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Abstract
In this paper, we complete our preceding work on the Fokker Lagrangian describing the dynamics

of compact binary systems at the fourth post-Newtonian (4PN) order in harmonic coordinates. We

clarify the impact of the non-local character of the Fokker Lagrangian or the associated Hamiltonian

on both the conserved energy and the relativistic periastron precession for circular orbits. We show

that the non-locality of the action, due to the presence of the tail effect at the 4PN order, gives

rise to an extra contribution to the conserved integral of energy with respect to the Hamiltonian

computed on shell, which was not taken into account in our previous work. We also provide a direct

derivation of the periastron advance by taking carefully into account this non-locality. We then

argue that the infra-red (IR) divergences in the calculation of the gravitational part of the action

are problematic, which motivates us to introduce a second ambiguity parameter, in addition to the

one already assumed previously. After fixing these two ambiguity parameters by requiring that the

conserved energy and the relativistic periastron precession for circular orbits are in agreement with

numerical and analytical gravitational self-force calculations, valid in the limiting case of small

mass ratio, we find that our resulting Lagrangian is physically equivalent to the one obtained in

the ADM Hamiltonian approach.
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I. INTRODUCTION

This paper is a follow up to Ref. [1], in which we derived the equations of motion of
compact binary systems (without spins) at the 4PN approximation of general relativity.1 In
Paper I, we gave a short account of numerous past works on the PN equations of motion
of compact binaries (see [2] for a more exaustive review). At the 3PN order, the equa-
tions were independently derived using different methods: Hamiltonian formalism [3–8],
harmonic coordinates approach [9–14], surface-integral method [15–19], and effective field
theory (EFT) [20].

At the 4PN order, partial results were first obtained within the Hamiltonian formalism
in ADM-like coordinates [21–23] and the EFT approach [24]. The 4PN Hamiltonian was
then completed in Refs. [25, 26] by adding a non-local (in time) contribution related to
gravitational-wave tails, known from Refs. [27, 28] for general matter systems. An alternative
derivation of the 4PN dynamics, including the same non-local tail piece, was achieved in
Paper I by computing the Fokker Lagrangian in harmonic coordinates. This result agreed
with the partial results of the EFT [24], and also with most of the terms in the 4PN
Hamiltonian [21–23, 25, 26]. However, it disagreed with a few terms [see Eqs. (5.18)–(5.19)
in Paper I]. Part of the discrepancy was due to the fact that Refs. [25, 26] and Paper I use
different prescriptions to handle the non-local tail term, as discussed in Sec. VC of Paper I
and in more details below.

An important point of comparison for the PN results is given by gravitational self-force
(GSF) calculations, valid in the small mass ratio limit (see Refs. [29, 30] for reviews). The
recent years have seen a lot of progress on numerical or analytical calculations of two gauge-
invariant quantities, the conserved energy and the advance of the periastron for circular
orbits, allowing for unambiguous comparisons with the small mass-ratio limit of the PN
results. The GSF energy for circular orbits has been computed numerically in [31, 32] and
analytically in [33], while the circular orbit limit of the periastron advance has been obtained
numerically in [34–36] and analytically in [26, 37]. Both in Paper I and in Refs. [25, 26],
a single free parameter was introduced, associated to the 4PN tail term, and was fixed by
comparing the conserved energy for circular orbits with GSF results [31–33].

However, the treatment of the non-locality in the derivation of this quantity from the
action was different in the two approaches. In the present paper, we investigate in more
details the derivation of both the energy and the periastron advance from the non-local
action. With respect to Paper I, we show the appearance of a new term in the conserved
integral of energy that resolves our disagreement with Ref. [25] on this issue. This is achieved
within our initial approach, based on the direct use of the original action containing the non-
local 4PN tail contribution, i.e., not applying any non-local shift to transform the non-local
action into a local one as advocated in Ref. [25]. We thoroughly compute the new term
using Fourier series, as well as a similar term present in the conserved integral of angular
momentum. While the result for the conserved energy is affected by the former term, the
periastron advance remains unchanged, as the extra contributions coming from the energy
and angular momentum cancel out in this quantity.

The computation in Paper I was supplemented by a dimensional regularization for treat-
ing the ultra-violet (UV) divergences associated with point particles, and by a Hadamard

1 We shall refer to Ref. [1] as “Paper I” henceforth. As usual the nPN order corresponds to post-Newtonian

corrections up to order (v/c)2n beyond the Newtonian acceleration in the equations of motion.
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regularization for curing the infra-red (IR) divergences that occur at the bound at infinity
of integrals entering the gravitational (Einstein-Hilbert) part of the action. Past experience
on the UV regularization at the 3PN order, both for the equations of motion [10] and the
radiation field [38], shows that different implementations of the Hadamard regularization
can give different physical results, but with differences that were limited to a small subset
of terms. At the time, this unsatisfactory situation led to the introduction of unknown am-
biguity parameters, that were determined by the consistent replacement of the Hadamard
regularization by the dimensional regularization. In the present paper we argue that the
IR regularization of the bound at infinity is problematic, as different prescriptions for that
regularization may lead to different results. However, we conjecture (based on some prelimi-
nary work [39]) that the difference between different prescriptions for the IR regularization is
made, after suitable shifts of the world-lines, of two offending terms in the Lagrangian at the
order G4. We shall therefore resort to two ambiguity parameters to account for the different
possible prescriptions regarding the IR regularization at the 4PN order. As it turns out, the
ambiguity parameter that was introduced in Paper I is equivalent to one linear combination
of them. In Ref. [39], we shall specifically employ the powerful dimensional regularization
to handle the IR divergences and investigate whether one can determine, with such method,
some combination of those ambiguity parameters. Notice that they appear in a very few
terms of the 4PN Lagrangian, which otherwise contains hundreds of difficult terms that have
been unambiguously determined in Paper I.

Using this new Lagrangian modified by the two ambiguity parameters, we use our new
treatment of the non-locality in the dynamics to compute the conserved integral of energy
and the orbital precession of the periastron at the 4PN order, in the limiting case of circular
orbits. We find that we can adjust the two ambiguity parameters in such a way that the
results are in agreement with the known GSF calculations. Their values are uniquely fixed
by this comparison, which determines completely our Fokker Lagrangian. However, as said
above, we have to make an assumption regarding the structure of the second ambiguity
term. Work should thus continue in order to better understand the origin of the ambigu-
ity parameters. Comparing our 4PN Lagrangian in harmonic coordinates with the 4PN
Hamiltonian in ADM-like coordinates as derived in Refs. [21–23, 25, 26], we find that there
exists a unique shift of the dynamical variables which connects the two dynamics, thus our
harmonic-coordinates Lagrangian is in fact equivalent to the ADM Hamiltonian.

The plan of this paper is as follows. In Sec. II, we introduce two (and only two) ambiguity
parameters to account for some incompleteness in the IR regularization of integrals entering
the gravitational part of the Fokker action. In Sec. III, we investigate the problem of
defining conserved integrals of energy and angular momentum from a Hamiltonian that is
non-local in time. In particular, we find that some constant (DC type) terms must be
added to the naive expectations for the energy and angular momentum. In Sec. III, we
compute the tail contribution to the energy at the 4PN order in the case of circular orbits.
An alternative derivation, which makes use of Delaunay variables, is also presented (in
Sec. IV B). In Sec. V, we compute the periastron advance at the 4PN order in the circular
orbit limit, mostly focusing on the delicate tail contribution therein. The paper ends with a
short conclusion in Sec. VI, followed by several Appendices: A recapitulation of the complete
4PN Lagrangians in Sec. A, some useful material about the Fourier decomposition of the
Newtonian quadrupole moment in Sec. B, and complements on Sommerfeld’s method of
contour integrals in Sec. C.
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II. AMBIGUITY PARAMETERS IN THE FOKKER LAGRANGIAN

It was shown in Paper I that infra-red (IR) divergences, due to the behaviour of integrals
at their bound at spatial infinity, start appearing at the 4PN order in the Fokker action of
point particles. As it turned out, those IR divergences are associated with the presence of
tail effects [27, 28]. In Paper I, we found that the two arbitrary scales associated with the
tails and the IR cut-off scale (denoted as s0 and r0, respectively, in Paper I) combine, to give
a single “ambiguity” parameter α = ln(r0/s0) which could not be determined within the
Fokker Lagrangian method. This parameter was then fixed from a gravitational self-force
(GSF) calculation of the invariant energy for circular orbits. Similar results were obtained
by means of the Hamiltonian formalism in Ref. [25]. The treatment of the IR divergences
in Paper I was based on the use of Hadamard partie finie integrals. On the other hand, the
ultra-violet (UV) divergences associated with point particles were handled by resorting to
dimensional regularization.

For the present purpose, we first need to restore the arbitrariness of the constant param-
eter α (which was fixed to α = 811/672 in Paper I). More precisely, starting from the 4PN
harmonic-coordinates Lagrangian of Paper I, which is given by Eqs. (5.1)–(5.6) there, and
notably including the non-local tail term (5.4), we re-install α as an undetermined ambiguity
parameter by setting

L′ = LPaper I +
2G2m

5c8

(
α− 811

672

)(
I

(3)
ij

)2

, (2.1)

where m = m1 + m2 is the total mass whereas I
(3)
ij denotes the third time derivative of

the quadrupole moment, as given by Eq. (5.12) in Paper I. Next, we shall argue, based on
preliminary investigations [39], that the problem of the regularization procedure invoked to
cure the IR divergences of the Fokker action at the 4PN order is quite subtle. A choice
was made in Paper I to regularize IR-divergent integrals by means of a specific procedure
based on analytic continuation in some complex parameter B. Such a procedure (finite part
when B → 0) resulted in a particular prescription for the gravitational part of the Fokker
Lagrangian, as given by Eq. (2.20) in Paper I. One can actually show that this procedure is
equivalent to the well known Hadamard Partie Finie regularization [40, 41] when applied to
the bound at spatial infinity.

However, preliminary calculations [39] suggest that using the dimensional regularization
instead of the Hadamard regularization for the bound at infinity does change the content of
the Fokker Lagrangian (i.e., the associated gauge-invariant quantities are different). Build-
ing on this observation, we shall conjecture here that using different IR prescriptions entails
a modification of the Lagrangian by two types of terms, always having the same structure.
Such a behaviour is characteristic of the appearance of ambiguities in the regularization pro-
cess. This will be acknowledged in the present paper by adding to the Lagrangian (2.1) the
ambiguous terms by hands. In a future paper [39], we shall investigate whether specifically
using the powerful dimensional regularization should cure the IR divergences of the Fokker
action in a consistent way at the 4PN order, in addition to already dealing with the UV
divergences. In a first step, we add for convenience three ambiguity parameters to (2.1), β1,
β2 and β3, which yields

L′′ = L′ +
G4mm2

1m
2
2

c8r4
12

(
β1(n12v12)2 + β2v

2
12 + β3

Gm

r12

)
. (2.2)
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The positions and velocities of the particles are denoted by yA and vA = dyA/dt (A = 1, 2);
r12 = |y1 − y2| is the relative separation (in harmonic coordinates), n12 = (y1 − y2)/r12 is
the corresponding unit vector, and v12 = v1−v2 the relative velocity. We use parenthesis to
denote ordinary scalar products, hence (n12v12) = n12 · v12 and v2

12 = v12 · v12. In a second
step, inserting into Eq. (2.1) the expression of the quadrupole moment Iij (to Newtonian
order), we get

L′′′ = LPaper I +
G4mm2

1m
2
2

c8r4
12

(
γ1(n12v12)2 + γ2v

2
12 + γ3

Gm

r12

)
, (2.3)

with γ1 = β1 − 176
15
α + 8921

630
, γ2 = β2 + 64

5
α − 1622

105
and γ3 = β3. When evaluating the time

derivatives of Iij, we actually replace I
(3)
ij by its order reduced expression (later denoted

Î
(3)
ij ), so that, in fact, L′′′ differs from L′′ by a gauge transformation. There are still three

ambiguity parameters at this stage, but among the terms they generate one combination is
pure gauge. Thus, without loss of generality, we can consider the following Lagrangian:

L = LPaper I +
G4mm2

1m
2
2

c8r4
12

(
δ1(n12v12)2 + δ2v

2
12

)
, (2.4)

differing from L′′′ by a further gauge transformation and containing two (and only two)
ambiguity parameters, related to the previous ones by δ1 = γ1 − 4γ3 and δ2 = γ2 + γ3.2

From the Lagrangian (2.4), one may construct, performing the various local and non-local
shifts of the particles world-lines, the associated Hamiltonian in ADM type coordinates as in
Paper I. Since those shifts represent small 2PN quantities at least, the extra terms in (2.4),
of 4PN order, will be unchanged in the process. The resulting Hamiltonian reads

H = HPaper I − G4mm2
1m

2
2

c8r4
12

(
δ1(n12v12)2 + δ2v

2
12

)
, (2.5)

where the Hamiltonian of Paper I, defined in Sec. V C of [1], contains in particular the
non-local tail term given by Eq. (5.17) of [1]. With an abuse of notation, we employ the
same lower-case letters as there to denote the ADM like conjugate variables yA and pA, with
the obvious shorthand notation vA = pA/mA applicable for the small 4PN extra terms in
Eq. (2.5). However, it is important to beware that the variables of the formulations (2.4)
and (2.5) actually differ by appropriate shifts. With this caveat in mind, we will often play
indifferently with the Lagrangian or Hamiltonian formalisms.

Now, in the present paper, we shall show that the two ambiguity parameters δ1 and δ2

can be uniquely fixed by making our dynamics compatible with existing GSF computations
of the conserved energy and periastron advance for circular orbits in the small mass-ratio
limit ν = (m1m2)/m2 → 0. Anticipating the results of our computations, we shall get

δ1 = −2179

315
, δ2 =

192

35
. (2.6)

2 For completeness, let us mention that the gauge transformation of the Lagrangian (modulo an irrelevant

total time derivative) has the following “zero-on-shell” form (with aiA being the accelerations):

L = L′′′ −
∑
A

mA

(
aiA − (∂iU)A

)
ξiA ,

where U =
∑
B

GmB

|x−yB | . We have ξi1 = γ3
G4mm1m

2
2

c8r312
ni12 (and 1↔ 2) for the case at hands.
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Those values will be obtained (in Secs. IV and V) after taking carefully into account the
non-local character of the 4PN tail term in the Lagrangian or Hamiltonian. With the latter
correcting terms and the specific values (2.6) of the ambiguity parameters, our harmonic-
coordinate 4PN dynamics agrees with the 4PN Hamiltonian dynamics of Refs. [21–23, 25, 26].
Indeed, building on the work presented in Paper I, we find that there exists a unique (non-
local-in-time) shift of the trajectories connecting the harmonic-coordinate variables to the
conjugate canonical ADM Hamiltonian variables, so that our Hamiltonian (2.5) is equivalent
to the ADM Hamiltonian fully displayed in Appendix A of [25]. Finally, we recapitulate in
Appendix A our results for the complete 4PN Lagrangian both in harmonic and ADM-like
coordinates.

III. CONSERVED INTEGRALS FOR A NON-LOCAL HAMILTONIAN

In this section, we investigate the notions of conserved energy and angular momentum
in the case of a non-local (in time) dynamics. For convenience, we adopt the Hamiltonian
formalism with the Hamiltonian (2.5). The latter is equivalent, after performing some shifts
of the variables, to the Lagrangian of Sec. II. We refer to Refs. [42, 43] for general discussions
on non-local in time Hamiltonians.

In the Hamiltonian approach, the two-body system is described by the canonical con-
jugate variables yA and pA, with A = 1, 2. (Again, for simplicity sake, we name these
variables using the same lower-case letters as in Sec. II.) Those canonical variables, in the
center-of-mass frame, reduce to the relative position of the particles, i.e., x = y1 − y2, and
the linear momentum p = p1 = −p2. We often denote x ≡ (xi)i=1,2,3 and p ≡ (pi)i=1,2,3.
We also pose, as usual, x = rn with r = |x| and n2 = 1, whereas pr = n · p represents the
momentum conjugate to r in polar coordinates.

We shall consider the generic situation of interest for us where the center-of-mass Hamil-
tonian is made of a local “instantaneous” piece and a non-local-in-time “tail” part:

H[x,p] = H0(x,p) +Htail[x,p] . (3.1)

The instantaneous piece H0 is an ordinary local function of the canonical variables x(t) and
p(t), while the tail piece is a functional of the same variables, depending on x(t + τ) and
p(t+ τ) for any τ ∈ R. This dependence is indicated using squared brackets. Furthermore,
the functional is actually time-symmetric. In the specific case of the 4PN dynamics of
compact binaries, the instantaneous piece contains many PN contributions up to the 4PN
order. On the other hand, the non-local tail contribution arises at the 4PN order and
reads [1, 25, 44, 45]

Htail = −G
2M

5c8
Î

(3)
ij (t) Pf

2r(t)/c

∫ +∞

−∞

dτ

|τ |
Î

(3)
ij (t+ τ) . (3.2)

This non-local tail piece ensures that the (conservative part of the) 4PN tail effect, known in
the metric and equations of motion of general matter systems, is recovered in the Hamiltonian
framework (see [27, 28]). The integral (3.2) involves the symmetric kernel function µ(τ) =
1/|τ | and possesses a singular bound at τ = 0, which is handled with the Hadamard “Partie
finie” (Pf). The partie finie depends on an arbitrary scale (see, e.g., Ref. [11]), chosen here to
be the separation distance between the two particles at the current time t, i.e., r(t) = |x(t)|.
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An alternative, more explicit form of the tail integral is

Htail = −G
2M

5c8
Î

(3)
ij (t)

∫ +∞

0

ds ln

(
c s

2r(t)

)[
Î

(4)
ij (t− s)− Î(4)

ij (t+ s)
]
. (3.3)

In Eqs. (3.2)–(3.3), M denotes the ADM mass of the binary (which reduces to m =

m1 +m2 in the lowest approximation) and Î
(n)
ij (t) stands for the n-th time-derivative of the

Newtonian quadrupole moment of the system in which the accelerations have been order-
reduced by means of the Newtonian equations of motion. Following [1], we indicate the
application of such procedure of order reduction by adding a hat on the concerned quantity.

Thus, for instance, Î
(3)
ij and Î

(4)
ij , are ordinary functions of the center-of-mass canonical

variables xi = rni and pi, given by

Î
(3)
ij =

2Gm

r2

(
3prn

〈inj〉 − 4n〈ipj〉
)
, (3.4a)

Î
(4)
ij =

2G

r3ν

([
3p2 − 15p2

r +
Gm3ν2

r

]
n〈inj〉 + 18prn

〈ipj〉 − 4p〈ipj〉
)
, (3.4b)

with ν = m1m2/m
2, the angular brackets denoting the symmetric-trace-free (STF) pro-

jection. Note that, strictly speaking, since the accelerations are order reduced in the two
forms (3.2) and (3.3), the equivalence between (3.2) and (3.3) is true only modulo a shift of
the phase variables. Such shifts are generally ignored here.

The basic starting point is of course the dynamical action written in Hamiltonian form,

S =

∫ +∞

−∞
dt

(
pi

dxi

dt
−H[x,p]

)
. (3.5)

Requiring that the action be stationary around the solution, we obtain Hamilton’s equa-
tions, in a form appropriate even for a non-local Hamiltonian. These will involve functional
derivatives with respect to the canonical variables, hence3

dxi

dt
=
δH

δpi
,

dpi
dt

= −δH
δxi

. (3.6)

For future reference, we note that the functional derivatives of the tail part of the Hamil-
tonian involve ordinary partial derivatives of the third derivative of the quadrupole mo-
ment (3.4a) with respect to the canonical variables. More precisely, they read

δHtail

δxi
= −2G2M

5c8

[
∂Î

(3)
jk

∂xi
Pf
2r/c

∫ +∞

−∞

dτ

|τ |
Î

(3)
ij (t+ τ)− ni

r
(Î

(3)
jk )2

]
, (3.7a)

3 The functional derivatives should be more accurately denoted δH/δpi(t) and δH/δxi(t). For any non-local

functional F [f ] of a function f(t), the functional derivative δF/δf(t) is defined, after suitable integrations

by parts (ignoring all integrated contributions at t = ±∞), by

δ

∫
dt F (t) =

∫
dt δf(t)

δF

δf(t)
.
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δHtail

δpi
= −2G2M

5c8

∂Î
(3)
jk

∂pi
Pf
2r/c

∫ +∞

−∞

dτ

|τ |
Î

(3)
ij (t+ τ) . (3.7b)

Notice the second term in Eq. (3.7a), which comes from the differentiation of the Hadamard
partie finie scale chosen here to be r(t).

A. Integral of energy

We start by computing the time derivative of the Hamiltonian “on-shell”, i.e., when the
Hamiltonian equations of motion (3.6) are satisfied by xi and pi. Contrary to what happens
in the usual local case, the non-local Hamiltonian is not conserved on-shell (even neglecting
the radiation reaction damping effects) because of the functional derivatives present in the
Hamiltonian equations (3.6). Using Eqs. (3.7), we find instead the “non-conservation” law

dH

dt
=
G2M

5c8

(
Î

(4)
ij (t) Pf

2r/c

∫ +∞

−∞

dτ

|τ |
Î

(3)
ij (t+ τ)− Î(3)

ij (t) Pf
2r/c

∫ +∞

−∞

dτ

|τ |
Î

(4)
ij (t+ τ)

)
. (3.8)

It is worth mentioning that the Hadamard partie finie scale r cancels out from the right-hand
side of (3.8). Moreover, even though the non-local Hamiltonian on-shell is not conserved,

it is actually conserved in an integrated sense, i.e.,
∫ +∞
−∞ dt dH

dt
= 0 (see Refs. [42, 43]).

Furthermore one can easily check, using for instance Eq. (5.25) in Ref. [1], that the right-
hand side of (3.8) is zero in the case of circular orbits.

We shall now construct from the law (3.8) the conserved energy E associated with the
non-local Hamiltonian. To this end, we perform a Taylor expansion of the integrand of (3.8)
when τ → 0. Since the kernel function µ(τ) = 1/|τ | is even, we may consider only the even
powers of τ . However, the expansion remains formal, since each of the coefficients of the
Taylor expansion is a divergent integral at the bounds τ = ±∞. To remedy this, we perform
all our manipulations with the modified kernel function µ(τ) = e−ε|τ |/|τ | for some ε > 0,
and we will let ε tend to zero at the end of our calculation to get a finite result. At this
stage, we can write

dH

dt
=
G2M

5c8

+∞∑
n=1

[
Î

(4)
ij (t)Î

(2n+3)
ij (t)− Î(3)

ij (t)Î
(2n+4)
ij (t)

] ∫ +∞

−∞

dτ e−ε|τ |

|τ |
τ 2n

(2n)!
. (3.9)

We no longer need the Hadamard partie finie, because the integrals are convergent at the
bound τ = 0 for n > 1. Under the form (3.9), it is straightforward to recast the right-hand
side as a total time derivative. Indeed, one readily checks that

Î
(4)
ij Î

(2n+3)
ij − Î(3)

ij Î
(2n+4)
ij =

d

dt

[
−Î(3)

ij Î
(2n+3)
ij + 2

n−2∑
s=0

(−)sÎ
(s+4)
ij Î

(2n−s+2)
ij − (−)n

(
Î

(n+3)
ij

)2

]
.

(3.10)
This relation is valid for any n > 1, with the second term involving the sum to be simply
ignored when n = 1. This formula proves that the “non-conservation” law (3.8) is in fact
equivalent to a conservation law stricto-sensu, namely dE/dt = 0. The conserved energy E,
though, differs from the Hamiltonian. It is defined instead by E = H + δH, with

δH =
G2M

5c8

+∞∑
n=1

[
Î

(3)
ij Î

(2n+3)
ij − 2

n−2∑
s=0

(−)sÎ
(s+4)
ij Î

(2n−s+2)
ij + (−)n

(
Î

(n+3)
ij

)2
]∫ +∞

−∞

dτ e−ε|τ |

|τ |
τ 2n

(2n)!
.

(3.11)
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The quantity E = H + δH actually represents the Noetherian conserved energy associated
with the Hamiltonian containing the non-local term (3.2). Obviously, the contribution of
the tail term to that energy is just Etail = Htail + δH, where Htail is given by Eq. (3.2).

However, the expression (3.11) is not yet what we need since it is in the form of an
infinite Taylor expansion, while we would like to get a non-perturbative expression for the
conserved energy. The most convenient approach to resum the Taylor series is to use a
Fourier decomposition of the binary dynamics at the Newtonian approximation (which is
sufficient for our purpose). The Newtonian quadrupole moment is a periodic function of
time (there is no orbital precession at this order), which may be decomposed as the discrete
Fourier series

Iij(t) =
+∞∑
p=−∞

I
p
ij ei p ` with I

p
ij =

∫ 2π

0

d`

2π
Iij e−i p ` , (3.12)

where ` = ω(t − t0) is the mean anomaly of the binary motion, with ω = 2π/P being the
orbital frequency (or mean motion) corresponding to the orbital period P , and t0 the instant
of passage at periastron. The discrete Fourier coefficients pIij are functions of the orbit’s
eccentricity e (to Newtonian order) and satisfy pIij = −pI ij, with the overbar denoting
the complex conjugation. Their explicit expressions for generic elliptic orbits in terms of
combinations of Bessel functions depending on the eccentricity are given in the Appendix A
of [46]. We provide some alternative expressions in the Appendix B below.

Plugging (3.12) into (3.11), we obtain a double Fourier series indexed by integers p and
q, from which we separate out the constant (DC) part corresponding to modes p + q = 0
from the oscillating (AC) part corresponding to p + q 6= 0. After some manipulations, we
are able to nicely resum the Taylor expansions when τ → 0 in both DC and AC parts to
simple trigonometric functions. We obtain

δH =− G2Mω6

5c8

[ +∞∑
p=−∞

| I
p
ij|2p6

∫ +∞

−∞

dτ e−ε|τ |

|τ |
(pωτ) sin(pωτ) (3.13)

+
1

2

∑
p+q 6=0

I
p
ij I
q
ij
p3q3(p− q)
p+ q

ei(p+q)`

∫ +∞

−∞

dτ e−ε|τ |

|τ |
[
cos(pωτ)− cos(qωτ)

]]
.

The remaining integrals are convergent at the bound τ = 0, as well as at infinity τ =
±∞ thanks to our exponential cut-off factor e−ε|τ |. Moreover, they can be evaluated with
standard formulas,4 yielding

δH = −2G2Mω6

5c8

[∑
p

| I
p
ij|2p6 − 1

2

∑
p+q 6=0

I
p
ij I
q
ij
p3q3(p− q)
p+ q

ln

∣∣∣∣pq
∣∣∣∣ ei(p+q)`

]
. (3.14)

4 Namely, ∫ +∞

−∞

dτ e−ε|τ |

|τ |
(pωτ) sin(pωτ) = 2 ,∫ +∞

−∞

dτ e−ε|τ |

|τ |
[
cos(pωτ)− cos(qωτ)

]
= −2 ln

∣∣∣∣pq
∣∣∣∣ ,

where we have set ε = 0 after the integration.
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This is our final result for E = H + δH, valid for general binary orbits. There are no other
contributions to this conserved integral of energy associated to the non-local Hamiltonian
H = H0 + Htail at the 4PN order. Notice that the DC contribution [first term in (3.14)]
admits a closed analytic form in physical space. We see that it is indeed directly related to
the leading order total averaged energy flux FGW emitted in gravitational waves (with 〈〉
referring to the time averaging):

δHDC = −2G2M

5c8
〈
(
Î

(3)
ij

)2〉 = −2GM

c3
FGW . (3.15)

The second term in (3.14), with oscillating modes p + q 6= 0, can straightforwardly be
computed. Its expression may be checked by a direct integration of the Fourier decompo-
sition of the right-hand side of the “non-conservation” law (3.8). However, such a direct
integration misses an integration constant which cannot a priori be guessed by this method.
Its correct value is provided by the constant DC contribution, i.e., the first term in (3.14)
(corresponding to Fourier modes with p+q = 0). Finally, the important point for us is that,
while for circular orbits the AC term vanishes, the DC term does not. In the circular orbit
limit, the non-zero modes reduce to the quadrupolar ones (p = ±2), and to the modes p = 0
which will not contribute here.5 Eq. (3.14) becomes then (with M = m)

δH = −64

5
mc2 ν2x5 . (3.16)

As usual we have posed x = (Gmω/c3)2/3. The extra term (3.16) was not considered in
Paper I. As we shall see, including it gladly resolves our disagreement with the derivation
of the conserved energy for circular orbits in the Hamiltonian formalism [25].

B. Integral of angular momentum

We keep considering the problem of defining conserved quantities from a non-local-in-time
Hamiltonian, but focusing on the angular momentum. We assume that the instantaneous
piece H0 of the center-of-mass Hamiltonian (3.1) is rotationally invariant, i.e., depends on
the canonical variables only through the rotational invariants r = |x|, pr = n · p and
p2. This is surely the case for our 4PN Hamiltonian describing the dynamics of compact
binaries without spins. Let us therefore study the impact of the non-local tail piece of H on
the conservation law of the angular momentum. First of all, it is straightforward to derive
the law of variation of the “orbital” angular momentum L = x×p (or Li = εijkx

jpk) which
would be conserved in absence of the tail term:

dLi

dt
= −εijk

(
xj
δHtail

δxk
+ pj

δHtail

δpk

)
. (3.17)

5 We have (with m being the total mass and ν the symmetric mass ratio)

I
2
xx = I

−2
xx =

1

4
mνr2 , I

2
yy = I

−2
yy = −1

4
mνr2 ,

I
2
xy = − I

−2
xy = − i

4
mνr2 , I

0
xx = I

0
yy = −1

2
I
0
zz =

1

6
mνr2 .

10



Using the functional derivatives (3.7) of the tail part of the Hamiltonian and the explicit
expression of the third derivative of the quadrupole moment (3.4a), we further obtain

dLi

dt
=

4G2M

5c8
εijk Î

(3)
jl Pf

2r/c

∫ +∞

−∞

dτ

|τ |
Î

(3)
kl (t+ τ) , (3.18)

noticing again the cancellation of the Hadamard partie finie scale on the right-hand side.
Next, proceeding as we did for the energy, we Taylor expand the integrand when τ → 0,
after adding as previously the regulator e−ε|τ | to avoid divergence problems:

dLi

dt
=

4G2M

5c8
εijk

+∞∑
n=1

Î
(3)
jl Î

(2n+3)
kl

∫ +∞

−∞

dτ e−ε|τ |

|τ |
τ 2n

(2n)!
. (3.19)

It is no longer necessary to keep the Hadamard partie finie on the remaining integral. Now,
the appropriate analogue of the formula (3.10) is

εijkÎ
(3)
jl Î

(2n+3)
kl =

d

dt

[
n−1∑
s=0

(−)sεijkÎ
(s+3)
jl Î

(2n−s+2)
kl

]
. (3.20)

Hence we obtain the full-fledged conservation law for the integral of angular momentum:
dJ i/dt = 0. When the Hamiltonian is non-local, J i = Li + δLi contains, in addition to the
naive guess Li = εijkx

jpk, the extra contribution

δLi = −4G2M

5c8

+∞∑
n=1

[n−1∑
s=0

(−)sεijkÎ
(s+3)
jl Î

(2n−s+2)
kl

] ∫ +∞

−∞

dτ e−ε|τ |

|τ |
τ 2n

(2n)!
. (3.21)

The Taylor expansion when τ → 0 can be summed up at the prize of introducing Fourier
series. We end up with the following result, composed of a constant DC term and a non
constant oscillation AC term:

δLi =
4G2Mω5

5c8

[∑
p

iεijk I
p
jl I
−p
kl p

5 −
∑
p+q 6=0

iεijk I
p
jl I
q
kl
p3q3

p+ q
ln

∣∣∣∣pq
∣∣∣∣ ei(p+q)`

]
. (3.22)

For the DC term, a relation similar to Eq. (3.15) for the energy holds, namely

(δLi)DC =
4G2M

5c8
〈εijkÎ(3)

jl Î
(2)
kl 〉 = −2GM

c3
GiGW , (3.23)

where GiGW denotes the total (averaged) flux of angular momentum at leading PN order.
Finally, for circular orbits, the latter expression reduces to the DC contribution

δL = −64

5

Gm2

c
ν2x7/2` = δpϕ` , (3.24)

with ` = L/|L|, the symbol δpϕ denoting the corresponding contribution in the restricted
problem (see Sec. IV A), such that h = pϕ + δpϕ is conserved.
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IV. CONSERVED ENERGY FOR CIRCULAR ORBITS

In the present section, we shall compute the energy E for circular orbits, extending the
derivation of Paper I by including the extra contribution δHDC investigated in the previous
section. In the next section V, we will also compute the advance of the periastron in the
circular orbit limit, but we shall find that, in this case, the extra contributions in the energy
and the angular momentum do not contribute.

When the orbits are exactly circular, i.e., when the space-time admits a helical Killing
vector, both the energy and periastron advance can be determined in the small mass-ratio
limit using perturbative gravitational self-force methods [29, 30]. One first obtains the
redshift observable [47], which is the invariant associated with the helical Killing symmetry.
From this quantity, one deduces the energy using the first law of binary point-particle
mechanics [32]. To get the periastron advance, one needs both an averaged version of the
redshift observable [48] and a generalization of the first law valid for eccentric orbits [49].
We shall thus limit ourselves to the case of circular orbits in order to make meaningful
comparisons between our 4PN results and the self-force results.

A. Derivation using reduced canonical variables

We consider the restricted problem of particle motion in a fixed orbital plane, which is
appropriate for the 4PN dynamics of particles without spin. Let ϕ be the phase angle or
true anomaly of the orbit, defined from the orbit’s periastron. For the restricted problem,
the relative separation is given by x = rn with the unit vector n = (cosϕ, sinϕ) in polar
coordinates. Introducing the second unit vector λ = (− sinϕ, cosϕ), orthogonal to n in
the orbital plane, we also decompose p = prn + pϕλ/r, where pϕ is the conserved angular
momentum in the case of a rotationally invariant Hamiltonian. Then, ` = n×λ is the unit
vector normal to the orbital plane and we have L = x× p = pϕ`. Another useful notation
is to pose m = 1√

2
(n+ iλ) (see the Appendix B).

Performing the change of canonical variables (x,p)→ (r, ϕ, pr, pϕ), Hamilton’s equations,
derived from the action S =

∫
[prdr + pϕdϕ−Hdt], read

dr

dt
=
δH

δpr
,

dpr
dt

= −δH
δr

, (4.1a)

dϕ

dt
=
δH

δpϕ
,

dpϕ
dt

= −δH
δϕ

, (4.1b)

where the derivatives are still to be considered in a functional sense. The Hamiltonian, as
in Eq. (3.1), is again the sum of the instantaneous piece H0(r, pr, pϕ) and of the non-local
tail term (3.2). While the instantaneous piece H0 is independent of the phase angle ϕ, the
tail piece does depend on it, so that the conjugate momentum pϕ is no longer conserved for
the non-local dynamics [see Eqs. (3.17)–(3.18)].

In this section, we shall mainly study the contribution of the tail term in the circular
energy, as the computations due to the instantaneous part are standard. We simply choose
for the instantaneous term the Newtonian Hamiltonian and add to it the tail term (3.2),
setting

H =
1

2mν

(
p2
r +

p2
ϕ

r2

)
− Gm2ν

r
+Htail . (4.2)
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We then write the tail term as Htail = −(G2M)/(5c8) Î
(3)
ij T

(3)
ij with the following special

notation for the tail factor (where the Hadamard partie finie is still defined with the scale
r)

T (a)
ij = Pf

2r/c

∫ +∞

−∞

dτ

|τ |
Î

(a)
ij (t+ τ) . (4.3)

This tail factor may be computed explicitly by means of the Fourier series (3.12), which
leads to (with γE the Euler constant)

T (a)
ij = −2

+∞∑
p=−∞

(ip ω)a I
p
ij eip`

(
ln

(
2|p|ωr
c

)
+ γE

)
. (4.4)

In the following, we shall systematically project out the tail factor onto the moving

vector basis (n,λ), thus defining T (a)
nn = ninjT (a)

ij , T (a)
nλ = niλjT (a)

ij and T (a)
λλ = λiλjT (a)

ij . For
instance, thanks to (3.4a), we may put the tail piece of the Hamiltonian in the form (with
M = m in this approximation)

Htail =
2G3m2

5c8r2

[
prT (3)

nn +
4pϕ
r
T (3)
nλ

]
. (4.5)

The Hamilton’s equations (4.1), in which we consistently use the functional derivatives of
the tail part of the Hamiltonian, can be written more explicitly as

dr

dt
=

pr
mν

+
4G3m2

5c8r2
T (3)
nn , (4.6a)

dpr
dt

=
p2
ϕ

mνr3
− Gm2ν

r2
+

8G3m2

5c8r3

[
prT (3)

nn +
6pϕ
r
T (3)
nλ −

Gm

r2

(
2

3
p2
r + 8

p2
ϕ

r2

)]
, (4.6b)

dϕ

dt
=

pϕ
mνr2

+
16G3m2

5c8r3
T (3)
nλ , (4.6c)

dpϕ
dt

= −8G3m2

5c8r2

[
prT (3)

nλ +
2pϕ
r

(
T (3)
λλ − T

(3)
nn

)]
. (4.6d)

Let us now derive the tail contribution to the conserved energy for circular orbits (extend-
ing the derivation from Sec. VD in Paper I). Imposing pr = 0 in Eqs. (4.6), we first recover
the usual Newtonian solution pϕ = p0

ϕ+O(c−8), ϕ = ω0t+O(c−8), in which p0
ϕ = mν

√
Gmr0

and ω0 =
√
Gm/r3

0 are the constant Newtonian angular momentum and orbital frequency,
respectively, with r0 being the radius of the circular orbit. Proceeding iteratively, we inject
the Newtonian solution into the tail terms of Eqs. (4.6). These can then be reduced for
circular orbits with the help of the formulas [see Eq. (5.25) in Paper I]:(

T (3)
nλ

) ∣∣∣
(p0ϕ,ω0t)

= 8
G3/2m5/2ν

r5/2

[
ln

(
4ω0r0

c

)
+ γE

]
, (4.7a)(

T (3)
nn

) ∣∣∣
(p0ϕ,ω0t)

=
(
T (3)
λλ

) ∣∣∣
(p0ϕ,ω0t)

= 0 . (4.7b)

In turn, the system of equations (4.6) including tails admits the solutions pϕ = p0
ϕ+∆pϕ and

ϕ = (ω0 + ∆ω)t, where ∆pϕ and ∆ω are the tail contributions to the angular momentum
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and orbital frequency, respectively, as a function of the radius r0. Their expressions are:

∆pϕ(r0) =
G9/2m11/2ν2

c8r
7/2
0

[
−192

5

(
ln

(
4ω0r0

c

)
+ γE

)
+

32

5

]
, (4.8a)

∆ω(r0) =
G9/2m9/2ν

c8r
11/2
0

[
−64

5

(
ln

(
4ω0r0

c

)
+ γE

)
+

32

5

]
. (4.8b)

This solves two of Hamilton’s equations, while the two others simply say that r0 and pϕ are
constant for circular orbits.

We are now in a position to calculate the conserved energy associated with the non-
local Hamiltonian for circular orbits. As shown in Sec. III, one must take into account extra
contributions in the definition of the energy and angular momentum with respect to the naive
expectations, i.e., H and L = x×p, respectively. In fact, we have seen that E = H+δH and
J = L+ δL, with δH and δL given by (3.14) and (3.22), or by the explicit formulas (3.16)
and (3.24), respectively, in the circular orbit limit. For the restricted problem, since L = pϕ`,
we shall decompose the true angular momentum invariant h as h = pϕ + δpϕ, where δpϕ
is given by (3.24) for circular orbits. Beware that ∆pϕ denotes the tail contribution in pϕ,
whereas δpϕ serves to connect pϕ to the angular momentum invariant h, as appropriate for
our non-local Hamiltonian.

Thus, the conserved energy for circular orbit is the sum of the total Hamiltonian H, made
of the instantaneous part as well as the tail term (4.5), which is to be evaluated thanks to
Eqs. (4.7), and of the crucial term δH given by (3.16). After using (4.8a), we find that the
tail contribution of the circular energy, regarded as a function of r0, is

∆E(r0) =
G9/2m11/2ν2

c8r4
0

[
−128

5

(
ln

(
4ω0r0

c

)
+ γE

)
− 32

5

]
. (4.9)

Finally, the invariant energy must be expressed in terms of the orbital frequency through
the usual parameter x = (Gmω/c3)2/3. We obtain

∆E(x) = −224

15
mc2ν2x5

[
ln (16x) + 2γE +

2

7

]
. (4.10)

The above value for ∆E(x) includes notably the tail contribution due to the replacement of
r0 as a function of x into the Newtonian energy EN = −1

2
Gm2ν/r0 by means of Eq. (4.8b).

The result (4.10) corrects Eq. (5.30) in Paper I and we are now in agreement with the
Hamiltonian formalism of Refs. [25, 26]. It is the extra term δH displayed in Eq. (3.16) that
permits to reconcile our work with the Hamiltonian results.

The complete expression of the circular energy through the 4PN order is the sum of
the tail part (4.10) and of all the terms coming from the instantaneous part of the 4PN
dynamics. The latter terms may be computed either in Lagrangian form, using the harmonic
coordinates Lagrangian of Paper I augmented by the two ambiguity parameters δ1 and
δ2 as advocated in Sec. II, or in Hamiltonian form. After reducing to the frame of the
center of mass and specializing to circular orbits, we get the full 4PN result, which however
still depends on one of the ambiguity parameters, namely δ2. As usual, the ambiguous
parameter is expected to be a pure rational fraction entering the coefficient that is linear in
the symmetric mass ratio ν, since the terms involving logarithms or irrationals such as π
and γE are uniquely determined. To find this fraction, we compare our expression with the
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result of GSF calculations, valid in the small mass ratio limit [31, 33]. This uniquely fixes
δ2 = 192

35
. In the end, our complete invariant 4PN circular energy as a function of the orbital

frequency reads

E = −mνc
2x

2

{
1 +

(
−3

4
− ν

12

)
x+

(
−27

8
+

19

8
ν − ν2

24

)
x2

+

(
−675

64
+

[
34445

576
− 205

96
π2

]
ν − 155

96
ν2 − 35

5184
ν3

)
x3

+

(
−3969

128
+

[
−123671

5760
+

9037

1536
π2 +

896

15
γE +

448

15
ln(16x)

]
ν

+

[
−498449

3456
+

3157

576
π2

]
ν2 +

301

1728
ν3 +

77

31104
ν4

)
x4

}
. (4.11)

B. Derivation using Delaunay-Poincaré variables

In this section, we present a derivation based on a simple non-local model that has
been proposed in Refs. [26]. Moreover, we aim at comparing and contrasting the non-local
dynamics to some other simpler models also discussed in [26]. Starting from the original
4PN non-local action for compact binaries, an alternative local action has been derived
in [26] by applying non-local shifts of the particles world-lines and removing “double-zero”
contributions. This local action has then been used in applications such as building the 4PN
effective-one-body (EOB) Hamiltonian [50]. In this section, we shall check that, in such a
local dynamics, the conserved energy for circular orbits reproduces that of the original non-
local dynamics. Furthermore, we shall confirm that the so-called “Ostrogradski” dynamics
investigated in [26] is equivalent to this local dynamics. It is thus also equivalent to the
non-local dynamics, at least regarding the evaluation of the conserved energy for circular
orbits. Since Ref. [26] insisted on the usefulness of a particular set of variables, known as
the elliptical Delaunay variables, we shall adopt those variables here.

Starting from the restricted problem (the motion lying in a fixed orbital plane), using
the canonical variables (x,p), we define the velocity as v = p/µ (where µ = mν) and
parametrize the motion by means of the usual elliptic elements, i.e., the semi-major axis a,
the eccentricity e, the argument of the periastron g (often denoted ω in celestial mechanics),
and the instant of passage at periastron t0. The Delaunay variables are then given by
(`, g, µL, µG), where ` = ω(t− t0) is the mean anomaly, ω = (Gm/a3)1/2 is the mean motion
(generally denoted n in celestial mechanics), L = (Gma)1/2, and G = [Gma(1−e2)]1/2 is the
angular momentum per unit mass. The important point is that the variables (`, g, µL, µG)
are canonical, with ` and g representing the generalized positions, µL and µG being the
associated generalized momenta. In fact, we shall use a variant of these variables, known as
the Poincaré canonical variables, (λ, h,Λ,H), where the generalized positions are λ = `+ g
and h = −g, while the associated canonical momenta are Λ = µL and H = µ(L − G).
Their main advantage is that λ represents directly the phase variable, measured from a
fixed direction in the orbital plane (thus taking into account the effect of orbital precession),

so that ω = λ̇ is nothing but the orbital frequency.
For our discussion we keep only the Newtonian term and the 4PN tail term given by (3.2).

Furthermore, one of advantage of the Delaunay-Poincaré variables (as emphasized in [26])
is that we can treat the tail term at the level of the Hamiltonian as an expansion when the
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eccentricity tends to zero, where

e(Λ,H) =

√
H (2Λ−H)

Λ
. (4.12)

As we are ultimately interested in the energy for circular orbits, we shall neglect the eccen-
tricity in the Hamiltonian. On the other hand, notice that the semi-major axis is only a
function of Λ through

a(Λ) =
Λ2

Gmµ2
. (4.13)

Thus, Λ will be directly related to the radius of the circular orbit. Working out the non-local
Hamiltonian (4.2) in the limit of e→ 0 and using the Delaunay-Poincaré variables we obtain

H = −G
2m2µ3

2Λ2
−32G10m9µ12

5c8

(
Pf

2
√

Λ0

∫ +∞

−∞

dτ

|τ |
cos[2(λ− λ′)]

Λ5Λ′5
− 4

ln(Λ/Λ0)

Λ10

)
+O (e) . (4.14)

We denote λ = λ(t) and λ′ = λ(t + τ) together with Λ = Λ(t), Λ′ = Λ(t + τ). When
e→ 0 the Hamiltonian depends functionally only on the phase variable λ and its conjugate
momentum Λ. We have a Hadamard partie finie in front of the non-local integral, and the
last term in (4.14) accounts for the fact that the partie finie depends on a scale which is the

separation at time t, i.e., r = a(1− e cosu) in elliptical representation, which yields r ∝
√

Λ
in the limit e → 0. The constant Λ0 introduced in (4.14) is irrelevant and actually cancels
out from the two terms.

We introduce a small parameter ε ∝ c−8 in front of the tail term and work at linear order
in ε. Posing Gm = ν = c = Λ0 = 1 for simplicity, and ignoring the remainder term in the
eccentricity and the Hadamard partie finie (always implicitly understood in what follows),
we have the very simple model

H = − 1

2Λ2
+ ε

(∫ +∞

−∞

dτ

|τ |
cos[2(λ− λ′)]

Λ5Λ′5
− 4

ln Λ

Λ10

)
. (4.15)

The dynamics follows from varying the action S =
∫

[Λdλ−Hdt]. The non-locality results
in functional derivatives in Hamilton’s equations, hence

λ̇ =
δH

δΛ
=

1

Λ3
+ ε

(
−10

∫ +∞

−∞

dτ

|τ |
cos[2(λ− λ′)]

Λ6Λ′5
+

40 ln Λ− 4

Λ11

)
, (4.16a)

Λ̇ = −δH
δλ

= 4ε

∫ +∞

−∞

dτ

|τ |
sin[2(λ− λ′)]

Λ5Λ′5
. (4.16b)

We shall now solve those equations for circular orbits. Noticing that the orbital frequency
ω = λ̇ of the circular motion is equal to 1/Λ3 to zero-th order in ε, and that Λ is constant
at that order, we can solve the equations thanks to the results [see Eq. (5.25) in Paper I]∫ +∞

−∞

dτ

|τ |
sin[2(λ− λ′)] = 0 , (4.17a)∫ +∞

−∞

dτ

|τ |
cos[2(λ− λ′)] = −2

[
ln

(
4

Λ3

)
+ γE

]
. (4.17b)
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The equations (4.16) are thus equivalent to saying that Λ is now constant to linear order in
ε, and that the following relation between Λ and the orbital frequency holds,

ω =
1

Λ3
+

20ε

Λ11

[
ln

(
4

Λ

)
+ γE −

1

5

]
. (4.18)

Our next problem is to relate the conserved energy of the circular orbit to the Hamilto-
nian (4.15) computed on shell. This problem has been solved in the general case in Sec. III A
and here we redo the reasoning within the toy model (4.15). Differentiating (4.15) with the
help of the equations of motion (4.16) we get

dH

dt
= 2ε

∫ +∞

−∞

dτ

|τ |
(
λ̇+ λ̇′

) sin[2(λ− λ′)]
Λ5Λ′5

. (4.19)

As in Sec. III A we perform a formal Taylor expansion when τ → 0 and are able to rewrite
the right-hand side in the form of a total derivative which is then transferred to the left-hand
side. This yields the looked for energy in the form E = H + δH where

δH =− ε
+∞∑
n=1

[
C C(2n) − 2

n−2∑
s=0

(−)sC(s+1)C(2n−s−1) + (−)n
(
C(n)

)2
]∫ +∞

−∞

dτ e−ε|τ |

|τ |
τ 2n

(2n)!

+
(
idem with C ←→ S

)
. (4.20)

We have posed C = cos(2λ)/Λ5 and S = sin(2λ)/Λ5 and the second term represents exactly
the same expression but with S in place of C. The Taylor expansion can be re-summed up by
going to Fourier space. We decompose C and S in Fourier series [with the conventions (3.12)]
and get closed-form expressions involving trigonometric integrals that are finally computed
using Footnote 4. Finally we have

δH = ε

[
2
∑
p

| C
p
|2 +

∑
p+q 6=0

C
p
C
q

p− q
p+ q

ln

∣∣∣∣pq
∣∣∣∣ ei(p+q)`

]
+
(
idem with C

p
←→ S

p

)
. (4.21)

This is made of oscillatory terms having p+ q 6= 0 and of a crucial constant DC contribution
with p+q = 0. For circular orbits6 we find that the DC term does give the extra contribution
δH = 2ε/Λ10 and we obtain, after reducing Eq. (4.15) to circular orbits using (4.17),

E = − 1

2Λ2
− 2ε

Λ10

[
ln

(
4

Λ

)
+ γE − 1

]
. (4.22)

Combining (4.18) and (4.22) we can express E at linear order in ε as a function of the
circular orbit frequency, or, rather, the usual parameter x = ω2/3. The result is

E = −x
2

+
7ε

3
x5

[
ln (16x) + 2γE +

2

7

]
, (4.23)

6 In this case we just have 2C = 1
2Λ5 = −2C and 2S = 1

2iΛ5 = −−2S (others are zero).
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which is consistent with Eq. (4.10), and with the result from the ADM Hamiltonian approach
obtained in Refs. [25, 26].

In fact, the latter works [25, 26] proceeded in another way. Instead of working with the
original non-local Hamiltonian (4.15), they first inserted into the non-local tail integral the
equations of motion “off-shell”, i.e., containing non-zero source terms Sλ and SΛ defined
by the variation of the action with respect to the canonical variables, Sλ = δS/δλ and
SΛ = δS/δΛ. In Eqs. (4.7) of [26] they obtained a solution to those off-shell equations at
linear order in the source terms Sλ and SΛ, which they inserted back into the non-local action,
again keeping only the linear terms when Sλ, SΛ → 0, arguing that the higher non-linear
terms are double-zero or multiple-zero contributions that do not affect the dynamics. Then
the extra terms linear in the source contributions Sλ and SΛ could be “field-redefined away”
by some shifts of the dynamical variables, say δλ = ξλ and δΛ = ξΛ, where the shifts are
given as some non-local integrals over Sλ and SΛ. Thus, according to Ref. [26], performing
these shifts justifies the naive replacement of λ′ and Λ′ in the non-local Hamiltonian (4.15)
by the solution of the Newtonian equations of motion, which in this case is λ′ = λ + τ/Λ3

and Λ′ = Λ. As a result the non-local dynamics becomes local in the shifted variables, with
Hamiltonian given by

H = − 1

2Λ̃2
+ ε

(
1

Λ̃10

∫ +∞

−∞

dτ

|τ |
cos

(
2τ

Λ̃3

)
− 4

ln Λ̃

Λ̃10

)
, (4.24)

where the shifted variables are λ̃ = λ + ξλ and Λ̃ = Λ + ξΛ. This is the toy model of
Eq. (4.12) in [26], except that here we keep the same last term as in (4.15) to account for

our choice for the Hadamard partie finie scale. Since (4.24) depends only on Λ̃ and not on

λ̃ (the dependence on λ̃ would arise in eccentricity-dependent terms), we have Λ̃ = const,
while the orbital frequency comes from the conjugate Hamiltonian equation as

ω =
∂H

∂Λ̃
=

1

Λ̃3
+ ε

[
− 10

Λ̃11

∫ +∞

−∞

dτ

|τ |
cos

(
2τ

Λ̃3

)
+

6

Λ̃14

∫ +∞

−∞

dτ

|τ |
τ sin

(
2τ

Λ̃3

)
+

40 ln Λ̃− 4

Λ̃11

]
. (4.25)

Note that the second term in the square brackets is due to the derivation of the “frequency”

1/Λ̃3 in the argument of the cosine inside the integral, and this contribution is evaluated
using the formulas in Footnote 4. On the other hand, in the local model there is no need to
add an extra contribution to the conserved energy E, since the energy is obviously given by
the Hamiltonian on shell. The extra term δH in the non-local model gives a contribution
which exactly accounts for the presence of the second term in Eq. (4.25). Finally, taking

into account the relation between ω and Λ̃ deduced from (4.25), we obtain for the invariant
circular energy expressed in terms of x = ω2/3 the same result as Eq. (4.23). In particular
this justifies the procedure of “localization” of the non-local action by means of non-local
shifts, as advocated in Ref. [26].

The authors of [26] also argued that the non-local dynamics is equivalent to another
dynamics, specified by a generalized Hamiltonian à la Ostrogradski obtained from the non-
local Hamiltonian (4.15) by formally performing the Taylor expansion λ′ = λ+ λ̇τ +O(τ 2)
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and keeping only the linear term, thus

H = − 1

2Λ2
+ ε

(
1

Λ10

∫ +∞

−∞

dτ

|τ |
cos
(
2λ̇τ

)
− 4

ln Λ

Λ10

)
. (4.26)

This Hamiltonian is a generalized one, as it depends on Λ and λ̇, but it is local since the
canonical variables are evaluated at time t. The Hamiltonian equations read now

λ̇ =
∂H

∂Λ
, Λ̇ =

d

dt

(
∂H

∂λ̇

)
, (4.27)

while the associated conserved energy is given by

E = H − λ̇∂H
∂λ̇

. (4.28)

We readily find that the equations of motion imply that Λ = const and that ω = λ̇ is
related to Λ by the same relation (4.18) as in the non-local model. Furthermore the result
is the same as for the non-local model because the second term present in the conserved
energy (4.28) plays the same role as the extra term due to the DC part of Eq. (4.21) in the
non-local model, and we end up again with the same result as in Eq. (4.23), thus confirming
the arguments of Ref. [26].

V. PERIASTRON ADVANCE FOR CIRCULAR ORBITS

We denote by K the fractional angle of the periastron advance, such that the precession
of the periastron per revolution is Φ = 2πK. As K tends to one in the limit c → +∞
(no precession at the Newtonian level) the relativistic precession is entirely described by
k = K−1. Because of the non-local tail term (3.2), it will be possible to compute K only in
the form of an expansion series when the orbit’s eccentricity e→ 0. In fact we shall restrict
our calculation to the limiting case of circular orbits. In this section we shall focus our
attention mostly on the control of the tail contribution to the periastron. The contributions
due to the local part of the dynamics, will essentially be dealt with standard methods [51],
but some complements are given in Appendix C.

Even if we consider in fine the limiting case of circular orbits, we must be careful about
taking into account high enough corrections in the eccentricity, because of cancellations
occuring with powers of e in denominators, yielding a finite result when e → 0. The
precession equation we need to integrate in the Hamiltonian formalism [see Eqs. (4.1)] is

dϕ

dr
=
δH/δpϕ
δH/δpr

. (5.1)

In the more detailed model H = H0+Htail where H0 is the Newtonian Hamiltonian, see (4.2),
we insert Eqs. (4.6) into (5.1) and obtain, after expanding to 4PN order,

dϕ

dr
=

pϕ
r2pr

[
1 +

4G3m3ν

5c8r2

(
4r

pϕ
T (3)
nλ −

1

pr
T (3)
nn

)]
. (5.2)

Since we must consistently include high-order corrections in the eccentricity, recall that pϕ
and the Hamiltonian H are not constant but oscillate at the 4PN order, and we must take
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into account those variations into the precession equation (5.2). With the notation (4.3),
the equations obeyed by these quantities, which are equivalent to (3.8) and (3.18), read as

dH

dt
=

2G2m2

5c8

[
1

mνr3

([
2p2

r +
3h2

r2
+
m3ν2

r

]
T (3)
nn +

10hpr
r
T (3)
nλ −

4h2

r2
T (3)
λλ

)
+

1

r2

(
prT (4)

nn +
4h

r
T (4)
nλ

)]
, (5.3a)

dpϕ
dt

= −8G3m2

5c8r2

[
prT (3)

nλ +
2h

r

(
T (3)
λλ − T

(3)
nn

)]
. (5.3b)

In Sec. III we related the solutions of these equations to the conserved integrals of energy
E and angular momentum J = h`, with results E = H + δH and h = pϕ + δpϕ where δH
and δpϕ have been provided in a general way by Eqs. (3.14) and (3.22), with the obvious
correspondence J = L+ δL = (pϕ + δpϕ)`. Recall that δH and δpϕ contain both oscillating
AC and constant DC terms. We have checked that the DC terms in (3.14) and (3.22)
do not contribute to the periastron advance. On the other hand the AC terms play an
important role and can be computed either from (3.14) and (3.22) or directly by integrating
out Eqs. (5.3), using the Fourier transform of the tail term (4.4). Note that the Fourier
series is equivalent to an expansion when the eccentricity e → 0 so it must be pushed far
enough to fully control the periastron even in the circular orbit limit e = 0.

Next we equate H given by (4.2) to E − δH, which permits to solve for the radial
momentum pr consistently to the 4PN order, with result

pr = f(r)

[
1 +

h

r2f 2(r)
δpϕ −

mν

f 2(r)

(
Htail + δH

)]
, (5.4)

in which Htail can also be replaced by the more explicit expression (4.5). Here we have intro-
duced the function f(r) representing the Newtonian approximation for the radial momentum
in terms of the orbit’s invariants E and h, namely

f(r) =

√
2mνE +

2Gm3ν2

r
− h2

r2
. (5.5)

With such a notation we end up with a completely explicit expression for the precession
equation, depending also on the previously determined δH and δpϕ,

dϕ

dr
=

h

r2f(r)

{
1 +

2G3m3ν

5c8r2

(
− 1

f(r)
T (3)
nn +

4r

h

[
2 +

h2

r2f 2(r)

]
T (3)
nλ

)

−
[
1 +

h2

r2f 2(r)

]
δpϕ
h

+
mν

f 2(r)
δH

}
. (5.6)

In this expression the tail terms can be obtained using the Fourier expansion (4.4), together
with usual formulas for the Fourier decomposition of the Keplerian motion.7 Note that
because the radial function f(r) is proportional to e for a solution of the motion, one

7 Among these let us report the well-known expansion of the eccentric anomaly u, related to the mean
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must expand the tail terms (and δH, δpϕ as well) to sufficiently high order in e. Finally we
integrate the precession equation (5.6) between the turning points rp and ra corresponding to
periastron and apastron. All the integrals can be computed either from Sommerfeld’s method
of complex contour integral or equivalently, by using Hadamard’s partie finie method [51].
One of the integrals to be computed contains a logarithm and we explain in Appendix C how
we employ the method of contour integral in this case. We obtain in the limiting circular
case e→ 0 the tail contribution to the periastron advance as

Ktail =

(
352

5
− 1256

15
lnx− 592

15
ln 2− 1458

5
ln 3− 2512

15
γE

)
νx4 . (5.7)

Next we evaluate the numerous instantaneous contributions up to 4PN order. We did
two independent calculations, one based on the invariants associated with our harmonic-
coordinates Lagrangian, as given in Paper I but corrected by Eq. (A3) above, and one
based on the associated ADM Hamiltonian. The simplification of course, is that with the
instantaneous part of the dynamics the invariants are defined in the usual way — there
is no need to worry about their variations as in Eqs. (5.3), and the calculation can be
done for any eccentric orbits. Again we compute all integrals by means of Sommerfeld’s
contour integrals [52] or alternatively by Hadamard’s partie finie integrals. As is well known,
in harmonic coordinates we meet integrals containing some logarithms. In that case the
Sommerfeld method is no longer straightforward and has to be adapted as described in
Appendix C.

Considering the circular orbit limit and adding the tail part (5.7) we look for the values
of the ambiguity parameters δ1 and δ2 that are needed to reproduce the known GSF contri-
bution to the periastron advance when ν → 0 [26, 34–37]. Like for the energy we find that
the logarithms and all irrationals (like π2 and γE) are already correct, and we get only one
constraint δ1 + 14δ2 = 22013

315
. Since we already know that δ2 = 192

35
from the circular limit of

the energy (see Sec. IV A), we obtain δ1 = −2179
315

. The ambiguity parameters are therefore
determined, as announced in Eq. (2.6). Thus the GSF limit has permitted us to uniquely
fix the values of the two ambiguity parameters and our 4PN dynamics is now complete (for
any mass ratio).

For the instantaneous part of the periastron advance and for general orbits we find8

K0 = 1 +
3

c2ĥ2

+
1

c4

[
1

ĥ4

(
105

4
− 15

2
ν

)
+
Ê

ĥ2

(
15

2
− 3ν

)]

anomaly ` by Kepler’s equation ` = u− e sinu:

u = `+ 2

+∞∑
q=1

1

q
Jq(qe) sin(q`) ,

eiku = −e
2
δ1,|k| +

∑
s6=0

k

s
Js−k(se) eik` (for any k ∈ N∗) .

We provide in Appendix B the explicit expressions of the Fourier coefficients of the Newtonian quadrupole

moment in terms of Bessel functions of the eccentricity.
8 Our computations make extensive use of the software Mathematica together with the tensor package

xAct [53].
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+
1

c6

[
1

ĥ6

(
1155

4
+

(
−625

2
+

615

128
π2

)
ν +

105

8
ν2

)
+
Ê

ĥ4

(
315

2
+

(
−218 +

123

64
π2

)
ν +

45

2
ν2

)
+
Ê2

ĥ2

(
15

4
− 15

4
ν + 3ν2

)]

+
1

c8

[
1

ĥ8

(
225225

64
+

(
−1736399

288
+

2975735

24576
π2

)
ν +

(
132475

96
− 7175

256
π2

)
ν2 − 315

16
ν3

)
+
Ê

ĥ6

(
45045

16
+

(
−293413

48
+

257195

2048
π2

)
ν +

(
35065

16
− 615

16
π2

)
ν2 − 525

8
ν3

)
+
Ê2

ĥ4

(
4725

16
+

(
−20323

24
+

35569

2048
π2

)
ν +

(
4045

8
− 615

128
π2

)
ν2 − 45ν3

)
+
Ê3

ĥ2

(
15

4
ν2 − 3ν3

)]
, (5.8)

where we have conveniently rescaled the invariants as Ê = E
mνc2

and ĥ = hc
Gm2ν2

. Reduc-

ing (5.8) to circular orbits is quite simple, as we need Ê and ĥ in terms of x = (Gmω
c3

)2/3

only to 3PN order (since the Newtonian term is merely one), and we get

K0 = 1 + 3x+

(
27

2
− 7ν

)
x2 +

(
135

2
+

[
−649

4
+

123

32
π2

]
ν + 7ν2

)
x3

+

(
2835

8
+

[
−60257

72
+

48007

3072
π2

]
ν +

[
5861

12
− 451

32
π2

]
ν2 − 98

27
ν3

)
x4 . (5.9)

Finally, our complete prediction for the periastron advance in the case of circular orbits is

K = 1 + 3x+

(
27

2
− 7ν

)
x2 +

(
135

2
+

[
−649

4
+

123

32
π2

]
ν + 7ν2

)
x3

+

(
2835

8
+

[
−275941

360
+

48007

3072
π2 − 1256

15
lnx− 592

15
ln 2− 1458

5
ln 3− 2512

15
γE

]
ν

+

[
5861

12
− 451

32
π2

]
ν2 − 98

27
ν3

)
x4 . (5.10)

The GSF contribution therein is generally described by means of the function ρ(x) such that
K−2 = 1− 6x+ νρ(x) +O(ν2) [35, 37], and we get

ρ = 14x2 +

(
397

2
− 123

16
π2

)
x3

+

(
−215729

180
+

58265

1536
π2 +

1184

15
ln 2 +

2916

5
ln 3 +

5024

15
γE +

2512

15
lnx

)
x4 . (5.11)

The 4PN coefficient is of the type ρ4PN = a4PN + b4PN lnx and in particular, the coefficient
a4PN, with numerical value a4PN ' 64.6406, is in perfect agreement (thanks to our previous
adjustement of ambiguity parameters) with GSF calculations [36].
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VI. CONCLUSIONS

In this paper, we further investigated the problem of the 4PN equations of motion of
compact binary systems without spins in harmonic coordinates. In our previous work [1]
(Paper I), we computed the Fokker Lagrangian of the motion in harmonic coordinates or,
equivalently, after performing suitable shifts of the particle’s world-lines, the Hamiltonian
in ADM-like coordinates. An important feature of the dynamics at the 4PN order is that
it is non-local in time, due to the appearance of the tail effect. In the present paper,
we advocated that the infra-red (IR) regularization of the bound of integrals at spatial
infinity in the Einstein-Hilbert part of the Fokker action is problematic, as different types of
regularizations might lead to different results. However, we conjectured that the difference is
composed of two types of terms (modulo some irrelevant shifts of the trajectories). Motivated
by this, we introduced two and only two ambiguity parameters reflecting an incompleteness
in our understanding of the IR regularization. Among these two parameters, one is actually
equivalent to the ambiguity parameter already assumed in Paper I, so that we actually just
added one extra parameter with respect to Paper I. Further work [39] will be needed to
confirm our conjecture regarding the structure of the ambiguous terms and to understand
whether the use of dimensional regularization permits determining one combination of these
ambiguity parameters.

Next, we obtained the conserved integral of energy and the periastron advance in the case
of circular orbits, fully taking into account the non-local character of the dynamics brought
by the tail term. Thanks to these two observables, we have been able to uniquely fix the
values of the two ambiguity parameters by requiring that the expressions of the energy and
periastron advance for circular orbits coincide with those predicted by gravitational self-force
(GSF) calculations in the small mass ratio limit. Therefore, our 4PN dynamics of compact
binaries, with arbitrary mass ratio, in either Lagrangian or Hamiltonian form, is complete.
However, to reach our goal, we have postulated a particular structure for the ambiguous
part of the Fokker Lagrangian and relied on it. We leave to future work [39] the task of
better understanding the nature of these ambiguities.

An important problem encountered in Paper I was a discrepancy between our computa-
tion of the conserved energy in the circular orbit limit for the non-local dynamics and the
derivation proposed in Refs. [25, 26] within the Hamiltonian formalism. The latter was based
on an initial “localization” of the Hamiltonian by means of appropriate non-local shifts of
the trajectories, which yielded a local Hamiltonian in the shifted variables. In the present
paper, we resolved this discrepancy by showing that, when a Hamiltonian is non-local, there
arises an extra term in the conserved integral of energy (with respect to the value on shell
of the Hamiltonian itself) containing a purely constant (DC type) piece that gives a net
contribution in the case of circular orbits. This extra contribution was not considered in
Paper I. We thoroughly investigated such extra terms, both in the integrals of energy and
angular momentum, by means of Fourier series valid for general orbits. Taking into account
the presence of the DC term in the conserved energy for circular orbits, we recovered the
same result as that derived in the Hamiltonian framework [25, 26]. Finally, after having
fixed the two ambiguity parameters by comparison with GSF results, we found that our
complete 4PN dynamics is in full agreement (for all the terms) with the results of the ADM
Hamiltonian formalism [21–23, 25, 26].

Future works will extend the equations of motion to the 4.5PN order by including the
dissipative radiation-reaction terms. We will also concentrate on the computation of the
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multipole moments of compact binaries and on the gravitational radiation field to 4.5PN
order. A first part of the latter program, concerning high-order tail effects in the radiation
field, has been recently completed [54].
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Appendix A: The 4PN Lagrangian in harmonic and ADM coordinates

Our final 4PN Lagrangian in harmonic coordinates is written like in Paper I as

L = LN +
1

c2
L1PN +

1

c4
L2PN +

1

c6
L3PN +

1

c8
L4PN +O

(
1

c10

)
. (A1)

The terms up to the 3PN order are given by Eqs. (5.2) in Paper I, and the 4PN term is
made of a non-local tail piece and many instantaneous contributions,

L4PN = Linst
4PN + Ltail

4PN , (A2a)

Linst
4PN = L

(0)
4PN +GL

(1)
4PN +G2 L

(2)
4PN +G3 L

(3)
4PN +G4 L

(4)
4PN +G5 L

(5)
4PN . (A2b)

The tail piece is given by Eq. (5.4) in Paper I, while all the instantaneous terms are provided
by Eqs. (5.6) in Paper I, except for the G4 term which is now to be corrected with the extra
term in Eq. (2.4), with the specific values (2.6) of the ambiguity parameters. Thus the G4

term in Paper I is to be replaced by

L
(4)
4PN =

m4
1m2

r3
12

[
1691807

25200
(a1n12)− 149

6
(a2n12)

]
+
m3

1m
2
2

r3
12

[(
−2470667

16800
+

1099

96
π2
)

(a1n12) +
(9246557

50400
− 555

64
π2
)

(a2n12)

]
+
m4

1m2

r4
12

[(2146

75
− 880

3
ln
[r12

r′1

])
(n12v1)2 +

(3461

50
+

880

3
ln
[r12

r′1

])
(n12v1)(n12v2)

− 1165

12
(n12v2)2 +

(
−11479

300
− 220

3
ln
[r12

r′1

])
(v1v2)

+
(317

25
+

220

3
ln
[r12

r′1

])
v2

1 +
1237

48
v2

2

]
+
m3

1m
2
2

r4
12

[(26957687

50400
− 3737

96
π2 − 286

3
ln
[r12

r′1

])
(n12v1)2
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+
(
−4158043

5040
+

179

4
π2 + 44 ln

[r12

r′1

]
+ 64 ln

[r12

r′2

])
(n12v1)(n12v2)

+
(16311923

50400
− 559

96
π2 +

110

3
ln
[r12

r′1

]
− 64 ln

[r12

r′2

])
(n12v2)2

+
(1568689

6300
− 2627

192
π2 − 154

3
ln
[r12

r′1

]
− 16 ln

[r12

r′2

])
(v1v2)

+
(
−1818001

12600
+

527

48
π2 +

121

3
ln
[r12

r′1

])
v2

1

+
(
−293443

3150
+

173

64
π2 +

22

3
ln
[r12

r′1

]
+ 16 ln

[r12

r′2

])
v2

2

]
+ 1↔ 2 . (A3)

Similarly, the G4 instantaneous contribution to the 4PN term in our Lagrangian in ADM
coordinates as given by Eq. (5.10e) in Paper I is to be replaced by

L̃
(4)
4PN =

m4
1m2

r4
12

[
19341

1600
(n12v1)2 − 15

8
(v1v2)− 16411

4800
v2

1 +
31

32
v2

2

]
+
m3

1m
2
2

r4
12

[(
−6250423

403200
− 15857

16384
π2
)

(n12v1)2

+
(52572353

403200
− 79385

24576
π2
)

(n12v1)(n12v2)

+
(
−19635893

403200
+

35603

24576
π2
)

(n12v2)2 +
(15368099

403200
− 171041

24576
π2
)

(v1v2)

+
(
−10602871

403200
+

193801

49152
π2
)
v2

1 +
(
−5896421

403200
+

21069

8192
π2
)
v2

2

]
+ 1↔ 2 , (A4)

with all the other terms in the ADM Lagrangian unchanged with respect to Paper I.

Appendix B: Fourier coefficients of the quadrupole moment

Here we give the expressions of the Fourier coefficients of the Newtonian quadrupole
moments in terms of combinations of ordinary Bessel functions. The Fourier coefficients are
defined by Eq. (3.12) and are explicitly given in the Appendix of [46]. We present here some
alternative expressions, based on the decomposition

I
p
ij = A

p
mi

0m
j
0 + B

p
mi

0m
j
0 + C

p
`〈i`j〉 , (B1)

where we denotem0 = 1√
2
(i+i j) andm0 = 1√

2
(i−i j), with i, j being two fixed orthonormal

basis vectors in the orbital plane, i pointing towards the orbit’s periastron. Thus, if (n,λ)
denotes the moving triad in the notation of Sec. III A, we have m = 1√

2
(n+ iλ) = e−iϕm0

and ` = n × λ = im0 ×m0. With this decomposition the coefficients, functions of the
eccentricty e and semi-major axis a of the Keplerien orbit, are relatively simple:

A
p

=
mν a2

p2e2

{
2eJp−1 (pe)

(
p(1− e2) +

√
1− e2

)
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+ Jp (pe)
(
−2(p+ 1)

(
1 +
√

1− e2
)

+ e2
[
1 + 2p

(
1 +
√

1− e2
)])}

, (B2a)

B
p

=
mν a2

p2e2

{
2eJp−1 (pe)

(
p(1− e2)−

√
1− e2

)
+ Jp (pe)

(
−2(p+ 1)

(
1−
√

1− e2
)

+ e2
[
1 + 2p

(
1−
√

1− e2
)])}

, (B2b)

C
p

=
mν a2

p2
Jp (pe) . (B2c)

These expressions are only valid when p 6= 0. In the case p = 0 the coefficients are

A
0

= B
0

=
5

4
mν a2 e2 , C

0
= −1

2
mν a2

(
1 +

3

2
e2

)
. (B3a)

Note that for circular orbits we have (with other modes being zero):

I
2
ij =

mνa2

2
mi

0m
j
0 , I

−2
ij =

mνa2

2
mi

0m
j
0 , I

0
ij = −mνa

2

2
`〈i`j〉 (B4)

(cf. Footnote 5).

Appendix C: On Sommerfeld’s method of contour integrals

In this Appendix, we provide more details on Sommerfeld’s method of contour inte-
grals [52], which we used in Sec. V to determine the periastron advance for circular orbits.
More precisely we want to show how to adapt the method to the case of integrals containing
a logarithm. The integrals to be evaluated in our calculation take the form

In,p =
1

π

∫ ra

rp

dr

rn
lnp r√

R(r, E, h)
, (C1)

for p = 0, 1, where the effective radial potential R(r, E, h) up to 4PN order has the following
structure, extending that in Eq. (3.4) of Ref. [51],

R(r, E, h) = A+
2B

r
+
C

r2
+

9∑
i=3

Di

ri
+

9∑
i=6

Ei ln r

ri
. (C2)

The coefficients A, B, C, Di and Ei depend only on the energy E and angular momentum
h, and may be considered as mere constants in the present discussion. While A, B and C
start at Newtonian order, Di and Ci are post-Newtonian expressions. By construction, the
effective potential (C2) vanishes at the periastron r = rp and at apastron ra, that are the
only real roots of the equation R = 0. Note that, while logarithmic contributions start at the
3PN order in our Lagrangian based derivation (since the Lagrangian is defined in harmonic
coordinates), they arise only at the 4PN order, and only in the tail part, in our derivation
based on the Hamiltonian in ADM coordinates.

To compute (C1), we invoke the procedure described in Ref. [51]. The first step consists

in choosing one branch cut for [R(r, E, h)]−
1
2 , regarded as a function of r over the complex
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FIG. 1: Left panel: Path of integration of the integrals In,m corresponding to the standard,

logarithmic-free case. Right panel: Path of integration of the integrals Kn,m for the logarithmic

case. The branch cut R− of the logarithm function is avoided.

plane, to be along the real segment [rp, ra] on the real axis. Since the values of the integrand
over and under that segment are opposite to each other, the original integral (C1) is equal to
half the corresponding contour integral over a closed path C that surrounds the real segment
[rp, ra] anti-clockwise, see Fig. 1:

In,p =
1

2π

∮
C

dr

rn
lnp r√

R(r, E, h)
. (C3)

In a second step, we perform the post-Newtonian expansion of [R(r, E, h)]−
1
2 under the

integration symbol up to the 4PN order, holding the contour C fixed. This yields a linear
combination of elementary integrals of two types, namely

In,m =
1

2π

∮
C

dr

rn

[
−1 +

β

r
− γ

r2

]−m
2

, (C4a)

Kn,m =
1

2π

∮
C

dr

rn
ln r

[
−1 +

β

r
− γ

r2

]−m
2

. (C4b)

The constants β and γ are explicitly given by β = −Gm2ν
E

and γ = − h2

2mνE
, see Eq. (5.5), and

both are positive: β, γ > 0. For the integrals In,m, we finally deform the integration path
C to the contour C0 ∪ C∞ displayed in the left panel of Fig. 1, as in the method originally
devised by Sommerfeld [52]. The computation of In,m then amounts to a straightforward
application of the residue theorem (see Ref. [51] for more details).

The integrals Kn,m have to be handled more carefully. The crucial point is that we must
change the way C is deformed so as to avoid the branch cut due to the logarithm of r on the
R− axis. The final contour in the complex plane is now replaced by the one shown on the
right panel of Fig. 1. Let us decompose it into the four different paths C0, C−, C+ and C∞
as depicted on the figure. They respectively correspond to the contours around zero, below
the R− branch cut, above the R− branch cut, and at infinity. This decomposition induces
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the corresponding splitting

Kn,m = Kn,m
0 +Kn,m

− +Kn,m
+ +Kn,m

∞ . (C5)

On C0, we can write r = η e−i θ with η a small positive number and θ going from π to −π,9

so that the logarithm becomes ln r = ln η − i θ. We are led to

Kn,m
0 =

i (−)m/2

2π γm/2 ηn−m−1

∫ π

−π
dθ ei (n−m−1)θ (ln η − i θ)

[
1− β

γ
η e−i θ +

1

γ
η2e−2i θ

]−m
2

. (C6)

After expanding the above expression in powers of η, the resulting integrals are immediate
to evaluate. For example, when n = 5 and m = 3, we obtain

K5,3
0 = − 1

γ3/2 η
− 3β

2γ5/2
ln η . (C7)

As for the integrals at infinity that we have to consider, they are all zero:

Kn,m
∞ = 0 . (C8)

We are left with the two integrals under and over the branch cut R−. On the contour C−,
we use the parametrization r = ρ e−iπ, for ρ going from η to some radius R, with R � 1
and η � 1. Similarly, on the contour C+ we take r = ρ eiπ, for ρ going from R to η. The
difference of 2π is due to the presence of the branch cut for the complex logarithm. Adding
the two integrals, we get

Kn,m
− +Kn,m

+ = (−)n i

∫ R

η

dρ

ρn

[
−1− β

ρ
− γ

ρ2

]−m
2

. (C9)

As one can see, the logarithms have cancelled out. In the end, there remains a well-known,
tabulated integral [55]. For example, for n = 5 and m = 1, we find

K5,1
− +K5,1

+ =− 1

3
√
γη3

+
β

4γ3/2η2
+

(
− 3β2

8γ5/2
+

1

2γ3/2

)
1

η
− 37β3

96γ7/2
+

5β2

8γ3

+
5β

8γ5/2
− 2

3γ2
+

(
− 5β3

16γ7/2
+

3β

4γ5/2

)[
ln

(
β

4γ
+

1

2
√
γ

)
+ ln η

]
. (C10)

Finally, it remains to add all the different pieces and take the limits η → 0 and R→ +∞.
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[3] P. Jaranowski and G. Schäfer, Phys. Rev. D 57, 7274 (1998), gr-qc/9712075.

9 Strictly speaking, we should first integrate with θ going from π − ε to −π + ε, and then take the limit

ε→ 0 in the end. We have checked that the end result comes out the same.

28
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[41] L. Schwartz, Théorie des distributions (Hermann, Paris, 1978).

[42] J. Llosa and J. Vives, J. Math. Phys. 35, 2856 (1994).

[43] L. Ferialdi and A. Bassi, Eur. Phys. Lett. 98, 30009 (2012).

[44] S. Foffa and R. Sturani, Phys. Rev. D 87, 044056 (2013), arXiv:1111.5488 [gr-qc].

[45] C. Galley, A. Leibovich, R. Porto, and A. Ross (2015), arXiv:1511.07379.

[46] K. Arun, L. Blanchet, B. R. Iyer, and M. S. Qusailah, Phys. Rev. D 77, 064034 (2008),

arXiv:0711.0250 [gr-qc].

[47] S. Detweiler, Phys. Rev. D 77, 124026 (2008), arXiv:0804.3529 [gr-qc].

[48] L. Barack and N. Sago, Phys. Rev. D 83, 084023 (2011), arXiv:1101.3331 [gr-qc].

[49] A. Le Tiec, Phys. Rev. D 92, 084021 (2015), arXiv:1506.05648 [gr-qc].
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