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Abstract. We consider null geodesics in the domain of outer communication
of a sub-extremal Kerr spacetime. We show, that most fundamental properties
of null geodesics can be represented in one plot. In particular one can see
immediately that the ergoregion and trapping are separated in phase space.
Furthermore we show that from the point of view of any timelike observer
outside of a black hole, trapping can be understood as a smooth set of spacelike
directions on the observers’ celestial sphere.
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1. Introduction

In recent years there has been a lot of progress in the Kerr uniqueness and
the Kerr stability problem. Having a thorough understanding of geodesic motion
and in particular the behavior of null geodesics in Kerr spacetimes is helpful to
understand many of the harder problems related to these spacetimes. In this paper
we study the properties of null geodesics in the Domain of Outer Communication
(DOC) in the sub-extremal case, where a ∈ [0,M). The geodesic structure of Kerr
spacetimes has been subject of a lot of research. Our aim here is to give a unified
and accessible presentation of the most important properties of geodesics in the Kerr
spacetime, with regard to the open problems mentioned above. The Mathematica
notebook that has been developed for this paper is intended to help the reader gain
an intuition on the influence of various parameters on the geodesic motion, despite
of the complexity of the underlying equations. It can be downloaded under the
permanent link [1]. In Section 6 we explain where these plots give useful insights.

An extensive discussion of geodesics in Kerr spacetimes and many further refer-
ences can for example be found in [4, p.318] and [15]. See [19] for a nice treatment
of the trapped set in Kerr including many explicit plots of trapped null geodesics
at different radii. Here we focus more on global properties of the null geodesics
and less on the details of motion. Analyzing the turning points for a dynamical
system is a powerful tool to extract information about its global behaviours. For
example, in any 1 + 1 dimensional system stable bounded orbits only exist if there
exist two disjoint turning points in the spacial direction between which the system
can oscillate. For geodesics in Kerr this has been studied in detail by Wilkins [20].
The techniques used here are very close to that paper, however our focus is on
proving that what you see is what you get. Hence that the various plots provided
in the notebook actually do cover the whole parameter space and allow the reader
to easily read off the global properties of any null geodesic of interest. A different
representation of the forbidden regions in phase space can be found in [15, p.214]
and also in [17].

The shadow of the black hole is defined as the innermost trajectory on which
light from a background source passing a black hole can reach the observer. The
first discussion of the shadow in Schwarzschild spacetimes can be found in [18], and
for extremal Kerr at infinity it was later calculated in [2]. Analyzing the shadows
of black holes is of direct physical interest as there is hope for the Event Horizon
Telescope to be able to resolve the black hole in the center of the Milky Way well
enough that one can compare it to the predictions from theoretical calculations,
see for example [8]. This perspective has led to a number of advancements in the
theoretical treatment of black hole shadows in recent years [6, 9, 10, 11, 13, 14].

Theorem 15 is important because of the fact that for any subextremal Kerr
spacetime, including Schwarzschild, the past and the future trapped set at any
point are topologically an S1 on the celestial sphere of any observer in the domain of
outer communication. We would like to stress that Theorem 15 therefore describes
a property of trapping which does not change when going from Schwarzschild to
Kerr.

Further we present numerical evidence that the radial degeneracy for the shape of
the shadow, as it exists in Schwarzschild and for observers on the symmetry axis of
Kerr space times, is broken away from the symmetry axis. For future observations
this means that the distance from the observed black hole can not be ignored when
one tries to extract the black holes parameters from the shadow.

Overview of this paper. In section 2 we collect some background on the Kerr
spacetime. We discuss its symmetries and the conserved quantities for null geodesic
which arise from them in section 2.1. In section 3 we discuss the geodesic equation
in its separated form, focusing on the radial and the θ equation. For the radial
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equation we show that many properties of its solutions can be understood from
one plot. In section 4 we use the analysis of section 3 to discuss the properties of
a number of special solutions. In particular we discuss the radially in-/outgoing
null geodesics (i.e. the principal null directions) and the trapped set which are of
relevance in the black hole stability problem. Next we discuss the T-orthogonal null
geodesics which are relevant in the black hole uniqueness problem. In section 5 we
prove a Theorem on the topological structure of the past and future trapped sets.
In the same section we also present numerical evidence for a breaking of the radial
degeneracy of the black hole shadows in Kerr space times. Finally in section 6 we
discuss how the plots developed for this paper can be used.

2. The Kerr Spacetime

The Kerr family of spacetimes describe axially symmetric, stationary and asymp-
totically flat black hole solutions to the vacuum Einstein field equations. We use
Boyer-Lindquist (BL) coordinates (t, r, φ, θ), which have the property that the met-
ric components are independent of φ and t. The metric has the form

g = −
(

1− 2Mr

Σ

)
dt2 − 2Mar sin2 θ

Σ
2dtdφ+

Σ

∆
dr2 + Σdθ2 +

sin2 θ

Σ
Adφ2, (2.1)

where
Σ = r2 + a2 cos2 θ, (2.2)

∆ = r2 − 2Mr + a2 = (r − r+)(r − r−), (2.3)

A = (r2 + a2)2 − a2∆ sin2 θ. (2.4)
The zeros of ∆ are given by

r± = M ±
√
M2 − a2. (2.5)

and correspond to the location of the event horizon at r = r+ and of the Cauchy
horizon at r = r−. For our considerations it is useful to introduce an orthonormal
tetrad. A convenient choice is

e0 =
1√
Σ∆

(
(r2 + a2)∂t + a∂φ

)
, (2.6a)

e1 =

√
∆

Σ
∂r, (2.6b)

e2 =
1√
Σ
∂θ, (2.6c)

e3 =
1√

Σ sin θ

(
∂φ + a sin2 θ∂t

)
. (2.6d)

This frame is a natural choice as the principal null directions can be written in
the simple form e0 ± e1. These generate a congruences of radially outgoing and
ingoing null geodesics. We will come back to this fact in section 4.1. For the further
considerations we will use e0 as the local time direction. Furthermore we define the
local rotation frequency of the black hole to be

ω(r) =
a

r2 + a2
, (2.7)

which has the rotation frequency of the horizon as a limit for r ↘ r+

ωH = ω(r+). (2.8)

The name choice for ω(r) is motivated by noting that a particle at rest in the
local inertial frame given by the tetrad (2.6) will move in the φ direction in Boyer-
Lindquist coordinates with dφ

dt = ω(r) with respect to an observer at rest in this
frame at infinity.
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2.1. Symmetries and Constants of Motion. The independence of the metric
components of the coordinates t and φ is a manifestation of the presence of two
Killing vector fields (∂t)

ν , (∂φ)ν , which both satisfy the Killing equation

∇(µKν) = 0 (2.9)

and they commute. Furthermore the Kerr spacetime features an irreducible Killing
tensor σµν , cf. [4, p.320]. It is symmetric and satisfies the Killing tensor equation

∇(ασβγ) = 0 (2.10)

but it can not be written as a linear combination of tensor products of Killing
vectors. In terms of the tetrad (2.6) the Killing tensor can be written as

σµν = −a2 cos2 θgµν + Σ ((e2)µ(e2)ν + (e3)µ(e3)ν) . (2.11)

In the limiting case a = 0 it takes the form

σ(a=0) = r4(dθ2 + sin2 dφ2). (2.12)

This is the tensor field obtained by taking the sum of the second tensor product of
the three generators of spherical symmetry. From the geodesic equation

γ̇µ∇µγ̇ν = 0 (2.13)

and the Killing equations it follows that a contraction of the tangent vector γ̇µ of
an affinely parametrized geodesic γ with a Killing tensor gives a constant of motion.
In Kerr spacetimes those are the mass1, the energy, the angular momentum with
respect to the rotation axis of the black hole and Carter’s constant [3].

−m2 = gµν γ̇
µγ̇ν , (2.14a)

E = −(∂t)
ν γ̇ν , (2.14b)

Lz = (∂φ)ν γ̇ν , (2.14c)
K = σµν γ̇

µγ̇ν . (2.14d)

It follows from equation (2.12) that in a Schwarzschild spacetime K is the square of
the total angular momentum of the particle. Carter’s constant is non-negative for
all time like or null geodesics, which can be seen immediately from equation (2.11)
and the fact that gµν γ̇µγ̇ν ≤ 0 for any future directed causal geodesic. In the case
of a 6= 0 it is even strictly positive for any time like geodesic. It turns out that some
combinations of these conserved quantities are more convenient to work with, so we
give them their own names:

Q = K − (aE − Lz)2, (2.15)

L2 = L2
z +Q. (2.16)

One can think of L2 as the total angular momentum of the particle, in the sense that
it is this quantity that is replaced with the spheroidal eigenvalue in the potential
of the wave-equation, as we will show in Section 6. One can then think of Q as the
component of the angular momentum in direction perpendicular to the rotation axis
of the black hole.2 It is important though that these interpretations should not be
taken to strictly, because geodesics in Kerr space times do not feature a conserved
total angular momentum vector.

Remark 1. In contrast to K, Q is not positive anymore but from the equation of
motion that we will later define in (3.1d) we get the condition that Θ ≥ 0 for any
geodesic to exist at a point and hence that

Q ≥ −a2E2 cos2 θ (2.17)

1The metric satisfies the Killing tensor equation (2.10) trivially and therefore it gives us a
conserved quantity as well.

2The three quantities K, Q and L2 are often labeled differently by different authors.



CHARACTERIZATION OF NULL GEODESICS ON KERR SPACETIMES 5

holds.

In the case of null-geodesics we can rescale the tangent vector without changing
the properties of the geodesic. We will use this to reduce the number of parameters.
We define the conserved quotients to be

Q =
Q

L2
z

E =
E

Lz
. (2.18)

An alternative set of conserved quotients is given by

K =
K

E2
L =

Lz
E
. (2.19)

These are more commonly used in the literature as they are more suited for certain
calculations. However for the present work we will mostly use the first set.

Properties of the Killing Fields and Tensor. The vector field (∂φ)ν is spacelike for
all r > 0. The vector field (∂t)

ν is timelike in the asymptotically flat region. It
becomes spacelike in the interior of the ergoregion, which is defined by the inequality
g(∂t, ∂t) ≥ 0 or in terms of BL-coordinates by −∆ + a2 sin2 θ ≤ 0. The case of
equality determines the boundary of the ergoregion which is often referred to as the
ergosphere. Solving for the case of equality we get the radius of the ergosphere to
be

rergo(θ) = M +
√
M2 − a2 cos2(θ). (2.20)

At the equator the ergosphere lies at r = 2M while it corresponds to the horizon
r = r+ on the rotation axis.
As mentioned above the two Killing vector fields generate one-parameter groups of
isometries. It is natural to ask if the Killing tensor present in the Kerr spacetimes
can also be related to some sort of symmetry. This question can be answered
using Hamiltonian formalism. For a Hamiltonian flow parametrized by λ with
Hamiltonian H the derivative of any function f(x, p) is given by the Poisson bracket

df

dλ
= {H, f} ≡ ∂H

∂pµ

∂f

∂xµ
− ∂H

∂xµ
∂f

∂pµ
. (2.21)

Each smooth function on phase space can be taken as a Hamiltonian and therefore
gives rise to a local flow. Geodesic motion is generated by the function −m2.
E and Lz generate translations in t and φ. In the case a = 0 the function K
generates rotations in the plane orthogonal to the particle’s total angular momentum
vector with angular velocity equal to the angular momentum of the particle. For
rotating black holes it involves a change of all spatial coordinates, but it leaves
quantities conserved under geodesic flow invariant. This flow explicitly depends
on fiber coordinates pµ and can not be projected to a symmetry of the spacetime
manifold itself.

3. Geodesic Equation

We now focus our attention on null geodesics. The constants of motion introduced
in (2.14) can be used to decouple the geodesic equation to a set of four first order
ODEs, cf. [4, p. 242 ]:

Σ∆ṫ = AE − 2MarLz, (3.1a)

Σ∆φ̇ = 2MarE + (Σ− 2Mr)
Lz

sin2 θ
, (3.1b)

Σ2ṙ2 = R(r, E, Lz,K) = ((r2 + a2)E − aLz)2 −∆K, (3.1c)

Σ2θ̇2 = Θ(θ,E, Lz, Q) = Q−
(

L2
z

sin2 θ
− E2a2

)
cos2 θ, (3.1d)
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where the dot denotes differentiation with respect to the affine parameter λ. 3 For
Lz 6= 0 the four equations are homogeneous in Lz, when written in terms of the
conserved quotients. For the radial and the angular equation we have

R(r, E, Lz, Q) = L2
zR(r, E , 1,Q) (3.2)

Θ(θ,E, Lz, Q) = L2
zΘ(r, E , 1,Q). (3.3)

Remark 2. To avoid introducing new functions whenever we change between dif-
ferent sets of conserved quantities we use R(r, E, Lz, Q) = R(r, E, Lz,K(Q,Lz, E)).

From the homogeneity of the equations of motion (3.1) we get that the only
conserved quantities which affect the dynamics are conserved quotients like E , Q or
Q
E2 in the case of Lz = 0. This is due to the fact that an affine reparametrization
λ 7→ αλ, γ̇ 7→ α−1γ̇ changes the values of E, Lz and Q while leaving the trajectories
and the aforementioned quotients unchanged. The case Lz = 0 can be seen as the
limit of Q and E tending to infinity. Therefore we will not treat this case separately.
It is sufficient to consider future directed geodesics as the past directed case follows
from the symmetry of the metric when replacing (t, φ) with (−t,−φ).
In Schwarzschild the condition ṫ > 0 guarantees that the geodesic is future directed.
For Kerr a suitable condition is to require that g(γ̇, e0) ≤ 0 is satisfied. From that
we obtain the condition for causal geodesic in the DOC to be future directed to be

E ≥ ω(r)Lz. (3.4)

In terms of the conserved quotients this condition takes the form

sgn(Lz) =


+1 if E > ω(r)

−1 if E < ω(r)

undet. if E = ω(r)

(3.5)

which eventually allows us to represent the pseudo potential for the co-rotating and
the counter-rotating geodesics in the same plot.

3.1. The Radial Equation. In this section we characterize the radial motion by
locating the turning points of a geodesic in r direction. Turning points are charac-
terized by the fact that the component of the tangent vector γ̇ in the radial direction
satisfies ṙ = 0. From equation (3.1c) we see immediately that the radial turning
points are given by the zeros of the radial function R. In the following we will
investigate the existence and location of these zeros.

Lemma 3. R(r, E, Lz, Q) is strictly positive in the DOC for Q < 0.

Proof. The radial function can be written as

R(r, E, Lz, Q) = E2r4 + (a2E2 −Q− L2
z)r

2 + 2MKr − a2Q, (3.6)

which is clearly positive for large r. For the proof we make use of the Descartes rule,
which states that if the terms of a polynomial with real coefficients are ordered by
descending powers, then the number of positive roots is either equal to the number
of sign differences between consecutive nonzero coefficients, or is less than it by an
even number. Powers with zero coefficient are omitted from the series. For a proof
of Descartes rule see for example [5, p.172]. Applied to (3.6) with Q < 0 we get that
for two zeros of R to exist in r ∈ (0,∞) the conserved quantities of the geodesic
have to satisfy the inequality

a2E2 −Q− L2
z < 0. (3.7)

Otherwise there are no zeros at all and the proposition is true. Assume the contrary.
Then for geodesics with certain parameters to exist at a given point, additionally

3The radial and the angular equation can be entirely decoupled by introducing a new non-affine
parameter κ for the geodesic. It is defined by dκ

dλ
= 1

Σ
.
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to R ≥ 0 we also need to have that Θ ≥ 0. Applying this condition to equation
(3.1d) and combining it with inequality (3.7) we obtain the following estimate

− cos4 θa2E2 ≥ −Q > 0. (3.8)

This is clearly a contradiction. �

Lemma 3 tells us that geodesics with Q < 0 either come from I− and cross H+ or
come out of H− and go to I+. We will discuss the property of these geodesics in
section 4.1. For the rest of this section we will restrict to the case of Q ≥ 0.
To find the essential properties of the radial motion, we use pseudo potentials. The
pseudo potential V (r,Q) is defined as the value of E such that the radius r is a
turning point. In other words it is a solution to the equation

R(r, V (r,Q),Q) = Σ2ṙ2 = 0. (3.9)

This equation is quadratic in V (r,Q) and for non-negative Q there exist two real
solutions at every radius, denoted by V±. They are given by

V±(r,Q) =
2Mar ±

√
r∆((1 +Q)r3 + a2Q(r + 2M))

r[r(r2 + a2) + 2Ma2]
. (3.10)

Remark 4. The pseudo potentials should not be mistaken for potentials known
from classical mechanics, where the equation of motion is given by 1

2 ẋ
2 +V (x) = E.

However the potentials of classical mechanics can always be considered as pseudo
potentials in the above sense.

The radial function can be rewritten as

R = L2
zr[r(r

2 + a2) + 2Ma2] (E − V+(r,Q)) (E − V−(r,Q)) . (3.11)

This form of R reveals the significance of the pseudo potentials: The only turning
points that can exist for fixed Q > 0 are those where either E = V+(r,Q) or
E = V−(r,Q). Analyzing the properties of the V± allows us to extract all the
information we are interested in.
First we note that for r big enough we have that V+ > 0 and V− < 0 for all Q ≥ 0.
However in the limit we have that

lim
r→∞

V± = 0. (3.12)

At the horizon the limit of the pseudo potential and its derivative are given by

lim
r→r+

V±(r) = ωH (3.13)

lim
r→r+

dV±
dr

(r) = ±∞. (3.14)

Lemma 5. For a fixed value of Q the pseudo potentials V±(r,Q) have exactly one
extremum as a function of r in the interval (r+,∞).

Proof. It is clear from the above properties that V+ (V−) has at least one maximum
(minimum) in the DOC. From the fact that the two pseudo potentials have the
same limiting value at ∞ and at r+ together with (3.11) we get that in both limits
we have that R ≥ 0. Therefore R has to have an even number of zeros in the
interval (r+,∞). Given the fact that R is a fourth order polynomial it can have
at most 4 zeros. From the asymptotic behaviour of the potentials V± we get that
they need to have an odd number of extrema. Therefore if for some value of Q one
of the potentials has more than one extremum there exists E such that R(r, E ,Q)
has three zeros in r ∈ (r+,∞). Applying Descartes rule to (3.1c) we infer that R(r)
can have at most three zeros in r ∈ [0,∞). But R(0) ≤ 0 and R(r+) ≥ 0. Hence
there is at least one zero of R(r) in the interval [0, r+], so it is impossible for R to
have three zeros in (r+,∞). From that it follows that V± can both only have one
extremum in that interval. �
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Stationary points occur at the extrema of the pseudo potentials. So Lemma 5 tells
us that for every fixed value ofQ ≥ 0 there exist exactly two spherical geodesics with
radii r = r±trap and energies Etrap± = V±(r±trap). They will be studied in depth in
section 4.2. Bounded geodesics with non-constant r would only be possible between
two extrema of one of the pseudo potentials. These are excluded by the Lemma.
From (3.1c) we have that for any geodesics to exist we have to have R ≥ 0. This
condition is satisfied except if V−(r,Q) < E < V+(r,Q). This set is therefore a
forbidden region in the (r, E) plane. Furthermore it follows that R ≤ 0 for E = ω(r)
with equality only at r+ and ∞. Therefore we have that

V−(r) ≤ ω(r) ≤ V+(r). (3.15)

Again, the equality can occur only at the horizon and in the limit r → ∞. This
fact combined with (3.5) shows that for future pointing null geodesics

sgn(Lz) =

{
+1 if E ≥ V+(r),

−1 if E ≤ V−(r).
(3.16)

Therefore the pseudopotential V+ determines the behaviour of co-rotating null
geodesics and V− that of counter-rotating ones. Furthermore it is worth noting
that E ≥ V+(r) implies E > 0. Finally we observe that for every fixed radius
r ≥ r+ we get from inspection of (3.10) that

∂V−
∂Q

≤ 0 ≤ ∂V+

∂Q
(3.17)

holds. The equality in the relation occurs again only for r = r+, and in the limit
r → ∞. This means that for every radius r > r+ the range of forbidden values
of E is strictly expanding as Q increases. This fact will be quite useful for the
considerations in section 4.2.

3.2. The θ Equation. In Schwarzschild spacetimes, due to spherical symmetry
the motion of any geodesics is contained in a plane. This means that for every
geodesic there exists a spherical coordinate system in which it is constrained to
the equatorial plane θ = π

2 . This is no longer true in Kerr spacetimes, but most
geodesics are still constrained in θ direction. The allowed range of θ is obtained
by solving the inequality Θ(θ) ≥ 0. Θ(θ) is a quadratic polynomial in the variable
cos2(θ). Hence Θ(θ) = 0 has two solutions given by

cos2 θturn =
a2E2 − L2 ±

√
(a2E2 − L2)2 + 4a2E2Q

2a2E2
. (3.18)

For Q ≥ 0 only the solution with the plus sign is relevant and the motion will always
be contained in a band θmin < θeq < θmax symmetric about the equator θeq = π

2 .
As |Lz| increases, this band shrinks. In fact only in the case Lz = 0 it is possible for
a geodesic to reach the poles θ = 0, θ = π. Otherwise Θ blows up to −∞ there. If
Q ≤ 0 both solutions are positive and the inclination of the geodesic with respect to
the equator is also constrained away from the equator, so either θeq < θmin < θmax
or θeq > θmax > θmin . These trajectories will be contained in a disjoint band
which intersects neither the equator nor the pole. This band can degenerate to a
point, i.e. there exist null geodesics which stay at θ = const. The relevance of these
trajectories and how they are connected to the Schwarzschild case will be discussed
in the next section. All possibilities for the potentials that constrain the motion in
θ direction are summarized in the Figure 1.
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Figure 1. This figure shows shapes of function Θ
L2

z
for four choices

of values of conserved quotients.

4. Special Geodesics

We will now apply the discussions of the last section to describe a number of
special geodesics in Kerr geometries. All of these are in some way related to either
the black hole stability problem or the black hole uniqueness problem.

4.1. Radially In-/Out-going Null Geodesics. In this section we find geodesics
which generalize the radially ingoing and outgoing congruences in Schwarzschild
spacetimes. In section 3.1 we saw that the geodesics with Q < 0 extend from the
horizon to infinity. In section 3.2 we saw that Q < 0 is again a special case, as these
null geodesics can never intersect the equator and in the extreme case are even
constrained to a fixed value of θ. At first this behaviour seems odd, but a similar
situation can be observed in Schwarzschild. If we look at geodesics which move in a
plane with inclination θ0 about the equatorial plane we see that there exists a set of
null geodesics with similar properties as the ones with Q < 0 in Kerr. It is clear that
the radially ingoing geodesic which moves orthogonally to the axis around which the
plane of motion was rotated, moves at fixed θ value, namely that at which the plane
is inclined with respect to the equatorial plane, hence θ = π/2 ± θ0. Furthermore
some null geodesics reach the horizon before intersecting the equatorial plane. They
don’t necessarily move at fixed θ but their motion in θ direction is still constrained
away form the equatorial plane and away from the poles of the coordinate system.
Now we want to investigate the null geodesics which move at fixed θ in Kerr. De-
manding that θ = const. is equivalent to requiring Θ = Θ′ = 0. From these
conditions we obtain

Lz = aE sin2 θ, (4.1a)

Q = −a2E2 cos4 θ, (4.1b)
K = 0. (4.1c)

Then from the remaining equations of motion it follows that

dφ

dt
= ω(r), (4.2a)

dr

dt
= ± ∆

r2 + a2
. (4.2b)

This congruence is generated by the principal null directions e0 ± e1. In the case
a = 0 these are the radially in-/outgoing geodesics. An interesting observation is
that along these geodesics the inner product of the (∂t)

µ vector field is monotone.
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A simple calculation shows that

γ̇µ∇µ((∂t)
ν(∂t)ν) = ṙ

2M(r2 − a2 cos2 θ)

Σ2
+ θ̇

2Ma2r sin 2θ

Σ2
. (4.3)

For the principal null congruence we have θ̇ = 0, the coefficient of ṙ is positive and
there is no turning point in r. This property might be interesting in the context
of the black hole uniqueness problem. If one could show a similar monotonicity
statement for a congruence of null geodesics in general stationary black hole space
times, one could conclude that the ergosphere in such spacetimes has only one
connected component enclosing the horizon. This is a necessary condition if one
wants to show that no trapped T-orthogonal null geodesics can exist in that case.

4.2. The Trapped Set. One of the most important features of geodesic motion in
black hole spacetimes is the possibility of trapping. A geodesic is called trapped if its
motion is bounded in r direction. This is only possible if r = const. or if the motion
is between two turning points of the radial motion. For null geodesics in Kerr we
ruled out the second option in Lemma 5. We will now discuss orbits of constant
radius.4 These null geodesics are stationary points of the radial motion, hence null
geodesics with ṙ = r̈ = 0. Dividing equation (3.1c) by Σ and taking the derivative
with respect to λ we see that this condition is equivalent to R(r) = R′(r) = 0. The
solutions to these equations can be parametrized explicitly by, cf. [19]

Etrap(r) = −a(r −M)

A(r)
= ω(r)

(
1− 2r∆

A(r)

)
(4.4)

Qtrap(r) = − B(r)

A2(r)
(4.5)

A(r) = r3 − 3Mr2 + a2r + a2M = (r − r3)P2(r) (4.6)
B(r) = r3(r3 − 6Mr2 + 9M2r − 4a2M) = (r − r1)(r − r2)P4(r) (4.7)

where P2 and P4 are polynomials in r, quadratic and quartic respectively, which are
strictly positive in the DOC. The following three radii are particularly important

r1 = 2M

(
1 + cos

(
2

3
arccos

(
− a

M

)))
(4.8)

r2 = 2M

(
1 + cos

(
2

3
arccos

( a
M

)))
(4.9)

r3 = M + 2

√
M2 − a2

3
cos

(
1

3
arccos

(
M(M2 − a2)

(M2 − a2

3 )
3
2

))
(4.10)

satisfying the inequalities

M < r+ < r1 < r3 < r2 < 4M (4.11)

for a ∈ (0,M). Orbits of constant radius are allowed only inside the interval [r1, r2],
because outside of it Q would have to be negative. This possibility has already
been excluded in Lemma 3. The boundaries of the interval at r = r1 and r = r2

correspond to circular geodesics constrained to the equatorial plane with Q = 0.
For geodesics with r = r3 we have Lz = 0 which is the reason why the functions
Etrap and Qtrap blow up there. From the second representation in (4.4) we see
that Etrap(r) − ω(r) is positive in [r1, r3) and negative in (r3, r2]. Combined with
(3.16) this implies that the stationary points in [r1, r3) correspond to extrema of
V+ and the stationary points in (r3, r2] correspond to extrema of V−. In Lemma
5 we showed that V+ and V− both have exactly one extremum. Since extrema of
the pseudo potentials always correspond to orbits of constant radius, we get that

4Null geodesics of constant radius are often referred to as "spherical null geodesics" but it is
important to note that r = const. does not imply that the whole sphere is accessible for such
geodesics.
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Figure 2. Plot of the relation between the radius of the equatorial
trapped null geodesics at r1 and r2, the trapped null geodesic with
Lz = 0 at r3 and the horizon at r+ for all values of a.

the extrema of V+(r,Q) and V−(r,Q) have to be within the intervals [r1, r3) and
(r3, r2] respectively for any value of Q. In Figure 2 we plot the behaviour of these
intervals as a function of a/M .

We now know that the maps given by

[0,∞) 3 Q 7→ r+
trap ∈ [r1, r3)

[0,∞) 3 Q 7→ r−trap ∈ (r3, r2]

which take Q into radii of trapped geodesics corresponding to the unique maximum
of V+(r,Q) and minimum of V−(r,Q) respectively are one-to-one and therefore
monotone. By using (4.5) the sign of their derivatives can be easily evaluated in
some ε-neighbourhood of r = r3 where the term of highest order in 1

r−r3 dominates:

∂r−trap
∂Q

< 0 <
∂r+
trap

∂Q
. (4.12)

By the equation (3.17) and the fact that radii of trapping always correspond to
global extrema of the pseudo potentials we get that

∂

∂Q
Etrap(r−trap(Q)) < 0 <

∂

∂Q
Etrap(r+

trap(Q)). (4.13)

Using the chain rule and combining these two facts we obtain
∂Etrap
∂r

> 0. (4.14)

These inequalities provide an important piece of the picture of the influence of Q
on the trapped geodesics. We have Q = 0 for the outermost circular geodesics and
as we increase it, the radii of trapping converge towards r = r3 while E blows up
to ±∞, with the sign depending on the direction from which we approach r3. We
can also desciribe the function Etrap(r): it starts with some finite positive value at
r = r1 and increases monotonically to +∞ as r approaches r3. There it jumps to
−∞ and increases again to a finite negative value at r = r2.
It is interesting to ask what region in physical space is accessible for trapped



12 C. F. PAGANINI, B. RUBA AND M. A. OANCEA

Figure 3. The region accessible for trapped null geodesics for a =
0.902. The shaded region represents the black hole, r ≤ r+. The
only qualitative change in this picture occurs at a = 1√

2
because

at this value the region of trapping starts intersecting with the
ergoregion.

geodesics. By plugging (4.5) and (4.4) into the equation Θ = 0 we get that for
a geodesic with r = const.

cos2 θturn =
2
√
Mr2∆(2r3 − 3Mr2 + a2M)− r(r3 − 3M2r + 2a2M)

a2(r −M)2
(4.15)

holds. This gives two turning points in θ direction which are symmetric about the
equatorial plane. The whole region of trapping in the (r, θ) plane is bounded by
curves defined implicitly by (4.15) and r1 ≤ r ≤ r2. Figure (3) presents this set for
a particular value of a.

Remark 6. Two warnings:
(1) One has to be careful when interpreting Figure 3 (and the plots in the Mathe-

matica notebook). Despite the fact that the region in physical space occupies
an open range of r values, every individual trapped null geodesic is still con-
strained to a fixed radius. For an insight on what those trajectories look like
in detail we recommend the study of [19].

(2) When taking a → M in the Mathematica notebook the ergosphere appears
to develop a kink on the rotation axis. This is an artifact of the coordi-
nate system, as the ergosphere coincides with the horizon there and is thus
orthogonal to itself.

4.3. T-Orthogonal Null Geodesics. In the ergoregion there exist null geodesics
with negative values of E. In physical space they are constrained to the region
defined by equation (2.20). From Lemma 3 we know that geodesics with Q < 0
reach either I+ or come from I− and can therefore not have negative values of E.
This allows us to use the pseudo potentials to give a more precise characterization
of the ergoregion in phase space. It is located in the region where V−(Q) > 0,
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between E = 0 and V−(Q). An immediate consequence of that is, that all future
pointing null geodesics with negative E begin at the past event horizon and end at
the future event horizon. Furthermore they must have Lz < 0. Those null geodesics
with E = 0 can reach the boundary of the ergoregion. In this case equation (3.1d)
gives us, that

Q =
cos2(θmax)

sin2(θmax)
. (4.16)

When calculating the turning points from equation (3.1c) we get that

sin2(θmax)R

(
r, 0, 1,

cos2(θmax)

sin2(θmax)

)
= −r2 + 2Mr − a2cos2(θmax) = 0. (4.17)

The only solution to this equation in the DOC is

rturn(θmax) = M +
√
M2 − a2cos2(θmax) (4.18)

which is exactly the location of the ergo sphere (2.20). So V−(Q) > 0 can be consid-
ered as the boundary of the ergoregion in phase space. From this considerations we
see immediately that T-orthogonal null geodesics are clearly non-trapped in Kerr.
In fact there do not even exist any trapped null geodesics orthogonal to

Kν = (∂t)
ν + εmin(∂φ)ν (4.19)

where εmin = min[|V+(0, r1)|, |V−(0, r2)|].

5. Trapping as a Set of Directions

In this section we will link the previous discussion to the black hole shadows.
We introduce a more formal framework for the discussion. This allows us to give a
more technical discussion of the trapped sets in Schwarzschild and Kerr black holes.

5.1. Framework. First we have to introduce the basic framework and notations.
Let M be a smooth manifold with Lorenzian metric g. At any point p in M you
can find an orthonormal basis (e0, e1, e2, e3) for the tangent space, with e0 being
the timelike direction. It is sufficient to treat only future directed null geodesics as
the past directed ones are identical up to a sign flip in the parametrization. The
tangent vector to any future pointing null geodesic can be written as

γ̇(k|p)|p = α(e0 + k1e1 + k2e2 + k3e3) (5.1)

where α = g(γ̇, e0) and k = (k1, k2, k3) satisfies |k|2 = 1, hence k ∈ S2. The
geodesic is independent of the scaling of the tangent vector as this corresponds to
an affine reparametrization for the null geodesic. We will therefore set α = 1 in the
following discussion. The S2 is often referred to as the celestial sphere of a timelike
observer at p whose tangent vector is given by e0, see cf. [16, p.8].
For the further discussion we fix the tetrads. We can make the following definition:

Definition 7. Let γ(k|p) denote a null geodesic through p for which the tangent
vector at p is given by equation (5.1).

It is clear that γ(ka|p) and γ(kb|p) are equivalent up to parametrization if ka = kb.
Suppose now thatM is the DOC of a blackhole spacetime with a complete I± and
boundary H+ ∪H−. We can then define the following sets on S2 at every point p.

Definition 8. The future infalling set: ΩH+(p) := {k ∈ S2|γ(k|p) ∩H+ 6= ∅}.
The future escaping set: ΩI+(p) := {k ∈ S2|γ(k|p) ∩ I+ 6= ∅} .
The future trapped set: T+(p) := {k ∈ S2|γ(k|p) ∩ (H+ ∪ I+) = ∅}.
The past infalling set: ΩH−(p) := {k ∈ S2|γ(k|p) ∩H− 6= ∅}.
The past escaping set: ΩI−(p) := {k ∈ S2|γ(k|p) ∩ I− 6= ∅}.
The past trapped set: T−(p) := {k ∈ S2|γ(k|p) ∩ (H− ∪ I−) = ∅}
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Figure 4. The grey curves are schematic representations of null
geodesics through the points p1 and p2. We only depict the future
trapped null geodesics here. The point p1 is in the interior of
the area of trapping A, because every future trapped null geodesic
through p1 intersects the past event horizon H−. The point p2 is in
the exterior of the area of trapping A, because every future trapped
null geodesic through p2 intersects past null infinity I−.

The following facts follow immediately from the definition and the fact that any
null geodesic can either intersect H+ or I+ (H− or I−) but never both.

• ΩH+(p) ∩ ΩI+(p) = ∅
• ΩH+(p) ∩ T+(p) = ∅
• ΩI+(p) ∩ T+(p) = ∅
• ΩH+(p) ∪ ΩI+(p) ∪ T+(p) = S2

• ΩH−(p) ∩ ΩI−(p) = ∅
• ΩH−(p) ∩ T−(p) = ∅
• ΩI−(p) ∩ T−(p) = ∅
• ΩH−(p) ∪ ΩI−(p) ∪ T−(p) = S2

We finish the section by defining the trapped set to be

Definition 9. The trapped set: T(p) := T+(p) ∩ T−(p).

The region of trapping in the manifoldM is then given by:

Definition 10. Region of trapping: A := {p ∈M|T(p) 6= ∅}.

A point p is on the interior of A if T+(p) ⊂ ΩH−(p) and on the exterior of A
if T+(p) ⊂ ΩI−(p). Switching past sets for future sets and vice versa gives an
equivalent statement. Figure 4 gives a schematic representation.

5.2. The trapped sets in Schwarzschild. The discussion of Schwarzschild serves
as an easy example for the various concepts. The set corresponding to the actual
black hole shadow is ΩH−(p) however for any practical purposes information about
its boundary which is given by T−(p) is good enough. From the radial equation we
get immediately that if k = (k1, k2, k3) ∈ T+(p) then k = (−k1, k2, k3) ∈ T−(p).
Hence the properties of the past and the future sets are equivalent. This is true both
in Schwarzschild and Kerr. An explicit formula for the shadow of a Schwarzschild
black hole was first given in [18].



CHARACTERIZATION OF NULL GEODESICS ON KERR SPACETIMES 15

(a) (b) (c)

Figure 5. The trapped set on the celestial sphere of a standard
observer at different radial location in a Schwarzschild DOC. Ob-
server (a) is located outside the photon sphere at r = 3.9M , ob-
server (b) is located on the photon sphere at r = 3M and finally
observer(c) is located between the horizon and the photonsphere at
r = 2.5M . One can see that the future trapped set moves from the
ingoing hemisphere in (a) to the outgoing hemisphere in (c) as one
varies the location of the observer. The future and past trapped
set coincide on the ṙ = 0 line when the observer is located on the
photon sphere at r = 3M in (b)

In Schwarzschild the orthonormal tetrad (2.6) reduces to

e0 =
1√

1− 2M/r
∂t, e1 =

√
1− 2M/r∂r, (5.2a)

e2 =
1

r
∂θ, e3 =

1

r sin θ
∂φ. (5.2b)

(5.2c)

To determine the structure of T±(p) in Schwarzschild it is sufficient to consider p in
the equatorial plane and k = (cos Ψ, 0, sin Ψ) with Ψ ∈ [0, π]. The entire sets T±(p)
are then obtained by rotating around the e1 direction. Note that from the tetrad it is
obvious that E(k) = E(r) is independent of Ψ. On the other hand Lz(k) is zero for
Ψ = {0, π} and maximal for Ψ = π/2. Away from that maximum, Lz is a monotone
function of Ψ. Note that the geodesic that corresponds to Ψ = π/2 has k1 = 0 and
thus a radial turning point. Thus the E/Lz value of this geodesic corresponds to the
minimum value any geodesic can have at this point in the manifold. For r 6= 3M this
is smaller then the value of trapping and thus there exist two k with the property
that E/Lz(k) = 1/

√
27M2. One of them has k1 > 0 and therefore ṙ > 0 and one

has ṙ < 0. For r > 3M the first corresponds to T−(p) and the second corresponds
to T+(p). For 2M < r < 3M the roles are reversed. For r = 3M we have T+(p) =
T−(p) = (0, k2, k3). In Figure 5 we depict these three cases for some fixed radii. To
conclude we see that T+(p) and T−(p) are circles on the celestial sphere independent
of the value of r(p). In [16, p.14] it is shown that Lorentz transformations on the
observer correspond to conformal transformations on the celestial sphere. They
are equivalent to Möbius transformations on the complex plane when considering
the S2 to be the Riemann sphere. Hence circles on the celestial sphere stay circles
under Lorentz transformations. As a consequence if r(pa) 6= r(pb) then there exists
a Lorentz transformation (LT) such that T−(pa) = LT[T−(pb)]. This concept is
sufficiently important that it deserves a proper definition.

Definition 11. The shadows at two points p1, p2 are called degenerate if their
conformal class on the celestial sphere is equal: CS2 [T−(p1)] = CS2 [T−(p2)].

Here CS2 denotes the union of all conformal transformations on S2.
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Remark 12. The shadow at two points p1, p2 being degenerate implies that for
every observer at p1 there exists an observer at p2 for which the shadow on S2 is
identical. Because this notion compares structures on S2, the two points don’t have
to be in the same manifold for their shadows to be degenerate. Just from the shadow
alone an observer can not distinguish between these two configurations.

If {θ(pa), φ(pa)} = {θ(pb), φ(pb)} then the Lorentz transformation LT is simply
a boost in radial direction. The same is true for the past trapped set. Note that
the boost that maps T−(pa) to T−(pb) is in opposite direction of the one mapping
T+(pa) to T+(pb). As only one of the sets can be observed, an observer cannot
distinguish between the two situations. The only reliably information an observer
can obtain is thus, that T−(p) is a proper circle on his celestial sphere.

5.3. The trapped sets in Kerr. We will now discuss the properties of the sets
T±(p) in Kerr. First note that the constants of motion E,Lz and K are smooth
functions on the tangent bundle and hence they are smooth as well on the celestial
sphere of any timelike observer. For the discussion here we will use a "standard"
observer who’s world line is defined by the time like vector of tetrad (2.6).
The radial function R(r, E, Lz,K) is a fourth order polynomial. Its coefficients,
and therefore its zeros depend continuously on the conserved quantities. We will
denote the constants of motions associated with a point k on the celestial sphere by
E(k), Lz(k) and K(k). Note that the equations of motion for r (3.1c) and θ (3.1d)
have two solutions that differ only in sign for a fixed combination of E,Lz,K.
Therefore we know that these functions will have a reflection symmetry across the
k1 = 0 and the k2 = 0 planes.
First we want to show that little explicit knowledge of the conserved constants on
the sphere is necessary to draw conclusions about the properties of the various sets
on S2.

Lemma 13. The sets ΩH+(p), ΩI+(p), ΩH−(p), ΩI−(p) are non-empty and open
on the celestial S2 of any observer at any point p in the DOC of Kerr spacetimes.

We will only present the argument for ΩH+(p) here, as the argument for the other
sets are very similar.

Proof. Note that we can separate the celestial sphere into two hemispheres with
k1 > 0 and k1 < 0 which correspond to geodesics with ṙ > 0 and ṙ < 0 respectively.
Choose a point p located in the DOC at (t(p), r(p), φ(p), θ(p)). By our consider-
ations in section 4.1 it is clear that there exists a radially ingoing null geodesic
through p and therefore ΩH+(p) is non-empty. Now suppose k ∈ ΩH+(p). From
the considerations in section 3.1 we know that there are three different cases for the
zeros of R(r, k) = R(r, E(k), Lz(k), Q(k)) :

a) R(r, k) has no zeros in (r+,∞).
b) R(r, k) has two zeros in [r+,∞) at r = router(k) and r = rinner(k).

With router(k) > rinner(k)
c) R(r, k) has one double zero in (r+,∞) at r = rtrap(k).

For a) the fact that k ∈ ΩH+(p) implies that k1 < 0. It is then clear that there
always exists a small open neighbourhood Bε(k) on S2 such that for any k̃ ∈ Bε(k)

we have that k̃1 < 0 and R(r, k̃) has no zeros in (r+,∞). The latter is guaranteed
by the continuous dependence of the zeros on the constants of motion and the fact
that those themself are smooth functions on the sphere. We can thus conclude that
Bε(k) ⊂ ΩH+(p).
For b) the fact that k ∈ ΩH+(p) implies that r(p) ≤ rinner(k). The smooth depen-
dence of the zeros and the fact that for a fixed k there exists a δ > 0 such that
rinner(k)− router(k) ≥ δ guarantee that there exists an open neighbourhood Bε(k)

on S2 with ε > 0 such that for any k̃ ∈ Bε(k) we have that R(r, k̃) has two zeros
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and r(p) ≤ rinner(k̃). We can thus conclude that Bε(k) ⊂ ΩH+(p).
For c) the fact that k ∈ ΩH+(p) implies that k1 < 0 and r(p) < rturn(k). In this
case k̃ ∈ Bε(k) can correspond to any of the three cases a)-c). However we can
always choose ε1 > 0 such that k̃1 < 0 for all k̃ ∈ Bε1(k).
Thus if R(r, k̃) has no zeros we can conclude that k̃ ∈ ΩH+(p). In the second case
r(p) < rtrap(k) guarantees that we can choose an ε2 > 0 such that for any k̃ ∈ Bε2(k)

where R(r, k̃) has two zeros, we have that r(p) < rinner(k̃) < router(k̃). We can
thus conclude that also in this case k̃ ∈ ΩH+(p). In the last case r(p) < rturn(k)

guarantees that we can choose ε3 > 0 such that for any k̃ ∈ Bε3(k) where R(r, k̃)

has one double zeros, we have that r(p) < rtrap(k̃). We can now conclude that also
in this case there exists ε = min{ε1, ε2, ε3} > 0 such that Bε(k) ⊂ ΩH+(p). �

Remark 14. When k ∈ ΩH+(p) or k ∈ ΩI+(p) satisfies c) they belong to the past
trapped set T−(p).

Lemma 13 is sufficient to conclude that if α(τ) with τ ∈ [0, 1] is a C0 path on
S2 with α(0) ∈ ΩH+(p) and α(1) ∈ ΩI+(p) then α(τ) ∩ T+(p) 6= ∅. Therefore
this information is sufficient to conclude that T+(p) consists of at least one C0

curve on S2 which is separating ΩH+(p) and ΩI+(p) . In the following we will use
the parametrization of [10] to prove a much stronger statement. We introduce the
coordinates ρ ∈ [0, π] and ψ ∈ [0, 2π) on the celestial sphere. Thus (5.1) can be
written as

γ̇(ρ, ψ)|p = α(e0 + cos(ρ)e1 + sin(ρ) cos(ψ)e2 + sin(ρ) sin(ψ)e3) (5.3)

The direction towards the black hole is given by ρ = π and the scalar factor α is
given by

α = g(γ̇, e0) =
aLz − (r2 + a2)E√

Σ∆

∣∣∣∣
p

(5.4)

In coordinate representation the tangent vector can be written as

γ̇|p = ṫ∂t + ṙ∂r + φ̇∂φ + θ̇∂θ (5.5)

Following [10] one finds by comparing coefficients of ∂r and ∂φ in (5.3) and (5.5)
and using the equation of motions (3.1) to substitute for ṙ and φ̇ that

sin(ψ) =
(L − a) + a cos2(θ)√

K sin(θ)

∣∣∣∣
p

(5.6a)

sin(ρ) =

√
∆K

r2 − a(L − a)

∣∣∣∣∣
p

(5.6b)

Analog to the functions (4.4) and (4.5) which give the value of the conserved quan-
tities in terms of the radius of trapping, we can give such relations for the conserved
quotients K and L. To differ between the trapped radius and the observers radius
we use x ∈ [r1, r2] to parametrize the conserved quantities of the trapped set. We
have then

K =
16x2∆(x)

(∆′(x))2
(5.7a)

a(L − a) =

(
x2 − 4x∆(x)

∆′(x)

)
(5.7b)
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Plugging (5.7) into (5.6) we obtain

sin(ψ) =
∆′(x){x2 + a2 cos2(θ(p))} − 4x∆(x)

4x
√

∆(x)a sin(θ(p))
(5.8a)

sin(ρ) =
4x
√

∆(r(p))∆(x)

∆′(x)(r(p)2 − x2) + 4x∆(x)
:= h(x) (5.8b)

We are now ready to prove the following Theorem.

Theorem 15. The sets T+(p) and T−(p) are smooth curves on the celestial sphere
of any observer at any point in the DOC of any subextremal Kerr spacetime.

Proof. We start by anayzing the right hand side of (5.8a)

d

dx

(
∆′(x){x2 + a2 cos2(θ(p))} − 4x∆(x)

4x
√

∆(x)a sin(θ(p))

)

=
{x2 + a2 cos(θ(p))}((M − x)3 −M(M2 − a2))

2x2∆(x)2a sin(θ(p))

(5.9)

is strictly negative for x ∈ (r+,∞). The limit of the right hand side of (5.8a) is
given by ∞ for x → r+ and −∞ for x → ∞. Therefor the right hand side is
invertible and x(sin(ψ)) is a smooth function of ψ with extrema at the extremal
points of sin(ψ). As was shown in [10] the minimum xmin(θ(p)) at ψ = π/2 and
the maximum of xmax(θ(p)) at ψ = 3π/2 correspond exactly to the intersections
of a cone with constant θ with the boundary of the region of trapping. This can
be seen by setting the left hand side of (5.8a) equal to ±1, taking the square of
the equation, solving for cos2(θ) and comparing to (4.15). Important here is that
[xmin(θ(p)), xmax(θ(p))] ⊂ [r1, r2] for all values of θ(p). Now we take a look at the
right hand side of equation (5.8b).

d

dx
(h(x)) =

8(r(p)2 − x2)∆(r(p))((x−M)3 +M(M2 − a2))√
∆(r(p))∆(x)(4x∆(x) + (r(p)2 − x2)∆′(x))2

(5.10)

This is positive when x < r(p) and negative when x > r(p). The denominator never
vanishes for x ∈ (r+,∞) because

(4x∆(x) + (r(p)2 − x2)∆′(x))|{r(p)=r+,x=r+} = 0 (5.11)

and
d

dx
(4x∆(x) + (r(p)2 − x2)∆′(x)) = 2(3x2 − 6Mx+ 2a2 + r(p)2) > 0 (5.12)

d

dr(p)
(4x∆(x) + (r(p)2 − x2)∆′(x)) = 2r(p)∆′(x) > 0 (5.13)

where we used r(p) > r+ > M > a in the first line.
If we set x = r(p) in (5.8b) then the right hand side is equal to 1. Furthermore in
any of the limits r(p) → r+, r(p) → ∞, x → r+, and x → ∞ it goes to zero. So if
p /∈ A hence if r(p) /∈ [xmin(θ(p)), xmax(θ(p))] then the two functions

ρ1(ψ) = arcsin(h(x(ψ))) : [0, 2π)→ [ρ1min
, ρ1max

] ⊂
(

0,
π

2

)
(5.14)

ρ2(ψ) = π − arcsin(h(x(ψ))) : [0, 2π)→ [ρ2min
, ρ2max

] ⊂
(π

2
, π
)

(5.15)

are both smooth with ρ1(0) = ρ1(2π) and ρ2(0) = ρ2(2π). If p is between the
region of trapping and the asymptotically flat end, the function ρ2(ψ) corresponds
to T+(p) and ρ1(ψ) corresponds to T−(p). Because (π/2, π] corresponds to the
geodesic having ṙ < 0. If p is between the region of trapping and the horizon then
the role of ρ1(ψ) and ρ2(ψ) are switched.
If p ∈ A we need to do some extra work. For simplicity we only consider the interval
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ψ ∈ [π/2, 3π/2] as the rest follows by symmetry of sin(ψ) in [0, π] across π/2 and
in [π, 2π] across 3π/2. Let arcsin(x) map into this interval, then we define

ψ0(r(p)) = arcsin

(
∆′(r(p)){r(p)2 + a2 cos2(θ(p))} − 4r(p)∆(r(p))

4r(p)
√

∆(r(p))a sin(θ(p))

)
(5.16)

The two functions

ρ3(ψ) =

{
arcsin(h(x(ψ))) if ψ ∈ [π/2, ψ0(r(p))]

π − arcsin(h(x(ψ))) if ψ ∈ (ψ0(r(p)), 3π/2]
(5.17)

ρ4(ψ) =

{
π − arcsin(h(x(ψ))) if ψ ∈ [π/2, ψ0(r(p))]

arcsin(h(x(ψ))) if ψ ∈ (ψ0(r(p)), 3π/2]
(5.18)

are then smooth on [π/2, 3π/2]. For a proof see Appendix A and note that at ψ0,
h(x(ψ)) satisfies the conditions required in the appendix. Since p ∈ A we have that
xmin(θ(p)) < r(p) < xmax(θ(p)). Therefore the geodesic on the celestial sphere
parametrized by xmax(θ(p)) has to have ṙ > 0 and thus has to be in [0, π/2). On
the other hand the geodesic on the celestial sphere parametrized by xmin(θ(p)) has
to have ṙ < 0 and thus has to be in (π/2, π]. In fact by the monotonicity of the right
hand side of (5.8a) and the fact that x(ψ0) = r(p) we know that for ψ ∈ [π/2, ψ0)
we have x(ψ) < r(p) and for ψ ∈ (ψ0, 3π/2] we have x(ψ) > r(p). Thus we can
conclude that for p ∈ A, ρ4 corresponds to T+(p) and ρ3 corresponds to T−(p) and
thus both sets are smooth.
In the special case when r(p) = xmax(θ(p)) or r(p) = xmin(θ(p)) the functions ρ1

and ρ2 describe T±(p) they reach ρ = π/2 at ψ = 3π/2 or ψ = π/2 respectively.
However since in these cases we have that

d2

dψ2
(h(x(ψ))) = 0 (5.19)

the two sets meet at this point tangentially and do not cross over into the other
hemisphere.
This concludes the proof. �

Remark 16. In [10] it was observed that ρmax of T+(p) always corresponds to
the trapped geodesic with xmin(θ(p)) and ρmin of T+(p) always corresponds to
the trapped geodesic with xmax(θ(p)) . When p is outside the region of trapping
h(x)|xmax

is a local maximum of h(x(ψ)) (as a function of ψ) and h(x)|xmin
is a

local minimum of h(x(ψ)). When p is between the region of trapping and the hori-
zon h(x)|xmax

is a local minimum of h(x(ψ)) and h(x)|xmin
is a local maximum

of h(x(ψ)). Since outside T+(p) is always described by ρ2(ψ) and inside by ρ1(ψ),
ρmin then always corresponds to xmin and ρmax always corresponds to xmax. This
also holds for p ∈ A.
This observation means that the null geodesic approaching the innermost photon
orbit has the smallest impact parameter (deviation from the radially ingoing null ge-
odesic) and the null geodesic approaching the outermost photon orbit has the largest
impact parameter.
For T−(p) the correspondence is switched.

Remark 17. The parametrization for sin(ψ) breaks down on the rotation axis, the
one for sin(ρ) however remains valid with only one possible value for x = r3. Due
to the symmetry at these points we know that T±(p) are described by proper circles
on the celestial sphere. The PND is aligned with the axis of the rotation symmetry
and hence the sets are symmetric under rotation along ψ. The situation is therefore
equivalent to Schwarzschild and an observer can not distinguish whether he observes
a Schwarzschild black hole or a Kerr black hole in the direction of the rotation axis.
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Remark 18. We have only proved Theorem 15 for one standard observer at any
particular point. However since any other observer at this point is related to the
standard observer by a Lorentz transformation and the Lorentz transformations act
as conformal transformations on the celestial sphere [16, p.14], the Theorem indeed
holds for any observer. In [9] the quantitative effect on the shape of the shadow of
boosts in different directions are discussed.

Remark 19. The parametrization for the trapped set on the celestial sphere of any
standard observer in [10, 11] was derived for a much more general class of space-
times. Therefore Theorem 15 might actually hold for these cases as well. However
this is beyond the scope of this paper.

From Theorem 15 we immediately get the following Corollary:

Corollary 20. For any observer at any point p in the DOC of a subextremal Kerr
spacetime we have that for any k ∈ T+(p) for any ε > 0

• Bε(k) ∩ ΩH+(p) 6= ∅
• Bε(k) ∩ ΩI+(p) 6= ∅.

So if we interpret the celestial sphere as initial data space for null geodesics starting
at p, the Corollary is a coordinate independent formulation of the fact that trapping
in the DOC of subextremal Kerr black holes is unstable.
See Figure 6 as an example on how the trapped sets change under a variation of
the radial location of the observer.
Even though the qualitative features of T±(p) do not change under a change of

parameters, the quantitative features do. In [13, 14] it is discussed what information
can be read of from the shadow at infinity. For points inside the manifold as
considered in this work, it is unclear to the authors what the maximal amount
of information is that an observer can obtain from the shape of the shadow. In
the following we will present numerical calculations that suggest that the radial
degeneracy of the shadow is broken in Kerr space times away from the symmetry
axis. We take the stereographic projection [16, p.10]

ζ =
x+ iy

1− z
(5.20a)

x = sin(ρ) sin(ψ) y = sin(ρ) cos(ψ) z = cos(ρ) (5.20b)

of T−(p) in order to compare the exact shape of the shadow for different observers.
Here the values of ρ and ψ are given by the parametrization in (5.7). The above
projection for the celestial sphere of a standard observer in the DOC of a Kerr
black hole guarantees that projection of the shadow in the complex plane will have
a reflection symmetry about the real axis. This is due to the symmetry of the
shadow on the celestial sphere of a standard observer under a sign flip in the k2

component. To compare conformal class of the shadow for observers in different
points of different black hole spacetimes we establish the notion of a canonical
observer together with a canonical projection. This will allow us to compare the
shape of the shadow for these observers directly. The canonical observer together
with the canonical projection are defined in such a way that the points on T−(p) with
Ψ = π/2, 3π/2 will correspond to the points (1, 0) and (−1, 0) in the complex plane.
On the practical side we take the stereographic projection along the radially ingoing
direction for the standard observer and then apply conformal transformations to the
projection of the shadow (translation and rescaling).

Remark 21. In order to prove that the conformal class of two curves x and y
on S2 are equal it is sufficient to find an x0 ∈ CS2 [x] and a y0 ∈ CS2 [y] such
that x0 = y0. By choosing a canonical observer, we choose a fix representative
c0[p] ∈ CS2 [T−(p)] of each conformal class and thereby eliminate the freedom of
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(a) (b) (c)

(d) (e)

Figure 6. The trapped set on the celestial sphere of a standard
observer at different radial locations in the equatorial plane of
the DOC of a Kerr black hole with a = 0.9. Observer (a) is lo-
cated outside the region of trapping at r = 5M . Observer (b)
is located on the outer boundary of the region of trapping at
r = r2 = 3.535M . Observer (c) is located inside the region of
trapping at r = r3 = 2.56M . Observer (d) is located on the inner
boundary of the area of trapping at r = r1 = 1.73M Finally ob-
server (e) is located between the horizon and the area of trapping
at r = 1.59M . Again one can observe how the two trapped sets
move in opposite directions on the celestial sphere as the observer
approaches the black hole. In (a) the future trapped set is on the
ingoing hemisphere and the past trapped set is on the outgoing
hemispere. In (b) they meet in one point tangentially but are still
entirely in one hemisphere except for that one point. In (a) the
trapped sets intersect in two points and both have parts in both
hemispheres. In (d) they only meet in one point tangentially again
(now on the "other" side of the celestial sphere) and finally in (e)
the future trapped set is entirely in the outgoing hemisphere and
the past trapped set is entierly in the ingoing hemisphere.

performing conformal transformations on the celestial sphere of an observer. Hence
if the shape of the canonical representative of any two shadows c0[p1(a1, θ1, r1)],
c0[p2(a2, θ2, r2)] coincide, then their conformal class is equal. On the other hand if
c0[p1(a1, θ1, r1)] 6= c0[p2(a2, θ2, r2)] then the conformal classes of the shadow at p1

and that at p2 are different.

Note that when investigating for degeneracies numerically only negative answers
are reliable, because an apparent degeneracy could simply be due to the fact that
the difference between the shadows of two canonical observers is below the scale of
the numerical resolution. The apparent breaking of the radial degeneracy in Kerr
space times can be seen in Figure 7, where we plotted two black hole shadows, for
canonical observers located in a Kerr space time with a = 0.99, at θ = π/2, and
different r values: r1 = 5, r2 = 50. These particular values were chosen because
for this case the degeneracy breaking is visible by the naked eye from the plot
in Figure 7. In general the breaking of the radial degeneracy is hardly visible in
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Figure 7. Breaking of the radial degeneracy for the shadow of a
Kerr black hole. Two canonical observers with a = 0.99, at θ = π/2,
for two different values r = 5 and r = 50.

the plot. Establishing a rigorous proof for the breaking of the radial degeneracy,
as well as investigation the possibility for the shadow to have some complicated
degeneracy of the form f(a, r, θ) = const., where f is function of these parameters,
is subject for further investigations. The breaking of the radial degeneracy implies
that in principle when observing the shadow of a black hole, as intended by the
Event Horizon Telescope, one would have to take the distance from said black
hole into consideration when trying to extract the black holes parameters from the
observation. However the influence of the radial degeneracy for far away observers
is quite likely a lot smaller than the resolution that can be achieved from such
observations.

6. Application

Everything we have derived about the behaviour of null geodesics in Kerr space-
times can be represented in a couple of simple plots. See Figure 8, Figure 5 and
Figure 6 as examples; in the Mathematica notebook provided with this paper [1]
the parameters a/M and Q as well as the location of the observer {r(p), θ(p)} can
be varied. This allows one to develop an intuitive understanding of the influence of
these parameters.
Furthermore by the eikonal approximation it is clear, that a massless wave equation
should relate to the null geodesic equation in the limit of high frequencies. In [7] it
is shown that when separating the wave equation Σ�ψ = 0 the ODE for the radial



CHARACTERIZATION OF NULL GEODESICS ON KERR SPACETIMES 23

Figure 8. Plot of the pseudo potentials V± as function of a com-
pactified radial coordinate in the DOC for a = 0.764 and Q = 0.18.
Its qualitative features are preserved when a and Q are changed.
The location of trapping in phase space is indicated by the function
Etrap(r). The extrema of the pseudo potentials are the intersection
of V+ and V− with this function. Therefore they slide on this curve
as Q increases. The area filled in gray corresponds to geodesics
with E < 0. It is clear from this plot that the regions occupied
by geodesics of negative energy and trapped geodesics respectively
are disjoint in phase space.

function in Schrödinger form can be written as:

d2u

dr∗ 2
+

(
R(r, E = ω,Lz = m,L2 = λlm)

(r2 + a2)2
− F (r)

)
u = 0 (6.1)

with F (r) = ∆
r2+a2 (a2∆ + 2Mr(r2 − a2)) ≥ 0 and hence we have the following

relations
ω ∼ E, m ∼ Lz, λlm ∼ L2. (6.2)

When trying to understand the different treatments of different parameter ranges
in [7] it is helpful to play with the parameters of the pseudo potential in the Math-
ematica notebook provided with this paper [1]. The construction of the different
mode currents becomes much more intuitive when thinking about where in Figure
8 the corresponding parameters are located. Note that in the high frequency limit
the pseudo potentials correspond to the location of ω2−V (r, ω,m,Λ) = 0 and hence
the location where the leading contribution to the bulk terms of the Qy and Qh

currents change their sign.
Another interesting observation is that combining the results in section 4.2 and sec-
tion 4.3 we can see that to separate trapping from the ergoregion in physical space
it is sufficient if we restrict the null geodesics to be either co- or counter-rotating.
In the co-rotating case there simply does not exist an ergoregion and the statement
is clear. In the counter rotating case trapping is constrained to r ∈ (r3, r2] and
r3 > 2M ≥ rergo for all Kerr spacetimes with a < M . In this direction particu-
larly interesting might be the potential functions Ψ± in [12] which have interesting
properties in physical space.

Acknowledgements. We are grateful to Lars Andersson, Volker Perlick and Siyuan
Ma for helpful discussions and their comments on the manuscript.
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Appendix A.

Let f(x) be a smooth function on [−1, 1] vanishing at the boundary points with
a unique maximum with value 1 at zero. Hence f(0) = 1, f ′(0) = 0 and f ′′(0) < 0.
We then define

g1a(x) = arcsin(f(x)) : [−1, 0)→[0, π/2) (A.1)
g2a(x) = π − arcsin(f(x)) : [−1, 0)→(π/2, π] (A.2)
g1b(x) = arcsin(f(x)) : (0, 1]→[0, π/2) (A.3)
g2b(x) = π − arcsin(f(x)) : (0, 1]→(π/2, π] (A.4)

Note that g′1a/b(x) = −g′2a/b(x). We then calculate

d

dx
g1a(x) =

f ′(x)√
1− f(x)2

(A.5)

Note that both the nominator and denominator vanish as x goes to zero. However
to apply the rule of l’Hopital we have to consider the square of the expression. We
then get

lim
x→0

(
d

dx
arcsin(f(x))

)2

= lim
x→0

−f ′′(x)

f(x)
= −f ′′(0) (A.6)

Thus d/dx(arcsin(f(x)))|x=0 =
√
−f ′′(0). The sign is chosen based on the fact that

d/dx(arcsin(f(x))) > 0 for x ∈ [1, 0) . Note that on [−1, 0) the derivative of g1(x)
is positive while on (0, 1] it is negative. Together this gives us that the function

g(x) =


g1a(x) if x ∈ [−1, 0)

π/2 if x = 0

g2b(x) if x ∈ (0, 1]

(A.7)

is smooth at x = 0 and therefore on [−1, 1] with d/dx(g(x))|x=0 =
√
−f ′′(0).
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