen 1974b; Lenschow
et al. 1999, 2007). This method infers D from horizontal wind measurements using:

1
D_Z?{Vnd& ()

where V, is the component of the horizontal wind normal to the perimeter of measure-
ments, and A is the area of the region enclosed by it (vorticity can be obtained similarly
from the tangent component of the horizontal wind). When applied to aircraft measure-
ments, this method requires a stationary wind field but makes no other assumption about
the structure of the wind field.

An alternative method, referred to as the “regression method”, has been proposed by
Lenschow et al. (2007) and successfully applied to DYCOMS-II data. It assumes a par-
ticular model for the wind field, but can be more easily adopted to a wider range of
sampling geometries. Lenschow et al. (2007) assumed that wind variations in longitude,
latitude and time are linear for each vertical level, such that:

oVy oVy oVy

Vi =Vo+— Ax+—— Ay +

o oy ar A @)

where V, is the mean wind velocity over the area, Ax and Ay are the eastward and
northward displacements from a chosen centre point. At is the change in time relative to a
reference, for instance the mid-point time of the sampling. An approximate solution of this
overdetermined system can be found by computing the coefficients of a least squares fit to
the wind field defined as (2). By measuring Vy and solving (2) for its gradients, D can then

D =%
be computed as: D = &

So far, these methodologies have been applied to wind measurements from rawinsondes
or flight-level estimates of winds from an aircraft gust probe. Wind measurements from
GPS dropsondes (Wang et al. 2015) now offer the opportunity to measure the vertical
profiles of D and w during airborne field campaigns. However, this methodology needs to
be evaluated. In particular, it has to be checked whether the divergence measured in this
way would actually represent the large-scale circulation or would instead be noisy and
dominated by short-term features uncharacteristic of the large-scale environment.

To answer this question, this methodology was tested during the NARVAL2 campaign,
which consisted of ten research flights of HALO, and took place in the EUREC*A target
areas, upwind of Barbados, during August 2016. Two of the HALO flights during NAR-
VAL2 were specifically designed as a pilot study for the proposed EUREC*A divergence
measurements. During the two research flights RF03 and RF06 (carried out on 12 and 19
August 2016), HALO flew horizontal circles of 45-48 min (160 km diameter) at an
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altitude of 9 km. Twelve dropsondes (Vaisala RD94) were released intensively along each
circle, measuring the vertical profiles of pressure, temperature and humidity with an
accuracy of 0.4 hPa, 0.2°C and 2%, respectively. Equipped with a GPS receiver, the
dropsondes also measured the horizontal wind speed with an accuracy of 0.1 m.s™'.

To test the method, pairs of circles were flown in the same air mass (one clockwise, one
counterclockwise, with the centre of the second circle slightly displaced following the
mean wind relative to the first one). The idea was that if the wind field was sufficiently
stationary, and the measurements by the sondes were physical, one would expect similar
answers to arise between a pair of circles flown in the same airmass. Satellite imagery
targeted the flights to regions of suppressed convection, with a relatively more active
shallow cloud layer during the second pair of circles, with cloud tops reaching sometimes
2-3 km, than during the first pair, with cloud tops rarely exceeding 1.5 km (Bony and
Stevens Measuring large-scale vertical motions with dropsondes, manuscript in prepara-
tion). As shown in Fig. 5, the vertical profiles of D and w derived for each circle of a given
pair exhibit a consistent and reproductible vertical structure over most of the troposphere.
Differences between circles of a given pair are much smaller than differences from one pair
to the next, where different pairs of circles were spatially dislocated. The vertical structure
of D and » measured by dropsondes in the lower troposphere (below 4 km), such as the
maximum subsidence near the top of the mixed layer, is qualitatively consistent with that
measured by rawinsondes or aircraft measurements during previous field campaigns in the
trades (Holland and Rasmusson 1973; Nitta and Esbensen 1974b). It is also in good
agreement with the vertical structure of D and w derived over the area from ECMWF
operational forecasts during periods where the horizontal wind of the forecasts is in good
agreement with the dropsondes, and with storm-resolving (1 km grid) simulations
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Fig. 5 (left) Research flights performed during NARVAL2 on 19 August and the vertical profiles of large-
scale mass divergence D and large-scale vertical velocity o derived from the dropsondes measurements for
each circle
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initialized by ECMWEF analyses (not shown). It shows therefore that dropsondes can
actually be used to measure the vertical profiles of D and o on scales of O(100 km) and to
discriminate the spatial heterogeneity of the environment.

Three further issues are currently being explored, also in combination with high-reso-
lution simulations which will be used to emulate different sounding strategies: (1) The
minimum number of sondes to be dropped along each circle to reach equivalent results, (2)
the spatial scale over which the large-scale dynamics best correlates with the macro-
physical cloud properties, and (3) the influence of vertical shear of the horizontal wind,
which is much more pronounced during the winter season. Depending on the result of these
investigations, the number of sondes to be dropped, as well as the size of the circular flights
to be flown during EUREC*A will be optimized.

3.2 Estimating the Distribution of Clouds in the Trade-Wind Boundary Layer

An additional important and novel element of the EUREC*A strategy will be to measure
the cloud fraction within the trade-wind boundary layer, especially around two critical
levels: just above cloud base (around 1 km) and around the trade-inversion level (around
2 km).

Measurements of cloud fraction at cloud base are important for understanding what
processes control its variations in the current climate and to test some of the processes
involved in the climate change cloud feedbacks of climate models. However, upper-level
clouds masking the field of view, they are difficult to make with downward-looking
instruments. During EUREC*A, we propose to use the ALiAS backscatter lidar (Chazette
et al. 2007; Chazette 2016) and the Bistatic Radar System for Atmospheric Studies
(BASTA) radar (Delanog et al. 2016) on-board the ATR-42 flying just above cloud base to
acquire dedicated horizontally pointing observations from the aircraft windows. At this
level, LES (e.g., vanZanten et al. 2011; Vogel et al. 2016) suggest that the relative dryness
of the atmosphere combined with the relatively low cloud water content (Fig. 6) should
maximize the range of the lidar measurements, thereby providing useful backscatter signal
over a distance of about 10 km, thus greatly enhancing the sampling volume. Beyond the
mean cloud fraction, the lidar-radar measurements will help determine the spectrum of
cloud sizes at cloud base, which is thought to be a crucial information for understanding
the coupling between the subcloud layer and the cloud layer (Neggers 2015).

To test the approach, measurements from a field campaign which took place on 1-6
June 2017 in Ardeche (South of France, 44.4° N, 4° E) and during which a lidar was
mounted horizontally on an Ultra-Light Aircraft (ULA) are being analysed. The lidar, an
eye-safe 355-nm backscatter lidar similar to the ALiAS lidar (Chazette 2016) to be used
during EUREC*Abut five times less powerful (6 vs. 30 mJ), was pointing horizontally
towards the port side of the ULA. The ULA flew a series of horizontal legs of rectangular
shape within the subcloud layer and above cloud base within a field of shallow cumuli
(Fig. 7). Preliminary analysis of the data suggests that above cloud base (at an altitude of
about 1.2 km), the lidar signal does not saturate or vanish as soon as it encounters the first
cloud edge along the line of sight, but often penetrates clouds over several hundred metres
(100-200 m on average for opaque clouds) and can even go through several consecutive
clouds when clouds are optically thin. Overall, this low-power lidar makes it possible to
detect the presence of shallow cumuli over a distance of up to 4.5 km. Considering that the
ALIAS lidar on board the ATR-42 will be five times more powerful than this one, one may

hope to detect clouds over a distance of about 4.5v/5 = 10km during EUREC*A, thus
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Fig. 6 Vertical profiles of water vapour mixing ratio (left) from the NARVAL 1 flights, (middle) condensed
water (g;) and (right) cloud fraction from RICO. The NARVAL 1 water vapour is derived from all sondes
for which surface air temperatures exceed 25°C, as measured east of Barbados in December 2013. The
distribution is described by the box plots showing range (5-95%), interquartile and median. Cloud
condensate profiles are for similar conditions but during RICO and adapted from vanZanten et al. (2011).
Flight date is characterized by box plots (interquartile and 5-95%) and dots (flight averaged). The line is the
ensemble mean of 12 large-eddy simulations. Cloud and cloud-core fraction profiles are derived from LES
simulations (adapted from vanZanten et al. 2011). Ensemble (interquartile) spread among LES simulations
is given by the shading, and the mean profiles from non-precipitating simulations are shown by the thin
dashed line. Approximate flight level for the cloud-base legs of the ATR-42 is also indicated

making it possible to map the cloud field in between ATR-42 legs spaced by about 20 km.
The use of two gated detectors for different ranges on the lidar (one measuring near-field
signals and the other far-field signals) is being considered to enhance the cloud detection
range. The combination of lidar and radar measurements should further improve the
restitution of the cloud mask over this distance.

The feasibility of the approach will be further tested using LES and by applying to LES
outputs the McRALI (Monte Carlo Radar and Lldar) simulator of the lidar and radar
instruments on board the ATR-42. McRALI is a forward Monte Carlo model (Cornet et al.
2010) enhanced to take into account light polarization, multiple scattering, high spectral
resolution, Doppler effects and the three-dimensional structure of the cloudy atmosphere
(Szczap et al. 2013, Alkasem et al. 2017). By diagnosing the cloud fraction that the lidar
and radar would measure if they were probing an atmosphere similar to that simulated by
the large-eddy model, we will assess how well the above approach can work, and/or
whether the experimental strategy will have to be revised to get more accurate measure-
ments of the cloud-base cloud fraction.

Besides the cloud base information, it will be important to determine the vertical profile
of cloud fraction, especially at the top of the cloud layer. Indeed the cloud fraction near the
inversion level appears to be more variable than that at cloud base (Nuijens et al. 2014),
varies strongly with the intensity of the convective mass flux (e.g., Brient et al. 2016; Vial
et al. 2016) and strongly influences the variations of the total cloud cover (Rodts et al.
2003). The cloud fraction near the inversion level will be estimated through different
methods. First, the ATR-42 could fly around this level and measure the cloud mask through
horizontal lidar/radar measurements as will be done around cloud base. However, the cloud
optical thickness being much larger at this level than at cloud base, the feasibility of the

@ Springer



Surv Geophys

R. ,Vol7
pp

a

0.01 0.02 0.03 0.05 0.08 0.14

1.5+

Altitude amsl (km)
£

0.5
4.3

44.55
Latitude (°)

4.35

4.4
Longitude (°) 4.45

44.5

S 37
<
= 200
o wv
S g First to last cloud echo distance
w2+ c
5 g
o 3
= 1
2 e}
o1
g
o
V)
[J] f\\\\""
2ol gtk —
©
e 1 2 3 4 5
Distance (km) Distance (km)

Fig. 7 (Top) Lidar backscatter ratio measured on 2 June 2017 (RF07), in the South of France from an ultra-
light aircraft carrying a 355-nm horizontally pointing lidar: two rectangular legs were flown within the
subcloud layer and one above the base of shallow cumuli. (Bottom left): Example of an individual lidar
signal (corrected from aerosol attenuation) detecting two clouds in a row. (Bottom right): Histogram of the
distance between the first and last cloud detections along each individual lidar beam and of the distance
between the ULA and the last detected cloud. Note that the ALiAS lidar that will be on-board the ATR-42
will be five times more powerful than the lidar used on-board the ULA

method remains an open question at this particular level (it will be tested using simulators).
Therefore, several alternative methodologies will also be considered.

One will consist in analysing the vertical distributions of the lidar backscatter signal and
radar reflectivities measured from the downward-looking instruments on HALO and the
upward and downward-looking instruments on the ATR-42. Another one will consist in
analysing data from ground or ship-borne instruments. Ceilometers will be very useful, but
a scanning radar (Oue et al. 2016) on one of the research vessels or deployed on Barbados
is also being considered. Yet another approach will consist of analysing observations from
the SpecMACs instrument on HALO. SpecMACs is a hyper-spectral line-imager with a
field of view of about 40° which allows to map a 10 km swath with 10 m resolution, this
swath being similar to the anticipated one for the sideways staring lidar on-board the ATR-
42. Oxygen A-band measurements from SpecMACS can be used to measure the distance to
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the cloud top, as can measurements from the thermal imager which is being developed for
EUREC*A. Finally, satellite measurements such as those from lidar (either from CALIPSO
(Winker et al. 2003) if it still operates in 2020, or from ADM-Aeolus and/or EarthCARE,
that will be launched in 2017 and 2019, respectively) or high-resolution spectrometers such
as ASTER, which has a 15-m horizontal resolution and many channels in the infrared,
visible and near-infrared (Zhao and Di Girolamo 2007), will provide independent esti-
mates of the vertical profile of cloud fraction.

The dynamic properties of clouds will be inferred from radar measurements (e.g., vertical
velocities at cloud base will help determine whether a cloud is active or passive), and the
microphysical properties will be derived from the combined analysis of radar-lidar measure-
ments, passive radiometers and in situ measurements (Sect. 5.2). Vertically integrated cloud
liquid content of shallow clouds will be measured using downward-looking radiometers flown
aboard HALO. The occurrence of precipitation and mesoscale organization of precipitating
shallow clouds will be characterized from the scanning precipitation (S-band) weather radar on
Barbados and may be complemented by a scanning C-band research radar system.

Finally, measuring the radiative effects of clouds will be critical to assess the coupling
between clouds and their large-scale environment. Vertically integrated estimates will be
derived from broadband radiative fluxes measured near the surface, near the inversion level and
in the upper troposphere, and vertical profiles of the radiative heating rate will be inferred from
radiative transfer calculations using observed atmospheric and cloud properties.

3.3 Inferring the Convective Mass Flux at the Top of the Subcloud Layer

To test the hypothesis that lower-tropospheric mixing critically influences the trade-cu-
mulus cloud fraction at cloud base (e. g., Rieck et al. 2012; Gettelman et al. 2012;
Sherwood et al. 2014; Brient et al. 2016; Vial et al. 2016), we will need to measure the
strength of the convective mixing or quantities closely related to it. Indirect measures of
convective mixing, for instance in terms of the relative humidity profile or the strength of
shallow overturning circulations, are straightforward to infer from the large-scale structure
of humidity field, and measurements of the large-scale vertical velocity. During EUREC*A
a direct measure of convective mixing will also be provided in terms of the area-averaged
mass flux at, or near, cloud base, M. Two independent methods will be used to estimate M:
one based on direct measurements of the fractional area covered by active clouds and of
the vertical velocity within them; the other based on the mass budget of the subcloud layer.

The first method is an intuitive approach and will be executed by using radar mea-
surements from the ATR-42 flying just above cloud base. Based on vertical velocity
measurements within clouds (w.yq), the fractional area covered by active clouds (a.ig) will
be measured. The cloudy mass flux, just above cloud base, will then be estimated as:
M = pagq - weig, Where p is the density of the air. A similar method has been applied to
ground-based remote sensing measurements in the past (e.g., Kollias and Albrecht 2010;
Ghate et al. 2011; Lamer et al. 2015; Ghate et al. 2016). Using an aircraft to make the
same measurement greatly increases the sampling statistics, as in a given amount of time
the aircraft samples many more (ten to fifteen times) cloudy updrafts. Using this method,
the cloudy area (as well as properties within it) can be decomposed further into updraft and
downdraft areas, or even further into different cloud parts (e.g., core or vertically coherent
updraft, Fig. 8), or into a spectrum of cloud sizes (Neggers 2015). Similar and ongoing
measurements of M from the cloud radar and wind lidars at the Barbados Cloud Obser-
vatory will provide additional context for these measurements, as during EUREC*A it is
intended to target air masses upwind of the observatory.
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Fig. 8 Boundary-layer profiles (normalized by the maximum cloud top height and minimum cloud base
height) of hourly averaged a cloud fraction, b vertical velocity and ¢ mass flux for all, core and vertically
coherent updraft samples collected at the island of Graciosa in the Azores. (Adapted from Ghate et al. 2011)

The second method estimates M as a residual of the subcloud layer mass budget,

whereby

Dn M

Dr = E+W P (3)
Here #n denotes the depth of the subcloud layer, E is the top entrainment velocity, W is the
large-scale vertical velocity at # (which is related to @ at the same level by a coordinate
tranformation) and M is the convective mass flux out of the subcloud layer. This budget is
illustrated in Fig. 9.

To estimate M from Eq. (3) thus requires measurements of the other terms. W will be
measured using the divergence methods discussed previously. All that remains is to esti-
mate Dy/Dt and E. The former, the substantial derivative of the subcloud layer depth, can
be derived from a combination of soundings and downward-staring lidar aboard HALO, as
this will provide both the time evolution of # and the advective contributions to the
substantial derivative.

The entrainment velocity, E, will be estimated in a number of ways. One approach is to
assume that the entrainment dynamics of the subcloud layer is the same as for the cloud

Fig. 9 Schematic representation of the subcloud layer and of the main physical processes affecting its mass
budget
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free convective boundary layer, as appears to be the case for LES (Siebesma and Cuijpers
1995; Siebesma et al. 2003; Stevens 2006). E can then be diagnosed with the help of the
buoyancy flux closure (Lilly 1968), which states that the buoyancy (equivalently virtual

potential temperature) flux at x is proportional to its flux at the surface: (w’f)'v)n =

—A(w'0y),, with A a proportionality constant of about 0.4 (Naumann et al. 2017). This
allows E to be estimated from the flux-jump relationship at 1 (Stevens 2006) as

AW, (4)

E =
AD,

where Af,, is the jump in the virtual potential temperature across #. For this calculation,

(w0,), can be constructed from measurements of surface sensible and latent heat fluxes.
To account for the thickness of the interfacial layer at #, the proportionality constant, A,
the jump, A0, and # must be estimated consistently (Garcia and Mellado 2014; Naumann
et al. 2017). We propose to do so by fitting the observations of 0, (as diagnosed by
soundings and flights in the subcloud layer) with values just above cloud base (where the
ATR-42 will mostly be flying) to LES in a manner consistent (as per the LES) with the
chosen value of A.

A preliminary analysis of large-eddy simulations representative of typical trade-cu-
mulus conditions (Vogel et al. 2016) shows that estimating M in this manner agrees
reasonably well (within 35% for the initial calculations) with the value that is diagnosed
directly from model output of cloud-core vertical velocity and cloud-core area fraction.
The quantitative consistency between both estimates is sensitive to the definition of # in the
LES (both the maximum gradient in total humidity or the local minimum in the vertical
velocity variance close to cloud base are suitable definitions), and on how the buoyancy
flux at the top of the subcloud layer relates to the surface buoyancy flux. By the time of the
EUREC*A field campaign, the present method will be refined by defining 5 such that the
estimated and diagnosed mass fluxes are in closer agreement (n can be defined in several
ways), and by accounting for the small temporal fluctuations in #. We will also investigate
how much the method can capture the sensitivity of the mass flux to different boundary
conditions such as sea surface temperature, wind speed and the large-scale divergence D,
which are associated with different precipitation fluxes and different degrees of convective
organization.

The entrainment velocity, E, and hence M, can also be diagnosed from tracer budgets.
In principle, each independent tracer provides the basis for an independent estimate of E.
As an example, the budget of the subcloud layer averaged equivalent potential temperature,

0., takes the form

DO, w o). — EAO,
o, 4 W),

o , (5)

where Q. is the radiative source/sink, and (w'0,), the surface flux, of f.. Given mea-
surements of all the other terms, thus yields E. Most of the terms can be measured using
methods similar to those already discussed above. Irradiances, which are required to
estimate (., will be measured directly (along the near-surface and above boundary-layer
legs of the ATR-42), but also estimated on the basis of radiative transfer calculations given
the atmospheric state. A similar approach can, and will, be adopted for estimating E from
the water budget, which will then require estimates of the precipitation rate at n and at the
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surface. Taken together with estimates based on Eq.(4) results in three different methods
for estimating E, and hence inferring M as a residual of Eq. (3).

The comparison of the direct and budget methods for estimating M will help to assess
the robustness of the estimates, especially regarding the sensitivity of the mass flux
variations to changes in environmental conditions. This assessment will also test under-
standing of the subcloud layer budget, most importantly the extent to which M at the top of
the subcloud layers as defined in Eq. (3) is related to M a short distance above cloud base
and as used to parameterize cumulus convection, an equivalence that should not be taken
for granted.

4 A Benchmark Data set

Previous reference observational data sets for linking clouds to circulation in the trades are
those from BOMEX, ATEX and GATE. These are field studies which took place nearly a
half century ago before the advent of satellite remote sensing, not to mention transfor-
mative progress in simulation science. Through a close integration with satellite remote
sensing and advances in modelling, EUREC*A aims to provide a reference data set for
studying clouds and circulation in the trade-wind region.

4.1 A Simulation and Modelling Testbed

Large-eddy models have long been used to simulate trade-cumuli. Nowdays, they are run
over increasingly larger domains, which allows shallow convection to organize into spatial
patterns on the mesoscale (e.g., Seifert and Heus 2013; Vogel et al. 2016). The apparent
realism of the circulations and clouds that develop often encourages their adoption as an
adequate description of reality. However, LES incorporates approximations and assump-
tions in addition to those associated with the choice of boundary forcings for the simu-
lation. These include the numerical methods adopted, which are known to significantly
affect cloud structure and fraction (Vial et al. 2017), as well as the way in which radiative
transfer, cloud microphysics and small-scale turbulent motions are parameterized. Most of
the LES evaluations of cloud fields have been using observational data from ATEX,
BOMEX or RICO (Stevens et al. 2001; Siebesma et al. 2003; vanZanten et al. 2011).
These observations make it possible to evaluate carefully the thermodynamic structure of
the boundary layer for a limited set of given large-scale forcings. However they do not
answer critical questions such as: What is the typical cloud cover and what is the fraction
of the cloudy air that is positively buoyant? How strong is the cumulus mass flux at cloud
base? How does the cloud fraction and cloud water content vary with changes in the large-
scale environment? By measuring important properties of the cumulus mass flux, the large-
scale vertical velocity and the large-scale environment, the EUREC*A campaign will offer
opportunities to answer some of the above-mentioned questions and to critically test the
fidelity of large-eddy simulations.

One process of particular interest, is the “cumulus-valve mechanism” for regulating
cloud-base mass fluxes (e.g., Neggers 2015). This mechanism suggests that the mass flux is
that required to maintain the cloud-base cloud fraction nearly constant. During EUREC*A,
as vertical velocities within clouds will be measured by radar measurements, we will
evaluate to what extent it is operative, and the degree to which this indeed controls cloud
base cloud fraction. Another question is to what extent mesoscale variability, which may
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often be the “flow-debris” of much larger-scale circulations not represented by LES, is
important for determining cloudiness and its variability. For instance, the influence that
cold pools or surface temperature heterogeneities associated with submesoscale processes
in the ocean (Sect. 5.6), may exert on cloudiness remains an open issue.

By computing large-scale forcings (water vapour and heat large-scale advections) from
EUREC*A observations, it will also be possible to run single-column versions of large-
scale models (Single-Column Models or SCMs). It will help us to test the model physics
further, and also better understand the cloud feedbacks produced by these models. Indeed,
there is ample evidence that single-column simulations of shallow cumuli can help
understand low-cloud feedback processes and their dependence on process representations
(e.g., Brient and Bony 2012, 2013; Zhang and Bretherton 2008; Zhang et al. 2013a;
Dal Gesso et al. 2015; Brient et al. 2016). The link to observations, and the comparison
between LES and SCM simulations, will allow us to investigate the relationship between
the response of shallow cumuli to prescribed climate change perturbations and the realism
of the simulated clouds in the present-day climate, which will help answer questions such
as: How does the cloud cover depend on the strength of convective mixing? How variable
is it with changes in environmental conditions? Is it possible to constrain the strength of
climate change low-cloud feedbacks from present-day processes? (Vial et al., this volume).
Taken all together, the new experimental methodologies being developed and deployed as
part of EUREC*A will provide new opportunities to provide a reference data set to inform
modelling and simulation of trade-cumuli. Besides the evaluation of shallow clouds and
cloud feedback processes, it will also help us evaluate the representation of physical
processes in climate and weather models, including the parameterization of cumulus
convection in large-scale models and the high-resolution operational forecast models used
to predict weather in the trades (Sect. 5).

4.2 A Remote Sensing Testbed

Observations from field campaigns are not only fundamental to investigate the physics of
trade-cumuli but also to test, and eventually improve, the instruments and algorithms of
remote sensing that are used to observe the Earth from space. Beyond the evaluation of
cloud retrievals from current satellites, EUREC*A is expected to contribute to the evalu-
ation of the cloud and wind retrievals from two new flagship satellite missions of the
European Space Agency: ADM-Aeolus and EarthCARE, that will provide unprecedented
information on clouds and circulation.

During EUREC“A, the instruments on-board HALO and the ATR-42 aircraft will
sample almost the full spectrum of wavelengths of atmospheric electromagnetic radiation
(from the UV to the microwave), making it possible to retrieve a wide range of geophysical
properties. Moreover, the UV HSR Doppler wind lidar operating at 355-nm and the
95 GHz Doppler cloud radar will provide products comparable to those obtained from the
ADM-Aeolus and EarthCARE satellites. When flying underneath the satellite orbits, it will
thus be possible to make direct comparisons between airborne and space-borne measure-
ments. The in situ observations will help interpret the remote sensing in terms of geo-
physical variables, and the comparison between airborne and space-borne measurements
will help evaluate some of the limitations of the satellite remote sensing.

The main limitations of remote sensing are due to the lack of sensitivity of the sensors
(which is of particular concern when probing the lower atmosphere from space, but much
less from an aircraft), the inability to exploit some measurements near the surface (e.g., the
blind zone arising from the contamination of radar measurements by ground clutter or from
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the saturation of the lidar signal) and the poor spatial resolution of the measurements
(which is particularly problematic in areas covered by small broken clouds such as shallow
cumulus fields). For passive measurements, which have the best spatial coverage, a par-
ticular challenge is identifying sufficiently unique information to deconvolve the atmo-
spheric vertical structure from signals that necessarily integrate over this structure. The
synergy of in situ, airborne and space-borne measurements during EUREC*A, jointly with
high-resolution simulations from weather forecast models and LES simulations of the
campaign area, will help quantify these different sources of uncertainty and test some of
the hypotheses used in the cloud or wind retrieval algorithms. A few examples are given
below.

Satellite instruments like MODIS or MetOP measure radiances in different wavelength
channels, and these measurements are used to retrieve cloud droplet number, cloud phase,
optical thickness, and droplet or particle size at cloud top at a spatial resolution of about
1 km. This resolution is insufficient for the observation of shallow cumuli. The specMACS
instrument on-board HALO (Appendix 1), which combines hyper-spectral wavelength
resolution in the visible and near-infrared wavelength range with a spatial resolution of
about 10 m, will permit to observe trade-wind clouds in greater detail. Obvious products
will be cloud cover and cloud-size distributions. In addition, the use of three-dimensional
radiative transfer methods will permit to retrieve cloud optical thickness, droplet radius,
and cloud top structure with high spatial resolution (Mayer 2009; Zinner et al. 2006) and
may even be able to distinguish the cloud-core area from the optically thinner edges. The
contribution of clouds to solar heating and infrared cooling rates will also be estimated
from these parameters.

Another key property of clouds for which satellite retrievals remain very uncertain is the
cloud liquid water path (LWP). Most of today’s knowledge on the global distribution of
cloud liquid water is derived from polar orbiting satellites that measure radiances in the
thermal infrared and microwave spectral regions. However, given the coarse spatial res-
olution of these measurements (several tens of kilometres), the LWP retrievals critically
depend on the estimated cloud fraction (Horvath and Gentemann 2007) and cloud vertical
structure (Borg and Bennartz 2007). The synergy of the HALO and ATR-42 instrumen-
tation will provide fine-scale information on the variability of water vapour, liquid water
and cloudiness over an area of 200 x 200 km which will help evaluate satellite retrievals
and the validity of their underlying assumptions. By combining active (radar) and passive
microwave radiometer, it may also be possible to quantify the amount of drizzle and
precipitation in fields, or aggregates, of shallow cumulus. Beyond its intrinsic interest, this
detection will make it possible to test the validity of the precipitation thresholds used in
LWP retrievals (Wentz and Spencer 1998), and thus to improve LWP retrievals in trade-
wind regions.

Active satellite remote sensing provides observations along narrow curtains aligned
with the flight track. To achieve radiative closure (as envisioned with EarthCARE) or to
generate precipitation fields (as done as part of the GPM mission), it is crucial to combine
curtain measurements with observations from wide swath instruments. For this purpose,
LES simulations are often used to get statistical information about the three-dimensional
structure of the cloudy atmosphere. By providing the reference data set necessary to assess
such statistics (Sect. 4.1), EUREC*A will thus help assess and improve these techniques,
and may also help guide future satellite measurements to, for instance, better profile lower-
tropospheric water vapour.

Finally, the LNG (lidar) instrument on-board the ATR-42 will have the capability to
mimic ADM-Aeolus measurements: the 355-nm HSR Doppler wind lidar of the satellite
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will point 35 deg from nadir (orthogonal to the ground track velocity vector to avoid
contribution from the satellite velocity) to derive profiles of the horizontal wind compo-
nent, and will also regularly point to nadir for calibration. LNG measurements along the
satellite orbits and in the same viewing direction, together with in situ measurements and
other airborne observations, will help evaluate the L2A (cloud and aerosol optical prop-
erties) and L2B (radial winds) ADM-Aeolus products over distances of several hundreds of
kilometres.

5 EUREC*A**: An Opportunity for Complementary Investigations

The intensive observations of the atmosphere and of the surface that will be collected
during EUREC*A campaign will provide an opportunity to address additional scientific
issues. A few of them are mentioned below in the context of what we call EUREC4A++,
but more are almost certain to arise in the next years.

5.1 Rectification of Large-Scale Vertical Motions by the Diurnal Cycle
of Shallow Clouds

In addition to providing large-scale context for the aircraft missions, measurements by the
large-scale sounding array will supplement (and test) meteorological analyses to help
answer scientific questions such as: What is the role of transient disturbances and their
influence over large-scale vertical motion in modulating convective mass flux and large-
scale diabatic heating? What drives the diurnal cycle of vertical motion and clouds in the
trades?

Mounting evidence indicates that the Hadley cell over the remote oceans is charac-
terized by a pronounced diurnal cycle in overturning motion, quite distinct from the
influences of land (Nitta and Esbensen 1974a; Gille et al. 2003; Wood et al. 2009). It is
possible that this diurnal cycle owes fundamentally to the response of deep convective
clouds in the ITCZ to the diurnal cycle of direct shortwave absorption (Nitta and Esbensen
1974a), although this topic is unresolved. Observations from suppressed regimes in the
Indian Ocean warm pool region reveal that the diurnal cycle in large-scale vertical motion
is intimately tied to a diurnal cycle in the shallow convective-cloud population: clouds
deepen each afternoon as subsidence relaxes, while the afternoon increase in more active,
precipitating clouds leads to more cold pools that in turn augment cloud area fraction
(Ruppert and Johnson 2015, 2016). Experiments conducted with a LES framework suggest
that this diurnal cloud feedback between large-scale vertical motion and macroscopic cloud
properties augments diabatic heating, thus impacting large-scale circulation, on longer
timescales through nonlinear rectification (Ruppert 2016).

An additional objective of EUREC*A will therefore be to diagnose the relationships
between radiation, clouds, and large-scale vertical motion on the diurnal timescale, and to
relate this timescale to other modes of variability. The target hypothesis pertaining to this
process is that the diurnal shortwave heating cycle drives a diurnal cycle of deep con-
vection in the ITCZ, which in turn drives a diurnal cycle of large-scale overturning motion
in the greater Hadley cell.
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5.2 Cloud Microphysics

Cloud macrophysical properties such as cloud fraction or cloud water content are very
much influenced by the large-scale environment (e.g., the strength of large-scale vertical
motion, tropospheric subsidence, surface temperature, tropospheric humidity). In this
context, unravelling the impact of microphysical processes on cloud macrophysical
properties or radiative fluxes is challenging because microphysics, cloud macrophysics and
large-scale environmental conditions vary in concert. Given that the large-scale dynamical
and thermodynamical conditions, and cloud macrophysical properties, will be quantified by
EUREC*A, it will be easier to assess the impact of microphysics on cloud macrophysics
for given large-scale conditions, and to explore the dependence of microphysics on large-
scale environmental conditions or convective organization. For instance, we might
investigate whether in observations, precipitation affects the growth of shallow cumuli as
LES studies suggest (Vogel et al. 2016).

EUREC*A will offer several opportunities for microphysical measurements: besides
in situ liquid and total water content, cloud droplet size distribution and particle imaging
on-board the ATR-42 (Table 1), aerosol measurements at the BCO may also be supple-
mented by measurements from research vessels. In situ data could be collected by small
autonomous vehicles launched from the ships or the island (e.g., drones) as well as a
tethered HeliKite capable of carrying payloads of up to 100kg to heights of 3km. The
possible deployment of additional aircraft (from the UK and US), that would focus on
microphysical measurements, is also being considered. Such measurements would greatly
help advance understanding of cloud-aerosol interactions, entrainment and mixing pro-
cesses and the onset of precipitation within shallow clouds.

5.3 Shallow Clouds and Convective Momentum Transport

Concurrent measurements of clouds and the large-scale horizontal wind profile during
EUREC*A will also help address open and long-standing questions regarding the two-way
interaction of clouds (convection) and winds. Past studies have investigated which
parameters that represent the large-scale atmospheric state may best predict low-level
cloud amount (sometimes referred to as “cloud-controlling” factors). Although this is
challenging within the trade-wind cumulus regime—there is no single strong predictor, and
correlations on timescales less than a month are small—the correlation between low cloud
amount and the near-surface wind speed appears one of the stronger correlations (Brueck
et al. 2015; Nuijens et al. 2015b). Daily surface wind speeds have also been found to
correlate well with daily averaged rain cover.

This relationship may reflect the influence of surface wind speed on the surface enthalpy
fluxes, and hence the depth of convection and the depth of the trade-wind layer. But the
relationship may not just represent a one-way interaction: clouds themselves also influence
the wind profile through convective momentum transport. This transport would alter winds
across a much deeper layer than dry convection and turbulence in the subcloud layer can
do. Depending on the wind profile beyond the subcloud layer, convective momentum
transport may therefore slow down or accelerate winds near the surface through processes
which may also depend on the degree of mesoscale organization of the cloud field. The
wind measurements made during EUREC*A will help investigate how winds influence
clouds and vice-versa. The opportunity to enhance these measurements by using two
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different wind lidar systems as part of a funded ADM-Aeolus validation mission using
DLR’s Falcon aircraft is being considered.

5.4 Improving Climate and Weather Forecast Models

In addition to helping evaluate the processes that control trade-cumuli and cloud feedbacks
in LES and GCM models (Sect. 4.1), EUREC*A will help evaluate more generally the
physics of large-scale climate and weather models. Indeed these models still exhibit sig-
nificant biases in the representation of clouds and circulation in the trades. For instance,
most of them overestimate the reflection of solar radiation by trade-cumuli despite an
underestimate of the cloud fraction and/or the cloud water (the so-called too few, too bright
problem, Karlsson et al. 2008; Nam et al. 2012). Models also exhibit persistent biases in
their simulation of the surface wind stress (Wang and Carton 2003; Simpson et al. 2014)
which, as discussed above, can relate to wrong representations of the surface drag and/or of
the momentum transport by shallow convective clouds (Polichtchouk and Shepherd 2016;
Schlemmer et al. 2017). The comparison with EUREC*A observations of short-term
forecasts run with such models will help disentangle sources of model errors in the rep-
resentation of physical processes and their interaction with the large-scale circulation.
Moreover, as discussed in Sect. 3.3, a better understanding and assessment of the different
contributions to the subcloud layer energy budget will help assess the hypotheses under-
lying the cumulus mass flux closures used in convective parameterizations.

More specifically, EUREC*A will serve as a testbed for high-resolution modelling
approaches developed by the Caribbean Institute of Meteorology and Hydrology, Meteo-
France, KNMI and ECMWEF to deliver operational forecasts to the Caribbean countries.
Improving the quality of these forecasts is critical, especially regarding high-impact
weather. In Barbados for instance, heavy precipitation produced by severe weather fre-
quently produce significant flash flooding. Landslides, particularly on neighbouring islands
with greater orographic relief, result in significant social and economic losses including
loss of property and livelihoods and on occasion loss of life. Losses from such events can
range from 25-200% of national Gross Domestic Product setting back national develop-
ment by more than a decade in some instances. In order to reduce losses, in recent years
there has been a significant effort to improve early warning hydro-meteorological forecasts
over the Caribbean through the development of high-resolution (4 km) numerical weather
forecasts using the Advance Research Weather Research and Forecasting (WRF) model.
By providing a reference data set for the evaluation of cloud, turbulence and convective
parameterizations, EUREC*A will help improve the physics of the model, and eventually
the quality of the rainfall forecasts.

5.5 Improving Model Convective Parameterizations

Another important objective of the experiment is to provide field experimental data by
which new and existing convective parameterizations can be tested. Measurements of mass
fluxes during EUREC*A can be used to test closure assumptions, as discussed, but mea-
surements of convective fluxes would provide an opportunity to test how the convective
scheme distributes the energy it carries across cloud base.

We know from many observations that the vertical enthalpy flux establishes a tem-
perature lapse rate that is very close to moist adiabatic, and most existing schemes are
designed to accomplish this. For this reason, comparing the parameterized enthalpy flux
against observations is a weak test of performance. On the other hand, there is no
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corresponding universal water vapour profile, and it can be shown that the vertical flux of
water depends on such processes as entrainment and cloud microphysics. For this reason,
the vertical subgrid-scale water flux by a convection scheme also presents an opportunity
for a strong test of convective schemes.

Measuring the vertical flux of water in a field programme is extremely challenging, as
the decisive component is the small residual between large, but opposed, vertical turbu-
lence fluxes and those by precipitation. During EUREC*A, the density of the sondes, and
the availability of water vapour lidar profiling, and the variety of radar products for
estimating precipitation, should provide an excellent opportunity to constrain the water
budget, perhaps to a degree that it can help test convective parameterizations. Fortunately,
in the Tropics, fluctuations of moist static energy are strongly dominated by fluctuations in
water vapour, because temperature perturbations are usually very small above the
boundary layer. Thus, the moist static energy budget also offers and opportunity for
deducing the convective flux of water vapour, principally by estimating the terms in the
budget, or partially integrating measurements of the budget from the top of the atmosphere
(or the surface) to the flight level, and then estimating the convective flux as a residual.

Note that it will be possible to assess the overall quality of the field measurements
needed to test convective schemes by verifying that:

1 [ (0h
—/ (—+V'Vh)dP+FTOA—FSFCIO (6)
8.Jo ot

where 4 is the moist static energy, V the three-dimensional wind, Froa the net radiative
flux at the top of the atmosphere and Fspc the total (radiative plus turbulent) surface energy
flux. In previous field experiments, errors in some of the terms in (6) resulted in a nonzero
sum, which had to be corrected by making adjustments to the vertical velocity used in the
advection term (Emanuel and Zivkovic-Rothman 1999). Hopefully, these undesirable
errors can be largely avoided in EUREC*A by obtaining more accurate estimates of
vertical velocity as well as improved estimates of radiative and surface energy fluxes. By
providing more accurate field data sets—ones satisfying column water and moist static
energy budgets—more rigorous tests of cumulus parameterizations should be possible.
During EUREC*A, these methods will be tested for regimes of shallow convection. If
successful they could later be applied in regions of deep convection.

5.6 Ocean Eddies

EUREC*A will also be an opportunity to study ocean-atmosphere interactions in the
Atlantic, especially the role of ocean mesoscale eddies. The ocean is a fundamentally
turbulent fluid full of fine-scale structures such as eddies, fronts, jets and filaments
(McWilliams 2016). These oceanic structures, grouped as mesoscale (10-500 km,
10-100 days) and submesoscale (hundreds of metres to kilometres, daily timescales)
dynamics, are recognized as key contributors to the ocean circulation (e.g., Zhang et al.
2013Db). There is also increasing evidence that they impact air—sea interactions and influ-
ence the winds and clouds of the overlying atmosphere (Chelton et al. 2004; Ferreira and
Frankignoul 2008; Frenger et al. 2013; Byrne et al. 2015). However, few observations are
available to quantify the role of ocean eddies in the transport of water properties and in air—
sea interactions, especially in the tropics.

Automatic eddy detection from satellite observations show the presence of mesoscale
eddies (Fig. 10) not only in the mid- and higher latitudes but also in the Tropics (Laxenaire
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Fig. 10 The route of ocean eddies. Statistics of ocean mesoscale eddies derived from satellite altimetry
(shown is the fraction of the time inside an anticyclonic eddy)

et al. 2017, accepted). In particular, intense warm ocean eddies (i.e. anticyclonic eddies)
converge in the western tropical Atlantic, offshore of Barbados. These eddies come from the
south (tropical Atlantic and South Atlantic) and from the East (from Cape Verde and the
western Africa margin). Eddies such as the anticyclonic features associated with North Brazil
Current Rings eventually carry freshwater, originating from the Amazon/Orinoco river, into
the region. Linkages between the freshwater surplus by the rivers and intensification of storms
and cyclones have been reported for the large scale (Reul et al. 2014) and for the region east of
the Antilles, in the Caribbean, for individual eddies (Rudzin et al. 2017).

Inspecting historical ship data in the EUREC*A campaign area (RV SONNE SO172;
Fig. 11) shows the impact of low salinity water in an anticyclonic North Brazil Current
Ring that is associated with increased air temperature and the occurrence of very local air/
sea interactions. During the EUREC*A campaign observations by aircraft, research vessels
and autonomous platforms will make it possible to observe the coupled system and assess
the role of mesoscale eddies on the lower tropical atmosphere in a comprehensive manner.
In particular, the association of air and ship measurements will allow us to characterize
contrasted ocean mesoscale eddies (e.g., cyclonic/anticyclonic, deep/shallow mixing)
estimate the role of these eddies in modifying atmosphere-ocean coupling and in influ-
encing the mesoscale organization of the atmosphere and shallow clouds in particular.

Moreover, a synoptical study from different research vessels measuring different
mesoscale eddies across the experimental area will provide new information on water-mass
characteristics advected by the regional eddies. These are of twofold importance, as they
inform studies of mesoscale eddies in general, but also in a particularly interesting region
where over a narrow zone of longitudes the upper and lower limbs of the Atlantic
Meridional Overturning Circulation flow over one another. A relatively wide range of
mesoscale eddy observations will provide quantitative assessments of their role in transport
of mass, heat, freshwater, carbon and other biogeochemical variables enabling a measure
of the role of the oceanic mesoscale in this overturning circulation.

The observing strategy will make use of near real-time satellite altimetry data (AVISO
Ssalto/Duacs) to identify ocean mesoscale eddies and then one of the ships will be used to
survey the eddy and to deploy autonomous oceanographic observing platforms such as
underwater electric gliders and wave-gliders. A second ship will characterize the sur-
rounding background field in parallel. Vertical profiling of the water column (temperature,
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Fig. 11 RV SONNE (SO172) ship survey through an anticyclonic eddy (North Brazil Current Ring) west of
Barbados (ship was going east to west, time axis is reversed for clarity). a Meridional current section
(triangles at 0 m denote ship was stationary), b sea surface salinity (psu), and ¢ air temperature

salinity, currents, oxygen, and other properties e.g., carbon related quantities) will be
measured. Argo profiling floats will be deployed within anticyclonic eddies within the
Guiana and North Equatorial currents in the year preceding the EUREC*A campaign. More
information about the instrumentation and the measurements envisioned is given in
Appendix 2. This strategy will be tested and refined before the campaign by undertaking a
set of preliminary studies based on the analysis of available data from satellites, ships,
Argo profiling floats, and eddy-resolving numerical simulations.

Together, and perhaps the biggest plus, is that oceanic and atmospheric data collected
during EUREC*A will help build a data set capable of evaluating a wholly new generation
of coupled ocean-atmosphere models, ones capable of resolving (rather than parameter-
izing) both convective eddies (cumulus convection) in the atmosphere, and the mesoscale
dynamics of the ocean.

5.7 Capacity Building

Building national and regional resilience to increasing climate variability, climate change
and extreme weather events in the Caribbean includes increasing national and regional
weather and climate data, related knowledge platforms and human capacity. By involving
university students and other young scientists of the region in the field campaign and the
long-term research activities related to it, EUREC*A will help train the next generation of
regional climate scientists and operational forecasters, develop databases that will facilitate
the dissemination and use of the data collected in the area during field studies, and will
promote international partnership and collaboration networks.
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6 Conclusions

By characterizing, for the first time, both the macrophysical properties of shallow cumuli
and the large-scale environment in which convection and clouds are embedded, the
EUREC*A campaign will test developing ideas about what controls the cloud amount in
the trades. It should elucidate the role of convection and large-scale circulations in low-
cloud feedbacks and thus address one of the central questions of the World Climate
Research Programme’s Grand Challenge on Clouds, Circulation and Climate Sensitivity
(Bony et al. 2015). Through its alignment with two flagship missions of the European
Space Agency and the cutting-edge of modelling, EUREC*A should also provide a new
reference data set which can be used to assess the modelling and the remote sensing for the
years to come. The experimental strategy proposed for the campaign is ambitious. How-
ever, it builds on a legacy of ongoing field studies, particularly ground measurements at the
Barbados Cloud Observatory and field measurements as part of the NARVAL (December
2013) and NARVAL2 (August 2016) campaigns, as well as extensive experience from
process models. Ongoing analysis of these measurements and simulations are being used to
test and refine the experimental strategy of EUREC®*A so as to maximize the scientific
gains from the planned measurements.

A compact and well-defined experimental strategy opens up the mission to other
partners with complementary interests. This campaign should therefore be considered as an
opportunity to nucleate larger international efforts and to underpin additional investiga-
tions ranging from factors influencing cloud microstructure and warm rain formation, to
the role of mesoscale eddies in the ocean.
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Appendix 1: Aircraft Instrumentation

Airborne platforms are one means to probe the thermodynamic, dynamic and cloud
properties of the atmosphere. EUREC*A will be centred around measurements from two
aircraft, namely the French ATR-42 and the German HALO, carrying complementary
payloads. The HALO measurements aloft will characterize with downward-looking
instruments the large-scale (several thousands of km?) environment in which clouds form,
and the radiative properties of the clouds therein. The ATR-42 measurements in the
shallow cloud layer will constrain cloud macrophysical and microphysical properties,
turbulent mixing processes and shallow circulations.

The airborne and in situ measurements of EUREC*A will also advance the evaluation
and calibration of space-borne measurements, and their interpretation in terms of
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geophysical variables (Wendisch and Brenguier 2013). It will be the case in particular for
observations from EarthCare and ADM-Aeolus, which are two flagship satellite missions
of the European Space Agency’s Living Planet Programme devoted to the observation of
clouds and circulation, and whose measurements will be mimicked by several instruments
on board both aircraft.

The ATR-42 Aircraft and Its Instrumentation

The French ATR-42 is a bi turbo-prop aircraft from SAFIRE that has the capability of
flying in the lower troposphere (ceiling at about 8 km) with a maximum range of about
1800 km. It will fly a series of low-level legs just above cloud base (around 1 km), about
100 km long and spaced by about 20 km, as a way to sample the cloud field within the area
encompassed by HALO circles. A particularity of the aircraft instrumentation (summarized
in Table 1) is that it will include sideways and vertically pointing lidar and radars that will
probe the atmosphere horizontally and vertically, aiming at measuring the cloud fraction at
cloud base. The last leg before refuelling will be flown either below cloud level, to measure
surface turbulent fluxes, temperature at the sea surface and in the subcloud layer, and near-
surface radiation, or near the trade-inversion level (around 2 km) to characterize cloud
microphysics, measure radiative fluxes. Given the mean science speed of the aircraft (about
100ms~") and the endurance expected for the envisioned payload, the ATR-42 will make
two four-hr flights per day bracketed by the daily nine-hr flight of HALO.

The ATR-42 will be equipped with advanced instrumentation including the multi-
wavelength Leandre New Generation (LNG) HSR backscatter lidar (Bruneau et al. 2015),
the 95 GHz Doppler radar RASTA (RAdar SysTem Airborne, Delano€ et al. 2013), the
mini-cloud radar BASTA (Delanog et al. 2016), and the mini-lidar ALiAS developed at
LSCE (Chazette et al. 2007; Chazette 2016). The first three instruments have been
developed at LATMOS' to characterize clouds, aerosol particles and hydrometeor particle
velocities. Although RASTA and the HSR lidar will be observing the atmosphere above
and below the aircraft, the mini-lidar ALiaS and the BASTA Doppler radar will be staring
sideways from the aircraft windows in order to measure the cloud fraction and cloud
optical properties just above cloud base (Sect. 3.2). In addition, the payload will include a
thermal infrared radiometer (CLIMAT-AYV, Conveyable Low-Noise Infrared Radiometer
for Measurements of Atmosphere and Ground Surface Targets -Airborne Version)
developed at the Laboratoire d’Optique Atmosphérique (Brogniez et al. 2003) to measure
sea surface temperature, and hemispheric broadband pyrgeometer (Kipp and Zonen CGR4)
and pyranometer (Kipp and Zonen CMP22) to measure upwelling and downwelling
radiative fluxes in the longwave and shortwave, respectively. Finally, the aircraft will
measure temperature, moisture and wind along its trajectory at a high frequency (25s!)
for turbulence statistics calculations.

The LNG airborne Lidar system is a three-wavelength (1064, 532, and 355 nm)
backscatter lidar with polarization and high-spectral-resolution capability at 355 nm?. It
operates in a direct detection mode (measurement of the backscattered light intensity),
which has the advantage of relying on both particulate and molecular scattering, and allows

! http://rali.projet.latmos.ipsl.fr, http://basta.projet.latmos.ips.fr

2 Based on the emitter characteristics given in Table 1 of (Bruneau et al. 2015), the nominal ocular hazard
distance at each wavelength IS: 0 m at 355 nm, 333 m at 532 nm and 184 m at 1064 nm. These values are
the same for the horizontal and vertically pointing mode. They also comply with norms NF EN 60825-1 and
CEI 6025-1.
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extended ranges and capabilities. Thanks to its two-wave interferometry system (Mach—
Zehnder Interferometer) and its capability of high-spectral-resolution UV analysis, it can
determine both optical parameters of aerosol and clouds and measurements of along-line-
of-sight wind velocity, based on the Doppler effect on particles (Bruneau and Pelon 2003;
Bruneau et al. 2015). When scattering particles are moving, the wavelength of the scat-
tered light is shifted by a small amount as a function of speed. The Doppler wind lidar
measures this change of wavelength to determine the velocity of the wind in the direction
of the light pulse. For a vertically pointing lidar, vertical velocity measurements are thus
possible. The capability of a lidar system using a Mach—Zehnder interferometer is
described in Bruneau and Pelon (2003) and is not be detailed here. A simplified equation

describing the precision of LNG-derived wind velocity measurement along the line of sight

~ 100 Ry
"~ SNR Ry—1

(in m.s~!), where SNR is the signal-to-noise ratio on the 355-nm parallel channel and Ry
the backscatter ratio (i.e. the total backscatter divided by the molecular backscatter)
measured on the same channel. The accuracy of the LNG system along the line of sight
after aircraft motions are removed has been assessed for a case of cirrus clouds by Bruneau
et al. (2015) based on the apparent aircraft speed derived from LNG ground-echo, and
based on results from a recent field campaign (NAWDEX—North Atlantic Waveguide and
Downstream Impact Experiment, fall 2016): the accuracy of LNG wind speed measure-
ments in these conditions was expected to be around 1m s~! (D. Bruneau, personal
communication).

The Airborne Lidar for Atmospheric Studies (ALiAS) was built at LSCE following a
precursor instrument (Chazette et al. 2007; Chazette 2016) flown on-board an ultra-light
aircraft (ULA). It is based on a frequency-tripled Nd:YAG laser (ULTRA) manufactured
by QUANTEL® emitting in the near ultraviolet (355 nm), thus satisfying eye safety
requirements at the output window. The UV pulse energy is 30 mJ, and the pulse repetition
rate is 20 Hz. The acquisition system is based on a PXI (PCI eXtensions for Instrumen-
tation) technology with a sampling frequency of 200 MHz (initial resolution along the line
of sight equal to 0.75 m). The receiver includes two channels for the detection of the elastic
backscatter from the atmosphere in the parallel and perpendicular polarization planes
relative to the linear polarization of the emitted radiation. It was designed to monitor both
the aerosol and hydrometeor distributions and dispersions in the low and middle tropo-
sphere. After specific signal analysis, including laser shot accumulation and low pass
filtering, the final resolution along the line of sight is between 15 and 30 m. With a 15-cm
diameter telescope, the lidar is compact (~ 70 x 45 x 18 cm), lightweight (<50kg for
both optics and electronics), robust to vibration, requires moderate power (< 500 W) and
can thus be easily mounted aboard an aircraft for horizontal shooting. Its wide field of view
(FOV) of 2.3 mrad ensures a full-overlap of the transmitter and receiver paths beyond 100
to 200 m.

The BASTA (Bistatic Radar System for Atmospheric Studies) radar is a mini-cloud
W-band radar (weighting only 32 kg) that measures the Doppler velocity and the reflec-
tivity at 95 GHz (Delanoé et al. 2016). Its specificity, compared to traditional pulsed
radars, is that instead of transmitting a large amount of energy for a very short time period
(as a pulse), a lower amount of energy is transmitted continuously. The radar can be used in
several modes depending on application, including 12.5- and 25-m-vertical resolution
modes. The sensitivity of the instrument is about -40 dBZ at 1 km for 3-s integration and a

can be obtained from Bruneau and Pelon (2003) (see their equation 23) as: a(V)

3 http://www.quantel.com
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range-gate of 25 m. Its unambiguous range is 12 and 18 km for the 12.5- and 25-m range-
gate modes, respectively. The high mobility of the system allows to install the system with
an horizontal pointing configuration. The most will be made of the bistatic nature of the
system, with emitting and receiving radar signals through two side-by-side windows.
Calculations suggest that a cloud radar having a sensitivity of —35 dBZ at 1 km in an
atmosphere with 80 % relative humidity will detect clouds with a reflectivity below
—30 dBZ over 1400 m, and will not detect any liquid cloud further 3250 m. Considering a
liquid cloud with a constant LWC of 0.6 g/m3 (which is a large upper bound) next to the
aircraft, the radar should be able to detect clouds below —30 dBZ until 1000 m and liquid
cloud until 2000 m.

The RASTA (RAdar SysTem Airborne) radar measures the Doppler velocity and the
reflectivity at 95 GHz (W-band) along a radial defined by the pointing direction of the
antenna (Delano€ et al. 2013). During EUREC*A, a 4-antenna configuration will be used,
that will include 3 upward-looking beams (zenith, 28 degrees off-nadir perpendicular to the
aircraft motion, and 20 degrees off-zenith and opposite the aircraft motion) and one nadir
pointing antenna. This unique configuration allows for the retrieval of the three-dimen-
sional wind field, i.e. the three components of the wind on vertical plan above the aircraft,
by combining the independent measurements of the projected wind vector on radar line of
sights. The independent Doppler radial velocities are provided by the multi-beam antenna
system. The radar range is 15 km, its range resolution is 60 m and its horizontal resolution
ranges from 100 to 150 m depending on aircraft speed. RASTA measurements of vertical
velocities within clouds, combined with lidar-radar estimates of the cloud fraction at cloud
base, will help develop an estimate of the convective mass flux at cloud base that will be
completely independent of the one derived from the analysis of the subcloud layer mass
budget (Sect. 3.3).

The CLIMAT-AV thermal infrared radiometer (Brogniez et al. 2003) measures (at
nadir) radiances simultaneously in three narrowband channels centred at 8.7, 10.8, and
12.0 micron, with about 1 mm of full width at half maximum. It uses a 7-Hz sampling
frequency and performs measurements within a 50-mrad field of view, which corresponds
to a footprint of about 50 m at a 1-km range. CLIMAT-AYV is very similar to the CALIPSO
IIR system. The absolute accuracy of brightness temperature measurements is about of 0.1
K, and its sensitivity is of the order of 0.05 K. The radiances measured by CLIMAT-AV
will be used to estimate the sea surface temperature.

The HALO Aircraft and Its Instrumentation

The German high-altitude and long-range research aircraft HALO is a modified Gulfstream
G550 business jet with a long endurance (more than 10 flight hours), a long range (about
8000 km), and a high ceiling (15.5 km) (Wendisch et al. 2016). In cooperation with the
DLR and the Universities of Cologne, Hamburg, Leipzig and Munich, it will be equipped
with an extensive set of remote sensing instrumentation (summarized in Table 2) includ-
ing: the differential absorption and high-spectral-resolution lidar system (WALES, Water
vApour Lidar Experiment in Space), HAMP (the HALO Microwave Package) which
includes the cloud radar MIRA36 (36 GHz) and a microwave radiometer, the spectral
imager specMACS, and an instrument system that measures spectrally resolved upward
and downward solar radiances and irradiances (SMART). The payload also includes in situ
measurements of the meteorological properties along the flight track (BAHAMAS), and
the ability to launch dropsondes using the AVAPS system. To measure broadband upward
and downward longwave radiances and remotely sensed surface temperatures, it is planned
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to add instruments such as the hemispheric broadband pyranometer (solar) and pyrge-
ometer (thermal infrared) and the CIMEL/CLIMAT-AYV instruments used on the ATR-42.
A cooled infrared imaging spectral camera will also be integrated.

MIRA36 is a commercially available METEK Ka-band (36 GHz) cloud research radar
with polarization and Doppler capability to determine vertical velocity in clouds and
precipitation. Together with microwave radiometers in the K, V, W, F, and G-band the
MIRA36 is part of HAMP (Mech et al. 2014).

The lidar system WALES is a combined differential absorption and high-spectral-
resolution lidar (HSRL) system developed and built at the Deutsches Zentrum fiir Luft-
und Raumfahrt (Wirth et al. 2009). WALES is capable of nearly simultaneously emitting
four wavelengths, three online and one offline, in the water vapour absorption band
between 935 and 936 nm. The three online wavelengths achieve the necessary sensitivity
needed for measurements over the whole range of tropospheric water vapour concentra-
tion. The vertical resolution of the raw data is 15 m. In addition to the 935-nm channel, the
receiver is equipped with polarization-sensitive aerosol channels at 532 and 1064 nm, the
first one with high-spectral-resolution capabilities using an iodine filter in the detection
path (Esselborn et al. 2008). This allows for collocated measurements of humidity, optical
depth, clouds and aerosol optical properties.

SpecMACS is an imaging cloud spectrometer developed at LMU (Ewald et al. 2016)
consisting of two commercial spectral camera systems in the visible near-infrared (VNIR:
400-1000 nm) and in the shortwave infrared (SWIR: 1000-2500 nm). The nominal
spectral resolution is 3 nm and 10 nm for the VNIR and for the SWIR, respectively.
SpecMACS produces a spectrally resolved line image. For a flight level of about 10 km, a
spatial resolution in the order of 10 m for cloud objects at a distance.

SMART (Spectral Modular Airborne Radiation Measurement System) consists of a set
of spectral solar radiation sensors including radiances and irradiances (Wendisch et al.
2001; Ehrlich et al. 2008). All quantities are obtained for the wavelength range of 0.3—
2.2 pm with spectral resolution of 2—16 nm full width of half maximum (FWHM), which
is sufficient to analyse the spectral characteristics of spectral absorption bands of ice and
liquid water. While the irradiance sensors provide spectral albedo at flight-level repre-
sentative for a specific area, the measurement frequency of 2 Hz and the 2.1° field of view
of the radiance sensor allows identifying cloud inhomogeneities (about 200 m footprint for
cloud top at 5 km and flight altitude of 10 km).

A similar payload was used during the NARVAL2 campaign and during the NAWDEX
campaign of September—October 2016 over the North Atlantic.

Appendix 2: Oceanographic Instrumentation

The thermal structure of the upper ocean has been historically observed from oceano-
graphic ships and from expendable bathythermograph (XBT). Since the early 2000s, the
advent of the Argo array of autonomous profiling floats has significantly increased the
ocean sampling to achieve near-global coverage for the first time over the upper 1800 m
and with a nominal resolution of 3 degrees in latitude/longitude. However, these new
global observations are still very sparse and do not provide adequate measurements along
boundaries of the oceans and within mesoscale eddies. This represents an acute weakness
in our present understanding of ocean and atmosphere dynamics and their role in shaping
the Earth’s climate variability and changes. To qualify and quantify the role of ocean
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eddies in the transport of water properties and in air—sea interactions, a number of
oceanographic measurements will be necessary.

Ideally, in the year preceding the operational phase of EUREC*A we aim to deploy
Argo profiling floats within anticyclonic eddies within the Guiana and North Equatorial
currents. By associating these data with satellite observations of the atmosphere (clouds,
water vapour, winds, etc), it will be possible to follow the joint evolution of eddies and
lower atmospheric properties. Then, during the operational phase of EUREC*A, it will be
appropriate to work with two ships measuring both air—sea fluxes, surface atmospheric
properties and vertical profiles of temperature and salinity in the upper 2000 m of the
ocean.

Ocean vertical profiles of temperature, salinity, currents, oxygen and other biogeo-
chemical properties to also assess carbon related quantities will be acquired by a deep-
reaching classical CTD rosette, equipped with sampling bottles and Acoustic Doppler
Current profilers (ADCP; 150 or 300 kHz; one upward looking and one downward look-
ing). To increase the sampling resolution, it will be very important to implement between
CTD stations, at least for temperature, salinity and pressure, a very manageable and easy-
to-use vertical profiler such as the Teledyne OceanScience Underway CTD/RapidCast
(UCTD). On both ships, a microstructure vertical profiler would help infer turbulence
linked with eddies and air—sea interactions.

The ships are equipped with an underway Thermosalinograph system (TSG) measuring
near-surface temperature, salinity and, in many case, fluorescence. The vertical structure of
ocean currents down to > 1000m depth along the ship track is recorded by ADCPs (38 and
75 kHz) mounted in the ships hull. Further instrumentations on the ships include standard
marine atmospheric observing devices such as LIDARs (for vertical profiles of tempera-
ture, humidity and wind) and radiometers and precipitation gauges that allow to derive
local ocean-atmosphere heat and freshwater fluxes. Operations of autonomous observing
platforms such as underwater electric gliders and wave-gliders in regions of particular
interest (e.g., frontal systems) will complement the observing efforts. The autonomous
observing effort will start before the operational phase of EUREC*A and allow to observe
the upper ocean conditions and their temporal and spatial evolution before, during and after
the EUREC*A core field phase.
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